// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "libANGLE/Context.h" #include #include #include #include #include "common/matrix_utils.h" #include "common/platform.h" #include "common/utilities.h" #include "libANGLE/Buffer.h" #include "libANGLE/Compiler.h" #include "libANGLE/Display.h" #include "libANGLE/Fence.h" #include "libANGLE/Framebuffer.h" #include "libANGLE/FramebufferAttachment.h" #include "libANGLE/Path.h" #include "libANGLE/Program.h" #include "libANGLE/Query.h" #include "libANGLE/Renderbuffer.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/Sampler.h" #include "libANGLE/Surface.h" #include "libANGLE/Texture.h" #include "libANGLE/TransformFeedback.h" #include "libANGLE/VertexArray.h" #include "libANGLE/formatutils.h" #include "libANGLE/validationES.h" #include "libANGLE/Workarounds.h" #include "libANGLE/renderer/ContextImpl.h" #include "libANGLE/renderer/EGLImplFactory.h" #include "libANGLE/queryconversions.h" #include "libANGLE/queryutils.h" namespace { template std::vector GatherPaths(gl::ResourceManager &resourceManager, GLsizei numPaths, const void *paths, GLuint pathBase) { std::vector ret; ret.reserve(numPaths); const auto *nameArray = static_cast(paths); for (GLsizei i = 0; i < numPaths; ++i) { const GLuint pathName = nameArray[i] + pathBase; ret.push_back(resourceManager.getPath(pathName)); } return ret; } std::vector GatherPaths(gl::ResourceManager &resourceManager, GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase) { switch (pathNameType) { case GL_UNSIGNED_BYTE: return GatherPaths(resourceManager, numPaths, paths, pathBase); case GL_BYTE: return GatherPaths(resourceManager, numPaths, paths, pathBase); case GL_UNSIGNED_SHORT: return GatherPaths(resourceManager, numPaths, paths, pathBase); case GL_SHORT: return GatherPaths(resourceManager, numPaths, paths, pathBase); case GL_UNSIGNED_INT: return GatherPaths(resourceManager, numPaths, paths, pathBase); case GL_INT: return GatherPaths(resourceManager, numPaths, paths, pathBase); } UNREACHABLE(); return std::vector(); } template gl::Error GetQueryObjectParameter(gl::Query *query, GLenum pname, T *params) { ASSERT(query != nullptr); switch (pname) { case GL_QUERY_RESULT_EXT: return query->getResult(params); case GL_QUERY_RESULT_AVAILABLE_EXT: { bool available; gl::Error error = query->isResultAvailable(&available); if (!error.isError()) { *params = gl::ConvertFromGLboolean(available); } return error; } default: UNREACHABLE(); return gl::Error(GL_INVALID_OPERATION, "Unreachable Error"); } } void MarkTransformFeedbackBufferUsage(gl::TransformFeedback *transformFeedback) { if (transformFeedback && transformFeedback->isActive() && !transformFeedback->isPaused()) { for (size_t tfBufferIndex = 0; tfBufferIndex < transformFeedback->getIndexedBufferCount(); tfBufferIndex++) { const OffsetBindingPointer &buffer = transformFeedback->getIndexedBuffer(tfBufferIndex); if (buffer.get() != nullptr) { buffer->onTransformFeedback(); } } } } // Attribute map queries. EGLint GetClientMajorVersion(const egl::AttributeMap &attribs) { return static_cast(attribs.get(EGL_CONTEXT_CLIENT_VERSION, 1)); } EGLint GetClientMinorVersion(const egl::AttributeMap &attribs) { return static_cast(attribs.get(EGL_CONTEXT_MINOR_VERSION, 0)); } gl::Version GetClientVersion(const egl::AttributeMap &attribs) { return gl::Version(GetClientMajorVersion(attribs), GetClientMinorVersion(attribs)); } GLenum GetResetStrategy(const egl::AttributeMap &attribs) { EGLAttrib attrib = attribs.get(EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_EXT, EGL_NO_RESET_NOTIFICATION_EXT); switch (attrib) { case EGL_NO_RESET_NOTIFICATION: return GL_NO_RESET_NOTIFICATION_EXT; case EGL_LOSE_CONTEXT_ON_RESET: return GL_LOSE_CONTEXT_ON_RESET_EXT; default: UNREACHABLE(); return GL_NONE; } } bool GetRobustAccess(const egl::AttributeMap &attribs) { return (attribs.get(EGL_CONTEXT_OPENGL_ROBUST_ACCESS_EXT, EGL_FALSE) == EGL_TRUE) || ((attribs.get(EGL_CONTEXT_FLAGS_KHR, 0) & EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR) != 0); } bool GetDebug(const egl::AttributeMap &attribs) { return (attribs.get(EGL_CONTEXT_OPENGL_DEBUG, EGL_FALSE) == EGL_TRUE) || ((attribs.get(EGL_CONTEXT_FLAGS_KHR, 0) & EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR) != 0); } bool GetNoError(const egl::AttributeMap &attribs) { return (attribs.get(EGL_CONTEXT_OPENGL_NO_ERROR_KHR, EGL_FALSE) == EGL_TRUE); } bool GetWebGLContext(const egl::AttributeMap &attribs) { return (attribs.get(EGL_CONTEXT_WEBGL_COMPATIBILITY_ANGLE, EGL_FALSE) == EGL_TRUE); } bool GetBindGeneratesResource(const egl::AttributeMap &attribs) { return (attribs.get(EGL_CONTEXT_BIND_GENERATES_RESOURCE_CHROMIUM, EGL_TRUE) == EGL_TRUE); } std::string GetObjectLabelFromPointer(GLsizei length, const GLchar *label) { std::string labelName; if (label != nullptr) { size_t labelLength = length < 0 ? strlen(label) : length; labelName = std::string(label, labelLength); } return labelName; } void GetObjectLabelBase(const std::string &objectLabel, GLsizei bufSize, GLsizei *length, GLchar *label) { size_t writeLength = objectLabel.length(); if (label != nullptr && bufSize > 0) { writeLength = std::min(static_cast(bufSize) - 1, objectLabel.length()); std::copy(objectLabel.begin(), objectLabel.begin() + writeLength, label); label[writeLength] = '\0'; } if (length != nullptr) { *length = static_cast(writeLength); } } } // anonymous namespace namespace gl { Context::Context(rx::EGLImplFactory *implFactory, const egl::Config *config, const Context *shareContext, const egl::AttributeMap &attribs) : ValidationContext(GetClientVersion(attribs), &mGLState, mCaps, mTextureCaps, mExtensions, nullptr, mLimitations, mFramebufferMap, GetNoError(attribs)), mImplementation(implFactory->createContext(mState)), mCompiler(nullptr), mConfig(config), mClientType(EGL_OPENGL_ES_API), mHasBeenCurrent(false), mContextLost(false), mResetStatus(GL_NO_ERROR), mContextLostForced(false), mResetStrategy(GetResetStrategy(attribs)), mRobustAccess(GetRobustAccess(attribs)), mCurrentSurface(nullptr), mResourceManager(nullptr) { if (mRobustAccess) { UNIMPLEMENTED(); } initCaps(GetWebGLContext(attribs)); initWorkarounds(); mGLState.initialize(mCaps, mExtensions, getClientVersion(), GetDebug(attribs), GetBindGeneratesResource(attribs)); mFenceNVHandleAllocator.setBaseHandle(0); if (shareContext != nullptr) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(); } mState.mResourceManager = mResourceManager; // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. Texture *zeroTexture2D = new Texture(mImplementation.get(), 0, GL_TEXTURE_2D); mZeroTextures[GL_TEXTURE_2D].set(zeroTexture2D); Texture *zeroTextureCube = new Texture(mImplementation.get(), 0, GL_TEXTURE_CUBE_MAP); mZeroTextures[GL_TEXTURE_CUBE_MAP].set(zeroTextureCube); if (getClientVersion() >= Version(3, 0)) { // TODO: These could also be enabled via extension Texture *zeroTexture3D = new Texture(mImplementation.get(), 0, GL_TEXTURE_3D); mZeroTextures[GL_TEXTURE_3D].set(zeroTexture3D); Texture *zeroTexture2DArray = new Texture(mImplementation.get(), 0, GL_TEXTURE_2D_ARRAY); mZeroTextures[GL_TEXTURE_2D_ARRAY].set(zeroTexture2DArray); } if (mExtensions.eglImageExternal || mExtensions.eglStreamConsumerExternal) { Texture *zeroTextureExternal = new Texture(mImplementation.get(), 0, GL_TEXTURE_EXTERNAL_OES); mZeroTextures[GL_TEXTURE_EXTERNAL_OES].set(zeroTextureExternal); } mGLState.initializeZeroTextures(mZeroTextures); bindVertexArray(0); bindArrayBuffer(0); bindElementArrayBuffer(0); bindRenderbuffer(GL_RENDERBUFFER, 0); bindGenericUniformBuffer(0); for (unsigned int i = 0; i < mCaps.maxCombinedUniformBlocks; i++) { bindIndexedUniformBuffer(0, i, 0, -1); } bindCopyReadBuffer(0); bindCopyWriteBuffer(0); bindPixelPackBuffer(0); bindPixelUnpackBuffer(0); if (getClientVersion() >= Version(3, 0)) { // [OpenGL ES 3.0.2] section 2.14.1 pg 85: // In the initial state, a default transform feedback object is bound and treated as // a transform feedback object with a name of zero. That object is bound any time // BindTransformFeedback is called with id of zero bindTransformFeedback(0); } mCompiler = new Compiler(mImplementation.get(), mState); // Initialize dirty bit masks // TODO(jmadill): additional ES3 state mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_ALIGNMENT); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_ROW_LENGTH); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_IMAGE_HEIGHT); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_SKIP_IMAGES); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_SKIP_ROWS); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_SKIP_PIXELS); mTexImageDirtyBits.set(State::DIRTY_BIT_UNPACK_BUFFER_BINDING); // No dirty objects. // Readpixels uses the pack state and read FBO mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_ALIGNMENT); mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_REVERSE_ROW_ORDER); mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_ROW_LENGTH); mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_SKIP_ROWS); mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_SKIP_PIXELS); mReadPixelsDirtyBits.set(State::DIRTY_BIT_PACK_BUFFER_BINDING); mReadPixelsDirtyObjects.set(State::DIRTY_OBJECT_READ_FRAMEBUFFER); mClearDirtyBits.set(State::DIRTY_BIT_RASTERIZER_DISCARD_ENABLED); mClearDirtyBits.set(State::DIRTY_BIT_SCISSOR_TEST_ENABLED); mClearDirtyBits.set(State::DIRTY_BIT_SCISSOR); mClearDirtyBits.set(State::DIRTY_BIT_VIEWPORT); mClearDirtyBits.set(State::DIRTY_BIT_CLEAR_COLOR); mClearDirtyBits.set(State::DIRTY_BIT_CLEAR_DEPTH); mClearDirtyBits.set(State::DIRTY_BIT_CLEAR_STENCIL); mClearDirtyBits.set(State::DIRTY_BIT_COLOR_MASK); mClearDirtyBits.set(State::DIRTY_BIT_DEPTH_MASK); mClearDirtyBits.set(State::DIRTY_BIT_STENCIL_WRITEMASK_FRONT); mClearDirtyBits.set(State::DIRTY_BIT_STENCIL_WRITEMASK_BACK); mClearDirtyObjects.set(State::DIRTY_OBJECT_DRAW_FRAMEBUFFER); mBlitDirtyBits.set(State::DIRTY_BIT_SCISSOR_TEST_ENABLED); mBlitDirtyBits.set(State::DIRTY_BIT_SCISSOR); mBlitDirtyBits.set(State::DIRTY_BIT_FRAMEBUFFER_SRGB); mBlitDirtyObjects.set(State::DIRTY_OBJECT_READ_FRAMEBUFFER); mBlitDirtyObjects.set(State::DIRTY_OBJECT_DRAW_FRAMEBUFFER); handleError(mImplementation->initialize()); } Context::~Context() { mGLState.reset(); for (auto framebuffer : mFramebufferMap) { // Default framebuffer are owned by their respective Surface if (framebuffer.second != nullptr && framebuffer.second->id() != 0) { SafeDelete(framebuffer.second); } } for (auto fence : mFenceNVMap) { SafeDelete(fence.second); } for (auto query : mQueryMap) { if (query.second != nullptr) { query.second->release(); } } for (auto vertexArray : mVertexArrayMap) { SafeDelete(vertexArray.second); } for (auto transformFeedback : mTransformFeedbackMap) { if (transformFeedback.second != nullptr) { transformFeedback.second->release(); } } for (auto &zeroTexture : mZeroTextures) { zeroTexture.second.set(NULL); } mZeroTextures.clear(); if (mCurrentSurface != nullptr) { releaseSurface(); } if (mResourceManager) { mResourceManager->release(); } SafeDelete(mCompiler); } void Context::makeCurrent(egl::Surface *surface) { ASSERT(surface != nullptr); if (!mHasBeenCurrent) { initRendererString(); initExtensionStrings(); mGLState.setViewportParams(0, 0, surface->getWidth(), surface->getHeight()); mGLState.setScissorParams(0, 0, surface->getWidth(), surface->getHeight()); mHasBeenCurrent = true; } // TODO(jmadill): Rework this when we support ContextImpl mGLState.setAllDirtyBits(); if (mCurrentSurface) { releaseSurface(); } surface->setIsCurrent(true); mCurrentSurface = surface; // Update default framebuffer, the binding of the previous default // framebuffer (or lack of) will have a nullptr. { Framebuffer *newDefault = surface->getDefaultFramebuffer(); if (mGLState.getReadFramebuffer() == nullptr) { mGLState.setReadFramebufferBinding(newDefault); } if (mGLState.getDrawFramebuffer() == nullptr) { mGLState.setDrawFramebufferBinding(newDefault); } mFramebufferMap[0] = newDefault; } // Notify the renderer of a context switch mImplementation->onMakeCurrent(mState); } void Context::releaseSurface() { ASSERT(mCurrentSurface != nullptr); // Remove the default framebuffer { Framebuffer *currentDefault = mCurrentSurface->getDefaultFramebuffer(); if (mGLState.getReadFramebuffer() == currentDefault) { mGLState.setReadFramebufferBinding(nullptr); } if (mGLState.getDrawFramebuffer() == currentDefault) { mGLState.setDrawFramebufferBinding(nullptr); } mFramebufferMap.erase(0); } mCurrentSurface->setIsCurrent(false); mCurrentSurface = nullptr; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(mImplementation.get()); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(mImplementation.get(), mImplementation->getNativeLimitations(), type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } GLsync Context::createFenceSync() { GLuint handle = mResourceManager->createFenceSync(mImplementation.get()); return reinterpret_cast(static_cast(handle)); } GLuint Context::createPaths(GLsizei range) { auto resultOrError = mResourceManager->createPaths(mImplementation.get(), range); if (resultOrError.isError()) { handleError(resultOrError.getError()); return 0; } return resultOrError.getResult(); } GLuint Context::createVertexArray() { GLuint vertexArray = mVertexArrayHandleAllocator.allocate(); mVertexArrayMap[vertexArray] = nullptr; return vertexArray; } GLuint Context::createSampler() { return mResourceManager->createSampler(); } GLuint Context::createTransformFeedback() { GLuint transformFeedback = mTransformFeedbackAllocator.allocate(); mTransformFeedbackMap[transformFeedback] = nullptr; return transformFeedback; } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { GLuint handle = mFramebufferHandleAllocator.allocate(); mFramebufferMap[handle] = NULL; return handle; } GLuint Context::createFenceNV() { GLuint handle = mFenceNVHandleAllocator.allocate(); mFenceNVMap[handle] = new FenceNV(mImplementation->createFenceNV()); return handle; } // Returns an unused query name GLuint Context::createQuery() { GLuint handle = mQueryHandleAllocator.allocate(); mQueryMap[handle] = NULL; return handle; } void Context::deleteBuffer(GLuint buffer) { if (mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if (mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if (mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFenceSync(GLsync fenceSync) { // The spec specifies the underlying Fence object is not deleted until all current // wait commands finish. However, since the name becomes invalid, we cannot query the fence, // and since our API is currently designed for being called from a single thread, we can delete // the fence immediately. mResourceManager->deleteFenceSync(static_cast(reinterpret_cast(fenceSync))); } void Context::deletePaths(GLuint first, GLsizei range) { mResourceManager->deletePaths(first, range); } bool Context::hasPathData(GLuint path) const { const auto *pathObj = mResourceManager->getPath(path); if (pathObj == nullptr) return false; return pathObj->hasPathData(); } bool Context::hasPath(GLuint path) const { return mResourceManager->hasPath(path); } void Context::setPathCommands(GLuint path, GLsizei numCommands, const GLubyte *commands, GLsizei numCoords, GLenum coordType, const void *coords) { auto *pathObject = mResourceManager->getPath(path); handleError(pathObject->setCommands(numCommands, commands, numCoords, coordType, coords)); } void Context::setPathParameterf(GLuint path, GLenum pname, GLfloat value) { auto *pathObj = mResourceManager->getPath(path); switch (pname) { case GL_PATH_STROKE_WIDTH_CHROMIUM: pathObj->setStrokeWidth(value); break; case GL_PATH_END_CAPS_CHROMIUM: pathObj->setEndCaps(static_cast(value)); break; case GL_PATH_JOIN_STYLE_CHROMIUM: pathObj->setJoinStyle(static_cast(value)); break; case GL_PATH_MITER_LIMIT_CHROMIUM: pathObj->setMiterLimit(value); break; case GL_PATH_STROKE_BOUND_CHROMIUM: pathObj->setStrokeBound(value); break; default: UNREACHABLE(); break; } } void Context::getPathParameterfv(GLuint path, GLenum pname, GLfloat *value) const { const auto *pathObj = mResourceManager->getPath(path); switch (pname) { case GL_PATH_STROKE_WIDTH_CHROMIUM: *value = pathObj->getStrokeWidth(); break; case GL_PATH_END_CAPS_CHROMIUM: *value = static_cast(pathObj->getEndCaps()); break; case GL_PATH_JOIN_STYLE_CHROMIUM: *value = static_cast(pathObj->getJoinStyle()); break; case GL_PATH_MITER_LIMIT_CHROMIUM: *value = pathObj->getMiterLimit(); break; case GL_PATH_STROKE_BOUND_CHROMIUM: *value = pathObj->getStrokeBound(); break; default: UNREACHABLE(); break; } } void Context::setPathStencilFunc(GLenum func, GLint ref, GLuint mask) { mGLState.setPathStencilFunc(func, ref, mask); } void Context::deleteVertexArray(GLuint vertexArray) { auto iter = mVertexArrayMap.find(vertexArray); if (iter != mVertexArrayMap.end()) { VertexArray *vertexArrayObject = iter->second; if (vertexArrayObject != nullptr) { detachVertexArray(vertexArray); delete vertexArrayObject; } mVertexArrayMap.erase(iter); mVertexArrayHandleAllocator.release(vertexArray); } } void Context::deleteSampler(GLuint sampler) { if (mResourceManager->getSampler(sampler)) { detachSampler(sampler); } mResourceManager->deleteSampler(sampler); } void Context::deleteTransformFeedback(GLuint transformFeedback) { auto iter = mTransformFeedbackMap.find(transformFeedback); if (iter != mTransformFeedbackMap.end()) { TransformFeedback *transformFeedbackObject = iter->second; if (transformFeedbackObject != nullptr) { detachTransformFeedback(transformFeedback); transformFeedbackObject->release(); } mTransformFeedbackMap.erase(iter); mTransformFeedbackAllocator.release(transformFeedback); } } void Context::deleteFramebuffer(GLuint framebuffer) { auto framebufferObject = mFramebufferMap.find(framebuffer); if (framebufferObject != mFramebufferMap.end()) { detachFramebuffer(framebuffer); mFramebufferHandleAllocator.release(framebufferObject->first); delete framebufferObject->second; mFramebufferMap.erase(framebufferObject); } } void Context::deleteFenceNV(GLuint fence) { auto fenceObject = mFenceNVMap.find(fence); if (fenceObject != mFenceNVMap.end()) { mFenceNVHandleAllocator.release(fenceObject->first); delete fenceObject->second; mFenceNVMap.erase(fenceObject); } } void Context::deleteQuery(GLuint query) { auto queryObject = mQueryMap.find(query); if (queryObject != mQueryMap.end()) { mQueryHandleAllocator.release(queryObject->first); if (queryObject->second) { queryObject->second->release(); } mQueryMap.erase(queryObject); } } Buffer *Context::getBuffer(GLuint handle) const { return mResourceManager->getBuffer(handle); } Texture *Context::getTexture(GLuint handle) const { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) const { return mResourceManager->getRenderbuffer(handle); } FenceSync *Context::getFenceSync(GLsync handle) const { return mResourceManager->getFenceSync(static_cast(reinterpret_cast(handle))); } VertexArray *Context::getVertexArray(GLuint handle) const { auto vertexArray = mVertexArrayMap.find(handle); return (vertexArray != mVertexArrayMap.end()) ? vertexArray->second : nullptr; } Sampler *Context::getSampler(GLuint handle) const { return mResourceManager->getSampler(handle); } TransformFeedback *Context::getTransformFeedback(GLuint handle) const { auto iter = mTransformFeedbackMap.find(handle); return (iter != mTransformFeedbackMap.end()) ? iter->second : nullptr; } LabeledObject *Context::getLabeledObject(GLenum identifier, GLuint name) const { switch (identifier) { case GL_BUFFER: return getBuffer(name); case GL_SHADER: return getShader(name); case GL_PROGRAM: return getProgram(name); case GL_VERTEX_ARRAY: return getVertexArray(name); case GL_QUERY: return getQuery(name); case GL_TRANSFORM_FEEDBACK: return getTransformFeedback(name); case GL_SAMPLER: return getSampler(name); case GL_TEXTURE: return getTexture(name); case GL_RENDERBUFFER: return getRenderbuffer(name); case GL_FRAMEBUFFER: return getFramebuffer(name); default: UNREACHABLE(); return nullptr; } } LabeledObject *Context::getLabeledObjectFromPtr(const void *ptr) const { return getFenceSync(reinterpret_cast(const_cast(ptr))); } void Context::objectLabel(GLenum identifier, GLuint name, GLsizei length, const GLchar *label) { LabeledObject *object = getLabeledObject(identifier, name); ASSERT(object != nullptr); std::string labelName = GetObjectLabelFromPointer(length, label); object->setLabel(labelName); } void Context::objectPtrLabel(const void *ptr, GLsizei length, const GLchar *label) { LabeledObject *object = getLabeledObjectFromPtr(ptr); ASSERT(object != nullptr); std::string labelName = GetObjectLabelFromPointer(length, label); object->setLabel(labelName); } void Context::getObjectLabel(GLenum identifier, GLuint name, GLsizei bufSize, GLsizei *length, GLchar *label) const { LabeledObject *object = getLabeledObject(identifier, name); ASSERT(object != nullptr); const std::string &objectLabel = object->getLabel(); GetObjectLabelBase(objectLabel, bufSize, length, label); } void Context::getObjectPtrLabel(const void *ptr, GLsizei bufSize, GLsizei *length, GLchar *label) const { LabeledObject *object = getLabeledObjectFromPtr(ptr); ASSERT(object != nullptr); const std::string &objectLabel = object->getLabel(); GetObjectLabelBase(objectLabel, bufSize, length, label); } bool Context::isSampler(GLuint samplerName) const { return mResourceManager->isSampler(samplerName); } void Context::bindArrayBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setArrayBufferBinding(buffer); } void Context::bindElementArrayBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.getVertexArray()->setElementArrayBuffer(buffer); } void Context::bindTexture(GLenum target, GLuint handle) { Texture *texture = nullptr; if (handle == 0) { texture = mZeroTextures[target].get(); } else { texture = mResourceManager->checkTextureAllocation(mImplementation.get(), handle, target); } ASSERT(texture); mGLState.setSamplerTexture(target, texture); } void Context::bindReadFramebuffer(GLuint framebufferHandle) { Framebuffer *framebuffer = checkFramebufferAllocation(framebufferHandle); mGLState.setReadFramebufferBinding(framebuffer); } void Context::bindDrawFramebuffer(GLuint framebufferHandle) { Framebuffer *framebuffer = checkFramebufferAllocation(framebufferHandle); mGLState.setDrawFramebufferBinding(framebuffer); } void Context::bindVertexArray(GLuint vertexArrayHandle) { VertexArray *vertexArray = checkVertexArrayAllocation(vertexArrayHandle); mGLState.setVertexArrayBinding(vertexArray); } void Context::bindSampler(GLuint textureUnit, GLuint samplerHandle) { ASSERT(textureUnit < mCaps.maxCombinedTextureImageUnits); Sampler *sampler = mResourceManager->checkSamplerAllocation(mImplementation.get(), samplerHandle); mGLState.setSamplerBinding(textureUnit, sampler); } void Context::bindGenericUniformBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setGenericUniformBufferBinding(buffer); } void Context::bindIndexedUniformBuffer(GLuint bufferHandle, GLuint index, GLintptr offset, GLsizeiptr size) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setIndexedUniformBufferBinding(index, buffer, offset, size); } void Context::bindGenericTransformFeedbackBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.getCurrentTransformFeedback()->bindGenericBuffer(buffer); } void Context::bindIndexedTransformFeedbackBuffer(GLuint bufferHandle, GLuint index, GLintptr offset, GLsizeiptr size) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.getCurrentTransformFeedback()->bindIndexedBuffer(index, buffer, offset, size); } void Context::bindCopyReadBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setCopyReadBufferBinding(buffer); } void Context::bindCopyWriteBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setCopyWriteBufferBinding(buffer); } void Context::bindPixelPackBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setPixelPackBufferBinding(buffer); } void Context::bindPixelUnpackBuffer(GLuint bufferHandle) { Buffer *buffer = mResourceManager->checkBufferAllocation(mImplementation.get(), bufferHandle); mGLState.setPixelUnpackBufferBinding(buffer); } void Context::useProgram(GLuint program) { mGLState.setProgram(getProgram(program)); } void Context::bindTransformFeedback(GLuint transformFeedbackHandle) { TransformFeedback *transformFeedback = checkTransformFeedbackAllocation(transformFeedbackHandle); mGLState.setTransformFeedbackBinding(transformFeedback); } Error Context::beginQuery(GLenum target, GLuint query) { Query *queryObject = getQuery(query, true, target); ASSERT(queryObject); // begin query Error error = queryObject->begin(); if (error.isError()) { return error; } // set query as active for specified target only if begin succeeded mGLState.setActiveQuery(target, queryObject); return Error(GL_NO_ERROR); } Error Context::endQuery(GLenum target) { Query *queryObject = mGLState.getActiveQuery(target); ASSERT(queryObject); gl::Error error = queryObject->end(); // Always unbind the query, even if there was an error. This may delete the query object. mGLState.setActiveQuery(target, NULL); return error; } Error Context::queryCounter(GLuint id, GLenum target) { ASSERT(target == GL_TIMESTAMP_EXT); Query *queryObject = getQuery(id, true, target); ASSERT(queryObject); return queryObject->queryCounter(); } void Context::getQueryiv(GLenum target, GLenum pname, GLint *params) { switch (pname) { case GL_CURRENT_QUERY_EXT: params[0] = mGLState.getActiveQueryId(target); break; case GL_QUERY_COUNTER_BITS_EXT: switch (target) { case GL_TIME_ELAPSED_EXT: params[0] = getExtensions().queryCounterBitsTimeElapsed; break; case GL_TIMESTAMP_EXT: params[0] = getExtensions().queryCounterBitsTimestamp; break; default: UNREACHABLE(); params[0] = 0; break; } break; default: UNREACHABLE(); return; } } void Context::getQueryObjectiv(GLuint id, GLenum pname, GLint *params) { handleError(GetQueryObjectParameter(getQuery(id), pname, params)); } void Context::getQueryObjectuiv(GLuint id, GLenum pname, GLuint *params) { handleError(GetQueryObjectParameter(getQuery(id), pname, params)); } void Context::getQueryObjecti64v(GLuint id, GLenum pname, GLint64 *params) { handleError(GetQueryObjectParameter(getQuery(id), pname, params)); } void Context::getQueryObjectui64v(GLuint id, GLenum pname, GLuint64 *params) { handleError(GetQueryObjectParameter(getQuery(id), pname, params)); } Framebuffer *Context::getFramebuffer(unsigned int handle) const { auto framebufferIt = mFramebufferMap.find(handle); return ((framebufferIt == mFramebufferMap.end()) ? nullptr : framebufferIt->second); } FenceNV *Context::getFenceNV(unsigned int handle) { auto fence = mFenceNVMap.find(handle); if (fence == mFenceNVMap.end()) { return NULL; } else { return fence->second; } } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { auto query = mQueryMap.find(handle); if (query == mQueryMap.end()) { return NULL; } else { if (!query->second && create) { query->second = new Query(mImplementation->createQuery(type), handle); query->second->addRef(); } return query->second; } } Query *Context::getQuery(GLuint handle) const { auto iter = mQueryMap.find(handle); return (iter != mQueryMap.end()) ? iter->second : nullptr; } Texture *Context::getTargetTexture(GLenum target) const { ASSERT(ValidTextureTarget(this, target) || ValidTextureExternalTarget(this, target)); return mGLState.getTargetTexture(target); } Texture *Context::getSamplerTexture(unsigned int sampler, GLenum type) const { return mGLState.getSamplerTexture(sampler, type); } Compiler *Context::getCompiler() const { return mCompiler; } void Context::getBooleanv(GLenum pname, GLboolean *params) { switch (pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; default: mGLState.getBooleanv(pname, params); break; } } void Context::getFloatv(GLenum pname, GLfloat *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = mCaps.minAliasedLineWidth; params[1] = mCaps.maxAliasedLineWidth; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = mCaps.minAliasedPointSize; params[1] = mCaps.maxAliasedPointSize; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: ASSERT(mExtensions.textureFilterAnisotropic); *params = mExtensions.maxTextureAnisotropy; break; case GL_MAX_TEXTURE_LOD_BIAS: *params = mCaps.maxLODBias; break; case GL_PATH_MODELVIEW_MATRIX_CHROMIUM: case GL_PATH_PROJECTION_MATRIX_CHROMIUM: { ASSERT(mExtensions.pathRendering); const GLfloat *m = mGLState.getPathRenderingMatrix(pname); memcpy(params, m, 16 * sizeof(GLfloat)); } break; default: mGLState.getFloatv(pname, params); break; } } void Context::getIntegerv(GLenum pname, GLint *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_VERTEX_ATTRIBS: *params = mCaps.maxVertexAttributes; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mCaps.maxVertexUniformVectors; break; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxVertexUniformComponents; break; case GL_MAX_VARYING_VECTORS: *params = mCaps.maxVaryingVectors; break; case GL_MAX_VARYING_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mCaps.maxCombinedTextureImageUnits; break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxVertexTextureImageUnits; break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxTextureImageUnits; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mCaps.maxFragmentUniformVectors; break; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxFragmentUniformComponents; break; case GL_MAX_RENDERBUFFER_SIZE: *params = mCaps.maxRenderbufferSize; break; case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mCaps.maxColorAttachments; break; case GL_MAX_DRAW_BUFFERS_EXT: *params = mCaps.maxDrawBuffers; break; //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = mCaps.max2DTextureSize; break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = mCaps.maxCubeMapTextureSize; break; case GL_MAX_3D_TEXTURE_SIZE: *params = mCaps.max3DTextureSize; break; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = mCaps.maxArrayTextureLayers; break; case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = mCaps.uniformBufferOffsetAlignment; break; case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = mCaps.maxUniformBufferBindings; break; case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mCaps.maxVertexUniformBlocks; break; case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mCaps.maxFragmentUniformBlocks; break; case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = mCaps.maxCombinedTextureImageUnits; break; case GL_MAX_VERTEX_OUTPUT_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break; case GL_MAX_FRAGMENT_INPUT_COMPONENTS: *params = mCaps.maxFragmentInputComponents; break; case GL_MIN_PROGRAM_TEXEL_OFFSET: *params = mCaps.minProgramTexelOffset; break; case GL_MAX_PROGRAM_TEXEL_OFFSET: *params = mCaps.maxProgramTexelOffset; break; case GL_MAJOR_VERSION: *params = getClientVersion().major; break; case GL_MINOR_VERSION: *params = getClientVersion().minor; break; case GL_MAX_ELEMENTS_INDICES: *params = mCaps.maxElementsIndices; break; case GL_MAX_ELEMENTS_VERTICES: *params = mCaps.maxElementsVertices; break; case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mCaps.maxTransformFeedbackInterleavedComponents; break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mCaps.maxTransformFeedbackSeparateAttributes; break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mCaps.maxTransformFeedbackSeparateComponents; break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = static_cast(mCaps.compressedTextureFormats.size()); break; case GL_MAX_SAMPLES_ANGLE: *params = mCaps.maxSamples; break; case GL_MAX_VIEWPORT_DIMS: { params[0] = mCaps.maxViewportWidth; params[1] = mCaps.maxViewportHeight; } break; case GL_COMPRESSED_TEXTURE_FORMATS: std::copy(mCaps.compressedTextureFormats.begin(), mCaps.compressedTextureFormats.end(), params); break; case GL_RESET_NOTIFICATION_STRATEGY_EXT: *params = mResetStrategy; break; case GL_NUM_SHADER_BINARY_FORMATS: *params = static_cast(mCaps.shaderBinaryFormats.size()); break; case GL_SHADER_BINARY_FORMATS: std::copy(mCaps.shaderBinaryFormats.begin(), mCaps.shaderBinaryFormats.end(), params); break; case GL_NUM_PROGRAM_BINARY_FORMATS: *params = static_cast(mCaps.programBinaryFormats.size()); break; case GL_PROGRAM_BINARY_FORMATS: std::copy(mCaps.programBinaryFormats.begin(), mCaps.programBinaryFormats.end(), params); break; case GL_NUM_EXTENSIONS: *params = static_cast(mExtensionStrings.size()); break; // GL_KHR_debug case GL_MAX_DEBUG_MESSAGE_LENGTH: *params = mExtensions.maxDebugMessageLength; break; case GL_MAX_DEBUG_LOGGED_MESSAGES: *params = mExtensions.maxDebugLoggedMessages; break; case GL_MAX_DEBUG_GROUP_STACK_DEPTH: *params = mExtensions.maxDebugGroupStackDepth; break; case GL_MAX_LABEL_LENGTH: *params = mExtensions.maxLabelLength; break; // GL_EXT_disjoint_timer_query case GL_GPU_DISJOINT_EXT: *params = mImplementation->getGPUDisjoint(); break; case GL_MAX_FRAMEBUFFER_WIDTH: *params = mCaps.maxFramebufferWidth; break; case GL_MAX_FRAMEBUFFER_HEIGHT: *params = mCaps.maxFramebufferHeight; break; case GL_MAX_FRAMEBUFFER_SAMPLES: *params = mCaps.maxFramebufferSamples; break; case GL_MAX_SAMPLE_MASK_WORDS: *params = mCaps.maxSampleMaskWords; break; case GL_MAX_COLOR_TEXTURE_SAMPLES: *params = mCaps.maxColorTextureSamples; break; case GL_MAX_DEPTH_TEXTURE_SAMPLES: *params = mCaps.maxDepthTextureSamples; break; case GL_MAX_INTEGER_SAMPLES: *params = mCaps.maxIntegerSamples; break; case GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET: *params = mCaps.maxVertexAttribRelativeOffset; break; case GL_MAX_VERTEX_ATTRIB_BINDINGS: *params = mCaps.maxVertexAttribBindings; break; case GL_MAX_VERTEX_ATTRIB_STRIDE: *params = mCaps.maxVertexAttribStride; break; case GL_MAX_VERTEX_ATOMIC_COUNTER_BUFFERS: *params = mCaps.maxVertexAtomicCounterBuffers; break; case GL_MAX_VERTEX_ATOMIC_COUNTERS: *params = mCaps.maxVertexAtomicCounters; break; case GL_MAX_VERTEX_IMAGE_UNIFORMS: *params = mCaps.maxVertexImageUniforms; break; case GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS: *params = mCaps.maxVertexShaderStorageBlocks; break; case GL_MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS: *params = mCaps.maxFragmentAtomicCounterBuffers; break; case GL_MAX_FRAGMENT_ATOMIC_COUNTERS: *params = mCaps.maxFragmentAtomicCounters; break; case GL_MAX_FRAGMENT_IMAGE_UNIFORMS: *params = mCaps.maxFragmentImageUniforms; break; case GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS: *params = mCaps.maxFragmentShaderStorageBlocks; break; case GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET: *params = mCaps.minProgramTextureGatherOffset; break; case GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET: *params = mCaps.maxProgramTextureGatherOffset; break; case GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS: *params = mCaps.maxComputeWorkGroupInvocations; break; case GL_MAX_COMPUTE_UNIFORM_BLOCKS: *params = mCaps.maxComputeUniformBlocks; break; case GL_MAX_COMPUTE_TEXTURE_IMAGE_UNITS: *params = mCaps.maxComputeTextureImageUnits; break; case GL_MAX_COMPUTE_SHARED_MEMORY_SIZE: *params = mCaps.maxComputeSharedMemorySize; break; case GL_MAX_COMPUTE_UNIFORM_COMPONENTS: *params = mCaps.maxComputeUniformComponents; break; case GL_MAX_COMPUTE_ATOMIC_COUNTER_BUFFERS: *params = mCaps.maxComputeAtomicCounterBuffers; break; case GL_MAX_COMPUTE_ATOMIC_COUNTERS: *params = mCaps.maxComputeAtomicCounters; break; case GL_MAX_COMPUTE_IMAGE_UNIFORMS: *params = mCaps.maxComputeImageUniforms; break; case GL_MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS: *params = mCaps.maxCombinedComputeUniformComponents; break; case GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS: *params = mCaps.maxComputeShaderStorageBlocks; break; case GL_MAX_COMBINED_SHADER_OUTPUT_RESOURCES: *params = mCaps.maxCombinedShaderOutputResources; break; case GL_MAX_UNIFORM_LOCATIONS: *params = mCaps.maxUniformLocations; break; case GL_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS: *params = mCaps.maxAtomicCounterBufferBindings; break; case GL_MAX_ATOMIC_COUNTER_BUFFER_SIZE: *params = mCaps.maxAtomicCounterBufferSize; break; case GL_MAX_COMBINED_ATOMIC_COUNTER_BUFFERS: *params = mCaps.maxCombinedAtomicCounterBuffers; break; case GL_MAX_COMBINED_ATOMIC_COUNTERS: *params = mCaps.maxCombinedAtomicCounters; break; case GL_MAX_IMAGE_UNITS: *params = mCaps.maxImageUnits; break; case GL_MAX_COMBINED_IMAGE_UNIFORMS: *params = mCaps.maxCombinedImageUniforms; break; case GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS: *params = mCaps.maxShaderStorageBufferBindings; break; case GL_MAX_COMBINED_SHADER_STORAGE_BLOCKS: *params = mCaps.maxCombinedShaderStorageBlocks; break; case GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT: *params = mCaps.shaderStorageBufferOffsetAlignment; break; default: mGLState.getIntegerv(mState, pname, params); break; } } void Context::getInteger64v(GLenum pname, GLint64 *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_ELEMENT_INDEX: *params = mCaps.maxElementIndex; break; case GL_MAX_UNIFORM_BLOCK_SIZE: *params = mCaps.maxUniformBlockSize; break; case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxCombinedVertexUniformComponents; break; case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxCombinedFragmentUniformComponents; break; case GL_MAX_SERVER_WAIT_TIMEOUT: *params = mCaps.maxServerWaitTimeout; break; // GL_EXT_disjoint_timer_query case GL_TIMESTAMP_EXT: *params = mImplementation->getTimestamp(); break; case GL_MAX_SHADER_STORAGE_BLOCK_SIZE: *params = mCaps.maxShaderStorageBlockSize; break; default: UNREACHABLE(); break; } } void Context::getPointerv(GLenum pname, void **params) const { mGLState.getPointerv(pname, params); } void Context::getIntegeri_v(GLenum target, GLuint index, GLint *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. GLenum nativeType; unsigned int numParams; bool queryStatus = getIndexedQueryParameterInfo(target, &nativeType, &numParams); ASSERT(queryStatus); if (nativeType == GL_INT) { switch (target) { case GL_MAX_COMPUTE_WORK_GROUP_COUNT: ASSERT(index < 3u); *data = mCaps.maxComputeWorkGroupCount[index]; break; case GL_MAX_COMPUTE_WORK_GROUP_SIZE: ASSERT(index < 3u); *data = mCaps.maxComputeWorkGroupSize[index]; break; default: mGLState.getIntegeri_v(target, index, data); } } else { CastIndexedStateValues(this, nativeType, target, index, numParams, data); } } void Context::getInteger64i_v(GLenum target, GLuint index, GLint64 *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. GLenum nativeType; unsigned int numParams; bool queryStatus = getIndexedQueryParameterInfo(target, &nativeType, &numParams); ASSERT(queryStatus); if (nativeType == GL_INT_64_ANGLEX) { mGLState.getInteger64i_v(target, index, data); } else { CastIndexedStateValues(this, nativeType, target, index, numParams, data); } } void Context::getBooleani_v(GLenum target, GLuint index, GLboolean *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. GLenum nativeType; unsigned int numParams; bool queryStatus = getIndexedQueryParameterInfo(target, &nativeType, &numParams); ASSERT(queryStatus); if (nativeType == GL_BOOL) { mGLState.getBooleani_v(target, index, data); } else { CastIndexedStateValues(this, nativeType, target, index, numParams, data); } } Error Context::drawArrays(GLenum mode, GLint first, GLsizei count) { syncRendererState(); ANGLE_TRY(mImplementation->drawArrays(mode, first, count)); MarkTransformFeedbackBufferUsage(mGLState.getCurrentTransformFeedback()); return NoError(); } Error Context::drawArraysInstanced(GLenum mode, GLint first, GLsizei count, GLsizei instanceCount) { syncRendererState(); ANGLE_TRY(mImplementation->drawArraysInstanced(mode, first, count, instanceCount)); MarkTransformFeedbackBufferUsage(mGLState.getCurrentTransformFeedback()); return NoError(); } Error Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, const IndexRange &indexRange) { syncRendererState(); return mImplementation->drawElements(mode, count, type, indices, indexRange); } Error Context::drawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances, const IndexRange &indexRange) { syncRendererState(); return mImplementation->drawElementsInstanced(mode, count, type, indices, instances, indexRange); } Error Context::drawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, const IndexRange &indexRange) { syncRendererState(); return mImplementation->drawRangeElements(mode, start, end, count, type, indices, indexRange); } Error Context::flush() { return mImplementation->flush(); } Error Context::finish() { return mImplementation->finish(); } void Context::insertEventMarker(GLsizei length, const char *marker) { ASSERT(mImplementation); mImplementation->insertEventMarker(length, marker); } void Context::pushGroupMarker(GLsizei length, const char *marker) { ASSERT(mImplementation); mImplementation->pushGroupMarker(length, marker); } void Context::popGroupMarker() { ASSERT(mImplementation); mImplementation->popGroupMarker(); } void Context::bindUniformLocation(GLuint program, GLint location, const GLchar *name) { Program *programObject = getProgram(program); ASSERT(programObject); programObject->bindUniformLocation(location, name); } void Context::setCoverageModulation(GLenum components) { mGLState.setCoverageModulation(components); } void Context::loadPathRenderingMatrix(GLenum matrixMode, const GLfloat *matrix) { mGLState.loadPathRenderingMatrix(matrixMode, matrix); } void Context::loadPathRenderingIdentityMatrix(GLenum matrixMode) { GLfloat I[16]; angle::Matrix::setToIdentity(I); mGLState.loadPathRenderingMatrix(matrixMode, I); } void Context::stencilFillPath(GLuint path, GLenum fillMode, GLuint mask) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilFillPath(pathObj, fillMode, mask); } void Context::stencilStrokePath(GLuint path, GLint reference, GLuint mask) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilStrokePath(pathObj, reference, mask); } void Context::coverFillPath(GLuint path, GLenum coverMode) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->coverFillPath(pathObj, coverMode); } void Context::coverStrokePath(GLuint path, GLenum coverMode) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->coverStrokePath(pathObj, coverMode); } void Context::stencilThenCoverFillPath(GLuint path, GLenum fillMode, GLuint mask, GLenum coverMode) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilThenCoverFillPath(pathObj, fillMode, mask, coverMode); } void Context::stencilThenCoverStrokePath(GLuint path, GLint reference, GLuint mask, GLenum coverMode) { const auto *pathObj = mResourceManager->getPath(path); if (!pathObj) return; // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilThenCoverStrokePath(pathObj, reference, mask, coverMode); } void Context::coverFillPathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLenum coverMode, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->coverFillPathInstanced(pathObjects, coverMode, transformType, transformValues); } void Context::coverStrokePathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLenum coverMode, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->coverStrokePathInstanced(pathObjects, coverMode, transformType, transformValues); } void Context::stencilFillPathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLenum fillMode, GLuint mask, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilFillPathInstanced(pathObjects, fillMode, mask, transformType, transformValues); } void Context::stencilStrokePathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLint reference, GLuint mask, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilStrokePathInstanced(pathObjects, reference, mask, transformType, transformValues); } void Context::stencilThenCoverFillPathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLenum fillMode, GLuint mask, GLenum coverMode, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilThenCoverFillPathInstanced(pathObjects, coverMode, fillMode, mask, transformType, transformValues); } void Context::stencilThenCoverStrokePathInstanced(GLsizei numPaths, GLenum pathNameType, const void *paths, GLuint pathBase, GLint reference, GLuint mask, GLenum coverMode, GLenum transformType, const GLfloat *transformValues) { const auto &pathObjects = GatherPaths(*mResourceManager, numPaths, pathNameType, paths, pathBase); // TODO(svaisanen@nvidia.com): maybe sync only state required for path rendering? syncRendererState(); mImplementation->stencilThenCoverStrokePathInstanced(pathObjects, coverMode, reference, mask, transformType, transformValues); } void Context::bindFragmentInputLocation(GLuint program, GLint location, const GLchar *name) { auto *programObject = getProgram(program); programObject->bindFragmentInputLocation(location, name); } void Context::programPathFragmentInputGen(GLuint program, GLint location, GLenum genMode, GLint components, const GLfloat *coeffs) { auto *programObject = getProgram(program); programObject->pathFragmentInputGen(location, genMode, components, coeffs); } void Context::handleError(const Error &error) { if (error.isError()) { GLenum code = error.getCode(); mErrors.insert(code); if (code == GL_OUT_OF_MEMORY && getWorkarounds().loseContextOnOutOfMemory) { markContextLost(); } if (!error.getMessage().empty()) { auto *debug = &mGLState.getDebug(); debug->insertMessage(GL_DEBUG_SOURCE_API, GL_DEBUG_TYPE_ERROR, error.getID(), GL_DEBUG_SEVERITY_HIGH, error.getMessage()); } } } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if (mErrors.empty()) { return GL_NO_ERROR; } else { GLenum error = *mErrors.begin(); mErrors.erase(mErrors.begin()); return error; } } // NOTE: this function should not assume that this context is current! void Context::markContextLost() { if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) { mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; mContextLostForced = true; } mContextLost = true; } bool Context::isContextLost() { return mContextLost; } GLenum Context::getResetStatus() { // Even if the application doesn't want to know about resets, we want to know // as it will allow us to skip all the calls. if (mResetStrategy == GL_NO_RESET_NOTIFICATION_EXT) { if (!mContextLost && mImplementation->getResetStatus() != GL_NO_ERROR) { mContextLost = true; } // EXT_robustness, section 2.6: If the reset notification behavior is // NO_RESET_NOTIFICATION_EXT, then the implementation will never deliver notification of // reset events, and GetGraphicsResetStatusEXT will always return NO_ERROR. return GL_NO_ERROR; } // The GL_EXT_robustness spec says that if a reset is encountered, a reset // status should be returned at least once, and GL_NO_ERROR should be returned // once the device has finished resetting. if (!mContextLost) { ASSERT(mResetStatus == GL_NO_ERROR); mResetStatus = mImplementation->getResetStatus(); if (mResetStatus != GL_NO_ERROR) { mContextLost = true; } } else if (!mContextLostForced && mResetStatus != GL_NO_ERROR) { // If markContextLost was used to mark the context lost then // assume that is not recoverable, and continue to report the // lost reset status for the lifetime of this context. mResetStatus = mImplementation->getResetStatus(); } return mResetStatus; } bool Context::isResetNotificationEnabled() { return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } const egl::Config *Context::getConfig() const { return mConfig; } EGLenum Context::getClientType() const { return mClientType; } EGLenum Context::getRenderBuffer() const { auto framebufferIt = mFramebufferMap.find(0); if (framebufferIt != mFramebufferMap.end()) { const Framebuffer *framebuffer = framebufferIt->second; const FramebufferAttachment *backAttachment = framebuffer->getAttachment(GL_BACK); ASSERT(backAttachment != nullptr); return backAttachment->getSurface()->getRenderBuffer(); } else { return EGL_NONE; } } VertexArray *Context::checkVertexArrayAllocation(GLuint vertexArrayHandle) { // Only called after a prior call to Gen. VertexArray *vertexArray = getVertexArray(vertexArrayHandle); if (!vertexArray) { vertexArray = new VertexArray(mImplementation.get(), vertexArrayHandle, MAX_VERTEX_ATTRIBS); mVertexArrayMap[vertexArrayHandle] = vertexArray; } return vertexArray; } TransformFeedback *Context::checkTransformFeedbackAllocation(GLuint transformFeedbackHandle) { // Only called after a prior call to Gen. TransformFeedback *transformFeedback = getTransformFeedback(transformFeedbackHandle); if (!transformFeedback) { transformFeedback = new TransformFeedback(mImplementation.get(), transformFeedbackHandle, mCaps); transformFeedback->addRef(); mTransformFeedbackMap[transformFeedbackHandle] = transformFeedback; } return transformFeedback; } Framebuffer *Context::checkFramebufferAllocation(GLuint framebuffer) { // Can be called from Bind without a prior call to Gen. auto framebufferIt = mFramebufferMap.find(framebuffer); bool neverCreated = framebufferIt == mFramebufferMap.end(); if (neverCreated || framebufferIt->second == nullptr) { Framebuffer *newFBO = new Framebuffer(mCaps, mImplementation.get(), framebuffer); if (neverCreated) { mFramebufferHandleAllocator.reserve(framebuffer); mFramebufferMap[framebuffer] = newFBO; return newFBO; } framebufferIt->second = newFBO; } return framebufferIt->second; } bool Context::isVertexArrayGenerated(GLuint vertexArray) { ASSERT(mVertexArrayMap.find(0) != mVertexArrayMap.end()); return mVertexArrayMap.find(vertexArray) != mVertexArrayMap.end(); } bool Context::isTransformFeedbackGenerated(GLuint transformFeedback) { ASSERT(mTransformFeedbackMap.find(0) != mTransformFeedbackMap.end()); return mTransformFeedbackMap.find(transformFeedback) != mTransformFeedbackMap.end(); } void Context::detachTexture(GLuint texture) { // Simple pass-through to State's detachTexture method, as textures do not require // allocation map management either here or in the resource manager at detach time. // Zero textures are held by the Context, and we don't attempt to request them from // the State. mGLState.detachTexture(mZeroTextures, texture); } void Context::detachBuffer(GLuint buffer) { // Simple pass-through to State's detachBuffer method, since // only buffer attachments to container objects that are bound to the current context // should be detached. And all those are available in State. // [OpenGL ES 3.2] section 5.1.2 page 45: // Attachments to unbound container objects, such as // deletion of a buffer attached to a vertex array object which is not bound to the context, // are not affected and continue to act as references on the deleted object mGLState.detachBuffer(buffer); } void Context::detachFramebuffer(GLuint framebuffer) { // Framebuffer detachment is handled by Context, because 0 is a valid // Framebuffer object, and a pointer to it must be passed from Context // to State at binding time. // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if (mGLState.removeReadFramebufferBinding(framebuffer) && framebuffer != 0) { bindReadFramebuffer(0); } if (mGLState.removeDrawFramebufferBinding(framebuffer) && framebuffer != 0) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { mGLState.detachRenderbuffer(renderbuffer); } void Context::detachVertexArray(GLuint vertexArray) { // Vertex array detachment is handled by Context, because 0 is a valid // VAO, and a pointer to it must be passed from Context to State at // binding time. // [OpenGL ES 3.0.2] section 2.10 page 43: // If a vertex array object that is currently bound is deleted, the binding // for that object reverts to zero and the default vertex array becomes current. if (mGLState.removeVertexArrayBinding(vertexArray)) { bindVertexArray(0); } } void Context::detachTransformFeedback(GLuint transformFeedback) { // Transform feedback detachment is handled by Context, because 0 is a valid // transform feedback, and a pointer to it must be passed from Context to State at // binding time. // The OpenGL specification doesn't mention what should happen when the currently bound // transform feedback object is deleted. Since it is a container object, we treat it like // VAOs and FBOs and set the current bound transform feedback back to 0. if (mGLState.removeTransformFeedbackBinding(transformFeedback)) { bindTransformFeedback(0); } } void Context::detachSampler(GLuint sampler) { mGLState.detachSampler(sampler); } void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) { mGLState.setVertexAttribDivisor(index, divisor); } void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param) { Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); SetSamplerParameteri(samplerObject, pname, param); } void Context::samplerParameteriv(GLuint sampler, GLenum pname, const GLint *param) { Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); SetSamplerParameteriv(samplerObject, pname, param); } void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); SetSamplerParameterf(samplerObject, pname, param); } void Context::samplerParameterfv(GLuint sampler, GLenum pname, const GLfloat *param) { Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); SetSamplerParameterfv(samplerObject, pname, param); } void Context::getSamplerParameteriv(GLuint sampler, GLenum pname, GLint *params) { const Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); QuerySamplerParameteriv(samplerObject, pname, params); } void Context::getSamplerParameterfv(GLuint sampler, GLenum pname, GLfloat *params) { const Sampler *samplerObject = mResourceManager->checkSamplerAllocation(mImplementation.get(), sampler); QuerySamplerParameterfv(samplerObject, pname, params); } void Context::programParameteri(GLuint program, GLenum pname, GLint value) { gl::Program *programObject = getProgram(program); ASSERT(programObject != nullptr); ASSERT(pname == GL_PROGRAM_BINARY_RETRIEVABLE_HINT); programObject->setBinaryRetrievableHint(value != GL_FALSE); } void Context::initRendererString() { std::ostringstream rendererString; rendererString << "ANGLE ("; rendererString << mImplementation->getRendererDescription(); rendererString << ")"; mRendererString = MakeStaticString(rendererString.str()); } const char *Context::getRendererString() const { return mRendererString; } void Context::initExtensionStrings() { for (const auto &extensionString : mExtensions.getStrings()) { mExtensionStrings.push_back(MakeStaticString(extensionString)); } std::ostringstream combinedStringStream; std::copy(mExtensionStrings.begin(), mExtensionStrings.end(), std::ostream_iterator(combinedStringStream, " ")); mExtensionString = MakeStaticString(combinedStringStream.str()); } const char *Context::getExtensionString() const { return mExtensionString; } const char *Context::getExtensionString(size_t idx) const { return mExtensionStrings[idx]; } size_t Context::getExtensionStringCount() const { return mExtensionStrings.size(); } void Context::beginTransformFeedback(GLenum primitiveMode) { TransformFeedback *transformFeedback = mGLState.getCurrentTransformFeedback(); ASSERT(transformFeedback != nullptr); ASSERT(!transformFeedback->isPaused()); transformFeedback->begin(primitiveMode, mGLState.getProgram()); } bool Context::hasActiveTransformFeedback(GLuint program) const { for (auto pair : mTransformFeedbackMap) { if (pair.second != nullptr && pair.second->hasBoundProgram(program)) { return true; } } return false; } void Context::initCaps(bool webGLContext) { mCaps = mImplementation->getNativeCaps(); mExtensions = mImplementation->getNativeExtensions(); mLimitations = mImplementation->getNativeLimitations(); if (getClientVersion() < Version(3, 0)) { // Disable ES3+ extensions mExtensions.colorBufferFloat = false; mExtensions.eglImageExternalEssl3 = false; mExtensions.textureNorm16 = false; } if (getClientVersion() > Version(2, 0)) { // FIXME(geofflang): Don't support EXT_sRGB in non-ES2 contexts //mExtensions.sRGB = false; } // Some extensions are always available because they are implemented in the GL layer. mExtensions.bindUniformLocation = true; mExtensions.vertexArrayObject = true; mExtensions.bindGeneratesResource = true; // Enable the no error extension if the context was created with the flag. mExtensions.noError = mSkipValidation; // Explicitly enable GL_KHR_debug mExtensions.debug = true; mExtensions.maxDebugMessageLength = 1024; mExtensions.maxDebugLoggedMessages = 1024; mExtensions.maxDebugGroupStackDepth = 1024; mExtensions.maxLabelLength = 1024; // Explicitly enable GL_ANGLE_robust_client_memory mExtensions.robustClientMemory = true; // Apply implementation limits mCaps.maxVertexAttributes = std::min(mCaps.maxVertexAttributes, MAX_VERTEX_ATTRIBS); mCaps.maxVertexUniformBlocks = std::min(mCaps.maxVertexUniformBlocks, IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS); mCaps.maxVertexOutputComponents = std::min(mCaps.maxVertexOutputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4); mCaps.maxFragmentInputComponents = std::min(mCaps.maxFragmentInputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4); // WebGL compatibility mExtensions.webglCompatibility = webGLContext; for (const auto &extensionInfo : GetExtensionInfoMap()) { // If this context is for WebGL, disable all enableable extensions if (webGLContext && extensionInfo.second.Enableable) { mExtensions.*(extensionInfo.second.ExtensionsMember) = false; } } // Generate texture caps updateCaps(); } void Context::updateCaps() { mCaps.compressedTextureFormats.clear(); mTextureCaps.clear(); const TextureCapsMap &rendererFormats = mImplementation->getNativeTextureCaps(); for (TextureCapsMap::const_iterator i = rendererFormats.begin(); i != rendererFormats.end(); i++) { GLenum format = i->first; TextureCaps formatCaps = i->second; const InternalFormat &formatInfo = GetInternalFormatInfo(format); // Update the format caps based on the client version and extensions. // Caps are AND'd with the renderer caps because some core formats are still unsupported in // ES3. formatCaps.texturable = formatCaps.texturable && formatInfo.textureSupport(getClientVersion(), mExtensions); formatCaps.renderable = formatCaps.renderable && formatInfo.renderSupport(getClientVersion(), mExtensions); formatCaps.filterable = formatCaps.filterable && formatInfo.filterSupport(getClientVersion(), mExtensions); // OpenGL ES does not support multisampling with integer formats if (!formatInfo.renderSupport || formatInfo.componentType == GL_INT || formatInfo.componentType == GL_UNSIGNED_INT) { formatCaps.sampleCounts.clear(); } if (formatCaps.texturable && formatInfo.compressed) { mCaps.compressedTextureFormats.push_back(format); } mTextureCaps.insert(format, formatCaps); } } void Context::initWorkarounds() { // Lose the context upon out of memory error if the application is // expecting to watch for those events. mWorkarounds.loseContextOnOutOfMemory = (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } void Context::syncRendererState() { const State::DirtyBits &dirtyBits = mGLState.getDirtyBits(); mImplementation->syncState(mGLState, dirtyBits); mGLState.clearDirtyBits(); mGLState.syncDirtyObjects(); } void Context::syncRendererState(const State::DirtyBits &bitMask, const State::DirtyObjects &objectMask) { const State::DirtyBits &dirtyBits = (mGLState.getDirtyBits() & bitMask); mImplementation->syncState(mGLState, dirtyBits); mGLState.clearDirtyBits(dirtyBits); mGLState.syncDirtyObjects(objectMask); } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { Framebuffer *drawFramebuffer = mGLState.getDrawFramebuffer(); ASSERT(drawFramebuffer); Rectangle srcArea(srcX0, srcY0, srcX1 - srcX0, srcY1 - srcY0); Rectangle dstArea(dstX0, dstY0, dstX1 - dstX0, dstY1 - dstY0); syncStateForBlit(); handleError(drawFramebuffer->blit(mImplementation.get(), srcArea, dstArea, mask, filter)); } void Context::clear(GLbitfield mask) { syncStateForClear(); handleError(mGLState.getDrawFramebuffer()->clear(mImplementation.get(), mask)); } void Context::clearBufferfv(GLenum buffer, GLint drawbuffer, const GLfloat *values) { syncStateForClear(); handleError(mGLState.getDrawFramebuffer()->clearBufferfv(mImplementation.get(), buffer, drawbuffer, values)); } void Context::clearBufferuiv(GLenum buffer, GLint drawbuffer, const GLuint *values) { syncStateForClear(); handleError(mGLState.getDrawFramebuffer()->clearBufferuiv(mImplementation.get(), buffer, drawbuffer, values)); } void Context::clearBufferiv(GLenum buffer, GLint drawbuffer, const GLint *values) { syncStateForClear(); handleError(mGLState.getDrawFramebuffer()->clearBufferiv(mImplementation.get(), buffer, drawbuffer, values)); } void Context::clearBufferfi(GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil) { Framebuffer *framebufferObject = mGLState.getDrawFramebuffer(); ASSERT(framebufferObject); // If a buffer is not present, the clear has no effect if (framebufferObject->getDepthbuffer() == nullptr && framebufferObject->getStencilbuffer() == nullptr) { return; } syncStateForClear(); handleError(framebufferObject->clearBufferfi(mImplementation.get(), buffer, drawbuffer, depth, stencil)); } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid *pixels) { if (width == 0 || height == 0) { return; } syncStateForReadPixels(); Framebuffer *framebufferObject = mGLState.getReadFramebuffer(); ASSERT(framebufferObject); Rectangle area(x, y, width, height); handleError(framebufferObject->readPixels(mImplementation.get(), area, format, type, pixels)); } void Context::copyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border) { // Only sync the read FBO mGLState.syncDirtyObject(GL_READ_FRAMEBUFFER); Rectangle sourceArea(x, y, width, height); const Framebuffer *framebuffer = mGLState.getReadFramebuffer(); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->copyImage(target, level, sourceArea, internalformat, framebuffer)); } void Context::copyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height) { if (width == 0 || height == 0) { return; } // Only sync the read FBO mGLState.syncDirtyObject(GL_READ_FRAMEBUFFER); Offset destOffset(xoffset, yoffset, 0); Rectangle sourceArea(x, y, width, height); const Framebuffer *framebuffer = mGLState.getReadFramebuffer(); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->copySubImage(target, level, destOffset, sourceArea, framebuffer)); } void Context::copyTexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height) { if (width == 0 || height == 0) { return; } // Only sync the read FBO mGLState.syncDirtyObject(GL_READ_FRAMEBUFFER); Offset destOffset(xoffset, yoffset, zoffset); Rectangle sourceArea(x, y, width, height); const Framebuffer *framebuffer = mGLState.getReadFramebuffer(); Texture *texture = getTargetTexture(target); handleError(texture->copySubImage(target, level, destOffset, sourceArea, framebuffer)); } void Context::framebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level) { Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); if (texture != 0) { Texture *textureObj = getTexture(texture); ImageIndex index = ImageIndex::MakeInvalid(); if (textarget == GL_TEXTURE_2D) { index = ImageIndex::Make2D(level); } else { ASSERT(IsCubeMapTextureTarget(textarget)); index = ImageIndex::MakeCube(textarget, level); } framebuffer->setAttachment(GL_TEXTURE, attachment, index, textureObj); } else { framebuffer->resetAttachment(attachment); } mGLState.setObjectDirty(target); } void Context::framebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer) { Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); if (renderbuffer != 0) { Renderbuffer *renderbufferObject = getRenderbuffer(renderbuffer); framebuffer->setAttachment(GL_RENDERBUFFER, attachment, gl::ImageIndex::MakeInvalid(), renderbufferObject); } else { framebuffer->resetAttachment(attachment); } mGLState.setObjectDirty(target); } void Context::framebufferTextureLayer(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer) { Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); if (texture != 0) { Texture *textureObject = getTexture(texture); ImageIndex index = ImageIndex::MakeInvalid(); if (textureObject->getTarget() == GL_TEXTURE_3D) { index = ImageIndex::Make3D(level, layer); } else { ASSERT(textureObject->getTarget() == GL_TEXTURE_2D_ARRAY); index = ImageIndex::Make2DArray(level, layer); } framebuffer->setAttachment(GL_TEXTURE, attachment, index, textureObject); } else { framebuffer->resetAttachment(attachment); } mGLState.setObjectDirty(target); } void Context::drawBuffers(GLsizei n, const GLenum *bufs) { Framebuffer *framebuffer = mGLState.getDrawFramebuffer(); ASSERT(framebuffer); framebuffer->setDrawBuffers(n, bufs); mGLState.setObjectDirty(GL_DRAW_FRAMEBUFFER); } void Context::readBuffer(GLenum mode) { Framebuffer *readFBO = mGLState.getReadFramebuffer(); readFBO->setReadBuffer(mode); mGLState.setObjectDirty(GL_READ_FRAMEBUFFER); } void Context::discardFramebuffer(GLenum target, GLsizei numAttachments, const GLenum *attachments) { // Only sync the FBO mGLState.syncDirtyObject(target); Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); // The specification isn't clear what should be done when the framebuffer isn't complete. // We leave it up to the framebuffer implementation to decide what to do. handleError(framebuffer->discard(numAttachments, attachments)); } void Context::invalidateFramebuffer(GLenum target, GLsizei numAttachments, const GLenum *attachments) { // Only sync the FBO mGLState.syncDirtyObject(target); Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); if (framebuffer->checkStatus(mState) != GL_FRAMEBUFFER_COMPLETE) { return; } handleError(framebuffer->invalidate(numAttachments, attachments)); } void Context::invalidateSubFramebuffer(GLenum target, GLsizei numAttachments, const GLenum *attachments, GLint x, GLint y, GLsizei width, GLsizei height) { // Only sync the FBO mGLState.syncDirtyObject(target); Framebuffer *framebuffer = mGLState.getTargetFramebuffer(target); ASSERT(framebuffer); if (framebuffer->checkStatus(mState) != GL_FRAMEBUFFER_COMPLETE) { return; } Rectangle area(x, y, width, height); handleError(framebuffer->invalidateSub(numAttachments, attachments, area)); } void Context::texImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid *pixels) { syncStateForTexImage(); Extents size(width, height, 1); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->setImage(mGLState.getUnpackState(), target, level, internalformat, size, format, type, reinterpret_cast(pixels))); } void Context::texImage3D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const GLvoid *pixels) { syncStateForTexImage(); Extents size(width, height, depth); Texture *texture = getTargetTexture(target); handleError(texture->setImage(mGLState.getUnpackState(), target, level, internalformat, size, format, type, reinterpret_cast(pixels))); } void Context::texSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *pixels) { // Zero sized uploads are valid but no-ops if (width == 0 || height == 0) { return; } syncStateForTexImage(); Box area(xoffset, yoffset, 0, width, height, 1); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->setSubImage(mGLState.getUnpackState(), target, level, area, format, type, reinterpret_cast(pixels))); } void Context::texSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid *pixels) { // Zero sized uploads are valid but no-ops if (width == 0 || height == 0 || depth == 0) { return; } syncStateForTexImage(); Box area(xoffset, yoffset, zoffset, width, height, depth); Texture *texture = getTargetTexture(target); handleError(texture->setSubImage(mGLState.getUnpackState(), target, level, area, format, type, reinterpret_cast(pixels))); } void Context::compressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const GLvoid *data) { syncStateForTexImage(); Extents size(width, height, 1); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->setCompressedImage(mGLState.getUnpackState(), target, level, internalformat, size, imageSize, reinterpret_cast(data))); } void Context::compressedTexImage3D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const GLvoid *data) { syncStateForTexImage(); Extents size(width, height, depth); Texture *texture = getTargetTexture(target); handleError(texture->setCompressedImage(mGLState.getUnpackState(), target, level, internalformat, size, imageSize, reinterpret_cast(data))); } void Context::compressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const GLvoid *data) { syncStateForTexImage(); Box area(xoffset, yoffset, 0, width, height, 1); Texture *texture = getTargetTexture(IsCubeMapTextureTarget(target) ? GL_TEXTURE_CUBE_MAP : target); handleError(texture->setCompressedSubImage(mGLState.getUnpackState(), target, level, area, format, imageSize, reinterpret_cast(data))); } void Context::compressedTexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const GLvoid *data) { // Zero sized uploads are valid but no-ops if (width == 0 || height == 0) { return; } syncStateForTexImage(); Box area(xoffset, yoffset, zoffset, width, height, depth); Texture *texture = getTargetTexture(target); handleError(texture->setCompressedSubImage(mGLState.getUnpackState(), target, level, area, format, imageSize, reinterpret_cast(data))); } void Context::generateMipmap(GLenum target) { Texture *texture = getTargetTexture(target); handleError(texture->generateMipmap()); } GLboolean Context::enableExtension(const char *name) { const ExtensionInfoMap &extensionInfos = GetExtensionInfoMap(); ASSERT(extensionInfos.find(name) != extensionInfos.end()); const auto &extension = extensionInfos.at(name); ASSERT(extension.Enableable); if (mExtensions.*(extension.ExtensionsMember)) { // Extension already enabled return GL_TRUE; } const auto &nativeExtensions = mImplementation->getNativeExtensions(); if (!(nativeExtensions.*(extension.ExtensionsMember))) { // Underlying implementation does not support this valid extension return GL_FALSE; } mExtensions.*(extension.ExtensionsMember) = true; updateCaps(); initExtensionStrings(); return GL_TRUE; } void Context::copyTextureCHROMIUM(GLuint sourceId, GLuint destId, GLint internalFormat, GLenum destType, GLboolean unpackFlipY, GLboolean unpackPremultiplyAlpha, GLboolean unpackUnmultiplyAlpha) { syncStateForTexImage(); gl::Texture *sourceTexture = getTexture(sourceId); gl::Texture *destTexture = getTexture(destId); handleError(destTexture->copyTexture(internalFormat, destType, unpackFlipY == GL_TRUE, unpackPremultiplyAlpha == GL_TRUE, unpackUnmultiplyAlpha == GL_TRUE, sourceTexture)); } void Context::copySubTextureCHROMIUM(GLuint sourceId, GLuint destId, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, GLboolean unpackFlipY, GLboolean unpackPremultiplyAlpha, GLboolean unpackUnmultiplyAlpha) { // Zero sized copies are valid but no-ops if (width == 0 || height == 0) { return; } syncStateForTexImage(); gl::Texture *sourceTexture = getTexture(sourceId); gl::Texture *destTexture = getTexture(destId); Offset offset(xoffset, yoffset, 0); Rectangle area(x, y, width, height); handleError(destTexture->copySubTexture(offset, area, unpackFlipY == GL_TRUE, unpackPremultiplyAlpha == GL_TRUE, unpackUnmultiplyAlpha == GL_TRUE, sourceTexture)); } void Context::compressedCopyTextureCHROMIUM(GLuint sourceId, GLuint destId) { syncStateForTexImage(); gl::Texture *sourceTexture = getTexture(sourceId); gl::Texture *destTexture = getTexture(destId); handleError(destTexture->copyCompressedTexture(sourceTexture)); } void Context::getBufferPointerv(GLenum target, GLenum pname, void **params) { Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); QueryBufferPointerv(buffer, pname, params); } GLvoid *Context::mapBuffer(GLenum target, GLenum access) { Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); Error error = buffer->map(access); if (error.isError()) { handleError(error); return nullptr; } return buffer->getMapPointer(); } GLboolean Context::unmapBuffer(GLenum target) { Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); GLboolean result; Error error = buffer->unmap(&result); if (error.isError()) { handleError(error); return GL_FALSE; } return result; } GLvoid *Context::mapBufferRange(GLenum target, GLintptr offset, GLsizeiptr length, GLbitfield access) { Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); Error error = buffer->mapRange(offset, length, access); if (error.isError()) { handleError(error); return nullptr; } return buffer->getMapPointer(); } void Context::flushMappedBufferRange(GLenum /*target*/, GLintptr /*offset*/, GLsizeiptr /*length*/) { // We do not currently support a non-trivial implementation of FlushMappedBufferRange } void Context::syncStateForReadPixels() { syncRendererState(mReadPixelsDirtyBits, mReadPixelsDirtyObjects); } void Context::syncStateForTexImage() { syncRendererState(mTexImageDirtyBits, mTexImageDirtyObjects); } void Context::syncStateForClear() { syncRendererState(mClearDirtyBits, mClearDirtyObjects); } void Context::syncStateForBlit() { syncRendererState(mBlitDirtyBits, mBlitDirtyObjects); } void Context::activeTexture(GLenum texture) { mGLState.setActiveSampler(texture - GL_TEXTURE0); } void Context::blendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) { mGLState.setBlendColor(clamp01(red), clamp01(green), clamp01(blue), clamp01(alpha)); } void Context::blendEquation(GLenum mode) { mGLState.setBlendEquation(mode, mode); } void Context::blendEquationSeparate(GLenum modeRGB, GLenum modeAlpha) { mGLState.setBlendEquation(modeRGB, modeAlpha); } void Context::blendFunc(GLenum sfactor, GLenum dfactor) { mGLState.setBlendFactors(sfactor, dfactor, sfactor, dfactor); } void Context::blendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha) { mGLState.setBlendFactors(srcRGB, dstRGB, srcAlpha, dstAlpha); } void Context::clearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) { mGLState.setColorClearValue(red, green, blue, alpha); } void Context::clearDepthf(GLclampf depth) { mGLState.setDepthClearValue(depth); } void Context::clearStencil(GLint s) { mGLState.setStencilClearValue(s); } void Context::colorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) { mGLState.setColorMask(red == GL_TRUE, green == GL_TRUE, blue == GL_TRUE, alpha == GL_TRUE); } void Context::cullFace(GLenum mode) { mGLState.setCullMode(mode); } void Context::depthFunc(GLenum func) { mGLState.setDepthFunc(func); } void Context::depthMask(GLboolean flag) { mGLState.setDepthMask(flag != GL_FALSE); } void Context::depthRangef(GLclampf zNear, GLclampf zFar) { mGLState.setDepthRange(zNear, zFar); } void Context::disable(GLenum cap) { mGLState.setEnableFeature(cap, false); } void Context::disableVertexAttribArray(GLuint index) { mGLState.setEnableVertexAttribArray(index, false); } void Context::enable(GLenum cap) { mGLState.setEnableFeature(cap, true); } void Context::enableVertexAttribArray(GLuint index) { mGLState.setEnableVertexAttribArray(index, true); } void Context::frontFace(GLenum mode) { mGLState.setFrontFace(mode); } void Context::hint(GLenum target, GLenum mode) { switch (target) { case GL_GENERATE_MIPMAP_HINT: mGLState.setGenerateMipmapHint(mode); break; case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: mGLState.setFragmentShaderDerivativeHint(mode); break; default: UNREACHABLE(); return; } } void Context::lineWidth(GLfloat width) { mGLState.setLineWidth(width); } void Context::pixelStorei(GLenum pname, GLint param) { switch (pname) { case GL_UNPACK_ALIGNMENT: mGLState.setUnpackAlignment(param); break; case GL_PACK_ALIGNMENT: mGLState.setPackAlignment(param); break; case GL_PACK_REVERSE_ROW_ORDER_ANGLE: mGLState.setPackReverseRowOrder(param != 0); break; case GL_UNPACK_ROW_LENGTH: ASSERT((getClientMajorVersion() >= 3) || getExtensions().unpackSubimage); mGLState.setUnpackRowLength(param); break; case GL_UNPACK_IMAGE_HEIGHT: ASSERT(getClientMajorVersion() >= 3); mGLState.setUnpackImageHeight(param); break; case GL_UNPACK_SKIP_IMAGES: ASSERT(getClientMajorVersion() >= 3); mGLState.setUnpackSkipImages(param); break; case GL_UNPACK_SKIP_ROWS: ASSERT((getClientMajorVersion() >= 3) || getExtensions().unpackSubimage); mGLState.setUnpackSkipRows(param); break; case GL_UNPACK_SKIP_PIXELS: ASSERT((getClientMajorVersion() >= 3) || getExtensions().unpackSubimage); mGLState.setUnpackSkipPixels(param); break; case GL_PACK_ROW_LENGTH: ASSERT((getClientMajorVersion() >= 3) || getExtensions().packSubimage); mGLState.setPackRowLength(param); break; case GL_PACK_SKIP_ROWS: ASSERT((getClientMajorVersion() >= 3) || getExtensions().packSubimage); mGLState.setPackSkipRows(param); break; case GL_PACK_SKIP_PIXELS: ASSERT((getClientMajorVersion() >= 3) || getExtensions().packSubimage); mGLState.setPackSkipPixels(param); break; default: UNREACHABLE(); return; } } void Context::polygonOffset(GLfloat factor, GLfloat units) { mGLState.setPolygonOffsetParams(factor, units); } void Context::sampleCoverage(GLclampf value, GLboolean invert) { mGLState.setSampleCoverageParams(clamp01(value), invert == GL_TRUE); } void Context::scissor(GLint x, GLint y, GLsizei width, GLsizei height) { mGLState.setScissorParams(x, y, width, height); } void Context::stencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask) { if (face == GL_FRONT || face == GL_FRONT_AND_BACK) { mGLState.setStencilParams(func, ref, mask); } if (face == GL_BACK || face == GL_FRONT_AND_BACK) { mGLState.setStencilBackParams(func, ref, mask); } } void Context::stencilMaskSeparate(GLenum face, GLuint mask) { if (face == GL_FRONT || face == GL_FRONT_AND_BACK) { mGLState.setStencilWritemask(mask); } if (face == GL_BACK || face == GL_FRONT_AND_BACK) { mGLState.setStencilBackWritemask(mask); } } void Context::stencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass) { if (face == GL_FRONT || face == GL_FRONT_AND_BACK) { mGLState.setStencilOperations(fail, zfail, zpass); } if (face == GL_BACK || face == GL_FRONT_AND_BACK) { mGLState.setStencilBackOperations(fail, zfail, zpass); } } void Context::vertexAttrib1f(GLuint index, GLfloat x) { GLfloat vals[4] = {x, 0, 0, 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib1fv(GLuint index, const GLfloat *values) { GLfloat vals[4] = {values[0], 0, 0, 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib2f(GLuint index, GLfloat x, GLfloat y) { GLfloat vals[4] = {x, y, 0, 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib2fv(GLuint index, const GLfloat *values) { GLfloat vals[4] = {values[0], values[1], 0, 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib3f(GLuint index, GLfloat x, GLfloat y, GLfloat z) { GLfloat vals[4] = {x, y, z, 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib3fv(GLuint index, const GLfloat *values) { GLfloat vals[4] = {values[0], values[1], values[2], 1}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib4f(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GLfloat vals[4] = {x, y, z, w}; mGLState.setVertexAttribf(index, vals); } void Context::vertexAttrib4fv(GLuint index, const GLfloat *values) { mGLState.setVertexAttribf(index, values); } void Context::vertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *ptr) { mGLState.setVertexAttribState(index, mGLState.getTargetBuffer(GL_ARRAY_BUFFER), size, type, normalized == GL_TRUE, false, stride, ptr); } void Context::viewport(GLint x, GLint y, GLsizei width, GLsizei height) { mGLState.setViewportParams(x, y, width, height); } void Context::vertexAttribIPointer(GLuint index, GLint size, GLenum type, GLsizei stride, const GLvoid *pointer) { mGLState.setVertexAttribState(index, mGLState.getTargetBuffer(GL_ARRAY_BUFFER), size, type, false, true, stride, pointer); } void Context::vertexAttribI4i(GLuint index, GLint x, GLint y, GLint z, GLint w) { GLint vals[4] = {x, y, z, w}; mGLState.setVertexAttribi(index, vals); } void Context::vertexAttribI4ui(GLuint index, GLuint x, GLuint y, GLuint z, GLuint w) { GLuint vals[4] = {x, y, z, w}; mGLState.setVertexAttribu(index, vals); } void Context::vertexAttribI4iv(GLuint index, const GLint *v) { mGLState.setVertexAttribi(index, v); } void Context::vertexAttribI4uiv(GLuint index, const GLuint *v) { mGLState.setVertexAttribu(index, v); } void Context::debugMessageControl(GLenum source, GLenum type, GLenum severity, GLsizei count, const GLuint *ids, GLboolean enabled) { std::vector idVector(ids, ids + count); mGLState.getDebug().setMessageControl(source, type, severity, std::move(idVector), (enabled != GL_FALSE)); } void Context::debugMessageInsert(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *buf) { std::string msg(buf, (length > 0) ? static_cast(length) : strlen(buf)); mGLState.getDebug().insertMessage(source, type, id, severity, std::move(msg)); } void Context::debugMessageCallback(GLDEBUGPROCKHR callback, const void *userParam) { mGLState.getDebug().setCallback(callback, userParam); } GLuint Context::getDebugMessageLog(GLuint count, GLsizei bufSize, GLenum *sources, GLenum *types, GLuint *ids, GLenum *severities, GLsizei *lengths, GLchar *messageLog) { return static_cast(mGLState.getDebug().getMessages(count, bufSize, sources, types, ids, severities, lengths, messageLog)); } void Context::pushDebugGroup(GLenum source, GLuint id, GLsizei length, const GLchar *message) { std::string msg(message, (length > 0) ? static_cast(length) : strlen(message)); mGLState.getDebug().pushGroup(source, id, std::move(msg)); } void Context::popDebugGroup() { mGLState.getDebug().popGroup(); } void Context::bufferData(GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage) { Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); handleError(buffer->bufferData(target, data, size, usage)); } void Context::bufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const GLvoid *data) { if (data == nullptr) { return; } Buffer *buffer = mGLState.getTargetBuffer(target); ASSERT(buffer); handleError(buffer->bufferSubData(target, data, size, offset)); } void Context::attachShader(GLuint program, GLuint shader) { auto programObject = mResourceManager->getProgram(program); auto shaderObject = mResourceManager->getShader(shader); ASSERT(programObject && shaderObject); programObject->attachShader(shaderObject); } const Workarounds &Context::getWorkarounds() const { return mWorkarounds; } void Context::copyBufferSubData(GLenum readTarget, GLenum writeTarget, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size) { // if size is zero, the copy is a successful no-op if (size == 0) { return; } // TODO(jmadill): cache these. Buffer *readBuffer = mGLState.getTargetBuffer(readTarget); Buffer *writeBuffer = mGLState.getTargetBuffer(writeTarget); handleError(writeBuffer->copyBufferSubData(readBuffer, readOffset, writeOffset, size)); } void Context::bindAttribLocation(GLuint program, GLuint index, const GLchar *name) { Program *programObject = getProgram(program); // TODO(jmadill): Re-use this from the validation if possible. ASSERT(programObject); programObject->bindAttributeLocation(index, name); } void Context::bindBuffer(GLenum target, GLuint buffer) { switch (target) { case GL_ARRAY_BUFFER: bindArrayBuffer(buffer); break; case GL_ELEMENT_ARRAY_BUFFER: bindElementArrayBuffer(buffer); break; case GL_COPY_READ_BUFFER: bindCopyReadBuffer(buffer); break; case GL_COPY_WRITE_BUFFER: bindCopyWriteBuffer(buffer); break; case GL_PIXEL_PACK_BUFFER: bindPixelPackBuffer(buffer); break; case GL_PIXEL_UNPACK_BUFFER: bindPixelUnpackBuffer(buffer); break; case GL_UNIFORM_BUFFER: bindGenericUniformBuffer(buffer); break; case GL_TRANSFORM_FEEDBACK_BUFFER: bindGenericTransformFeedbackBuffer(buffer); break; default: UNREACHABLE(); break; } } void Context::bindFramebuffer(GLenum target, GLuint framebuffer) { if (target == GL_READ_FRAMEBUFFER || target == GL_FRAMEBUFFER) { bindReadFramebuffer(framebuffer); } if (target == GL_DRAW_FRAMEBUFFER || target == GL_FRAMEBUFFER) { bindDrawFramebuffer(framebuffer); } } void Context::bindRenderbuffer(GLenum target, GLuint renderbuffer) { ASSERT(target == GL_RENDERBUFFER); Renderbuffer *object = mResourceManager->checkRenderbufferAllocation(mImplementation.get(), renderbuffer); mGLState.setRenderbufferBinding(object); } } // namespace gl