// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/ParseContext.h" #include #include #include "compiler/preprocessor/SourceLocation.h" #include "compiler/translator/Cache.h" #include "compiler/translator/glslang.h" #include "compiler/translator/ValidateSwitch.h" #include "compiler/translator/ValidateGlobalInitializer.h" #include "compiler/translator/util.h" /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// // // Look at a '.' field selector string and change it into offsets // for a vector. // bool TParseContext::parseVectorFields(const TString &compString, int vecSize, TVectorFields &fields, const TSourceLoc &line) { fields.num = (int)compString.size(); if (fields.num > 4) { error(line, "illegal vector field selection", compString.c_str()); return false; } enum { exyzw, ergba, estpq } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString.c_str()); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(line, "vector field selection out of range", compString.c_str()); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i - 1]) { error(line, "illegal - vector component fields not from the same set", compString.c_str()); return false; } } } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { mDiagnostics.error(loc, reason, token, extraInfo); } void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { mDiagnostics.warning(loc, reason, token, extraInfo); } void TParseContext::outOfRangeError(bool isError, const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { if (isError) { error(loc, reason, token, extraInfo); } else { warning(loc, reason, token, extraInfo); } } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", op, extraInfo.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand << " (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand type", op, extraInfo.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc &line, const char *op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand types ", op, extraInfo.c_str()); } void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, TPrecision precision, TBasicType type) { if (!mChecksPrecisionErrors) return; if (precision == EbpUndefined) { switch (type) { case EbtFloat: error(line, "No precision specified for (float)", ""); return; case EbtInt: case EbtUInt: UNREACHABLE(); // there's always a predeclared qualifier error(line, "No precision specified (int)", ""); return; default: if (IsSampler(type)) { error(line, "No precision specified (sampler)", ""); return; } } } } // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) { TIntermSymbol *symNode = node->getAsSymbolNode(); TIntermBinary *binaryNode = node->getAsBinaryNode(); if (binaryNode) { switch (binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: return checkCanBeLValue(line, op, binaryNode->getLeft()); case EOpVectorSwizzle: { bool ok = checkCanBeLValue(line, op, binaryNode->getLeft()); if (ok) { int offsetCount[4] = {0, 0, 0, 0}; TIntermAggregate *swizzleOffsets = binaryNode->getRight()->getAsAggregate(); for (const auto &offset : *swizzleOffsets->getSequence()) { int value = offset->getAsTyped()->getAsConstantUnion()->getIConst(0); offsetCount[value]++; if (offsetCount[value] > 1) { error(line, " l-value of swizzle cannot have duplicate components", op); return false; } } } return ok; } default: break; } error(line, " l-value required", op); return false; } const char *symbol = 0; if (symNode != 0) symbol = symNode->getSymbol().c_str(); const char *message = 0; switch (node->getQualifier()) { case EvqConst: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqFragmentIn: message = "can't modify an input"; break; case EvqVertexIn: message = "can't modify an input"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqVaryingIn: message = "can't modify a varying"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; case EvqNumWorkGroups: message = "can't modify gl_NumWorkGroups"; break; case EvqWorkGroupSize: message = "can't modify gl_WorkGroupSize"; break; case EvqWorkGroupID: message = "can't modify gl_WorkGroupID"; break; case EvqLocalInvocationID: message = "can't modify gl_LocalInvocationID"; break; case EvqGlobalInvocationID: message = "can't modify gl_GlobalInvocationID"; break; case EvqLocalInvocationIndex: message = "can't modify gl_LocalInvocationIndex"; break; case EvqComputeIn: message = "can't modify work group size variable"; break; default: // // Type that can't be written to? // if (node->getBasicType() == EbtVoid) { message = "can't modify void"; } if (IsSampler(node->getBasicType())) { message = "can't modify a sampler"; } } if (message == 0 && binaryNode == 0 && symNode == 0) { error(line, " l-value required", op); return false; } // // Everything else is okay, no error. // if (message == 0) return true; // // If we get here, we have an error and a message. // if (symNode) { std::stringstream extraInfoStream; extraInfoStream << "\"" << symbol << "\" (" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } else { std::stringstream extraInfoStream; extraInfoStream << "(" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } return false; } // Both test, and if necessary spit out an error, to see if the node is really // a constant. void TParseContext::checkIsConst(TIntermTyped *node) { if (node->getQualifier() != EvqConst) { error(node->getLine(), "constant expression required", ""); } } // Both test, and if necessary spit out an error, to see if the node is really // an integer. void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) { if (!node->isScalarInt()) { error(node->getLine(), "integer expression required", token); } } // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) { if (!symbolTable.atGlobalLevel()) { error(line, "only allowed at global scope", token); return false; } return true; } // For now, keep it simple: if it starts "gl_", it's reserved, independent // of scope. Except, if the symbol table is at the built-in push-level, // which is when we are parsing built-ins. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a // webgl shader. bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier) { static const char *reservedErrMsg = "reserved built-in name"; if (!symbolTable.atBuiltInLevel()) { if (identifier.compare(0, 3, "gl_") == 0) { error(line, reservedErrMsg, "gl_"); return false; } if (IsWebGLBasedSpec(mShaderSpec)) { if (identifier.compare(0, 6, "webgl_") == 0) { error(line, reservedErrMsg, "webgl_"); return false; } if (identifier.compare(0, 7, "_webgl_") == 0) { error(line, reservedErrMsg, "_webgl_"); return false; } if (mShaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) { error(line, reservedErrMsg, "css_"); return false; } } if (identifier.find("__") != TString::npos) { error(line, "identifiers containing two consecutive underscores (__) are reserved as " "possible future keywords", identifier.c_str()); return false; } } return true; } // Make sure there is enough data provided to the constructor to build // something of the type of the constructor. Also returns the type of // the constructor. bool TParseContext::checkConstructorArguments(const TSourceLoc &line, TIntermNode *argumentsNode, const TFunction &function, TOperator op, const TType &type) { bool constructingMatrix = false; switch (op) { case EOpConstructMat2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4: constructingMatrix = true; break; default: break; } // // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument, so 'overfull' will become true. // size_t size = 0; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (size_t i = 0; i < function.getParamCount(); ++i) { const TConstParameter ¶m = function.getParam(i); size += param.type->getObjectSize(); if (constructingMatrix && param.type->isMatrix()) matrixInMatrix = true; if (full) overFull = true; if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize()) full = true; if (param.type->isArray()) arrayArg = true; } if (type.isArray()) { // The size of an unsized constructor should already have been determined. ASSERT(!type.isUnsizedArray()); if (static_cast(type.getArraySize()) != function.getParamCount()) { error(line, "array constructor needs one argument per array element", "constructor"); return false; } } if (arrayArg && op != EOpConstructStruct) { error(line, "constructing from a non-dereferenced array", "constructor"); return false; } if (matrixInMatrix && !type.isArray()) { if (function.getParamCount() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor"); return false; } } if (overFull) { error(line, "too many arguments", "constructor"); return false; } if (op == EOpConstructStruct && !type.isArray() && type.getStruct()->fields().size() != function.getParamCount()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); return false; } if (!type.isMatrix() || !matrixInMatrix) { if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) || (op == EOpConstructStruct && size < type.getObjectSize())) { error(line, "not enough data provided for construction", "constructor"); return false; } } if (argumentsNode == nullptr) { error(line, "constructor does not have any arguments", "constructor"); return false; } TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate(); for (TIntermNode *&argNode : *argumentsAgg->getSequence()) { TIntermTyped *argTyped = argNode->getAsTyped(); ASSERT(argTyped != nullptr); if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType())) { error(line, "cannot convert a sampler", "constructor"); return false; } if (argTyped->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor"); return false; } } if (type.isArray()) { // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of // the array. for (TIntermNode *&argNode : *argumentsAgg->getSequence()) { const TType &argType = argNode->getAsTyped()->getType(); // It has already been checked that the argument is not an array. ASSERT(!argType.isArray()); if (!argType.sameElementType(type)) { error(line, "Array constructor argument has an incorrect type", "Error"); return false; } } } else if (op == EOpConstructStruct) { const TFieldList &fields = type.getStruct()->fields(); TIntermSequence *args = argumentsAgg->getSequence(); for (size_t i = 0; i < fields.size(); i++) { if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type()) { error(line, "Structure constructor arguments do not match structure fields", "Error"); return false; } } } return true; } // This function checks to see if a void variable has been declared and raise an error message for // such a case // // returns true in case of an error // bool TParseContext::checkIsNonVoid(const TSourceLoc &line, const TString &identifier, const TBasicType &type) { if (type == EbtVoid) { error(line, "illegal use of type 'void'", identifier.c_str()); return false; } return true; } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not. void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { error(line, "boolean expression expected", ""); } } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not. void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) { if (pType.type != EbtBool || pType.isAggregate()) { error(line, "boolean expression expected", ""); } } bool TParseContext::checkIsNotSampler(const TSourceLoc &line, const TPublicType &pType, const char *reason) { if (pType.type == EbtStruct) { if (containsSampler(*pType.userDef)) { error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); return false; } return true; } else if (IsSampler(pType.type)) { error(line, reason, getBasicString(pType.type)); return false; } return true; } void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, const TPublicType &pType) { if (pType.layoutQualifier.location != -1) { error(line, "location must only be specified for a single input or output variable", "location"); } } void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { if (layoutQualifier.location != -1) { error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs"); } } void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line, TQualifier qualifier, const TType &type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { error(line, "samplers cannot be output parameters", type.getBasicString()); } } bool TParseContext::containsSampler(const TType &type) { if (IsSampler(type.getBasicType())) return true; if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) { const TFieldList &fields = type.getStruct()->fields(); for (unsigned int i = 0; i < fields.size(); ++i) { if (containsSampler(*fields[i]->type())) return true; } } return false; } // Do size checking for an array type's size. unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) { TIntermConstantUnion *constant = expr->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't // fold as array size. if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) { error(line, "array size must be a constant integer expression", ""); return 1u; } unsigned int size = 0u; if (constant->getBasicType() == EbtUInt) { size = constant->getUConst(0); } else { int signedSize = constant->getIConst(0); if (signedSize < 0) { error(line, "array size must be non-negative", ""); return 1u; } size = static_cast(signedSize); } if (size == 0u) { error(line, "array size must be greater than zero", ""); return 1u; } // The size of arrays is restricted here to prevent issues further down the // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to // 4096 registers so this should be reasonable even for aggressively optimizable code. const unsigned int sizeLimit = 65536; if (size > sizeLimit) { error(line, "array size too large", ""); return 1u; } return size; } // See if this qualifier can be an array. bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, const TPublicType &elementQualifier) { if ((elementQualifier.qualifier == EvqAttribute) || (elementQualifier.qualifier == EvqVertexIn) || (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) { error(line, "cannot declare arrays of this qualifier", TType(elementQualifier).getQualifierString()); return false; } return true; } // See if this element type can be formed into an array. bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType) { // // Can the type be an array? // if (elementType.array) { error(line, "cannot declare arrays of arrays", TType(elementType).getCompleteString().c_str()); return false; } // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section // 4.3.4). if (mShaderVersion >= 300 && elementType.type == EbtStruct && sh::IsVarying(elementType.qualifier)) { error(line, "cannot declare arrays of structs of this qualifier", TType(elementType).getCompleteString().c_str()); return false; } return true; } // Check if this qualified element type can be formed into an array. bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, const TPublicType &elementType) { if (checkIsValidTypeForArray(indexLocation, elementType)) { return checkIsValidQualifierForArray(indexLocation, elementType); } return false; } // Enforce non-initializer type/qualifier rules. void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, const TString &identifier, TPublicType *type) { ASSERT(type != nullptr); if (type->qualifier == EvqConst) { // Make the qualifier make sense. type->qualifier = EvqTemporary; // Generate informative error messages for ESSL1. // In ESSL3 arrays and structures containing arrays can be constant. if (mShaderVersion < 300 && type->isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be " "initialized", identifier.c_str()); } else { error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); } return; } if (type->isUnsizedArray()) { error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); } } // Do some simple checks that are shared between all variable declarations, // and update the symbol table. // // Returns true if declaring the variable succeeded. // bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type, TVariable **variable) { ASSERT((*variable) == nullptr); bool needsReservedCheck = true; // gl_LastFragData may be redeclared with a new precision qualifier if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) { const TVariable *maxDrawBuffers = static_cast( symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); if (static_cast(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst()) { if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) { needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension()); } } else { error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str()); return false; } } if (needsReservedCheck && !checkIsNotReserved(line, identifier)) return false; (*variable) = new TVariable(&identifier, type); if (!symbolTable.declare(*variable)) { error(line, "redefinition", identifier.c_str()); *variable = nullptr; return false; } if (!checkIsNonVoid(line, identifier, type.getBasicType())) return false; return true; } void TParseContext::checkIsParameterQualifierValid(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType *type) { if (qualifier != EvqConst && qualifier != EvqTemporary) { error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); return; } if (qualifier == EvqConst && paramQualifier != EvqIn) { error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); return; } if (qualifier == EvqConst) type->setQualifier(EvqConstReadOnly); else type->setQualifier(paramQualifier); } bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension) { const TExtensionBehavior &extBehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); if (iter == extBehavior.end()) { error(line, "extension", extension.c_str(), "is not supported"); return false; } // In GLSL ES, an extension's default behavior is "disable". if (iter->second == EBhDisable || iter->second == EBhUndefined) { error(line, "extension", extension.c_str(), "is disabled"); return false; } if (iter->second == EBhWarn) { warning(line, "extension", extension.c_str(), "is being used"); return true; } return true; } // These checks are common for all declarations starting a declarator list, and declarators that // follow an empty declaration. void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation) { switch (publicType.qualifier) { case EvqVaryingIn: case EvqVaryingOut: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: case EvqComputeIn: if (publicType.type == EbtStruct) { error(identifierLocation, "cannot be used with a structure", getQualifierString(publicType.qualifier)); return; } default: break; } if (publicType.qualifier != EvqUniform && !checkIsNotSampler(identifierLocation, publicType, "samplers must be uniform")) { return; } // check for layout qualifier issues const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; if (layoutQualifier.matrixPacking != EmpUnspecified) { error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks"); return; } if (layoutQualifier.blockStorage != EbsUnspecified) { error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks"); return; } if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut) { checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier); } } void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, const TString &layoutQualifierName, int versionRequired) { if (mShaderVersion < versionRequired) { error(location, "invalid layout qualifier:", layoutQualifierName.c_str(), "not supported"); } } bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { const sh::WorkGroupSize &localSize = layoutQualifier.localSize; for (size_t i = 0u; i < localSize.size(); ++i) { if (localSize[i] != -1) { error(location, "invalid layout qualifier:", getWorkGroupSizeString(i), "only valid when used with 'in' in a compute shader global layout declaration"); return false; } } return true; } void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *fnCall) { for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) { TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); if (qual == EvqOut || qual == EvqInOut) { TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); if (!checkCanBeLValue(argument->getLine(), "assign", argument)) { error(argument->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); return; } } } } void TParseContext::checkInvariantIsOutVariableES3(const TQualifier qualifier, const TSourceLoc &invariantLocation) { if (!sh::IsVaryingOut(qualifier) && qualifier != EvqFragmentOut) { error(invariantLocation, "Only out variables can be invariant.", "invariant"); } } bool TParseContext::supportsExtension(const char *extension) { const TExtensionBehavior &extbehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extbehavior.find(extension); return (iter != extbehavior.end()); } bool TParseContext::isExtensionEnabled(const char *extension) const { return ::IsExtensionEnabled(extensionBehavior(), extension); } void TParseContext::handleExtensionDirective(const TSourceLoc &loc, const char *extName, const char *behavior) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handleExtension(srcLoc, extName, behavior); } void TParseContext::handlePragmaDirective(const TSourceLoc &loc, const char *name, const char *value, bool stdgl) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); } sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const { sh::WorkGroupSize result; for (size_t i = 0u; i < result.size(); ++i) { if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) { result[i] = 1; } else { result[i] = mComputeShaderLocalSize[i]; } } return result; } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = NULL; if (!symbol) { error(location, "undeclared identifier", name->c_str()); } else if (!symbol->isVariable()) { error(location, "variable expected", name->c_str()); } else { variable = static_cast(symbol); if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) && !variable->getExtension().empty()) { checkCanUseExtension(location, variable->getExtension()); } // Reject shaders using both gl_FragData and gl_FragColor TQualifier qualifier = variable->getType().getQualifier(); if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) { mUsesFragData = true; } else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) { mUsesFragColor = true; } if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) { mUsesSecondaryOutputs = true; } // This validation is not quite correct - it's only an error to write to // both FragData and FragColor. For simplicity, and because users shouldn't // be rewarded for reading from undefined varaibles, return an error // if they are both referenced, rather than assigned. if (mUsesFragData && mUsesFragColor) { const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; if (mUsesSecondaryOutputs) { errorMessage = "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" " and (gl_FragColor, gl_SecondaryFragColorEXT)"; } error(location, errorMessage, name->c_str()); } // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && qualifier == EvqWorkGroupSize) { error(location, "It is an error to use gl_WorkGroupSize before declaring the local group size", "gl_WorkGroupSize"); } } if (!variable) { TType type(EbtFloat, EbpUndefined); TVariable *fakeVariable = new TVariable(name, type); symbolTable.declare(fakeVariable); variable = fakeVariable; } return variable; } TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = getNamedVariable(location, name, symbol); if (variable->getConstPointer()) { const TConstantUnion *constArray = variable->getConstPointer(); return intermediate.addConstantUnion(constArray, variable->getType(), location); } else { return intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), location); } } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise 0. // const TFunction *TParseContext::findFunction(const TSourceLoc &line, TFunction *call, int inputShaderVersion, bool *builtIn) { // First find by unmangled name to check whether the function name has been // hidden by a variable name or struct typename. // If a function is found, check for one with a matching argument list. const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn); if (symbol == 0 || symbol->isFunction()) { symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn); } if (symbol == 0) { error(line, "no matching overloaded function found", call->getName().c_str()); return 0; } if (!symbol->isFunction()) { error(line, "function name expected", call->getName().c_str()); return 0; } return static_cast(symbol); } // // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // // Returns true on error, false if no error // bool TParseContext::executeInitializer(const TSourceLoc &line, const TString &identifier, const TPublicType &pType, TIntermTyped *initializer, TIntermNode **intermNode) { ASSERT(intermNode != nullptr); TType type = TType(pType); TVariable *variable = nullptr; if (type.isUnsizedArray()) { type.setArraySize(initializer->getArraySize()); } if (!declareVariable(line, identifier, type, &variable)) { return true; } bool globalInitWarning = false; if (symbolTable.atGlobalLevel() && !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) { // Error message does not completely match behavior with ESSL 1.00, but // we want to steer developers towards only using constant expressions. error(line, "global variable initializers must be constant expressions", "="); return true; } if (globalInitWarning) { warning( line, "global variable initializers should be constant expressions " "(uniforms and globals are allowed in global initializers for legacy compatibility)", "="); } // // identifier must be of type constant, a global, or a temporary // TQualifier qualifier = variable->getType().getQualifier(); if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); return true; } // // test for and propagate constant // if (qualifier == EvqConst) { if (qualifier != initializer->getType().getQualifier()) { std::stringstream extraInfoStream; extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; std::string extraInfo = extraInfoStream.str(); error(line, " assigning non-constant to", "=", extraInfo.c_str()); variable->getType().setQualifier(EvqTemporary); return true; } if (type != initializer->getType()) { error(line, " non-matching types for const initializer ", variable->getType().getQualifierString()); variable->getType().setQualifier(EvqTemporary); return true; } // Save the constant folded value to the variable if possible. For example array // initializers are not folded, since that way copying the array literal to multiple places // in the shader is avoided. // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where // it would be beneficial. if (initializer->getAsConstantUnion()) { variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); *intermNode = nullptr; return false; } else if (initializer->getAsSymbolNode()) { const TSymbol *symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); const TVariable *tVar = static_cast(symbol); const TConstantUnion *constArray = tVar->getConstPointer(); if (constArray) { variable->shareConstPointer(constArray); *intermNode = nullptr; return false; } } } TIntermSymbol *intermSymbol = intermediate.addSymbol( variable->getUniqueId(), variable->getName(), variable->getType(), line); *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); if (*intermNode == nullptr) { assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return true; } return false; } TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier) { TPublicType returnType = typeSpecifier; returnType.qualifier = qualifier; returnType.invariant = invariant; returnType.layoutQualifier = layoutQualifier; checkWorkGroupSizeIsNotSpecified(typeSpecifier.line, layoutQualifier); if (mShaderVersion < 300) { if (typeSpecifier.array) { error(typeSpecifier.line, "not supported", "first-class array"); returnType.clearArrayness(); } if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); } if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); } } else { if (!layoutQualifier.isEmpty()) { checkIsAtGlobalLevel(typeSpecifier.line, "layout"); } if (sh::IsVarying(qualifier) || qualifier == EvqVertexIn || qualifier == EvqFragmentOut) { checkInputOutputTypeIsValidES3(qualifier, typeSpecifier, typeSpecifier.line); } if (qualifier == EvqComputeIn) { error(typeSpecifier.line, "'in' can be only used to specify the local group size", "in"); } } return returnType; } void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, const TPublicType &type, const TSourceLoc &qualifierLocation) { // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. if (type.type == EbtBool) { error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); } // Specific restrictions apply for vertex shader inputs and fragment shader outputs. switch (qualifier) { case EvqVertexIn: // ESSL 3.00 section 4.3.4 if (type.array) { error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); } // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck return; case EvqFragmentOut: // ESSL 3.00 section 4.3.6 if (type.isMatrix()) { error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); } // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck return; default: break; } // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of // restrictions. bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt || type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) { error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier)); } if (type.type == EbtStruct) { // ESSL 3.00 sections 4.3.4 and 4.3.6. // These restrictions are only implied by the ESSL 3.00 spec, but // the ESSL 3.10 spec lists these restrictions explicitly. if (type.array) { error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier)); } if (type.isStructureContainingArrays()) { error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier)); } if (type.isStructureContainingType(EbtStruct)) { error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier)); } if (type.isStructureContainingType(EbtBool)) { error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier)); } } } TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc &identifierOrTypeLocation, const TString &identifier) { TType type(publicType); if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && mDirectiveHandler.pragma().stdgl.invariantAll) { TQualifier qualifier = type.getQualifier(); // The directive handler has already taken care of rejecting invalid uses of this pragma // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all // affected variable declarations: // // 1. Built-in special variables which are inputs to the fragment shader. (These are handled // elsewhere, in TranslatorGLSL.) // // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but // the way this is currently implemented we have to enable this compiler option before // parsing the shader and determining the shading language version it uses. If this were // implemented as a post-pass, the workaround could be more targeted. // // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of // the specification, but there are desktop OpenGL drivers that expect that this is the // behavior of the #pragma when specified in ESSL 1.00 fragment shaders. if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn) { type.setInvariant(true); } } TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation); bool emptyDeclaration = (identifier == ""); mDeferredSingleDeclarationErrorCheck = emptyDeclaration; if (emptyDeclaration) { if (publicType.isUnsizedArray()) { // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an // error. It is assumed that this applies to empty declarations as well. error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str()); } } else { singleDeclarationErrorCheck(publicType, identifierOrTypeLocation); checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType); TVariable *variable = nullptr; declareVariable(identifierOrTypeLocation, identifier, type, &variable); if (variable && symbol) symbol->setId(variable->getUniqueId()); } return intermediate.makeAggregate(symbol, identifierOrTypeLocation); } TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression) { mDeferredSingleDeclarationErrorCheck = false; singleDeclarationErrorCheck(publicType, identifierLocation); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); checkIsValidTypeAndQualifierForArray(indexLocation, publicType); TType arrayType(publicType); unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression); // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); TVariable *variable = nullptr; declareVariable(identifierLocation, identifier, arrayType, &variable); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.makeAggregate(symbol, identifierLocation); } TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; singleDeclarationErrorCheck(publicType, identifierLocation); TIntermNode *intermNode = nullptr; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // Build intermediate representation // return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr; } else { return nullptr; } } TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration( TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; singleDeclarationErrorCheck(publicType, identifierLocation); checkIsValidTypeAndQualifierForArray(indexLocation, publicType); TPublicType arrayType(publicType); unsigned int size = 0u; // If indexExpression is nullptr, then the array will eventually get its size implicitly from // the initializer. if (indexExpression != nullptr) { size = checkIsValidArraySize(identifierLocation, indexExpression); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); // initNode will correspond to the whole of "type b[n] = initializer". TIntermNode *initNode = nullptr; if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr; } else { return nullptr; } } TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, const TSourceLoc &identifierLoc, const TString *identifier, const TSymbol *symbol) { // invariant declaration if (!checkIsAtGlobalLevel(invariantLoc, "invariant varying")) return nullptr; if (!symbol) { error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); return nullptr; } else { const TString kGlFrontFacing("gl_FrontFacing"); if (*identifier == kGlFrontFacing) { error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str()); return nullptr; } symbolTable.addInvariantVarying(std::string(identifier->c_str())); const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); ASSERT(variable); const TType &type = variable->getType(); TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); aggregate->setOp(EOpInvariantDeclaration); return aggregate; } } TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { singleDeclarationErrorCheck(publicType, identifierLocation); mDeferredSingleDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); TVariable *variable = nullptr; declareVariable(identifierLocation, identifier, TType(publicType), &variable); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &arrayLocation, TIntermTyped *indexExpression) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { singleDeclarationErrorCheck(publicType, identifierLocation); mDeferredSingleDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType)) { TType arrayType = TType(publicType); unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression); arrayType.setArraySize(size); TVariable *variable = nullptr; declareVariable(identifierLocation, identifier, arrayType, &variable); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } return nullptr; } TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { singleDeclarationErrorCheck(publicType, identifierLocation); mDeferredSingleDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); TIntermNode *intermNode = nullptr; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // build the intermediate representation // if (intermNode) { return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation); } else { return aggregateDeclaration; } } else { return nullptr; } } TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { singleDeclarationErrorCheck(publicType, identifierLocation); mDeferredSingleDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); checkIsValidTypeAndQualifierForArray(indexLocation, publicType); TPublicType arrayType(publicType); unsigned int size = 0u; // If indexExpression is nullptr, then the array will eventually get its size implicitly from // the initializer. if (indexExpression != nullptr) { size = checkIsValidArraySize(identifierLocation, indexExpression); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); // initNode will correspond to the whole of "b[n] = initializer". TIntermNode *initNode = nullptr; if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { if (initNode) { return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation); } else { return aggregateDeclaration; } } else { return nullptr; } } void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) { const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; // It should never be the case, but some strange parser errors can send us here. if (layoutQualifier.isEmpty()) { error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); return; } if (!layoutQualifier.isCombinationValid()) { error(typeQualifier.line, "invalid combination:", "layout"); return; } if (typeQualifier.qualifier == EvqComputeIn) { if (mComputeShaderLocalSizeDeclared && !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) { error(typeQualifier.line, "Work group size does not match the previous declaration", "layout"); return; } if (mShaderVersion < 310) { error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); return; } if (!layoutQualifier.localSize.isAnyValueSet()) { error(typeQualifier.line, "No local work group size specified", "layout"); return; } const TVariable *maxComputeWorkGroupSize = static_cast( symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion)); const TConstantUnion *maxComputeWorkGroupSizeData = maxComputeWorkGroupSize->getConstPointer(); for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) { if (layoutQualifier.localSize[i] != -1) { mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); if (mComputeShaderLocalSize[i] < 1 || mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) { std::stringstream errorMessageStream; errorMessageStream << "Value must be at least 1 and no greater than " << maxComputeWorkGroupSizeValue; const std::string &errorMessage = errorMessageStream.str(); error(typeQualifier.line, "invalid value:", getWorkGroupSizeString(i), errorMessage.c_str()); return; } } } mComputeShaderLocalSizeDeclared = true; } else { if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier)) { return; } if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); return; } if (mShaderVersion < 300) { error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", "layout"); return; } checkLocationIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier); if (layoutQualifier.matrixPacking != EmpUnspecified) { mDefaultMatrixPacking = layoutQualifier.matrixPacking; } if (layoutQualifier.blockStorage != EbsUnspecified) { mDefaultBlockStorage = layoutQualifier.blockStorage; } } } TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location) { // Note: symbolTableFunction could be the same as function if this is the first declaration. // Either way the instance in the symbol table is used to track whether the function is declared // multiple times. TFunction *symbolTableFunction = static_cast(symbolTable.find(function.getMangledName(), getShaderVersion())); if (symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100) { // ESSL 1.00.17 section 4.2.7. // Doesn't apply to ESSL 3.00.4: see section 4.2.3. error(location, "duplicate function prototype declarations are not allowed", "function"); } symbolTableFunction->setHasPrototypeDeclaration(); TIntermAggregate *prototype = new TIntermAggregate; prototype->setType(function.getReturnType()); prototype->setName(function.getMangledName()); prototype->setFunctionId(function.getUniqueId()); for (size_t i = 0; i < function.getParamCount(); i++) { const TConstParameter ¶m = function.getParam(i); if (param.name != 0) { TVariable variable(param.name, *param.type); TIntermSymbol *paramSymbol = intermediate.addSymbol( variable.getUniqueId(), variable.getName(), variable.getType(), location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } else { TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } } prototype->setOp(EOpPrototype); symbolTable.pop(); if (!symbolTable.atGlobalLevel()) { // ESSL 3.00.4 section 4.2.4. error(location, "local function prototype declarations are not allowed", "function"); } return prototype; } TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location) { //?? Check that all paths return a value if return type != void ? // May be best done as post process phase on intermediate code if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) { error(location, "function does not return a value:", "", function.getName().c_str()); } TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location); intermediate.setAggregateOperator(aggregate, EOpFunction, location); aggregate->setName(function.getMangledName().c_str()); aggregate->setType(function.getReturnType()); aggregate->setFunctionId(function.getUniqueId()); symbolTable.pop(); return aggregate; } void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut) { const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); if (builtIn) { error(location, "built-in functions cannot be redefined", function->getName().c_str()); } TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); // // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurance. // if (prevDec->isDefined()) { // Then this function already has a body. error(location, "function already has a body", function->getName().c_str()); } prevDec->setDefined(); // // Overload the unique ID of the definition to be the same unique ID as the declaration. // Eventually we will probably want to have only a single definition and just swap the // arguments to be the definition's arguments. // function->setUniqueId(prevDec->getUniqueId()); // Raise error message if main function takes any parameters or return anything other than void if (function->getName() == "main") { if (function->getParamCount() > 0) { error(location, "function cannot take any parameter(s)", function->getName().c_str()); } if (function->getReturnType().getBasicType() != EbtVoid) { error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value"); } } // // Remember the return type for later checking for RETURN statements. // mCurrentFunctionType = &(prevDec->getReturnType()); mFunctionReturnsValue = false; // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate *paramNodes = new TIntermAggregate; for (size_t i = 0; i < function->getParamCount(); i++) { const TConstParameter ¶m = function->getParam(i); if (param.name != 0) { TVariable *variable = new TVariable(param.name, *param.type); // // Insert the parameters with name in the symbol table. // if (!symbolTable.declare(variable)) { error(location, "redefinition", variable->getName().c_str()); paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); continue; } // // Add the parameter to the HIL // TIntermSymbol *symbol = intermediate.addSymbol( variable->getUniqueId(), variable->getName(), variable->getType(), location); paramNodes = intermediate.growAggregate(paramNodes, symbol, location); } else { paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); } } intermediate.setAggregateOperator(paramNodes, EOpParameters, location); *aggregateOut = paramNodes; setLoopNestingLevel(0); } TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) { // // We don't know at this point whether this is a function definition or a prototype. // The definition production code will check for redefinitions. // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. // // Return types and parameter qualifiers must match in all redeclarations, so those are checked // here. // TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str())) { // With ESSL 3.00, names of built-in functions cannot be redeclared as functions. // Therefore overloading or redefining builtin functions is an error. error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str()); } else if (prevDec) { if (prevDec->getReturnType() != function->getReturnType()) { error(location, "overloaded functions must have the same return type", function->getReturnType().getBasicString()); } for (size_t i = 0; i < prevDec->getParamCount(); ++i) { if (prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier()) { error(location, "overloaded functions must have the same parameter qualifiers", function->getParam(i).type->getQualifierString()); } } } // // Check for previously declared variables using the same name. // TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); if (prevSym) { if (!prevSym->isFunction()) { error(location, "redefinition", function->getName().c_str(), "function"); } } else { // Insert the unmangled name to detect potential future redefinition as a variable. TFunction *newFunction = new TFunction(NewPoolTString(function->getName().c_str()), &function->getReturnType()); symbolTable.getOuterLevel()->insertUnmangled(newFunction); } // We're at the inner scope level of the function's arguments and body statement. // Add the function prototype to the surrounding scope instead. symbolTable.getOuterLevel()->insert(function); // // If this is a redeclaration, it could also be a definition, in which case, we want to use the // variable names from this one, and not the one that's // being redeclared. So, pass back up this declaration, not the one in the symbol table. // return function; } TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, const TString *name, const TSourceLoc &location) { if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) { error(location, "no qualifiers allowed for function return", getQualifierString(type.qualifier)); } if (!type.layoutQualifier.isEmpty()) { error(location, "no qualifiers allowed for function return", "layout"); } // make sure a sampler is not involved as well... checkIsNotSampler(location, type, "samplers can't be function return values"); if (mShaderVersion < 300) { // Array return values are forbidden, but there's also no valid syntax for declaring array // return values in ESSL 1.00. ASSERT(type.arraySize == 0 || mDiagnostics.numErrors() > 0); if (type.isStructureContainingArrays()) { // ESSL 1.00.17 section 6.1 Function Definitions error(location, "structures containing arrays can't be function return values", TType(type).getCompleteString().c_str()); } } // Add the function as a prototype after parsing it (we do not support recursion) return new TFunction(name, new TType(type)); } TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) { TPublicType publicType = publicTypeIn; if (publicType.isStructSpecifier) { error(publicType.line, "constructor can't be a structure definition", getBasicString(publicType.type)); } TOperator op = EOpNull; if (publicType.userDef) { op = EOpConstructStruct; } else { op = sh::TypeToConstructorOperator(TType(publicType)); if (op == EOpNull) { error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); publicType.type = EbtFloat; op = EOpConstructFloat; } } TString tempString; const TType *type = new TType(publicType); return new TFunction(&tempString, type, op); } // This function is used to test for the correctness of the parameters passed to various constructor // functions and also convert them to the right datatype if it is allowed and required. // // Returns a node to add to the tree regardless of if an error was generated or not. // TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, TOperator op, TFunction *fnCall, const TSourceLoc &line) { TType type = fnCall->getReturnType(); if (type.isUnsizedArray()) { type.setArraySize(static_cast(fnCall->getParamCount())); } bool constType = true; for (size_t i = 0; i < fnCall->getParamCount(); ++i) { const TConstParameter ¶m = fnCall->getParam(i); if (param.type->getQualifier() != EvqConst) constType = false; } if (constType) type.setQualifier(EvqConst); if (!checkConstructorArguments(line, arguments, *fnCall, op, type)) { TIntermTyped *dummyNode = intermediate.setAggregateOperator(nullptr, op, line); dummyNode->setType(type); return dummyNode; } TIntermAggregate *constructor = arguments->getAsAggregate(); ASSERT(constructor != nullptr); // Turn the argument list itself into a constructor constructor->setOp(op); constructor->setLine(line); ASSERT(constructor->isConstructor()); // Need to set type before setPrecisionFromChildren() because bool doesn't have precision. constructor->setType(type); // Structs should not be precision qualified, the individual members may be. // Built-in types on the other hand should be precision qualified. if (op != EOpConstructStruct) { constructor->setPrecisionFromChildren(); type.setPrecision(constructor->getPrecision()); } constructor->setType(type); TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor); if (constConstructor) { return constConstructor; } return constructor; } // This function returns vector field(s) being accessed from a constant vector. TIntermConstantUnion *TParseContext::foldVectorSwizzle(TVectorFields &fields, TIntermConstantUnion *baseNode, const TSourceLoc &location) { const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); ASSERT(unionArray); TConstantUnion *constArray = new TConstantUnion[fields.num]; const auto &type = baseNode->getType(); for (int i = 0; i < fields.num; i++) { // Out-of-range indices should already be checked. ASSERT(fields.offsets[i] < type.getNominalSize()); constArray[i] = unionArray[fields.offsets[i]]; } return intermediate.addConstantUnion(constArray, type, location); } // This function returns the column vector being accessed from a constant matrix. TIntermConstantUnion *TParseContext::foldMatrixSubscript(int index, TIntermConstantUnion *baseNode, const TSourceLoc &location) { ASSERT(index < baseNode->getType().getCols()); const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); int size = baseNode->getType().getRows(); return intermediate.addConstantUnion(&unionArray[size * index], baseNode->getType(), location); } // This function returns an element of an array accessed from a constant array. TIntermConstantUnion *TParseContext::foldArraySubscript(int index, TIntermConstantUnion *baseNode, const TSourceLoc &location) { ASSERT(index < static_cast(baseNode->getArraySize())); TType arrayElementType = baseNode->getType(); arrayElementType.clearArrayness(); size_t arrayElementSize = arrayElementType.getObjectSize(); const TConstantUnion *unionArray = baseNode->getUnionArrayPointer(); return intermediate.addConstantUnion(&unionArray[arrayElementSize * index], baseNode->getType(), location); } // // This function returns the value of a particular field inside a constant structure from the symbol // table. // If there is an embedded/nested struct, it appropriately calls addConstStructNested or // addConstStructFromAggr function and returns the parse-tree with the values of the embedded/nested // struct. // TIntermTyped *TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc &line) { const TFieldList &fields = node->getType().getStruct()->fields(); size_t instanceSize = 0; for (size_t index = 0; index < fields.size(); ++index) { if (fields[index]->name() == identifier) { break; } else { instanceSize += fields[index]->type()->getObjectSize(); } } TIntermTyped *typedNode; TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); if (tempConstantNode) { const TConstantUnion *constArray = tempConstantNode->getUnionArrayPointer(); // type will be changed in the calling function typedNode = intermediate.addConstantUnion(constArray + instanceSize, tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the structure", "Error"); return nullptr; } return typedNode; } // // Interface/uniform blocks // TIntermAggregate *TParseContext::addInterfaceBlock(const TPublicType &typeQualifier, const TSourceLoc &nameLine, const TString &blockName, TFieldList *fieldList, const TString *instanceName, const TSourceLoc &instanceLine, TIntermTyped *arrayIndex, const TSourceLoc &arrayIndexLine) { checkIsNotReserved(nameLine, blockName); if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform"); } TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); if (blockLayoutQualifier.matrixPacking == EmpUnspecified) { blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; } if (blockLayoutQualifier.blockStorage == EbsUnspecified) { blockLayoutQualifier.blockStorage = mDefaultBlockStorage; } checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName); if (!symbolTable.declare(blockNameSymbol)) { error(nameLine, "redefinition", blockName.c_str(), "interface block name"); } // check for sampler types and apply layout qualifiers for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = field->type(); if (IsSampler(fieldType->getBasicType())) { error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks"); } const TQualifier qualifier = fieldType->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqUniform: break; default: error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); break; } // check layout qualifiers TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); if (fieldLayoutQualifier.blockStorage != EbsUnspecified) { error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); } if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) { fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; } else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) { warning(field->line(), "extraneous layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "only has an effect on matrix types"); } fieldType->setLayoutQualifier(fieldLayoutQualifier); } // add array index unsigned int arraySize = 0; if (arrayIndex != nullptr) { arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); } TInterfaceBlock *interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize); TString symbolName = ""; int symbolId = 0; if (!instanceName) { // define symbols for the members of the interface block for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = field->type(); // set parent pointer of the field variable fieldType->setInterfaceBlock(interfaceBlock); TVariable *fieldVariable = new TVariable(&field->name(), *fieldType); fieldVariable->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(fieldVariable)) { error(field->line(), "redefinition", field->name().c_str(), "interface block member name"); } } } else { checkIsNotReserved(instanceLine, *instanceName); // add a symbol for this interface block TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); instanceTypeDef->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(instanceTypeDef)) { error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name"); } symbolId = instanceTypeDef->getUniqueId(); symbolName = instanceTypeDef->getName(); } TIntermAggregate *aggregate = intermediate.makeAggregate( intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine); aggregate->setOp(EOpDeclaration); exitStructDeclaration(); return aggregate; } void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) { ++mStructNestingLevel; // Embedded structure definitions are not supported per GLSL ES spec. // They aren't allowed in GLSL either, but we need to detect this here // so we don't rely on the GLSL compiler to catch it. if (mStructNestingLevel > 1) { error(line, "", "Embedded struct definitions are not allowed"); } } void TParseContext::exitStructDeclaration() { --mStructNestingLevel; } namespace { const int kWebGLMaxStructNesting = 4; } // namespace void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) { if (!IsWebGLBasedSpec(mShaderSpec)) { return; } if (field.type()->getBasicType() != EbtStruct) { return; } // We're already inside a structure definition at this point, so add // one to the field's struct nesting. if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) { std::stringstream reasonStream; reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; std::string reason = reasonStream.str(); error(line, reason.c_str(), field.name().c_str(), ""); return; } } // // Parse an array index expression // TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression) { TIntermTyped *indexedExpression = NULL; if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) { if (baseExpression->getAsSymbolNode()) { error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str()); } else { error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); } } TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able // to constant fold all constant expressions. Right now we don't allow indexing interface blocks // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the // index is a constant expression. if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) { if (baseExpression->isInterfaceBlock()) { error( location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions"); } else if (baseExpression->getQualifier() == EvqFragmentOut) { error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions"); } else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) { error(location, "", "[", "array index for gl_FragData must be constant zero"); } } if (indexConstantUnion) { // If the index is not qualified as constant, the behavior in the spec is undefined. This // applies even if ANGLE has been able to constant fold it (ANGLE may constant fold // expressions that are not constant expressions). The most compatible way to handle this // case is to report a warning instead of an error and force the index to be in the // correct range. bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; int index = indexConstantUnion->getIConst(0); if (!baseExpression->isArray()) { // Array checks are done later because a different error message might be generated // based on the index in some cases. if (baseExpression->isVector()) { index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, baseExpression->getType().getNominalSize(), "vector field selection out of range", "[]"); } else if (baseExpression->isMatrix()) { index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, baseExpression->getType().getCols(), "matrix field selection out of range", "[]"); } } TIntermConstantUnion *baseConstantUnion = baseExpression->getAsConstantUnion(); if (baseConstantUnion) { if (baseExpression->isArray()) { index = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, baseExpression->getArraySize(), "array index out of range", "[]"); // Constant folding for array indexing. indexedExpression = foldArraySubscript(index, baseConstantUnion, location); } else if (baseExpression->isVector()) { // Constant folding for vector indexing - reusing vector swizzle folding. TVectorFields fields; fields.num = 1; fields.offsets[0] = index; indexedExpression = foldVectorSwizzle(fields, baseConstantUnion, location); } else if (baseExpression->isMatrix()) { // Constant folding for matrix indexing. indexedExpression = foldMatrixSubscript(index, baseConstantUnion, location); } } else { int safeIndex = -1; if (baseExpression->isArray()) { if (baseExpression->getQualifier() == EvqFragData && index > 0) { if (mShaderSpec == SH_WEBGL2_SPEC) { // Error has been already generated if index is not const. if (indexExpression->getQualifier() == EvqConst) { error(location, "", "[", "array index for gl_FragData must be constant zero"); } safeIndex = 0; } else if (!isExtensionEnabled("GL_EXT_draw_buffers")) { outOfRangeError(outOfRangeIndexIsError, location, "", "[", "array index for gl_FragData must be zero when " "GL_EXT_draw_buffers is disabled"); safeIndex = 0; } } // Only do generic out-of-range check if similar error hasn't already been reported. if (safeIndex < 0) { safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, baseExpression->getArraySize(), "array index out of range", "[]"); } } // Data of constant unions can't be changed, because it may be shared with other // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new // sanitized object. if (safeIndex != -1) { TConstantUnion *safeConstantUnion = new TConstantUnion(); safeConstantUnion->setIConst(safeIndex); indexConstantUnion->replaceConstantUnion(safeConstantUnion); } indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); } } else { indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); } if (indexedExpression == 0) { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setFConst(0.0f); indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location); } else if (baseExpression->isArray()) { TType indexedType = baseExpression->getType(); indexedType.clearArrayness(); indexedExpression->setType(indexedType); } else if (baseExpression->isMatrix()) { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, static_cast(baseExpression->getRows()))); } else if (baseExpression->isVector()) { indexedExpression->setType( TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary)); } else { indexedExpression->setType(baseExpression->getType()); } if (baseExpression->getType().getQualifier() == EvqConst && indexExpression->getType().getQualifier() == EvqConst) { indexedExpression->getTypePointer()->setQualifier(EvqConst); } else { indexedExpression->getTypePointer()->setQualifier(EvqTemporary); } return indexedExpression; } int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError, const TSourceLoc &location, int index, int arraySize, const char *reason, const char *token) { if (index >= arraySize || index < 0) { std::stringstream extraInfoStream; extraInfoStream << "'" << index << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, location, reason, token, extraInfo.c_str()); if (index < 0) { return 0; } else { return arraySize - 1; } } return index; } TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation, const TString &fieldString, const TSourceLoc &fieldLocation) { TIntermTyped *indexedExpression = NULL; if (baseExpression->isArray()) { error(fieldLocation, "cannot apply dot operator to an array", "."); } if (baseExpression->isVector()) { TVectorFields fields; if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation)) { fields.num = 1; fields.offsets[0] = 0; } if (baseExpression->getAsConstantUnion()) { // constant folding for vector fields indexedExpression = foldVectorSwizzle(fields, baseExpression->getAsConstantUnion(), fieldLocation); } else { TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation); indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); } if (indexedExpression == nullptr) { indexedExpression = baseExpression; } else { // Note that the qualifier set here will be corrected later. indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, static_cast(fields.num))); } } else if (baseExpression->getBasicType() == EbtStruct) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getStruct()->fields(); if (fields.empty()) { error(dotLocation, "structure has no fields", "Internal Error"); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { if (baseExpression->getAsConstantUnion()) { indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); if (indexedExpression == 0) { indexedExpression = baseExpression; } else { indexedExpression->setType(*fields[i]->type()); } } else { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setIConst(i); TIntermTyped *index = intermediate.addConstantUnion( unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } } else { error(dotLocation, " no such field in structure", fieldString.c_str()); indexedExpression = baseExpression; } } } else if (baseExpression->isInterfaceBlock()) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); if (fields.empty()) { error(dotLocation, "interface block has no fields", "Internal Error"); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setIConst(i); TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } else { error(dotLocation, " no such field in interface block", fieldString.c_str()); indexedExpression = baseExpression; } } } else { if (mShaderVersion < 300) { error(dotLocation, " field selection requires structure or vector on left hand side", fieldString.c_str()); } else { error(dotLocation, " field selection requires structure, vector, or interface block on left hand " "side", fieldString.c_str()); } indexedExpression = baseExpression; } if (baseExpression->getQualifier() == EvqConst) { indexedExpression->getTypePointer()->setQualifier(EvqConst); } else { indexedExpression->getTypePointer()->setQualifier(EvqTemporary); } return indexedExpression; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc &qualifierTypeLine) { TLayoutQualifier qualifier = TLayoutQualifier::create(); if (qualifierType == "shared") { qualifier.blockStorage = EbsShared; } else if (qualifierType == "packed") { qualifier.blockStorage = EbsPacked; } else if (qualifierType == "std140") { qualifier.blockStorage = EbsStd140; } else if (qualifierType == "row_major") { qualifier.matrixPacking = EmpRowMajor; } else if (qualifierType == "column_major") { qualifier.matrixPacking = EmpColumnMajor; } else if (qualifierType == "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument"); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); } return qualifier; } void TParseContext::parseLocalSize(const TString &qualifierType, const TSourceLoc &qualifierTypeLine, int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, size_t index, sh::WorkGroupSize *localSize) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); if (intValue < 1) { std::string errorMessage = std::string(getWorkGroupSizeString(index)) + " must be positive"; error(intValueLine, "out of range:", intValueString.c_str(), errorMessage.c_str()); } (*localSize)[index] = intValue; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc &qualifierTypeLine, int intValue, const TSourceLoc &intValueLine) { TLayoutQualifier qualifier = TLayoutQualifier::create(); std::string intValueString = Str(intValue); if (qualifierType == "location") { // must check that location is non-negative if (intValue < 0) { error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative"); } else { qualifier.location = intValue; } } else if (qualifierType == "local_size_x") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, &qualifier.localSize); } else if (qualifierType == "local_size_y") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, &qualifier.localSize); } else if (qualifierType == "local_size_z") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, &qualifier.localSize); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); } return qualifier; } TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier, const TSourceLoc &rightQualifierLocation) { TLayoutQualifier joinedQualifier = leftQualifier; if (rightQualifier.location != -1) { joinedQualifier.location = rightQualifier.location; } if (rightQualifier.matrixPacking != EmpUnspecified) { joinedQualifier.matrixPacking = rightQualifier.matrixPacking; } if (rightQualifier.blockStorage != EbsUnspecified) { joinedQualifier.blockStorage = rightQualifier.blockStorage; } for (size_t i = 0u; i < rightQualifier.localSize.size(); ++i) { if (rightQualifier.localSize[i] != -1) { if (joinedQualifier.localSize[i] != -1 && joinedQualifier.localSize[i] != rightQualifier.localSize[i]) { error(rightQualifierLocation, "Cannot have multiple different work group size specifiers", getWorkGroupSizeString(i)); } joinedQualifier.localSize[i] = rightQualifier.localSize[i]; } } return joinedQualifier; } TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier, const TSourceLoc &storageLoc, TQualifier storageQualifier) { TQualifier mergedQualifier = EvqSmoothIn; if (storageQualifier == EvqFragmentIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqVertexOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else { error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier)); mergedQualifier = storageQualifier; } TPublicType type; type.setBasic(EbtVoid, mergedQualifier, storageLoc); return type; } TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList) { checkIsNonVoid(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type); checkWorkGroupSizeIsNotSpecified(typeSpecifier.line, typeSpecifier.layoutQualifier); for (unsigned int i = 0; i < fieldList->size(); ++i) { // // Careful not to replace already known aspects of type, like array-ness // TType *type = (*fieldList)[i]->type(); type->setBasicType(typeSpecifier.type); type->setPrimarySize(typeSpecifier.primarySize); type->setSecondarySize(typeSpecifier.secondarySize); type->setPrecision(typeSpecifier.precision); type->setQualifier(typeSpecifier.qualifier); type->setLayoutQualifier(typeSpecifier.layoutQualifier); // don't allow arrays of arrays if (type->isArray()) { checkIsValidTypeForArray(typeSpecifier.line, typeSpecifier); } if (typeSpecifier.array) type->setArraySize(static_cast(typeSpecifier.arraySize)); if (typeSpecifier.userDef) { type->setStruct(typeSpecifier.userDef->getStruct()); } checkIsBelowStructNestingLimit(typeSpecifier.line, *(*fieldList)[i]); } return fieldList; } TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine, const TString *structName, TFieldList *fieldList) { TStructure *structure = new TStructure(structName, fieldList); TType *structureType = new TType(structure); // Store a bool in the struct if we're at global scope, to allow us to // skip the local struct scoping workaround in HLSL. structure->setUniqueId(TSymbolTable::nextUniqueId()); structure->setAtGlobalScope(symbolTable.atGlobalLevel()); if (!structName->empty()) { checkIsNotReserved(nameLine, *structName); TVariable *userTypeDef = new TVariable(structName, *structureType, true); if (!symbolTable.declare(userTypeDef)) { error(nameLine, "redefinition", structName->c_str(), "struct"); } } // ensure we do not specify any storage qualifiers on the struct members for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) { const TField &field = *(*fieldList)[typeListIndex]; const TQualifier qualifier = field.type()->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqTemporary: break; default: error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); break; } } TPublicType publicType; publicType.setBasic(EbtStruct, EvqTemporary, structLine); publicType.userDef = structureType; publicType.isStructSpecifier = true; exitStructDeclaration(); return publicType; } TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc) { TBasicType switchType = init->getBasicType(); if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || init->isVector()) { error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); return nullptr; } if (statementList) { if (!ValidateSwitch::validate(switchType, this, statementList, loc)) { return nullptr; } } TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); if (node == nullptr) { error(loc, "erroneous switch statement", "switch"); return nullptr; } return node; } TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "case labels need to be inside switch statements", "case"); return nullptr; } if (condition == nullptr) { error(loc, "case label must have a condition", "case"); return nullptr; } if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || condition->isMatrix() || condition->isArray() || condition->isVector()) { error(condition->getLine(), "case label must be a scalar integer", "case"); } TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't // fold in case labels. if (condition->getQualifier() != EvqConst || conditionConst == nullptr) { error(condition->getLine(), "case label must be constant", "case"); } TIntermCase *node = intermediate.addCase(condition, loc); if (node == nullptr) { error(loc, "erroneous case statement", "case"); return nullptr; } return node; } TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "default labels need to be inside switch statements", "default"); return nullptr; } TIntermCase *node = intermediate.addCase(nullptr, loc); if (node == nullptr) { error(loc, "erroneous default statement", "default"); return nullptr; } return node; } TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType) { if (child == nullptr) { return nullptr; } switch (op) { case EOpLogicalNot: if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || child->isVector()) { return nullptr; } break; case EOpBitwiseNot: if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || child->isMatrix() || child->isArray()) { return nullptr; } break; case EOpPostIncrement: case EOpPreIncrement: case EOpPostDecrement: case EOpPreDecrement: case EOpNegative: case EOpPositive: if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || child->isArray() || IsSampler(child->getBasicType())) { return nullptr; } // Operators for built-ins are already type checked against their prototype. default: break; } return intermediate.addUnaryMath(op, child, loc, funcReturnType); } TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); if (node == nullptr) { unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); return child; } return node; } TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { checkCanBeLValue(loc, GetOperatorString(op), child); return addUnaryMath(op, child, loc); } bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (left->getType().getStruct() || right->getType().getStruct()) { switch (op) { case EOpIndexDirectStruct: ASSERT(left->getType().getStruct()); break; case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: if (left->getType() != right->getType()) { return false; } break; default: error(loc, "Invalid operation for structs", GetOperatorString(op)); return false; } } if (left->isArray() || right->isArray()) { if (mShaderVersion < 300) { error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } if (left->isArray() != right->isArray()) { error(loc, "array / non-array mismatch", GetOperatorString(op)); return false; } switch (op) { case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: break; default: error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } // At this point, size of implicitly sized arrays should be resolved. if (left->getArraySize() != right->getArraySize()) { error(loc, "array size mismatch", GetOperatorString(op)); return false; } } // Check ops which require integer / ivec parameters bool isBitShift = false; switch (op) { case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: // Unsigned can be bit-shifted by signed and vice versa, but we need to // check that the basic type is an integer type. isBitShift = true; if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) { return false; } break; case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: // It is enough to check the type of only one operand, since later it // is checked that the operand types match. if (!IsInteger(left->getBasicType())) { return false; } break; default: break; } // GLSL ES 1.00 and 3.00 do not support implicit type casting. // So the basic type should usually match. if (!isBitShift && left->getBasicType() != right->getBasicType()) { return false; } // Check that: // 1. Type sizes match exactly on ops that require that. // 2. Restrictions for structs that contain arrays or samplers are respected. // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected. switch (op) { case EOpAssign: case EOpInitialize: case EOpEqual: case EOpNotEqual: // ESSL 1.00 sections 5.7, 5.8, 5.9 if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) { error(loc, "undefined operation for structs containing arrays", GetOperatorString(op)); return false; } // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, // we interpret the spec so that this extends to structs containing samplers, // similarly to ESSL 1.00 spec. if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && left->getType().isStructureContainingSamplers()) { error(loc, "undefined operation for structs containing samplers", GetOperatorString(op)); return false; } case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if ((left->getNominalSize() != right->getNominalSize()) || (left->getSecondarySize() != right->getSecondarySize())) { return false; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpIMod: case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpAddAssign: case EOpSubAssign: case EOpDivAssign: case EOpIModAssign: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) { return false; } // Are the sizes compatible? if (left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize()) { // If the nominal sizes of operands do not match: // One of them must be a scalar. if (!left->isScalar() && !right->isScalar()) return false; // In the case of compound assignment other than multiply-assign, // the right side needs to be a scalar. Otherwise a vector/matrix // would be assigned to a scalar. A scalar can't be shifted by a // vector either. if (!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) return false; } break; default: break; } return true; } bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op, const TType &left, const TType &right) { switch (op) { case EOpMul: case EOpMulAssign: return left.getNominalSize() == right.getNominalSize() && left.getSecondarySize() == right.getSecondarySize(); case EOpVectorTimesScalar: return true; case EOpVectorTimesScalarAssign: ASSERT(!left.isMatrix() && !right.isMatrix()); return left.isVector() && !right.isVector(); case EOpVectorTimesMatrix: return left.getNominalSize() == right.getRows(); case EOpVectorTimesMatrixAssign: ASSERT(!left.isMatrix() && right.isMatrix()); return left.isVector() && left.getNominalSize() == right.getRows() && left.getNominalSize() == right.getCols(); case EOpMatrixTimesVector: return left.getCols() == right.getNominalSize(); case EOpMatrixTimesScalar: return true; case EOpMatrixTimesScalarAssign: ASSERT(left.isMatrix() && !right.isMatrix()); return !right.isVector(); case EOpMatrixTimesMatrix: return left.getCols() == right.getRows(); case EOpMatrixTimesMatrixAssign: ASSERT(left.isMatrix() && right.isMatrix()); // We need to check two things: // 1. The matrix multiplication step is valid. // 2. The result will have the same number of columns as the lvalue. return left.getCols() == right.getRows() && left.getCols() == right.getCols(); default: UNREACHABLE(); return false; } } TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (!binaryOpCommonCheck(op, left, right, loc)) return nullptr; switch (op) { case EOpEqual: case EOpNotEqual: break; case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); if (left->isMatrix() || left->isVector()) { return nullptr; } break; case EOpLogicalOr: case EOpLogicalXor: case EOpLogicalAnd: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); if (left->getBasicType() != EbtBool || left->isMatrix() || left->isVector()) { return nullptr; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpMul: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); if (left->getBasicType() == EbtBool) { return nullptr; } break; case EOpIMod: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); // Note that this is only for the % operator, not for mod() if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) { return nullptr; } break; default: break; } if (op == EOpMul) { op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType()); if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) { return nullptr; } } TIntermBinary *node = new TIntermBinary(op, left, right); node->setLine(loc); // See if we can fold constants. TIntermTyped *foldedNode = node->fold(&mDiagnostics); if (foldedNode) return foldedNode; return node; } TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setBConst(false); return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), loc); } return node; } TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (binaryOpCommonCheck(op, left, right, loc)) { if (op == EOpMulAssign) { op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType()); if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) { return nullptr; } } TIntermBinary *node = new TIntermBinary(op, left, right); node->setLine(loc); return node; } return nullptr; } TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = createAssign(op, left, right, loc); if (node == nullptr) { assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); return left; } return node; } TIntermTyped *TParseContext::addComma(TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { // WebGL2 section 5.26, the following results in an error: // "Sequence operator applied to void, arrays, or structs containing arrays" if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid || left->getType().isStructureContainingArrays() || right->isArray() || right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays())) { error(loc, "sequence operator is not allowed for void, arrays, or structs containing arrays", ","); } return intermediate.addComma(left, right, loc, mShaderVersion); } TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) { switch (op) { case EOpContinue: if (mLoopNestingLevel <= 0) { error(loc, "continue statement only allowed in loops", ""); } break; case EOpBreak: if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) { error(loc, "break statement only allowed in loops and switch statements", ""); } break; case EOpReturn: if (mCurrentFunctionType->getBasicType() != EbtVoid) { error(loc, "non-void function must return a value", "return"); } break; default: // No checks for discard break; } return intermediate.addBranch(op, loc); } TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc) { ASSERT(op == EOpReturn); mFunctionReturnsValue = true; if (mCurrentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return"); } else if (*mCurrentFunctionType != returnValue->getType()) { error(loc, "function return is not matching type:", "return"); } return intermediate.addBranch(op, returnValue, loc); } void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall) { ASSERT(!functionCall->isUserDefined()); const TString &name = functionCall->getName(); TIntermNode *offset = nullptr; TIntermSequence *arguments = functionCall->getSequence(); if (name.compare(0, 16, "texelFetchOffset") == 0 || name.compare(0, 16, "textureLodOffset") == 0 || name.compare(0, 20, "textureProjLodOffset") == 0 || name.compare(0, 17, "textureGradOffset") == 0 || name.compare(0, 21, "textureProjGradOffset") == 0) { offset = arguments->back(); } else if (name.compare(0, 13, "textureOffset") == 0 || name.compare(0, 17, "textureProjOffset") == 0) { // A bias parameter might follow the offset parameter. ASSERT(arguments->size() >= 3); offset = (*arguments)[2]; } if (offset != nullptr) { TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion) { TString unmangledName = TFunction::unmangleName(name); error(functionCall->getLine(), "Texture offset must be a constant expression", unmangledName.c_str()); } else { ASSERT(offsetConstantUnion->getBasicType() == EbtInt); size_t size = offsetConstantUnion->getType().getObjectSize(); const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer(); for (size_t i = 0u; i < size; ++i) { int offsetValue = values[i].getIConst(); if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset) { std::stringstream tokenStream; tokenStream << offsetValue; std::string token = tokenStream.str(); error(offset->getLine(), "Texture offset value out of valid range", token.c_str()); } } } } } TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError) { *fatalError = false; TOperator op = fnCall->getBuiltInOp(); TIntermTyped *callNode = nullptr; if (thisNode != nullptr) { TConstantUnion *unionArray = new TConstantUnion[1]; int arraySize = 0; TIntermTyped *typedThis = thisNode->getAsTyped(); if (fnCall->getName() != "length") { error(loc, "invalid method", fnCall->getName().c_str()); } else if (paramNode != nullptr) { error(loc, "method takes no parameters", "length"); } else if (typedThis == nullptr || !typedThis->isArray()) { error(loc, "length can only be called on arrays", "length"); } else { arraySize = typedThis->getArraySize(); if (typedThis->getAsSymbolNode() == nullptr) { // This code path can be hit with expressions like these: // (a = b).length() // (func()).length() // (int[3](0, 1, 2)).length() // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid // expression. // It allows "An array name with the length method applied" in contrast to GLSL 4.4 // spec section 5.9 which allows "An array, vector or matrix expression with the // length method applied". error(loc, "length can only be called on array names, not on array expressions", "length"); } } unionArray->setIConst(arraySize); callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc); } else if (op != EOpNull) { // Then this should be a constructor. callNode = addConstructor(paramNode, op, fnCall, loc); } else { // // Not a constructor. Find it in the symbol table. // const TFunction *fnCandidate; bool builtIn; fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn); if (fnCandidate) { // // A declared function. // if (builtIn && !fnCandidate->getExtension().empty()) { checkCanUseExtension(loc, fnCandidate->getExtension()); } op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // // A function call mapped to a built-in operation. // if (fnCandidate->getParamCount() == 1) { // // Treat it like a built-in unary operator. // TIntermAggregate *paramAgg = paramNode->getAsAggregate(); paramNode = paramAgg->getSequence()->front(); callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType()); if (callNode == nullptr) { std::stringstream extraInfoStream; extraInfoStream << "built in unary operator function. Type: " << static_cast(paramNode)->getCompleteString(); std::string extraInfo = extraInfoStream.str(); error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str()); *fatalError = true; return nullptr; } } else { TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc); aggregate->setType(fnCandidate->getReturnType()); aggregate->setPrecisionFromChildren(); if (aggregate->areChildrenConstQualified()) { aggregate->getTypePointer()->setQualifier(EvqConst); } // Some built-in functions have out parameters too. functionCallLValueErrorCheck(fnCandidate, aggregate); // See if we can constant fold a built-in. Note that this may be possible even // if it is not const-qualified. TIntermTyped *foldedNode = intermediate.foldAggregateBuiltIn(aggregate); if (foldedNode) { callNode = foldedNode; } else { callNode = aggregate; } } } else { // This is a real function call TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); aggregate->setType(fnCandidate->getReturnType()); // this is how we know whether the given function is a builtIn function or a user // defined function // if builtIn == false, it's a userDefined -> could be an overloaded // builtIn function also // if builtIn == true, it's definitely a builtIn function with EOpNull if (!builtIn) aggregate->setUserDefined(); aggregate->setName(fnCandidate->getMangledName()); aggregate->setFunctionId(fnCandidate->getUniqueId()); // This needs to happen after the name is set if (builtIn) { aggregate->setBuiltInFunctionPrecision(); checkTextureOffsetConst(aggregate); } callNode = aggregate; functionCallLValueErrorCheck(fnCandidate, aggregate); } } else { // error message was put out by findFunction() // Put on a dummy node for error recovery TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setFConst(0.0f); callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), loc); } } return callNode; } TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc) { checkIsScalarBool(loc, cond); if (trueBlock->getType() != falseBlock->getType()) { binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString()); return falseBlock; } // ESSL1 sections 5.2 and 5.7: // ESSL3 section 5.7: // Ternary operator is not among the operators allowed for structures/arrays. if (trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct) { error(loc, "ternary operator is not allowed for structures or arrays", ":"); return falseBlock; } // WebGL2 section 5.26, the following results in an error: // "Ternary operator applied to void, arrays, or structs containing arrays" if (mShaderSpec == SH_WEBGL2_SPEC && trueBlock->getBasicType() == EbtVoid) { error(loc, "ternary operator is not allowed for void", ":"); return falseBlock; } return intermediate.addSelection(cond, trueBlock, falseBlock, loc); } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(size_t count, const char *const string[], const int length[], TParseContext *context) { if ((count == 0) || (string == NULL)) return 1; if (glslang_initialize(context)) return 1; int error = glslang_scan(count, string, length, context); if (!error) error = glslang_parse(context); glslang_finalize(context); return (error == 0) && (context->numErrors() == 0) ? 0 : 1; }