/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "HRTFPanner.h"
#include "HRTFDatabaseLoader.h"

#include "FFTConvolver.h"
#include "HRTFDatabase.h"
#include "AudioBlock.h"

using namespace std;
using namespace mozilla;
using dom::ChannelInterpretation;

namespace WebCore {

// The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds).
// We ASSERT the delay values used in process() with this value.
const double MaxDelayTimeSeconds = 0.002;

const int UninitializedAzimuth = -1;
const unsigned RenderingQuantum = WEBAUDIO_BLOCK_SIZE;

HRTFPanner::HRTFPanner(float sampleRate, already_AddRefed<HRTFDatabaseLoader> databaseLoader)
    : m_databaseLoader(databaseLoader)
    , m_sampleRate(sampleRate)
    , m_crossfadeSelection(CrossfadeSelection1)
    , m_azimuthIndex1(UninitializedAzimuth)
    , m_azimuthIndex2(UninitializedAzimuth)
    // m_elevation1 and m_elevation2 are initialized in pan()
    , m_crossfadeX(0)
    , m_crossfadeIncr(0)
    , m_convolverL1(HRTFElevation::fftSizeForSampleRate(sampleRate))
    , m_convolverR1(m_convolverL1.fftSize())
    , m_convolverL2(m_convolverL1.fftSize())
    , m_convolverR2(m_convolverL1.fftSize())
    , m_delayLine(MaxDelayTimeSeconds * sampleRate, 1.0)
{
    MOZ_ASSERT(m_databaseLoader);
    MOZ_COUNT_CTOR(HRTFPanner);
}

HRTFPanner::~HRTFPanner()
{
    MOZ_COUNT_DTOR(HRTFPanner);
}

size_t HRTFPanner::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
    size_t amount = aMallocSizeOf(this);

    // NB: m_databaseLoader can be shared, so it is not measured here
    amount += m_convolverL1.sizeOfExcludingThis(aMallocSizeOf);
    amount += m_convolverR1.sizeOfExcludingThis(aMallocSizeOf);
    amount += m_convolverL2.sizeOfExcludingThis(aMallocSizeOf);
    amount += m_convolverR2.sizeOfExcludingThis(aMallocSizeOf);
    amount += m_delayLine.SizeOfExcludingThis(aMallocSizeOf);

    return amount;
}

void HRTFPanner::reset()
{
    m_azimuthIndex1 = UninitializedAzimuth;
    m_azimuthIndex2 = UninitializedAzimuth;
    // m_elevation1 and m_elevation2 are initialized in pan()
    m_crossfadeSelection = CrossfadeSelection1;
    m_crossfadeX = 0.0f;
    m_crossfadeIncr = 0.0f;
    m_convolverL1.reset();
    m_convolverR1.reset();
    m_convolverL2.reset();
    m_convolverR2.reset();
    m_delayLine.Reset();
}

int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend)
{
    // Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360.
    // The azimuth index may then be calculated from this positive value.
    if (azimuth < 0)
        azimuth += 360.0;

    HRTFDatabase* database = m_databaseLoader->database();
    MOZ_ASSERT(database);

    int numberOfAzimuths = database->numberOfAzimuths();
    const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;

    // Calculate the azimuth index and the blend (0 -> 1) for interpolation.
    double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
    int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
    azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);

    // We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at.
    // This minimizes the clicks and graininess for moving sources which occur otherwise.
    desiredAzimuthIndex = max(0, desiredAzimuthIndex);
    desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex);
    return desiredAzimuthIndex;
}

void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBlock* inputBus, AudioBlock* outputBus)
{
#ifdef DEBUG
    unsigned numInputChannels =
        inputBus->IsNull() ? 0 : inputBus->ChannelCount();

    MOZ_ASSERT(numInputChannels <= 2);
    MOZ_ASSERT(inputBus->GetDuration() == WEBAUDIO_BLOCK_SIZE);
#endif

    bool isOutputGood = outputBus && outputBus->ChannelCount() == 2 && outputBus->GetDuration() == WEBAUDIO_BLOCK_SIZE;
    MOZ_ASSERT(isOutputGood);

    if (!isOutputGood) {
        if (outputBus)
            outputBus->SetNull(outputBus->GetDuration());
        return;
    }

    HRTFDatabase* database = m_databaseLoader->database();
    if (!database) { // not yet loaded
        outputBus->SetNull(outputBus->GetDuration());
        return;
    }

    // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth.
    double azimuth = -desiredAzimuth;

    bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
    MOZ_ASSERT(isAzimuthGood);
    if (!isAzimuthGood) {
        outputBus->SetNull(outputBus->GetDuration());
        return;
    }

    // Normally, we'll just be dealing with mono sources.
    // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF.

    // Get destination pointers.
    float* destinationL =
        static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0]));
    float* destinationR =
        static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1]));

    double azimuthBlend;
    int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);

    // Initially snap azimuth and elevation values to first values encountered.
    if (m_azimuthIndex1 == UninitializedAzimuth) {
        m_azimuthIndex1 = desiredAzimuthIndex;
        m_elevation1 = elevation;
    }
    if (m_azimuthIndex2 == UninitializedAzimuth) {
        m_azimuthIndex2 = desiredAzimuthIndex;
        m_elevation2 = elevation;
    }

    // Cross-fade / transition over a period of around 45 milliseconds.
    // This is an empirical value tuned to be a reasonable trade-off between
    // smoothness and speed.
    const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;

    // Check for azimuth and elevation changes, initiating a cross-fade if needed.
    if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
        if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) {
            // Cross-fade from 1 -> 2
            m_crossfadeIncr = 1 / fadeFrames;
            m_azimuthIndex2 = desiredAzimuthIndex;
            m_elevation2 = elevation;
        }
    }
    if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
        if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) {
            // Cross-fade from 2 -> 1
            m_crossfadeIncr = -1 / fadeFrames;
            m_azimuthIndex1 = desiredAzimuthIndex;
            m_elevation1 = elevation;
        }
    }

    // Get the HRTFKernels and interpolated delays.
    HRTFKernel* kernelL1;
    HRTFKernel* kernelR1;
    HRTFKernel* kernelL2;
    HRTFKernel* kernelR2;
    double frameDelayL1;
    double frameDelayR1;
    double frameDelayL2;
    double frameDelayR2;
    database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1);
    database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2);

    bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
    MOZ_ASSERT(areKernelsGood);
    if (!areKernelsGood) {
        outputBus->SetNull(outputBus->GetDuration());
        return;
    }

    MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
    MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);

    // Crossfade inter-aural delays based on transitions.
    double frameDelaysL[WEBAUDIO_BLOCK_SIZE];
    double frameDelaysR[WEBAUDIO_BLOCK_SIZE];
    {
      float x = m_crossfadeX;
      float incr = m_crossfadeIncr;
      for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
        frameDelaysL[i] = (1 - x) * frameDelayL1 + x * frameDelayL2;
        frameDelaysR[i] = (1 - x) * frameDelayR1 + x * frameDelayR2;
        x += incr;
      }
    }

    // First run through delay lines for inter-aural time difference.
    m_delayLine.Write(*inputBus);
    // "Speakers" means a mono input is read into both outputs (with possibly
    // different delays).
    m_delayLine.ReadChannel(frameDelaysL, outputBus, 0,
                            ChannelInterpretation::Speakers);
    m_delayLine.ReadChannel(frameDelaysR, outputBus, 1,
                            ChannelInterpretation::Speakers);
    m_delayLine.NextBlock();

    bool needsCrossfading = m_crossfadeIncr;

    const float* convolutionDestinationL1;
    const float* convolutionDestinationR1;
    const float* convolutionDestinationL2;
    const float* convolutionDestinationR2;

    // Now do the convolutions.
    // Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading.

    if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
        convolutionDestinationL1 =
            m_convolverL1.process(kernelL1->fftFrame(), destinationL);
        convolutionDestinationR1 =
            m_convolverR1.process(kernelR1->fftFrame(), destinationR);
    }

    if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
        convolutionDestinationL2 =
            m_convolverL2.process(kernelL2->fftFrame(), destinationL);
        convolutionDestinationR2 =
            m_convolverR2.process(kernelR2->fftFrame(), destinationR);
    }

    if (needsCrossfading) {
        // Apply linear cross-fade.
        float x = m_crossfadeX;
        float incr = m_crossfadeIncr;
        for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
            destinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i];
            destinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i];
            x += incr;
        }
        // Update cross-fade value from local.
        m_crossfadeX = x;

        if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) {
            // We've fully made the crossfade transition from 1 -> 2.
            m_crossfadeSelection = CrossfadeSelection2;
            m_crossfadeX = 1;
            m_crossfadeIncr = 0;
        } else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) {
            // We've fully made the crossfade transition from 2 -> 1.
            m_crossfadeSelection = CrossfadeSelection1;
            m_crossfadeX = 0;
            m_crossfadeIncr = 0;
        }
    } else {
        const float* sourceL;
        const float* sourceR;
        if (m_crossfadeSelection == CrossfadeSelection1) {
            sourceL = convolutionDestinationL1;
            sourceR = convolutionDestinationR1;
        } else {
            sourceL = convolutionDestinationL2;
            sourceR = convolutionDestinationR2;
        }
        PodCopy(destinationL, sourceL, WEBAUDIO_BLOCK_SIZE);
        PodCopy(destinationR, sourceR, WEBAUDIO_BLOCK_SIZE);
    }
}

int HRTFPanner::maxTailFrames() const
{
    // Although the ideal tail time would be the length of the impulse
    // response, there is additional tail time from the approximations in the
    // implementation.  Because HRTFPanner is implemented with a DelayKernel
    // and a FFTConvolver, the tailTime of the HRTFPanner is the sum of the
    // tailTime of the DelayKernel and the tailTime of the FFTConvolver.  The
    // FFTs of the convolver are fftSize(), half of which is latency, but this
    // is aligned with blocks and so is reduced by the one block which is
    // processed immediately.
    return m_delayLine.MaxDelayTicks() +
        m_convolverL1.fftSize()/2 + m_convolverL1.latencyFrames();
}

} // namespace WebCore