/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Blur.h" #include <algorithm> #include <math.h> #include <string.h> #include "mozilla/CheckedInt.h" #include "2D.h" #include "DataSurfaceHelpers.h" #include "Tools.h" #ifdef BUILD_ARM_NEON #include "mozilla/arm.h" #endif using namespace std; namespace mozilla { namespace gfx { /** * Box blur involves looking at one pixel, and setting its value to the average * of its neighbouring pixels. * @param aInput The input buffer. * @param aOutput The output buffer. * @param aLeftLobe The number of pixels to blend on the left. * @param aRightLobe The number of pixels to blend on the right. * @param aWidth The number of columns in the buffers. * @param aRows The number of rows in the buffers. * @param aSkipRect An area to skip blurring in. * XXX shouldn't we pass stride in separately here? */ static void BoxBlurHorizontal(unsigned char* aInput, unsigned char* aOutput, int32_t aLeftLobe, int32_t aRightLobe, int32_t aWidth, int32_t aRows, const IntRect& aSkipRect) { MOZ_ASSERT(aWidth > 0); int32_t boxSize = aLeftLobe + aRightLobe + 1; bool skipRectCoversWholeRow = 0 >= aSkipRect.x && aWidth <= aSkipRect.XMost(); if (boxSize == 1) { memcpy(aOutput, aInput, aWidth*aRows); return; } uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); for (int32_t y = 0; y < aRows; y++) { // Check whether the skip rect intersects this row. If the skip // rect covers the whole surface in this row, we can avoid // this row entirely (and any others along the skip rect). bool inSkipRectY = y >= aSkipRect.y && y < aSkipRect.YMost(); if (inSkipRectY && skipRectCoversWholeRow) { y = aSkipRect.YMost() - 1; continue; } uint32_t alphaSum = 0; for (int32_t i = 0; i < boxSize; i++) { int32_t pos = i - aLeftLobe; // See assertion above; if aWidth is zero, then we would have no // valid position to clamp to. pos = max(pos, 0); pos = min(pos, aWidth - 1); alphaSum += aInput[aWidth * y + pos]; } for (int32_t x = 0; x < aWidth; x++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectY && x >= aSkipRect.x && x < aSkipRect.XMost()) { x = aSkipRect.XMost(); if (x >= aWidth) break; // Recalculate the neighbouring alpha values for // our new point on the surface. alphaSum = 0; for (int32_t i = 0; i < boxSize; i++) { int32_t pos = x + i - aLeftLobe; // See assertion above; if aWidth is zero, then we would have no // valid position to clamp to. pos = max(pos, 0); pos = min(pos, aWidth - 1); alphaSum += aInput[aWidth * y + pos]; } } int32_t tmp = x - aLeftLobe; int32_t last = max(tmp, 0); int32_t next = min(tmp + boxSize, aWidth - 1); aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32; alphaSum += aInput[aWidth * y + next] - aInput[aWidth * y + last]; } } } /** * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of * left and right. * XXX shouldn't we pass stride in separately here? */ static void BoxBlurVertical(unsigned char* aInput, unsigned char* aOutput, int32_t aTopLobe, int32_t aBottomLobe, int32_t aWidth, int32_t aRows, const IntRect& aSkipRect) { MOZ_ASSERT(aRows > 0); int32_t boxSize = aTopLobe + aBottomLobe + 1; bool skipRectCoversWholeColumn = 0 >= aSkipRect.y && aRows <= aSkipRect.YMost(); if (boxSize == 1) { memcpy(aOutput, aInput, aWidth*aRows); return; } uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); for (int32_t x = 0; x < aWidth; x++) { bool inSkipRectX = x >= aSkipRect.x && x < aSkipRect.XMost(); if (inSkipRectX && skipRectCoversWholeColumn) { x = aSkipRect.XMost() - 1; continue; } uint32_t alphaSum = 0; for (int32_t i = 0; i < boxSize; i++) { int32_t pos = i - aTopLobe; // See assertion above; if aRows is zero, then we would have no // valid position to clamp to. pos = max(pos, 0); pos = min(pos, aRows - 1); alphaSum += aInput[aWidth * pos + x]; } for (int32_t y = 0; y < aRows; y++) { if (inSkipRectX && y >= aSkipRect.y && y < aSkipRect.YMost()) { y = aSkipRect.YMost(); if (y >= aRows) break; alphaSum = 0; for (int32_t i = 0; i < boxSize; i++) { int32_t pos = y + i - aTopLobe; // See assertion above; if aRows is zero, then we would have no // valid position to clamp to. pos = max(pos, 0); pos = min(pos, aRows - 1); alphaSum += aInput[aWidth * pos + x]; } } int32_t tmp = y - aTopLobe; int32_t last = max(tmp, 0); int32_t next = min(tmp + boxSize, aRows - 1); aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32; alphaSum += aInput[aWidth * next + x] - aInput[aWidth * last + x]; } } } static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2]) { int32_t major, minor, final; /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for * some notes about approximating the Gaussian blur with box-blurs. * The comments below are in the terminology of that page. */ int32_t z = aRadius / 3; switch (aRadius % 3) { case 0: // aRadius = z*3; choose d = 2*z + 1 major = minor = final = z; break; case 1: // aRadius = z*3 + 1 // This is a tricky case since there is no value of d which will // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1 // for some integer k, then the radius will be 3*k. If d is even, // i.e. d=2*k, then the radius will be 3*k - 1. // So we have to choose values that don't match the standard // algorithm. major = z + 1; minor = final = z; break; case 2: // aRadius = z*3 + 2; choose d = 2*z + 2 major = final = z + 1; minor = z; break; default: // Mathematical impossibility! MOZ_ASSERT(false); major = minor = final = 0; } MOZ_ASSERT(major + minor + final == aRadius); aLobes[0][0] = major; aLobes[0][1] = minor; aLobes[1][0] = minor; aLobes[1][1] = major; aLobes[2][0] = final; aLobes[2][1] = final; } static void SpreadHorizontal(unsigned char* aInput, unsigned char* aOutput, int32_t aRadius, int32_t aWidth, int32_t aRows, int32_t aStride, const IntRect& aSkipRect) { if (aRadius == 0) { memcpy(aOutput, aInput, aStride * aRows); return; } bool skipRectCoversWholeRow = 0 >= aSkipRect.x && aWidth <= aSkipRect.XMost(); for (int32_t y = 0; y < aRows; y++) { // Check whether the skip rect intersects this row. If the skip // rect covers the whole surface in this row, we can avoid // this row entirely (and any others along the skip rect). bool inSkipRectY = y >= aSkipRect.y && y < aSkipRect.YMost(); if (inSkipRectY && skipRectCoversWholeRow) { y = aSkipRect.YMost() - 1; continue; } for (int32_t x = 0; x < aWidth; x++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectY && x >= aSkipRect.x && x < aSkipRect.XMost()) { x = aSkipRect.XMost(); if (x >= aWidth) break; } int32_t sMin = max(x - aRadius, 0); int32_t sMax = min(x + aRadius, aWidth - 1); int32_t v = 0; for (int32_t s = sMin; s <= sMax; ++s) { v = max<int32_t>(v, aInput[aStride * y + s]); } aOutput[aStride * y + x] = v; } } } static void SpreadVertical(unsigned char* aInput, unsigned char* aOutput, int32_t aRadius, int32_t aWidth, int32_t aRows, int32_t aStride, const IntRect& aSkipRect) { if (aRadius == 0) { memcpy(aOutput, aInput, aStride * aRows); return; } bool skipRectCoversWholeColumn = 0 >= aSkipRect.y && aRows <= aSkipRect.YMost(); for (int32_t x = 0; x < aWidth; x++) { bool inSkipRectX = x >= aSkipRect.x && x < aSkipRect.XMost(); if (inSkipRectX && skipRectCoversWholeColumn) { x = aSkipRect.XMost() - 1; continue; } for (int32_t y = 0; y < aRows; y++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectX && y >= aSkipRect.y && y < aSkipRect.YMost()) { y = aSkipRect.YMost(); if (y >= aRows) break; } int32_t sMin = max(y - aRadius, 0); int32_t sMax = min(y + aRadius, aRows - 1); int32_t v = 0; for (int32_t s = sMin; s <= sMax; ++s) { v = max<int32_t>(v, aInput[aStride * s + x]); } aOutput[aStride * y + x] = v; } } } CheckedInt<int32_t> AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal) { CheckedInt<int32_t> val(aVal); val += 3; val /= 4; val *= 4; return val; } AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, const IntSize& aSpreadRadius, const IntSize& aBlurRadius, const Rect* aDirtyRect, const Rect* aSkipRect) : mSpreadRadius(aSpreadRadius), mBlurRadius(aBlurRadius), mSurfaceAllocationSize(0) { Rect rect(aRect); rect.Inflate(Size(aBlurRadius + aSpreadRadius)); rect.RoundOut(); if (aDirtyRect) { // If we get passed a dirty rect from layout, we can minimize the // shadow size and make painting faster. mHasDirtyRect = true; mDirtyRect = *aDirtyRect; Rect requiredBlurArea = mDirtyRect.Intersect(rect); requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius)); rect = requiredBlurArea.Intersect(rect); } else { mHasDirtyRect = false; } mRect = IntRect(int32_t(rect.x), int32_t(rect.y), int32_t(rect.width), int32_t(rect.height)); if (mRect.IsEmpty()) { return; } if (aSkipRect) { // If we get passed a skip rect, we can lower the amount of // blurring/spreading we need to do. We convert it to IntRect to avoid // expensive int<->float conversions if we were to use Rect instead. Rect skipRect = *aSkipRect; skipRect.RoundIn(); skipRect.Deflate(Size(aBlurRadius + aSpreadRadius)); mSkipRect = IntRect(int32_t(skipRect.x), int32_t(skipRect.y), int32_t(skipRect.width), int32_t(skipRect.height)); mSkipRect = mSkipRect.Intersect(mRect); if (mSkipRect.IsEqualInterior(mRect)) return; mSkipRect -= mRect.TopLeft(); } else { mSkipRect = IntRect(0, 0, 0, 0); } CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width); if (stride.isValid()) { mStride = stride.value(); // We need to leave room for an additional 3 bytes for a potential overrun // in our blurring code. size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.height, 3); if (size != 0) { mSurfaceAllocationSize = size; } } } AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, int32_t aStride, float aSigmaX, float aSigmaY) : mRect(int32_t(aRect.x), int32_t(aRect.y), int32_t(aRect.width), int32_t(aRect.height)), mSpreadRadius(), mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))), mStride(aStride), mSurfaceAllocationSize(0) { IntRect intRect; if (aRect.ToIntRect(&intRect)) { size_t minDataSize = BufferSizeFromStrideAndHeight(intRect.width, intRect.height); if (minDataSize != 0) { mSurfaceAllocationSize = minDataSize; } } } AlphaBoxBlur::~AlphaBoxBlur() { } IntSize AlphaBoxBlur::GetSize() { IntSize size(mRect.width, mRect.height); return size; } int32_t AlphaBoxBlur::GetStride() { return mStride; } IntRect AlphaBoxBlur::GetRect() { return mRect; } Rect* AlphaBoxBlur::GetDirtyRect() { if (mHasDirtyRect) { return &mDirtyRect; } return nullptr; } size_t AlphaBoxBlur::GetSurfaceAllocationSize() const { return mSurfaceAllocationSize; } void AlphaBoxBlur::Blur(uint8_t* aData) { if (!aData) { return; } // no need to do all this if not blurring or spreading if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) { int32_t stride = GetStride(); IntSize size = GetSize(); if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) { // No need to use CheckedInt here - we have validated it in the constructor. size_t szB = stride * size.height; unsigned char* tmpData = new (std::nothrow) uint8_t[szB]; if (!tmpData) { return; } memset(tmpData, 0, szB); SpreadHorizontal(aData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect); SpreadVertical(tmpData, aData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect); delete [] tmpData; } int32_t horizontalLobes[3][2]; ComputeLobes(mBlurRadius.width, horizontalLobes); int32_t verticalLobes[3][2]; ComputeLobes(mBlurRadius.height, verticalLobes); // We want to allow for some extra space on the left for alignment reasons. int32_t maxLeftLobe = RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value(); IntSize integralImageSize(size.width + maxLeftLobe + horizontalLobes[1][1], size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1); if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) { // Fallback to old blurring code when the surface is so large it may // overflow our integral image! // No need to use CheckedInt here - we have validated it in the constructor. size_t szB = stride * size.height; uint8_t* tmpData = new (std::nothrow) uint8_t[szB]; if (!tmpData) { return; } memset(tmpData, 0, szB); uint8_t* a = aData; uint8_t* b = tmpData; if (mBlurRadius.width > 0) { BoxBlurHorizontal(a, b, horizontalLobes[0][0], horizontalLobes[0][1], stride, GetSize().height, mSkipRect); BoxBlurHorizontal(b, a, horizontalLobes[1][0], horizontalLobes[1][1], stride, GetSize().height, mSkipRect); BoxBlurHorizontal(a, b, horizontalLobes[2][0], horizontalLobes[2][1], stride, GetSize().height, mSkipRect); } else { a = tmpData; b = aData; } // The result is in 'b' here. if (mBlurRadius.height > 0) { BoxBlurVertical(b, a, verticalLobes[0][0], verticalLobes[0][1], stride, GetSize().height, mSkipRect); BoxBlurVertical(a, b, verticalLobes[1][0], verticalLobes[1][1], stride, GetSize().height, mSkipRect); BoxBlurVertical(b, a, verticalLobes[2][0], verticalLobes[2][1], stride, GetSize().height, mSkipRect); } else { a = b; } // The result is in 'a' here. if (a == tmpData) { memcpy(aData, tmpData, szB); } delete [] tmpData; } else { size_t integralImageStride = GetAlignedStride<16>(integralImageSize.width, 4); if (integralImageStride == 0) { return; } // We need to leave room for an additional 12 bytes for a maximum overrun // of 3 pixels in the blurring code. size_t bufLen = BufferSizeFromStrideAndHeight(integralImageStride, integralImageSize.height, 12); if (bufLen == 0) { return; } // bufLen is a byte count, but here we want a multiple of 32-bit ints, so // we divide by 4. AlignedArray<uint32_t> integralImage((bufLen / 4) + ((bufLen % 4) ? 1 : 0)); if (!integralImage) { return; } #ifdef USE_SSE2 if (Factory::HasSSE2()) { BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], verticalLobes[0][1], integralImage, integralImageStride); BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], verticalLobes[1][1], integralImage, integralImageStride); BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], verticalLobes[2][1], integralImage, integralImageStride); } else #endif #ifdef BUILD_ARM_NEON if (mozilla::supports_neon()) { BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], verticalLobes[0][1], integralImage, integralImageStride); BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], verticalLobes[1][1], integralImage, integralImageStride); BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], verticalLobes[2][1], integralImage, integralImageStride); } else #endif { #ifdef _MIPS_ARCH_LOONGSON3A BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], verticalLobes[0][1], integralImage, integralImageStride); BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], verticalLobes[1][1], integralImage, integralImageStride); BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], verticalLobes[2][1], integralImage, integralImageStride); #else BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], verticalLobes[0][1], integralImage, integralImageStride); BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], verticalLobes[1][1], integralImage, integralImageStride); BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], verticalLobes[2][1], integralImage, integralImageStride); #endif } } } } MOZ_ALWAYS_INLINE void GenerateIntegralRow(uint32_t *aDest, const uint8_t *aSource, uint32_t *aPreviousRow, const uint32_t &aSourceWidth, const uint32_t &aLeftInflation, const uint32_t &aRightInflation) { uint32_t currentRowSum = 0; uint32_t pixel = aSource[0]; for (uint32_t x = 0; x < aLeftInflation; x++) { currentRowSum += pixel; *aDest++ = currentRowSum + *aPreviousRow++; } for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x += 4) { uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation)); #if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__ currentRowSum += (alphaValues >> 24) & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; currentRowSum += (alphaValues >> 16) & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; currentRowSum += (alphaValues >> 8) & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; currentRowSum += alphaValues & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; #else currentRowSum += alphaValues & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; alphaValues >>= 8; currentRowSum += alphaValues & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; alphaValues >>= 8; currentRowSum += alphaValues & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; alphaValues >>= 8; currentRowSum += alphaValues & 0xff; *aDest++ = *aPreviousRow++ + currentRowSum; #endif } pixel = aSource[aSourceWidth - 1]; for (uint32_t x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) { currentRowSum += pixel; *aDest++ = currentRowSum + *aPreviousRow++; } } MOZ_ALWAYS_INLINE void GenerateIntegralImage_C(int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation, int32_t aBottomInflation, uint32_t *aIntegralImage, size_t aIntegralImageStride, uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize) { uint32_t stride32bit = aIntegralImageStride / 4; IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation, aSize.height + aTopInflation + aBottomInflation); memset(aIntegralImage, 0, aIntegralImageStride); GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage, aSize.width, aLeftInflation, aRightInflation); for (int y = 1; y < aTopInflation + 1; y++) { GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource, aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation); } for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) { GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + aSourceStride * (y - aTopInflation), aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation); } if (aBottomInflation) { for (int y = (aSize.height + aTopInflation); y < integralImageSize.height; y++) { GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + ((aSize.height - 1) * aSourceStride), aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation); } } } /** * Attempt to do an in-place box blur using an integral image. */ void AlphaBoxBlur::BoxBlur_C(uint8_t* aData, int32_t aLeftLobe, int32_t aRightLobe, int32_t aTopLobe, int32_t aBottomLobe, uint32_t *aIntegralImage, size_t aIntegralImageStride) { IntSize size = GetSize(); MOZ_ASSERT(size.width > 0); // Our 'left' or 'top' lobe will include the current pixel. i.e. when // looking at an integral image the value of a pixel at 'x,y' is calculated // using the value of the integral image values above/below that. aLeftLobe++; aTopLobe++; int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe); MOZ_ASSERT(boxSize > 0); if (boxSize == 1) { return; } int32_t stride32bit = aIntegralImageStride / 4; int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value(); GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe, aIntegralImage, aIntegralImageStride, aData, mStride, size); uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation; // Storing these locally makes this about 30% faster! Presumably the compiler // can't be sure we're not altering the member variables in this loop. IntRect skipRect = mSkipRect; uint8_t *data = aData; int32_t stride = mStride; for (int32_t y = 0; y < size.height; y++) { bool inSkipRectY = y > skipRect.y && y < skipRect.YMost(); uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe); uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe); uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe); uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe); for (int32_t x = 0; x < size.width; x++) { if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) { x = skipRect.XMost() - 1; // Trigger early jump on coming loop iterations, this will be reset // next line anyway. inSkipRectY = false; continue; } int32_t topLeft = topLeftBase[x]; int32_t topRight = topRightBase[x]; int32_t bottomRight = bottomRightBase[x]; int32_t bottomLeft = bottomLeftBase[x]; uint32_t value = bottomRight - topRight - bottomLeft; value += topLeft; data[stride * y + x] = (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32; } } } /** * Compute the box blur size (which we're calling the blur radius) from * the standard deviation. * * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for * approximating a Gaussian using box blurs. This yields quite a good * approximation for a Gaussian. Then we multiply this by 1.5 since our * code wants the radius of the entire triple-box-blur kernel instead of * the diameter of an individual box blur. For more details, see: * http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement * https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19 */ static const Float GAUSSIAN_SCALE_FACTOR = Float((3 * sqrt(2 * M_PI) / 4) * 1.5); IntSize AlphaBoxBlur::CalculateBlurRadius(const Point& aStd) { IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)), static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f))); return size; } } // namespace gfx } // namespace mozilla