// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libANGLE/Program.h" #include <algorithm> #include "common/BitSetIterator.h" #include "common/debug.h" #include "common/platform.h" #include "common/utilities.h" #include "common/version.h" #include "compiler/translator/blocklayout.h" #include "libANGLE/ContextState.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/features.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/ProgramImpl.h" #include "libANGLE/queryconversions.h" #include "libANGLE/Uniform.h" namespace gl { namespace { void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var) { stream->writeInt(var.type); stream->writeInt(var.precision); stream->writeString(var.name); stream->writeString(var.mappedName); stream->writeInt(var.arraySize); stream->writeInt(var.staticUse); stream->writeString(var.structName); ASSERT(var.fields.empty()); } void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var) { var->type = stream->readInt<GLenum>(); var->precision = stream->readInt<GLenum>(); var->name = stream->readString(); var->mappedName = stream->readString(); var->arraySize = stream->readInt<unsigned int>(); var->staticUse = stream->readBool(); var->structName = stream->readString(); } // This simplified cast function doesn't need to worry about advanced concepts like // depth range values, or casting to bool. template <typename DestT, typename SrcT> DestT UniformStateQueryCast(SrcT value); // From-Float-To-Integer Casts template <> GLint UniformStateQueryCast(GLfloat value) { return clampCast<GLint>(roundf(value)); } template <> GLuint UniformStateQueryCast(GLfloat value) { return clampCast<GLuint>(roundf(value)); } // From-Integer-to-Integer Casts template <> GLint UniformStateQueryCast(GLuint value) { return clampCast<GLint>(value); } template <> GLuint UniformStateQueryCast(GLint value) { return clampCast<GLuint>(value); } // From-Boolean-to-Anything Casts template <> GLfloat UniformStateQueryCast(GLboolean value) { return (value == GL_TRUE ? 1.0f : 0.0f); } template <> GLint UniformStateQueryCast(GLboolean value) { return (value == GL_TRUE ? 1 : 0); } template <> GLuint UniformStateQueryCast(GLboolean value) { return (value == GL_TRUE ? 1u : 0u); } // Default to static_cast template <typename DestT, typename SrcT> DestT UniformStateQueryCast(SrcT value) { return static_cast<DestT>(value); } template <typename SrcT, typename DestT> void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components) { for (int comp = 0; comp < components; ++comp) { // We only work with strides of 4 bytes for uniform components. (GLfloat/GLint) // Don't use SrcT stride directly since GLboolean has a stride of 1 byte. size_t offset = comp * 4; const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]); dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer); } } bool UniformInList(const std::vector<LinkedUniform> &list, const std::string &name) { for (const LinkedUniform &uniform : list) { if (uniform.name == name) return true; } return false; } } // anonymous namespace const char *const g_fakepath = "C:\\fakepath"; InfoLog::InfoLog() { } InfoLog::~InfoLog() { } size_t InfoLog::getLength() const { const std::string &logString = mStream.str(); return logString.empty() ? 0 : logString.length() + 1; } void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { size_t index = 0; if (bufSize > 0) { const std::string str(mStream.str()); if (!str.empty()) { index = std::min(static_cast<size_t>(bufSize) - 1, str.length()); memcpy(infoLog, str.c_str(), index); } infoLog[index] = '\0'; } if (length) { *length = static_cast<GLsizei>(index); } } // append a santized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void InfoLog::appendSanitized(const char *message) { std::string msg(message); size_t found; do { found = msg.find(g_fakepath); if (found != std::string::npos) { msg.erase(found, strlen(g_fakepath)); } } while (found != std::string::npos); mStream << message << std::endl; } void InfoLog::reset() { } VariableLocation::VariableLocation() : name(), element(0), index(0), used(false), ignored(false) { } VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index), used(true), ignored(false) { } void Program::Bindings::bindLocation(GLuint index, const std::string &name) { mBindings[name] = index; } int Program::Bindings::getBinding(const std::string &name) const { auto iter = mBindings.find(name); return (iter != mBindings.end()) ? iter->second : -1; } Program::Bindings::const_iterator Program::Bindings::begin() const { return mBindings.begin(); } Program::Bindings::const_iterator Program::Bindings::end() const { return mBindings.end(); } ProgramState::ProgramState() : mLabel(), mAttachedFragmentShader(nullptr), mAttachedVertexShader(nullptr), mAttachedComputeShader(nullptr), mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS), mBinaryRetrieveableHint(false) { mComputeShaderLocalSize.fill(1); } ProgramState::~ProgramState() { if (mAttachedVertexShader != nullptr) { mAttachedVertexShader->release(); } if (mAttachedFragmentShader != nullptr) { mAttachedFragmentShader->release(); } if (mAttachedComputeShader != nullptr) { mAttachedComputeShader->release(); } } const std::string &ProgramState::getLabel() { return mLabel; } const LinkedUniform *ProgramState::getUniformByName(const std::string &name) const { for (const LinkedUniform &linkedUniform : mUniforms) { if (linkedUniform.name == name) { return &linkedUniform; } } return nullptr; } GLint ProgramState::getUniformLocation(const std::string &name) const { size_t subscript = GL_INVALID_INDEX; std::string baseName = gl::ParseUniformName(name, &subscript); for (size_t location = 0; location < mUniformLocations.size(); ++location) { const VariableLocation &uniformLocation = mUniformLocations[location]; if (!uniformLocation.used) { continue; } const LinkedUniform &uniform = mUniforms[uniformLocation.index]; if (uniform.name == baseName) { if (uniform.isArray()) { if (uniformLocation.element == subscript || (uniformLocation.element == 0 && subscript == GL_INVALID_INDEX)) { return static_cast<GLint>(location); } } else { if (subscript == GL_INVALID_INDEX) { return static_cast<GLint>(location); } } } } return -1; } GLuint ProgramState::getUniformIndex(const std::string &name) const { size_t subscript = GL_INVALID_INDEX; std::string baseName = gl::ParseUniformName(name, &subscript); // The app is not allowed to specify array indices other than 0 for arrays of basic types if (subscript != 0 && subscript != GL_INVALID_INDEX) { return GL_INVALID_INDEX; } for (size_t index = 0; index < mUniforms.size(); index++) { const LinkedUniform &uniform = mUniforms[index]; if (uniform.name == baseName) { if (uniform.isArray() || subscript == GL_INVALID_INDEX) { return static_cast<GLuint>(index); } } } return GL_INVALID_INDEX; } Program::Program(rx::GLImplFactory *factory, ResourceManager *manager, GLuint handle) : mProgram(factory->createProgram(mState)), mValidated(false), mLinked(false), mDeleteStatus(false), mRefCount(0), mResourceManager(manager), mHandle(handle), mSamplerUniformRange(0, 0) { ASSERT(mProgram); resetUniformBlockBindings(); unlink(); } Program::~Program() { unlink(true); SafeDelete(mProgram); } void Program::setLabel(const std::string &label) { mState.mLabel = label; } const std::string &Program::getLabel() const { return mState.mLabel; } bool Program::attachShader(Shader *shader) { switch (shader->getType()) { case GL_VERTEX_SHADER: { if (mState.mAttachedVertexShader) { return false; } mState.mAttachedVertexShader = shader; mState.mAttachedVertexShader->addRef(); break; } case GL_FRAGMENT_SHADER: { if (mState.mAttachedFragmentShader) { return false; } mState.mAttachedFragmentShader = shader; mState.mAttachedFragmentShader->addRef(); break; } case GL_COMPUTE_SHADER: { if (mState.mAttachedComputeShader) { return false; } mState.mAttachedComputeShader = shader; mState.mAttachedComputeShader->addRef(); break; } default: UNREACHABLE(); } return true; } bool Program::detachShader(Shader *shader) { switch (shader->getType()) { case GL_VERTEX_SHADER: { if (mState.mAttachedVertexShader != shader) { return false; } shader->release(); mState.mAttachedVertexShader = nullptr; break; } case GL_FRAGMENT_SHADER: { if (mState.mAttachedFragmentShader != shader) { return false; } shader->release(); mState.mAttachedFragmentShader = nullptr; break; } case GL_COMPUTE_SHADER: { if (mState.mAttachedComputeShader != shader) { return false; } shader->release(); mState.mAttachedComputeShader = nullptr; break; } default: UNREACHABLE(); } return true; } int Program::getAttachedShadersCount() const { return (mState.mAttachedVertexShader ? 1 : 0) + (mState.mAttachedFragmentShader ? 1 : 0) + (mState.mAttachedComputeShader ? 1 : 0); } void Program::bindAttributeLocation(GLuint index, const char *name) { mAttributeBindings.bindLocation(index, name); } void Program::bindUniformLocation(GLuint index, const char *name) { // Bind the base uniform name only since array indices other than 0 cannot be bound mUniformBindings.bindLocation(index, ParseUniformName(name, nullptr)); } void Program::bindFragmentInputLocation(GLint index, const char *name) { mFragmentInputBindings.bindLocation(index, name); } BindingInfo Program::getFragmentInputBindingInfo(GLint index) const { BindingInfo ret; ret.type = GL_NONE; ret.valid = false; const Shader *fragmentShader = mState.getAttachedFragmentShader(); ASSERT(fragmentShader); // Find the actual fragment shader varying we're interested in const std::vector<sh::Varying> &inputs = fragmentShader->getVaryings(); for (const auto &binding : mFragmentInputBindings) { if (binding.second != static_cast<GLuint>(index)) continue; ret.valid = true; std::string originalName = binding.first; unsigned int arrayIndex = ParseAndStripArrayIndex(&originalName); for (const auto &in : inputs) { if (in.name == originalName) { if (in.isArray()) { // The client wants to bind either "name" or "name[0]". // GL ES 3.1 spec refers to active array names with language such as: // "if the string identifies the base name of an active array, where the // string would exactly match the name of the variable if the suffix "[0]" // were appended to the string". if (arrayIndex == GL_INVALID_INDEX) arrayIndex = 0; ret.name = in.mappedName + "[" + std::to_string(arrayIndex) + "]"; } else { ret.name = in.mappedName; } ret.type = in.type; return ret; } } } return ret; } void Program::pathFragmentInputGen(GLint index, GLenum genMode, GLint components, const GLfloat *coeffs) { // If the location is -1 then the command is silently ignored if (index == -1) return; const auto &binding = getFragmentInputBindingInfo(index); // If the input doesn't exist then then the command is silently ignored // This could happen through optimization for example, the shader translator // decides that a variable is not actually being used and optimizes it away. if (binding.name.empty()) return; mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs); } // The attached shaders are checked for linking errors by matching up their variables. // Uniform, input and output variables get collected. // The code gets compiled into binaries. Error Program::link(const ContextState &data) { unlink(false); mInfoLog.reset(); resetUniformBlockBindings(); const Caps &caps = data.getCaps(); bool isComputeShaderAttached = (mState.mAttachedComputeShader != nullptr); bool nonComputeShadersAttached = (mState.mAttachedVertexShader != nullptr || mState.mAttachedFragmentShader != nullptr); // Check whether we both have a compute and non-compute shaders attached. // If there are of both types attached, then linking should fail. // OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram if (isComputeShaderAttached == true && nonComputeShadersAttached == true) { mInfoLog << "Both a compute and non-compute shaders are attached to the same program."; return NoError(); } if (mState.mAttachedComputeShader) { if (!mState.mAttachedComputeShader->isCompiled()) { mInfoLog << "Attached compute shader is not compiled."; return NoError(); } ASSERT(mState.mAttachedComputeShader->getType() == GL_COMPUTE_SHADER); mState.mComputeShaderLocalSize = mState.mAttachedComputeShader->getWorkGroupSize(); // GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs // If the work group size is not specified, a link time error should occur. if (!mState.mComputeShaderLocalSize.isDeclared()) { mInfoLog << "Work group size is not specified."; return NoError(); } if (!linkUniforms(mInfoLog, caps, mUniformBindings)) { return NoError(); } if (!linkUniformBlocks(mInfoLog, caps)) { return NoError(); } rx::LinkResult result = mProgram->link(data, mInfoLog); if (result.error.isError() || !result.linkSuccess) { return result.error; } } else { if (!mState.mAttachedFragmentShader || !mState.mAttachedFragmentShader->isCompiled()) { return NoError(); } ASSERT(mState.mAttachedFragmentShader->getType() == GL_FRAGMENT_SHADER); if (!mState.mAttachedVertexShader || !mState.mAttachedVertexShader->isCompiled()) { return NoError(); } ASSERT(mState.mAttachedVertexShader->getType() == GL_VERTEX_SHADER); if (mState.mAttachedFragmentShader->getShaderVersion() != mState.mAttachedVertexShader->getShaderVersion()) { mInfoLog << "Fragment shader version does not match vertex shader version."; return NoError(); } if (!linkAttributes(data, mInfoLog, mAttributeBindings, mState.mAttachedVertexShader)) { return NoError(); } if (!linkVaryings(mInfoLog, mState.mAttachedVertexShader, mState.mAttachedFragmentShader)) { return NoError(); } if (!linkUniforms(mInfoLog, caps, mUniformBindings)) { return NoError(); } if (!linkUniformBlocks(mInfoLog, caps)) { return NoError(); } const auto &mergedVaryings = getMergedVaryings(); if (!linkValidateTransformFeedback(mInfoLog, mergedVaryings, caps)) { return NoError(); } linkOutputVariables(); rx::LinkResult result = mProgram->link(data, mInfoLog); if (result.error.isError() || !result.linkSuccess) { return result.error; } gatherTransformFeedbackVaryings(mergedVaryings); } gatherInterfaceBlockInfo(); mLinked = true; return NoError(); } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink(bool destroy) { if (destroy) // Object being destructed { if (mState.mAttachedFragmentShader) { mState.mAttachedFragmentShader->release(); mState.mAttachedFragmentShader = nullptr; } if (mState.mAttachedVertexShader) { mState.mAttachedVertexShader->release(); mState.mAttachedVertexShader = nullptr; } if (mState.mAttachedComputeShader) { mState.mAttachedComputeShader->release(); mState.mAttachedComputeShader = nullptr; } } mState.mAttributes.clear(); mState.mActiveAttribLocationsMask.reset(); mState.mTransformFeedbackVaryingVars.clear(); mState.mUniforms.clear(); mState.mUniformLocations.clear(); mState.mUniformBlocks.clear(); mState.mOutputVariables.clear(); mState.mComputeShaderLocalSize.fill(1); mValidated = false; mLinked = false; } bool Program::isLinked() const { return mLinked; } Error Program::loadBinary(GLenum binaryFormat, const void *binary, GLsizei length) { unlink(false); #if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED return Error(GL_NO_ERROR); #else ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE); if (binaryFormat != GL_PROGRAM_BINARY_ANGLE) { mInfoLog << "Invalid program binary format."; return Error(GL_NO_ERROR); } BinaryInputStream stream(binary, length); int majorVersion = stream.readInt<int>(); int minorVersion = stream.readInt<int>(); if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION) { mInfoLog << "Invalid program binary version."; return Error(GL_NO_ERROR); } unsigned char commitString[ANGLE_COMMIT_HASH_SIZE]; stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE); if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0) { mInfoLog << "Invalid program binary version."; return Error(GL_NO_ERROR); } mState.mComputeShaderLocalSize[0] = stream.readInt<int>(); mState.mComputeShaderLocalSize[1] = stream.readInt<int>(); mState.mComputeShaderLocalSize[2] = stream.readInt<int>(); static_assert(MAX_VERTEX_ATTRIBS <= sizeof(unsigned long) * 8, "Too many vertex attribs for mask"); mState.mActiveAttribLocationsMask = stream.readInt<unsigned long>(); unsigned int attribCount = stream.readInt<unsigned int>(); ASSERT(mState.mAttributes.empty()); for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex) { sh::Attribute attrib; LoadShaderVar(&stream, &attrib); attrib.location = stream.readInt<int>(); mState.mAttributes.push_back(attrib); } unsigned int uniformCount = stream.readInt<unsigned int>(); ASSERT(mState.mUniforms.empty()); for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex) { LinkedUniform uniform; LoadShaderVar(&stream, &uniform); uniform.blockIndex = stream.readInt<int>(); uniform.blockInfo.offset = stream.readInt<int>(); uniform.blockInfo.arrayStride = stream.readInt<int>(); uniform.blockInfo.matrixStride = stream.readInt<int>(); uniform.blockInfo.isRowMajorMatrix = stream.readBool(); mState.mUniforms.push_back(uniform); } const unsigned int uniformIndexCount = stream.readInt<unsigned int>(); ASSERT(mState.mUniformLocations.empty()); for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++) { VariableLocation variable; stream.readString(&variable.name); stream.readInt(&variable.element); stream.readInt(&variable.index); stream.readBool(&variable.used); stream.readBool(&variable.ignored); mState.mUniformLocations.push_back(variable); } unsigned int uniformBlockCount = stream.readInt<unsigned int>(); ASSERT(mState.mUniformBlocks.empty()); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex) { UniformBlock uniformBlock; stream.readString(&uniformBlock.name); stream.readBool(&uniformBlock.isArray); stream.readInt(&uniformBlock.arrayElement); stream.readInt(&uniformBlock.dataSize); stream.readBool(&uniformBlock.vertexStaticUse); stream.readBool(&uniformBlock.fragmentStaticUse); unsigned int numMembers = stream.readInt<unsigned int>(); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++) { uniformBlock.memberUniformIndexes.push_back(stream.readInt<unsigned int>()); } mState.mUniformBlocks.push_back(uniformBlock); } unsigned int transformFeedbackVaryingCount = stream.readInt<unsigned int>(); ASSERT(mState.mTransformFeedbackVaryingVars.empty()); for (unsigned int transformFeedbackVaryingIndex = 0; transformFeedbackVaryingIndex < transformFeedbackVaryingCount; ++transformFeedbackVaryingIndex) { sh::Varying varying; stream.readInt(&varying.arraySize); stream.readInt(&varying.type); stream.readString(&varying.name); mState.mTransformFeedbackVaryingVars.push_back(varying); } stream.readInt(&mState.mTransformFeedbackBufferMode); unsigned int outputVarCount = stream.readInt<unsigned int>(); for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex) { int locationIndex = stream.readInt<int>(); VariableLocation locationData; stream.readInt(&locationData.element); stream.readInt(&locationData.index); stream.readString(&locationData.name); mState.mOutputVariables[locationIndex] = locationData; } stream.readInt(&mSamplerUniformRange.start); stream.readInt(&mSamplerUniformRange.end); rx::LinkResult result = mProgram->load(mInfoLog, &stream); if (result.error.isError() || !result.linkSuccess) { return result.error; } mLinked = true; return Error(GL_NO_ERROR); #endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED } Error Program::saveBinary(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const { if (binaryFormat) { *binaryFormat = GL_PROGRAM_BINARY_ANGLE; } BinaryOutputStream stream; stream.writeInt(ANGLE_MAJOR_VERSION); stream.writeInt(ANGLE_MINOR_VERSION); stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE); stream.writeInt(mState.mComputeShaderLocalSize[0]); stream.writeInt(mState.mComputeShaderLocalSize[1]); stream.writeInt(mState.mComputeShaderLocalSize[2]); stream.writeInt(mState.mActiveAttribLocationsMask.to_ulong()); stream.writeInt(mState.mAttributes.size()); for (const sh::Attribute &attrib : mState.mAttributes) { WriteShaderVar(&stream, attrib); stream.writeInt(attrib.location); } stream.writeInt(mState.mUniforms.size()); for (const gl::LinkedUniform &uniform : mState.mUniforms) { WriteShaderVar(&stream, uniform); // FIXME: referenced stream.writeInt(uniform.blockIndex); stream.writeInt(uniform.blockInfo.offset); stream.writeInt(uniform.blockInfo.arrayStride); stream.writeInt(uniform.blockInfo.matrixStride); stream.writeInt(uniform.blockInfo.isRowMajorMatrix); } stream.writeInt(mState.mUniformLocations.size()); for (const auto &variable : mState.mUniformLocations) { stream.writeString(variable.name); stream.writeInt(variable.element); stream.writeInt(variable.index); stream.writeInt(variable.used); stream.writeInt(variable.ignored); } stream.writeInt(mState.mUniformBlocks.size()); for (const UniformBlock &uniformBlock : mState.mUniformBlocks) { stream.writeString(uniformBlock.name); stream.writeInt(uniformBlock.isArray); stream.writeInt(uniformBlock.arrayElement); stream.writeInt(uniformBlock.dataSize); stream.writeInt(uniformBlock.vertexStaticUse); stream.writeInt(uniformBlock.fragmentStaticUse); stream.writeInt(uniformBlock.memberUniformIndexes.size()); for (unsigned int memberUniformIndex : uniformBlock.memberUniformIndexes) { stream.writeInt(memberUniformIndex); } } stream.writeInt(mState.mTransformFeedbackVaryingVars.size()); for (const sh::Varying &varying : mState.mTransformFeedbackVaryingVars) { stream.writeInt(varying.arraySize); stream.writeInt(varying.type); stream.writeString(varying.name); } stream.writeInt(mState.mTransformFeedbackBufferMode); stream.writeInt(mState.mOutputVariables.size()); for (const auto &outputPair : mState.mOutputVariables) { stream.writeInt(outputPair.first); stream.writeIntOrNegOne(outputPair.second.element); stream.writeInt(outputPair.second.index); stream.writeString(outputPair.second.name); } stream.writeInt(mSamplerUniformRange.start); stream.writeInt(mSamplerUniformRange.end); gl::Error error = mProgram->save(&stream); if (error.isError()) { return error; } GLsizei streamLength = static_cast<GLsizei>(stream.length()); const void *streamState = stream.data(); if (streamLength > bufSize) { if (length) { *length = 0; } // TODO: This should be moved to the validation layer but computing the size of the binary before saving // it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate // sizes and then copy it. return Error(GL_INVALID_OPERATION); } if (binary) { char *ptr = reinterpret_cast<char*>(binary); memcpy(ptr, streamState, streamLength); ptr += streamLength; ASSERT(ptr - streamLength == binary); } if (length) { *length = streamLength; } return Error(GL_NO_ERROR); } GLint Program::getBinaryLength() const { GLint length; Error error = saveBinary(nullptr, nullptr, std::numeric_limits<GLint>::max(), &length); if (error.isError()) { return 0; } return length; } void Program::setBinaryRetrievableHint(bool retrievable) { // TODO(jmadill) : replace with dirty bits mProgram->setBinaryRetrievableHint(retrievable); mState.mBinaryRetrieveableHint = retrievable; } bool Program::getBinaryRetrievableHint() const { return mState.mBinaryRetrieveableHint; } void Program::release() { mRefCount--; if (mRefCount == 0 && mDeleteStatus) { mResourceManager->deleteProgram(mHandle); } } void Program::addRef() { mRefCount++; } unsigned int Program::getRefCount() const { return mRefCount; } int Program::getInfoLogLength() const { return static_cast<int>(mInfoLog.getLength()); } void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { return mInfoLog.getLog(bufSize, length, infoLog); } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const { int total = 0; if (mState.mAttachedComputeShader) { if (total < maxCount) { shaders[total] = mState.mAttachedComputeShader->getHandle(); total++; } } if (mState.mAttachedVertexShader) { if (total < maxCount) { shaders[total] = mState.mAttachedVertexShader->getHandle(); total++; } } if (mState.mAttachedFragmentShader) { if (total < maxCount) { shaders[total] = mState.mAttachedFragmentShader->getHandle(); total++; } } if (count) { *count = total; } } GLuint Program::getAttributeLocation(const std::string &name) const { for (const sh::Attribute &attribute : mState.mAttributes) { if (attribute.name == name && attribute.staticUse) { return attribute.location; } } return static_cast<GLuint>(-1); } bool Program::isAttribLocationActive(size_t attribLocation) const { ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size()); return mState.mActiveAttribLocationsMask[attribLocation]; } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { if (!mLinked) { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *type = GL_NONE; *size = 1; return; } size_t attributeIndex = 0; for (const sh::Attribute &attribute : mState.mAttributes) { // Skip over inactive attributes if (attribute.staticUse) { if (static_cast<size_t>(index) == attributeIndex) { break; } attributeIndex++; } } ASSERT(index == attributeIndex && attributeIndex < mState.mAttributes.size()); const sh::Attribute &attrib = mState.mAttributes[attributeIndex]; if (bufsize > 0) { const char *string = attrib.name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = static_cast<GLsizei>(strlen(name)); } } // Always a single 'type' instance *size = 1; *type = attrib.type; } GLint Program::getActiveAttributeCount() const { if (!mLinked) { return 0; } GLint count = 0; for (const sh::Attribute &attrib : mState.mAttributes) { count += (attrib.staticUse ? 1 : 0); } return count; } GLint Program::getActiveAttributeMaxLength() const { if (!mLinked) { return 0; } size_t maxLength = 0; for (const sh::Attribute &attrib : mState.mAttributes) { if (attrib.staticUse) { maxLength = std::max(attrib.name.length() + 1, maxLength); } } return static_cast<GLint>(maxLength); } GLint Program::getFragDataLocation(const std::string &name) const { std::string baseName(name); unsigned int arrayIndex = ParseAndStripArrayIndex(&baseName); for (auto outputPair : mState.mOutputVariables) { const VariableLocation &outputVariable = outputPair.second; if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element)) { return static_cast<GLint>(outputPair.first); } } return -1; } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { if (mLinked) { // index must be smaller than getActiveUniformCount() ASSERT(index < mState.mUniforms.size()); const LinkedUniform &uniform = mState.mUniforms[index]; if (bufsize > 0) { std::string string = uniform.name; if (uniform.isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = static_cast<GLsizei>(strlen(name)); } } *size = uniform.elementCount(); *type = uniform.type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *size = 0; *type = GL_NONE; } } GLint Program::getActiveUniformCount() const { if (mLinked) { return static_cast<GLint>(mState.mUniforms.size()); } else { return 0; } } GLint Program::getActiveUniformMaxLength() const { size_t maxLength = 0; if (mLinked) { for (const LinkedUniform &uniform : mState.mUniforms) { if (!uniform.name.empty()) { size_t length = uniform.name.length() + 1u; if (uniform.isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } } return static_cast<GLint>(maxLength); } GLint Program::getActiveUniformi(GLuint index, GLenum pname) const { ASSERT(static_cast<size_t>(index) < mState.mUniforms.size()); const gl::LinkedUniform &uniform = mState.mUniforms[index]; switch (pname) { case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type); case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount()); case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0)); case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex; case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset; case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride; case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride; case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix); default: UNREACHABLE(); break; } return 0; } bool Program::isValidUniformLocation(GLint location) const { ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size())); return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() && mState.mUniformLocations[static_cast<size_t>(location)].used); } bool Program::isIgnoredUniformLocation(GLint location) const { // Location is ignored if it is -1 or it was bound but non-existant in the shader or optimized // out return location == -1 || (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() && mState.mUniformLocations[static_cast<size_t>(location)].ignored); } const LinkedUniform &Program::getUniformByLocation(GLint location) const { ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size()); return mState.mUniforms[mState.mUniformLocations[location].index]; } GLint Program::getUniformLocation(const std::string &name) const { return mState.getUniformLocation(name); } GLuint Program::getUniformIndex(const std::string &name) const { return mState.getUniformIndex(name); } void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) { setUniformInternal(location, count * 1, v); mProgram->setUniform1fv(location, count, v); } void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { setUniformInternal(location, count * 2, v); mProgram->setUniform2fv(location, count, v); } void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { setUniformInternal(location, count * 3, v); mProgram->setUniform3fv(location, count, v); } void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { setUniformInternal(location, count * 4, v); mProgram->setUniform4fv(location, count, v); } void Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) { setUniformInternal(location, count * 1, v); mProgram->setUniform1iv(location, count, v); } void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) { setUniformInternal(location, count * 2, v); mProgram->setUniform2iv(location, count, v); } void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) { setUniformInternal(location, count * 3, v); mProgram->setUniform3iv(location, count, v); } void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) { setUniformInternal(location, count * 4, v); mProgram->setUniform4iv(location, count, v); } void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { setUniformInternal(location, count * 1, v); mProgram->setUniform1uiv(location, count, v); } void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { setUniformInternal(location, count * 2, v); mProgram->setUniform2uiv(location, count, v); } void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { setUniformInternal(location, count * 3, v); mProgram->setUniform3uiv(location, count, v); } void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { setUniformInternal(location, count * 4, v); mProgram->setUniform4uiv(location, count, v); } void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<2, 2>(location, count, transpose, v); mProgram->setUniformMatrix2fv(location, count, transpose, v); } void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<3, 3>(location, count, transpose, v); mProgram->setUniformMatrix3fv(location, count, transpose, v); } void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<4, 4>(location, count, transpose, v); mProgram->setUniformMatrix4fv(location, count, transpose, v); } void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<2, 3>(location, count, transpose, v); mProgram->setUniformMatrix2x3fv(location, count, transpose, v); } void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<2, 4>(location, count, transpose, v); mProgram->setUniformMatrix2x4fv(location, count, transpose, v); } void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<3, 2>(location, count, transpose, v); mProgram->setUniformMatrix3x2fv(location, count, transpose, v); } void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<3, 4>(location, count, transpose, v); mProgram->setUniformMatrix3x4fv(location, count, transpose, v); } void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<4, 2>(location, count, transpose, v); mProgram->setUniformMatrix4x2fv(location, count, transpose, v); } void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { setMatrixUniformInternal<4, 3>(location, count, transpose, v); mProgram->setUniformMatrix4x3fv(location, count, transpose, v); } void Program::getUniformfv(GLint location, GLfloat *v) const { getUniformInternal(location, v); } void Program::getUniformiv(GLint location, GLint *v) const { getUniformInternal(location, v); } void Program::getUniformuiv(GLint location, GLuint *v) const { getUniformInternal(location, v); } void Program::flagForDeletion() { mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { return mDeleteStatus; } void Program::validate(const Caps &caps) { mInfoLog.reset(); if (mLinked) { mValidated = (mProgram->validate(caps, &mInfoLog) == GL_TRUE); } else { mInfoLog << "Program has not been successfully linked."; } } bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps) { // Skip cache if we're using an infolog, so we get the full error. // Also skip the cache if the sample mapping has changed, or if we haven't ever validated. if (infoLog == nullptr && mCachedValidateSamplersResult.valid()) { return mCachedValidateSamplersResult.value(); } if (mTextureUnitTypesCache.empty()) { mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, GL_NONE); } else { std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE); } // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. for (unsigned int samplerIndex = mSamplerUniformRange.start; samplerIndex < mSamplerUniformRange.end; ++samplerIndex) { const LinkedUniform &uniform = mState.mUniforms[samplerIndex]; ASSERT(uniform.isSampler()); if (!uniform.staticUse) continue; const GLuint *dataPtr = reinterpret_cast<const GLuint *>(uniform.getDataPtrToElement(0)); GLenum textureType = SamplerTypeToTextureType(uniform.type); for (unsigned int arrayElement = 0; arrayElement < uniform.elementCount(); ++arrayElement) { GLuint textureUnit = dataPtr[arrayElement]; if (textureUnit >= caps.maxCombinedTextureImageUnits) { if (infoLog) { (*infoLog) << "Sampler uniform (" << textureUnit << ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (" << caps.maxCombinedTextureImageUnits << ")"; } mCachedValidateSamplersResult = false; return false; } if (mTextureUnitTypesCache[textureUnit] != GL_NONE) { if (textureType != mTextureUnitTypesCache[textureUnit]) { if (infoLog) { (*infoLog) << "Samplers of conflicting types refer to the same texture " "image unit (" << textureUnit << ")."; } mCachedValidateSamplersResult = false; return false; } } else { mTextureUnitTypesCache[textureUnit] = textureType; } } } mCachedValidateSamplersResult = true; return true; } bool Program::isValidated() const { return mValidated; } GLuint Program::getActiveUniformBlockCount() const { return static_cast<GLuint>(mState.mUniformBlocks.size()); } void Program::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const { ASSERT( uniformBlockIndex < mState.mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex]; if (bufSize > 0) { std::string string = uniformBlock.name; if (uniformBlock.isArray) { string += ArrayString(uniformBlock.arrayElement); } strncpy(uniformBlockName, string.c_str(), bufSize); uniformBlockName[bufSize - 1] = '\0'; if (length) { *length = static_cast<GLsizei>(strlen(uniformBlockName)); } } } void Program::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const { ASSERT( uniformBlockIndex < mState.mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex]; switch (pname) { case GL_UNIFORM_BLOCK_DATA_SIZE: *params = static_cast<GLint>(uniformBlock.dataSize); break; case GL_UNIFORM_BLOCK_NAME_LENGTH: *params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArray ? 3 : 0)); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS: *params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size()); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES: { for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++) { params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]); } } break; case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER: *params = static_cast<GLint>(uniformBlock.vertexStaticUse); break; case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER: *params = static_cast<GLint>(uniformBlock.fragmentStaticUse); break; default: UNREACHABLE(); } } GLint Program::getActiveUniformBlockMaxLength() const { int maxLength = 0; if (mLinked) { unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size()); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++) { const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex]; if (!uniformBlock.name.empty()) { const int length = static_cast<int>(uniformBlock.name.length()) + 1; // Counting in "[0]". const int arrayLength = (uniformBlock.isArray ? 3 : 0); maxLength = std::max(length + arrayLength, maxLength); } } } return maxLength; } GLuint Program::getUniformBlockIndex(const std::string &name) const { size_t subscript = GL_INVALID_INDEX; std::string baseName = gl::ParseUniformName(name, &subscript); unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size()); for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++) { const gl::UniformBlock &uniformBlock = mState.mUniformBlocks[blockIndex]; if (uniformBlock.name == baseName) { const bool arrayElementZero = (subscript == GL_INVALID_INDEX && (!uniformBlock.isArray || uniformBlock.arrayElement == 0)); if (subscript == uniformBlock.arrayElement || arrayElementZero) { return blockIndex; } } } return GL_INVALID_INDEX; } const UniformBlock &Program::getUniformBlockByIndex(GLuint index) const { ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size())); return mState.mUniformBlocks[index]; } void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding) { mState.mUniformBlockBindings[uniformBlockIndex] = uniformBlockBinding; mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding); } GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const { return mState.getUniformBlockBinding(uniformBlockIndex); } void Program::resetUniformBlockBindings() { for (unsigned int blockId = 0; blockId < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; blockId++) { mState.mUniformBlockBindings[blockId] = 0; } mState.mActiveUniformBlockBindings.reset(); } void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) { mState.mTransformFeedbackVaryingNames.resize(count); for (GLsizei i = 0; i < count; i++) { mState.mTransformFeedbackVaryingNames[i] = varyings[i]; } mState.mTransformFeedbackBufferMode = bufferMode; } void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const { if (mLinked) { ASSERT(index < mState.mTransformFeedbackVaryingVars.size()); const sh::Varying &varying = mState.mTransformFeedbackVaryingVars[index]; GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varying.name.length())); if (length) { *length = lastNameIdx; } if (size) { *size = varying.elementCount(); } if (type) { *type = varying.type; } if (name) { memcpy(name, varying.name.c_str(), lastNameIdx); name[lastNameIdx] = '\0'; } } } GLsizei Program::getTransformFeedbackVaryingCount() const { if (mLinked) { return static_cast<GLsizei>(mState.mTransformFeedbackVaryingVars.size()); } else { return 0; } } GLsizei Program::getTransformFeedbackVaryingMaxLength() const { if (mLinked) { GLsizei maxSize = 0; for (const sh::Varying &varying : mState.mTransformFeedbackVaryingVars) { maxSize = std::max(maxSize, static_cast<GLsizei>(varying.name.length() + 1)); } return maxSize; } else { return 0; } } GLenum Program::getTransformFeedbackBufferMode() const { return mState.mTransformFeedbackBufferMode; } bool Program::linkVaryings(InfoLog &infoLog, const Shader *vertexShader, const Shader *fragmentShader) const { ASSERT(vertexShader->getShaderVersion() == fragmentShader->getShaderVersion()); const std::vector<sh::Varying> &vertexVaryings = vertexShader->getVaryings(); const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getVaryings(); std::map<GLuint, std::string> staticFragmentInputLocations; for (const sh::Varying &output : fragmentVaryings) { bool matched = false; // Built-in varyings obey special rules if (output.isBuiltIn()) { continue; } for (const sh::Varying &input : vertexVaryings) { if (output.name == input.name) { ASSERT(!input.isBuiltIn()); if (!linkValidateVaryings(infoLog, output.name, input, output, vertexShader->getShaderVersion())) { return false; } matched = true; break; } } // We permit unmatched, unreferenced varyings if (!matched && output.staticUse) { infoLog << "Fragment varying " << output.name << " does not match any vertex varying"; return false; } // Check for aliased path rendering input bindings (if any). // If more than one binding refer statically to the same // location the link must fail. if (!output.staticUse) continue; const auto inputBinding = mFragmentInputBindings.getBinding(output.name); if (inputBinding == -1) continue; const auto it = staticFragmentInputLocations.find(inputBinding); if (it == std::end(staticFragmentInputLocations)) { staticFragmentInputLocations.insert(std::make_pair(inputBinding, output.name)); } else { infoLog << "Binding for fragment input " << output.name << " conflicts with " << it->second; return false; } } // TODO(jmadill): verify no unmatched vertex varyings? return true; } bool Program::validateVertexAndFragmentUniforms(InfoLog &infoLog) const { // Check that uniforms defined in the vertex and fragment shaders are identical std::map<std::string, LinkedUniform> linkedUniforms; const std::vector<sh::Uniform> &vertexUniforms = mState.mAttachedVertexShader->getUniforms(); const std::vector<sh::Uniform> &fragmentUniforms = mState.mAttachedFragmentShader->getUniforms(); for (const sh::Uniform &vertexUniform : vertexUniforms) { linkedUniforms[vertexUniform.name] = LinkedUniform(vertexUniform); } for (const sh::Uniform &fragmentUniform : fragmentUniforms) { auto entry = linkedUniforms.find(fragmentUniform.name); if (entry != linkedUniforms.end()) { LinkedUniform *vertexUniform = &entry->second; const std::string &uniformName = "uniform '" + vertexUniform->name + "'"; if (!linkValidateUniforms(infoLog, uniformName, *vertexUniform, fragmentUniform)) { return false; } } } return true; } bool Program::linkUniforms(gl::InfoLog &infoLog, const gl::Caps &caps, const Bindings &uniformBindings) { if (mState.mAttachedVertexShader && mState.mAttachedFragmentShader) { ASSERT(mState.mAttachedComputeShader == nullptr); if (!validateVertexAndFragmentUniforms(infoLog)) { return false; } } // Flatten the uniforms list (nested fields) into a simple list (no nesting). // Also check the maximum uniform vector and sampler counts. if (!flattenUniformsAndCheckCaps(caps, infoLog)) { return false; } if (!indexUniforms(infoLog, caps, uniformBindings)) { return false; } return true; } bool Program::indexUniforms(gl::InfoLog &infoLog, const gl::Caps &caps, const Bindings &uniformBindings) { // Uniforms awaiting a location std::vector<VariableLocation> unboundUniforms; std::map<GLuint, VariableLocation> boundUniforms; int maxUniformLocation = -1; // Gather bound and unbound uniforms for (size_t uniformIndex = 0; uniformIndex < mState.mUniforms.size(); uniformIndex++) { const gl::LinkedUniform &uniform = mState.mUniforms[uniformIndex]; if (uniform.isBuiltIn()) { continue; } int bindingLocation = uniformBindings.getBinding(uniform.name); // Verify that this location isn't bound twice if (bindingLocation != -1 && boundUniforms.find(bindingLocation) != boundUniforms.end()) { infoLog << "Multiple uniforms bound to location " << bindingLocation << "."; return false; } for (unsigned int arrayIndex = 0; arrayIndex < uniform.elementCount(); arrayIndex++) { VariableLocation location(uniform.name, arrayIndex, static_cast<unsigned int>(uniformIndex)); if (arrayIndex == 0 && bindingLocation != -1) { boundUniforms[bindingLocation] = location; maxUniformLocation = std::max(maxUniformLocation, bindingLocation); } else { unboundUniforms.push_back(location); } } } // Gather the reserved bindings, ones that are bound but not referenced. Other uniforms should // not be assigned to those locations. std::set<GLuint> reservedLocations; for (const auto &binding : uniformBindings) { GLuint location = binding.second; if (boundUniforms.find(location) == boundUniforms.end()) { reservedLocations.insert(location); maxUniformLocation = std::max(maxUniformLocation, static_cast<int>(location)); } } // Make enough space for all uniforms, bound and unbound mState.mUniformLocations.resize( std::max(unboundUniforms.size() + boundUniforms.size() + reservedLocations.size(), static_cast<size_t>(maxUniformLocation + 1))); // Assign bound uniforms for (const auto &boundUniform : boundUniforms) { mState.mUniformLocations[boundUniform.first] = boundUniform.second; } // Assign reserved uniforms for (const auto &reservedLocation : reservedLocations) { mState.mUniformLocations[reservedLocation].ignored = true; } // Assign unbound uniforms size_t nextUniformLocation = 0; for (const auto &unboundUniform : unboundUniforms) { while (mState.mUniformLocations[nextUniformLocation].used || mState.mUniformLocations[nextUniformLocation].ignored) { nextUniformLocation++; } ASSERT(nextUniformLocation < mState.mUniformLocations.size()); mState.mUniformLocations[nextUniformLocation] = unboundUniform; nextUniformLocation++; } return true; } bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform) { // We don't validate precision on UBO fields. See resolution of Khronos bug 10287. if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, false)) { return false; } if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout) { infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders"; return false; } return true; } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool Program::linkAttributes(const ContextState &data, InfoLog &infoLog, const Bindings &attributeBindings, const Shader *vertexShader) { unsigned int usedLocations = 0; mState.mAttributes = vertexShader->getActiveAttributes(); GLuint maxAttribs = data.getCaps().maxVertexAttributes; // TODO(jmadill): handle aliasing robustly if (mState.mAttributes.size() > maxAttribs) { infoLog << "Too many vertex attributes."; return false; } std::vector<sh::Attribute *> usedAttribMap(maxAttribs, nullptr); // Link attributes that have a binding location for (sh::Attribute &attribute : mState.mAttributes) { // TODO(jmadill): do staticUse filtering step here, or not at all ASSERT(attribute.staticUse); int bindingLocation = attributeBindings.getBinding(attribute.name); if (attribute.location == -1 && bindingLocation != -1) { attribute.location = bindingLocation; } if (attribute.location != -1) { // Location is set by glBindAttribLocation or by location layout qualifier const int regs = VariableRegisterCount(attribute.type); if (static_cast<GLuint>(regs + attribute.location) > maxAttribs) { infoLog << "Active attribute (" << attribute.name << ") at location " << attribute.location << " is too big to fit"; return false; } for (int reg = 0; reg < regs; reg++) { const int regLocation = attribute.location + reg; sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation]; // In GLSL 3.00, attribute aliasing produces a link error // In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug if (linkedAttribute) { // TODO(jmadill): fix aliasing on ES2 // if (mProgram->getShaderVersion() >= 300) { infoLog << "Attribute '" << attribute.name << "' aliases attribute '" << linkedAttribute->name << "' at location " << regLocation; return false; } } else { usedAttribMap[regLocation] = &attribute; } usedLocations |= 1 << regLocation; } } } // Link attributes that don't have a binding location for (sh::Attribute &attribute : mState.mAttributes) { ASSERT(attribute.staticUse); // Not set by glBindAttribLocation or by location layout qualifier if (attribute.location == -1) { int regs = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs); if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs) { infoLog << "Too many active attributes (" << attribute.name << ")"; return false; } attribute.location = availableIndex; } } for (const sh::Attribute &attribute : mState.mAttributes) { ASSERT(attribute.staticUse); ASSERT(attribute.location != -1); int regs = VariableRegisterCount(attribute.type); for (int r = 0; r < regs; r++) { mState.mActiveAttribLocationsMask.set(attribute.location + r); } } return true; } bool Program::validateUniformBlocksCount(GLuint maxUniformBlocks, const std::vector<sh::InterfaceBlock> &intefaceBlocks, const std::string &errorMessage, InfoLog &infoLog) const { GLuint blockCount = 0; for (const sh::InterfaceBlock &block : intefaceBlocks) { if (block.staticUse || block.layout != sh::BLOCKLAYOUT_PACKED) { if (++blockCount > maxUniformBlocks) { infoLog << errorMessage << maxUniformBlocks << ")"; return false; } } } return true; } bool Program::validateVertexAndFragmentInterfaceBlocks( const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks, const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks, InfoLog &infoLog) const { // Check that interface blocks defined in the vertex and fragment shaders are identical typedef std::map<std::string, const sh::InterfaceBlock *> UniformBlockMap; UniformBlockMap linkedUniformBlocks; for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks) { linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock; } for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks) { auto entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name); if (entry != linkedUniformBlocks.end()) { const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second; if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock)) { return false; } } } return true; } bool Program::linkUniformBlocks(InfoLog &infoLog, const Caps &caps) { if (mState.mAttachedComputeShader) { const Shader &computeShader = *mState.mAttachedComputeShader; const auto &computeInterfaceBlocks = computeShader.getInterfaceBlocks(); if (!validateUniformBlocksCount( caps.maxComputeUniformBlocks, computeInterfaceBlocks, "Compute shader uniform block count exceeds GL_MAX_COMPUTE_UNIFORM_BLOCKS (", infoLog)) { return false; } return true; } const Shader &vertexShader = *mState.mAttachedVertexShader; const Shader &fragmentShader = *mState.mAttachedFragmentShader; const auto &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks(); const auto &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks(); if (!validateUniformBlocksCount( caps.maxVertexUniformBlocks, vertexInterfaceBlocks, "Vertex shader uniform block count exceeds GL_MAX_VERTEX_UNIFORM_BLOCKS (", infoLog)) { return false; } if (!validateUniformBlocksCount( caps.maxFragmentUniformBlocks, fragmentInterfaceBlocks, "Fragment shader uniform block count exceeds GL_MAX_FRAGMENT_UNIFORM_BLOCKS (", infoLog)) { return false; } if (!validateVertexAndFragmentInterfaceBlocks(vertexInterfaceBlocks, fragmentInterfaceBlocks, infoLog)) { return false; } return true; } bool Program::areMatchingInterfaceBlocks(gl::InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock) const { const char* blockName = vertexInterfaceBlock.name.c_str(); // validate blocks for the same member types if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size()) { infoLog << "Types for interface block '" << blockName << "' differ between vertex and fragment shaders"; return false; } if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize) { infoLog << "Array sizes differ for interface block '" << blockName << "' between vertex and fragment shaders"; return false; } if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout) { infoLog << "Layout qualifiers differ for interface block '" << blockName << "' between vertex and fragment shaders"; return false; } const unsigned int numBlockMembers = static_cast<unsigned int>(vertexInterfaceBlock.fields.size()); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) { const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex]; const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog << "Name mismatch for field " << blockMemberIndex << " of interface block '" << blockName << "': (in vertex: '" << vertexMember.name << "', in fragment: '" << fragmentMember.name << "')"; return false; } std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'"; if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember)) { return false; } } return true; } bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable, const sh::ShaderVariable &fragmentVariable, bool validatePrecision) { if (vertexVariable.type != fragmentVariable.type) { infoLog << "Types for " << variableName << " differ between vertex and fragment shaders"; return false; } if (vertexVariable.arraySize != fragmentVariable.arraySize) { infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders"; return false; } if (validatePrecision && vertexVariable.precision != fragmentVariable.precision) { infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders"; return false; } if (vertexVariable.fields.size() != fragmentVariable.fields.size()) { infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders"; return false; } const unsigned int numMembers = static_cast<unsigned int>(vertexVariable.fields.size()); for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++) { const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex]; const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog << "Name mismatch for field '" << memberIndex << "' of " << variableName << ": (in vertex: '" << vertexMember.name << "', in fragment: '" << fragmentMember.name << "')"; return false; } const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." + vertexMember.name + "'"; if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision)) { return false; } } return true; } bool Program::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform) { #if ANGLE_PROGRAM_LINK_VALIDATE_UNIFORM_PRECISION == ANGLE_ENABLED const bool validatePrecision = true; #else const bool validatePrecision = false; #endif if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, validatePrecision)) { return false; } return true; } bool Program::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying, int shaderVersion) { if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false)) { return false; } if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation)) { infoLog << "Interpolation types for " << varyingName << " differ between vertex and fragment shaders."; return false; } if (shaderVersion == 100 && vertexVarying.isInvariant != fragmentVarying.isInvariant) { infoLog << "Invariance for " << varyingName << " differs between vertex and fragment shaders."; return false; } return true; } bool Program::linkValidateTransformFeedback(InfoLog &infoLog, const std::vector<const sh::Varying *> &varyings, const Caps &caps) const { size_t totalComponents = 0; std::set<std::string> uniqueNames; for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { bool found = false; for (const sh::Varying *varying : varyings) { if (tfVaryingName == varying->name) { if (uniqueNames.count(tfVaryingName) > 0) { infoLog << "Two transform feedback varyings specify the same output variable (" << tfVaryingName << ")."; return false; } uniqueNames.insert(tfVaryingName); if (varying->isArray()) { infoLog << "Capture of arrays is undefined and not supported."; return false; } // TODO(jmadill): Investigate implementation limits on D3D11 size_t componentCount = gl::VariableComponentCount(varying->type); if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && componentCount > caps.maxTransformFeedbackSeparateComponents) { infoLog << "Transform feedback varying's " << varying->name << " components (" << componentCount << ") exceed the maximum separate components (" << caps.maxTransformFeedbackSeparateComponents << ")."; return false; } totalComponents += componentCount; found = true; break; } } if (tfVaryingName.find('[') != std::string::npos) { infoLog << "Capture of array elements is undefined and not supported."; return false; } // All transform feedback varyings are expected to exist since packVaryings checks for them. ASSERT(found); UNUSED_ASSERTION_VARIABLE(found); } if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents) { infoLog << "Transform feedback varying total components (" << totalComponents << ") exceed the maximum interleaved components (" << caps.maxTransformFeedbackInterleavedComponents << ")."; return false; } return true; } void Program::gatherTransformFeedbackVaryings(const std::vector<const sh::Varying *> &varyings) { // Gather the linked varyings that are used for transform feedback, they should all exist. mState.mTransformFeedbackVaryingVars.clear(); for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { for (const sh::Varying *varying : varyings) { if (tfVaryingName == varying->name) { mState.mTransformFeedbackVaryingVars.push_back(*varying); break; } } } } std::vector<const sh::Varying *> Program::getMergedVaryings() const { std::set<std::string> uniqueNames; std::vector<const sh::Varying *> varyings; for (const sh::Varying &varying : mState.mAttachedVertexShader->getVaryings()) { if (uniqueNames.count(varying.name) == 0) { uniqueNames.insert(varying.name); varyings.push_back(&varying); } } for (const sh::Varying &varying : mState.mAttachedFragmentShader->getVaryings()) { if (uniqueNames.count(varying.name) == 0) { uniqueNames.insert(varying.name); varyings.push_back(&varying); } } return varyings; } void Program::linkOutputVariables() { const Shader *fragmentShader = mState.mAttachedFragmentShader; ASSERT(fragmentShader != nullptr); // Skip this step for GLES2 shaders. if (fragmentShader->getShaderVersion() == 100) return; const auto &shaderOutputVars = fragmentShader->getActiveOutputVariables(); // TODO(jmadill): any caps validation here? for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size(); outputVariableIndex++) { const sh::OutputVariable &outputVariable = shaderOutputVars[outputVariableIndex]; // Don't store outputs for gl_FragDepth, gl_FragColor, etc. if (outputVariable.isBuiltIn()) continue; // Since multiple output locations must be specified, use 0 for non-specified locations. int baseLocation = (outputVariable.location == -1 ? 0 : outputVariable.location); ASSERT(outputVariable.staticUse); for (unsigned int elementIndex = 0; elementIndex < outputVariable.elementCount(); elementIndex++) { const int location = baseLocation + elementIndex; ASSERT(mState.mOutputVariables.count(location) == 0); unsigned int element = outputVariable.isArray() ? elementIndex : GL_INVALID_INDEX; mState.mOutputVariables[location] = VariableLocation(outputVariable.name, element, outputVariableIndex); } } } bool Program::flattenUniformsAndCheckCapsForShader(const gl::Shader &shader, GLuint maxUniformComponents, GLuint maxTextureImageUnits, const std::string &componentsErrorMessage, const std::string &samplerErrorMessage, std::vector<LinkedUniform> &samplerUniforms, InfoLog &infoLog) { VectorAndSamplerCount vasCount; for (const sh::Uniform &uniform : shader.getUniforms()) { if (uniform.staticUse) { vasCount += flattenUniform(uniform, uniform.name, &samplerUniforms); } } if (vasCount.vectorCount > maxUniformComponents) { infoLog << componentsErrorMessage << maxUniformComponents << ")."; return false; } if (vasCount.samplerCount > maxTextureImageUnits) { infoLog << samplerErrorMessage << maxTextureImageUnits << ")."; return false; } return true; } bool Program::flattenUniformsAndCheckCaps(const Caps &caps, InfoLog &infoLog) { std::vector<LinkedUniform> samplerUniforms; if (mState.mAttachedComputeShader) { const gl::Shader *computeShader = mState.getAttachedComputeShader(); // TODO (mradev): check whether we need finer-grained component counting if (!flattenUniformsAndCheckCapsForShader( *computeShader, caps.maxComputeUniformComponents / 4, caps.maxComputeTextureImageUnits, "Compute shader active uniforms exceed MAX_COMPUTE_UNIFORM_COMPONENTS (", "Compute shader sampler count exceeds MAX_COMPUTE_TEXTURE_IMAGE_UNITS (", samplerUniforms, infoLog)) { return false; } } else { const gl::Shader *vertexShader = mState.getAttachedVertexShader(); if (!flattenUniformsAndCheckCapsForShader( *vertexShader, caps.maxVertexUniformVectors, caps.maxVertexTextureImageUnits, "Vertex shader active uniforms exceed MAX_VERTEX_UNIFORM_VECTORS (", "Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (", samplerUniforms, infoLog)) { return false; } const gl::Shader *fragmentShader = mState.getAttachedFragmentShader(); if (!flattenUniformsAndCheckCapsForShader( *fragmentShader, caps.maxFragmentUniformVectors, caps.maxTextureImageUnits, "Fragment shader active uniforms exceed MAX_FRAGMENT_UNIFORM_VECTORS (", "Fragment shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (", samplerUniforms, infoLog)) { return false; } } mSamplerUniformRange.start = static_cast<unsigned int>(mState.mUniforms.size()); mSamplerUniformRange.end = mSamplerUniformRange.start + static_cast<unsigned int>(samplerUniforms.size()); mState.mUniforms.insert(mState.mUniforms.end(), samplerUniforms.begin(), samplerUniforms.end()); return true; } Program::VectorAndSamplerCount Program::flattenUniform(const sh::ShaderVariable &uniform, const std::string &fullName, std::vector<LinkedUniform> *samplerUniforms) { VectorAndSamplerCount vectorAndSamplerCount; if (uniform.isStruct()) { for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++) { const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : ""); for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++) { const sh::ShaderVariable &field = uniform.fields[fieldIndex]; const std::string &fieldFullName = (fullName + elementString + "." + field.name); vectorAndSamplerCount += flattenUniform(field, fieldFullName, samplerUniforms); } } return vectorAndSamplerCount; } // Not a struct bool isSampler = IsSamplerType(uniform.type); if (!UniformInList(mState.getUniforms(), fullName) && !UniformInList(*samplerUniforms, fullName)) { gl::LinkedUniform linkedUniform(uniform.type, uniform.precision, fullName, uniform.arraySize, -1, sh::BlockMemberInfo::getDefaultBlockInfo()); linkedUniform.staticUse = true; // Store sampler uniforms separately, so we'll append them to the end of the list. if (isSampler) { samplerUniforms->push_back(linkedUniform); } else { mState.mUniforms.push_back(linkedUniform); } } unsigned int elementCount = uniform.elementCount(); // Samplers aren't "real" uniforms, so they don't count towards register usage. // Likewise, don't count "real" uniforms towards sampler count. vectorAndSamplerCount.vectorCount = (isSampler ? 0 : (VariableRegisterCount(uniform.type) * elementCount)); vectorAndSamplerCount.samplerCount = (isSampler ? elementCount : 0); return vectorAndSamplerCount; } void Program::gatherInterfaceBlockInfo() { ASSERT(mState.mUniformBlocks.empty()); if (mState.mAttachedComputeShader) { const gl::Shader *computeShader = mState.getAttachedComputeShader(); for (const sh::InterfaceBlock &computeBlock : computeShader->getInterfaceBlocks()) { // Only 'packed' blocks are allowed to be considered inactive. if (!computeBlock.staticUse && computeBlock.layout == sh::BLOCKLAYOUT_PACKED) continue; for (gl::UniformBlock &block : mState.mUniformBlocks) { if (block.name == computeBlock.name) { block.computeStaticUse = computeBlock.staticUse; } } defineUniformBlock(computeBlock, GL_COMPUTE_SHADER); } return; } std::set<std::string> visitedList; const gl::Shader *vertexShader = mState.getAttachedVertexShader(); for (const sh::InterfaceBlock &vertexBlock : vertexShader->getInterfaceBlocks()) { // Only 'packed' blocks are allowed to be considered inactive. if (!vertexBlock.staticUse && vertexBlock.layout == sh::BLOCKLAYOUT_PACKED) continue; if (visitedList.count(vertexBlock.name) > 0) continue; defineUniformBlock(vertexBlock, GL_VERTEX_SHADER); visitedList.insert(vertexBlock.name); } const gl::Shader *fragmentShader = mState.getAttachedFragmentShader(); for (const sh::InterfaceBlock &fragmentBlock : fragmentShader->getInterfaceBlocks()) { // Only 'packed' blocks are allowed to be considered inactive. if (!fragmentBlock.staticUse && fragmentBlock.layout == sh::BLOCKLAYOUT_PACKED) continue; if (visitedList.count(fragmentBlock.name) > 0) { for (gl::UniformBlock &block : mState.mUniformBlocks) { if (block.name == fragmentBlock.name) { block.fragmentStaticUse = fragmentBlock.staticUse; } } continue; } defineUniformBlock(fragmentBlock, GL_FRAGMENT_SHADER); visitedList.insert(fragmentBlock.name); } } template <typename VarT> void Program::defineUniformBlockMembers(const std::vector<VarT> &fields, const std::string &prefix, int blockIndex) { for (const VarT &field : fields) { const std::string &fullName = (prefix.empty() ? field.name : prefix + "." + field.name); if (field.isStruct()) { for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++) { const std::string uniformElementName = fullName + (field.isArray() ? ArrayString(arrayElement) : ""); defineUniformBlockMembers(field.fields, uniformElementName, blockIndex); } } else { // If getBlockMemberInfo returns false, the uniform is optimized out. sh::BlockMemberInfo memberInfo; if (!mProgram->getUniformBlockMemberInfo(fullName, &memberInfo)) { continue; } LinkedUniform newUniform(field.type, field.precision, fullName, field.arraySize, blockIndex, memberInfo); // Since block uniforms have no location, we don't need to store them in the uniform // locations list. mState.mUniforms.push_back(newUniform); } } } void Program::defineUniformBlock(const sh::InterfaceBlock &interfaceBlock, GLenum shaderType) { int blockIndex = static_cast<int>(mState.mUniformBlocks.size()); size_t blockSize = 0; // Don't define this block at all if it's not active in the implementation. if (!mProgram->getUniformBlockSize(interfaceBlock.name, &blockSize)) { return; } // Track the first and last uniform index to determine the range of active uniforms in the // block. size_t firstBlockUniformIndex = mState.mUniforms.size(); defineUniformBlockMembers(interfaceBlock.fields, interfaceBlock.fieldPrefix(), blockIndex); size_t lastBlockUniformIndex = mState.mUniforms.size(); std::vector<unsigned int> blockUniformIndexes; for (size_t blockUniformIndex = firstBlockUniformIndex; blockUniformIndex < lastBlockUniformIndex; ++blockUniformIndex) { blockUniformIndexes.push_back(static_cast<unsigned int>(blockUniformIndex)); } if (interfaceBlock.arraySize > 0) { for (unsigned int arrayElement = 0; arrayElement < interfaceBlock.arraySize; ++arrayElement) { UniformBlock block(interfaceBlock.name, true, arrayElement); block.memberUniformIndexes = blockUniformIndexes; switch (shaderType) { case GL_VERTEX_SHADER: { block.vertexStaticUse = interfaceBlock.staticUse; break; } case GL_FRAGMENT_SHADER: { block.fragmentStaticUse = interfaceBlock.staticUse; break; } case GL_COMPUTE_SHADER: { block.computeStaticUse = interfaceBlock.staticUse; break; } default: UNREACHABLE(); } // TODO(jmadill): Determine if we can ever have an inactive array element block. size_t blockElementSize = 0; if (!mProgram->getUniformBlockSize(block.nameWithArrayIndex(), &blockElementSize)) { continue; } ASSERT(blockElementSize == blockSize); block.dataSize = static_cast<unsigned int>(blockElementSize); mState.mUniformBlocks.push_back(block); } } else { UniformBlock block(interfaceBlock.name, false, 0); block.memberUniformIndexes = blockUniformIndexes; switch (shaderType) { case GL_VERTEX_SHADER: { block.vertexStaticUse = interfaceBlock.staticUse; break; } case GL_FRAGMENT_SHADER: { block.fragmentStaticUse = interfaceBlock.staticUse; break; } case GL_COMPUTE_SHADER: { block.computeStaticUse = interfaceBlock.staticUse; break; } default: UNREACHABLE(); } block.dataSize = static_cast<unsigned int>(blockSize); mState.mUniformBlocks.push_back(block); } } template <typename T> void Program::setUniformInternal(GLint location, GLsizei count, const T *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; LinkedUniform *linkedUniform = &mState.mUniforms[locationInfo.index]; uint8_t *destPointer = linkedUniform->getDataPtrToElement(locationInfo.element); if (VariableComponentType(linkedUniform->type) == GL_BOOL) { // Do a cast conversion for boolean types. From the spec: // "The uniform is set to FALSE if the input value is 0 or 0.0f, and set to TRUE otherwise." GLint *destAsInt = reinterpret_cast<GLint *>(destPointer); for (GLsizei component = 0; component < count; ++component) { destAsInt[component] = (v[component] != static_cast<T>(0) ? GL_TRUE : GL_FALSE); } } else { // Invalide the validation cache if we modify the sampler data. if (linkedUniform->isSampler() && memcmp(destPointer, v, sizeof(T) * count) != 0) { mCachedValidateSamplersResult.reset(); } memcpy(destPointer, v, sizeof(T) * count); } } template <size_t cols, size_t rows, typename T> void Program::setMatrixUniformInternal(GLint location, GLsizei count, GLboolean transpose, const T *v) { if (!transpose) { setUniformInternal(location, count * cols * rows, v); return; } // Perform a transposing copy. const VariableLocation &locationInfo = mState.mUniformLocations[location]; LinkedUniform *linkedUniform = &mState.mUniforms[locationInfo.index]; T *destPtr = reinterpret_cast<T *>(linkedUniform->getDataPtrToElement(locationInfo.element)); for (GLsizei element = 0; element < count; ++element) { size_t elementOffset = element * rows * cols; for (size_t row = 0; row < rows; ++row) { for (size_t col = 0; col < cols; ++col) { destPtr[col * rows + row + elementOffset] = v[row * cols + col + elementOffset]; } } } } template <typename DestT> void Program::getUniformInternal(GLint location, DestT *dataOut) const { const VariableLocation &locationInfo = mState.mUniformLocations[location]; const LinkedUniform &uniform = mState.mUniforms[locationInfo.index]; const uint8_t *srcPointer = uniform.getDataPtrToElement(locationInfo.element); GLenum componentType = VariableComponentType(uniform.type); if (componentType == GLTypeToGLenum<DestT>::value) { memcpy(dataOut, srcPointer, uniform.getElementSize()); return; } int components = VariableComponentCount(uniform.type); switch (componentType) { case GL_INT: UniformStateQueryCastLoop<GLint>(dataOut, srcPointer, components); break; case GL_UNSIGNED_INT: UniformStateQueryCastLoop<GLuint>(dataOut, srcPointer, components); break; case GL_BOOL: UniformStateQueryCastLoop<GLboolean>(dataOut, srcPointer, components); break; case GL_FLOAT: UniformStateQueryCastLoop<GLfloat>(dataOut, srcPointer, components); break; default: UNREACHABLE(); } } }