/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "AudioBufferSourceNode.h" #include "nsDebug.h" #include "mozilla/dom/AudioBufferSourceNodeBinding.h" #include "mozilla/dom/AudioParam.h" #include "mozilla/FloatingPoint.h" #include "nsContentUtils.h" #include "nsMathUtils.h" #include "AlignmentUtils.h" #include "AudioNodeEngine.h" #include "AudioNodeStream.h" #include "AudioDestinationNode.h" #include "AudioParamTimeline.h" #include #include namespace mozilla { namespace dom { NS_IMPL_CYCLE_COLLECTION_INHERITED(AudioBufferSourceNode, AudioNode, mBuffer, mPlaybackRate, mDetune) NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(AudioBufferSourceNode) NS_INTERFACE_MAP_END_INHERITING(AudioNode) NS_IMPL_ADDREF_INHERITED(AudioBufferSourceNode, AudioNode) NS_IMPL_RELEASE_INHERITED(AudioBufferSourceNode, AudioNode) /** * Media-thread playback engine for AudioBufferSourceNode. * Nothing is played until a non-null buffer has been set (via * AudioNodeStream::SetBuffer) and a non-zero mBufferEnd has been set (via * AudioNodeStream::SetInt32Parameter). */ class AudioBufferSourceNodeEngine final : public AudioNodeEngine { public: AudioBufferSourceNodeEngine(AudioNode* aNode, AudioDestinationNode* aDestination) : AudioNodeEngine(aNode), mStart(0.0), mBeginProcessing(0), mStop(STREAM_TIME_MAX), mResampler(nullptr), mRemainingResamplerTail(0), mBufferEnd(0), mLoopStart(0), mLoopEnd(0), mBufferPosition(0), mBufferSampleRate(0), // mResamplerOutRate is initialized in UpdateResampler(). mChannels(0), mDopplerShift(1.0f), mDestination(aDestination->Stream()), mPlaybackRateTimeline(1.0f), mDetuneTimeline(0.0f), mLoop(false) {} ~AudioBufferSourceNodeEngine() { if (mResampler) { speex_resampler_destroy(mResampler); } } void SetSourceStream(AudioNodeStream* aSource) { mSource = aSource; } void RecvTimelineEvent(uint32_t aIndex, dom::AudioTimelineEvent& aEvent) override { MOZ_ASSERT(mDestination); WebAudioUtils::ConvertAudioTimelineEventToTicks(aEvent, mDestination); switch (aIndex) { case AudioBufferSourceNode::PLAYBACKRATE: mPlaybackRateTimeline.InsertEvent(aEvent); break; case AudioBufferSourceNode::DETUNE: mDetuneTimeline.InsertEvent(aEvent); break; default: NS_ERROR("Bad AudioBufferSourceNodeEngine TimelineParameter"); } } void SetStreamTimeParameter(uint32_t aIndex, StreamTime aParam) override { switch (aIndex) { case AudioBufferSourceNode::STOP: mStop = aParam; break; default: NS_ERROR("Bad AudioBufferSourceNodeEngine StreamTimeParameter"); } } void SetDoubleParameter(uint32_t aIndex, double aParam) override { switch (aIndex) { case AudioBufferSourceNode::START: MOZ_ASSERT(!mStart, "Another START?"); mStart = aParam * mDestination->SampleRate(); // Round to nearest mBeginProcessing = mStart + 0.5; break; case AudioBufferSourceNode::DOPPLERSHIFT: mDopplerShift = (aParam <= 0 || mozilla::IsNaN(aParam)) ? 1.0 : aParam; break; default: NS_ERROR("Bad AudioBufferSourceNodeEngine double parameter."); }; } void SetInt32Parameter(uint32_t aIndex, int32_t aParam) override { switch (aIndex) { case AudioBufferSourceNode::SAMPLE_RATE: MOZ_ASSERT(aParam > 0); mBufferSampleRate = aParam; mSource->SetActive(); break; case AudioBufferSourceNode::BUFFERSTART: MOZ_ASSERT(aParam >= 0); if (mBufferPosition == 0) { mBufferPosition = aParam; } break; case AudioBufferSourceNode::BUFFEREND: MOZ_ASSERT(aParam >= 0); mBufferEnd = aParam; break; case AudioBufferSourceNode::LOOP: mLoop = !!aParam; break; case AudioBufferSourceNode::LOOPSTART: MOZ_ASSERT(aParam >= 0); mLoopStart = aParam; break; case AudioBufferSourceNode::LOOPEND: MOZ_ASSERT(aParam >= 0); mLoopEnd = aParam; break; default: NS_ERROR("Bad AudioBufferSourceNodeEngine Int32Parameter"); } } void SetBuffer(already_AddRefed aBuffer) override { mBuffer = aBuffer; } bool BegunResampling() { return mBeginProcessing == -STREAM_TIME_MAX; } void UpdateResampler(int32_t aOutRate, uint32_t aChannels) { if (mResampler && (aChannels != mChannels || // If the resampler has begun, then it will have moved // mBufferPosition to after the samples it has read, but it hasn't // output its buffered samples. Keep using the resampler, even if // the rates now match, so that this latent segment is output. (aOutRate == mBufferSampleRate && !BegunResampling()))) { speex_resampler_destroy(mResampler); mResampler = nullptr; mRemainingResamplerTail = 0; mBeginProcessing = mStart + 0.5; } if (aChannels == 0 || (aOutRate == mBufferSampleRate && !mResampler)) { mResamplerOutRate = aOutRate; return; } if (!mResampler) { mChannels = aChannels; mResampler = speex_resampler_init(mChannels, mBufferSampleRate, aOutRate, SPEEX_RESAMPLER_QUALITY_MIN, nullptr); } else { if (mResamplerOutRate == aOutRate) { return; } if (speex_resampler_set_rate(mResampler, mBufferSampleRate, aOutRate) != RESAMPLER_ERR_SUCCESS) { NS_ASSERTION(false, "speex_resampler_set_rate failed"); return; } } mResamplerOutRate = aOutRate; if (!BegunResampling()) { // Low pass filter effects from the resampler mean that samples before // the start time are influenced by resampling the buffer. The input // latency indicates half the filter width. int64_t inputLatency = speex_resampler_get_input_latency(mResampler); uint32_t ratioNum, ratioDen; speex_resampler_get_ratio(mResampler, &ratioNum, &ratioDen); // The output subsample resolution supported in aligning the resampler // is ratioNum. First round the start time to the nearest subsample. int64_t subsample = mStart * ratioNum + 0.5; // Now include the leading effects of the filter, and round *up* to the // next whole tick, because there is no effect on samples outside the // filter width. mBeginProcessing = (subsample - inputLatency * ratioDen + ratioNum - 1) / ratioNum; } } // Borrow a full buffer of size WEBAUDIO_BLOCK_SIZE from the source buffer // at offset aSourceOffset. This avoids copying memory. void BorrowFromInputBuffer(AudioBlock* aOutput, uint32_t aChannels) { aOutput->SetBuffer(mBuffer); aOutput->mChannelData.SetLength(aChannels); for (uint32_t i = 0; i < aChannels; ++i) { aOutput->mChannelData[i] = mBuffer->GetData(i) + mBufferPosition; } aOutput->mVolume = 1.0f; aOutput->mBufferFormat = AUDIO_FORMAT_FLOAT32; } // Copy aNumberOfFrames frames from the source buffer at offset aSourceOffset // and put it at offset aBufferOffset in the destination buffer. void CopyFromInputBuffer(AudioBlock* aOutput, uint32_t aChannels, uintptr_t aOffsetWithinBlock, uint32_t aNumberOfFrames) { for (uint32_t i = 0; i < aChannels; ++i) { float* baseChannelData = aOutput->ChannelFloatsForWrite(i); memcpy(baseChannelData + aOffsetWithinBlock, mBuffer->GetData(i) + mBufferPosition, aNumberOfFrames * sizeof(float)); } } // Resamples input data to an output buffer, according to |mBufferSampleRate| and // the playbackRate/detune. // The number of frames consumed/produced depends on the amount of space // remaining in both the input and output buffer, and the playback rate (that // is, the ratio between the output samplerate and the input samplerate). void CopyFromInputBufferWithResampling(AudioBlock* aOutput, uint32_t aChannels, uint32_t* aOffsetWithinBlock, uint32_t aAvailableInOutput, StreamTime* aCurrentPosition, uint32_t aBufferMax) { if (*aOffsetWithinBlock == 0) { aOutput->AllocateChannels(aChannels); } SpeexResamplerState* resampler = mResampler; MOZ_ASSERT(aChannels > 0); if (mBufferPosition < aBufferMax) { uint32_t availableInInputBuffer = aBufferMax - mBufferPosition; uint32_t ratioNum, ratioDen; speex_resampler_get_ratio(resampler, &ratioNum, &ratioDen); // Limit the number of input samples copied and possibly // format-converted for resampling by estimating how many will be used. // This may be a little small if still filling the resampler with // initial data, but we'll get called again and it will work out. uint32_t inputLimit = aAvailableInOutput * ratioNum / ratioDen + 10; if (!BegunResampling()) { // First time the resampler is used. uint32_t inputLatency = speex_resampler_get_input_latency(resampler); inputLimit += inputLatency; // If starting after mStart, then play from the beginning of the // buffer, but correct for input latency. If starting before mStart, // then align the resampler so that the time corresponding to the // first input sample is mStart. int64_t skipFracNum = static_cast(inputLatency) * ratioDen; double leadTicks = mStart - *aCurrentPosition; if (leadTicks > 0.0) { // Round to nearest output subsample supported by the resampler at // these rates. int64_t leadSubsamples = leadTicks * ratioNum + 0.5; MOZ_ASSERT(leadSubsamples <= skipFracNum, "mBeginProcessing is wrong?"); skipFracNum -= leadSubsamples; } speex_resampler_set_skip_frac_num(resampler, std::min(skipFracNum, UINT32_MAX)); mBeginProcessing = -STREAM_TIME_MAX; } inputLimit = std::min(inputLimit, availableInInputBuffer); for (uint32_t i = 0; true; ) { uint32_t inSamples = inputLimit; const float* inputData = mBuffer->GetData(i) + mBufferPosition; uint32_t outSamples = aAvailableInOutput; float* outputData = aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock; WebAudioUtils::SpeexResamplerProcess(resampler, i, inputData, &inSamples, outputData, &outSamples); if (++i == aChannels) { mBufferPosition += inSamples; MOZ_ASSERT(mBufferPosition <= mBufferEnd || mLoop); *aOffsetWithinBlock += outSamples; *aCurrentPosition += outSamples; if (inSamples == availableInInputBuffer && !mLoop) { // We'll feed in enough zeros to empty out the resampler's memory. // This handles the output latency as well as capturing the low // pass effects of the resample filter. mRemainingResamplerTail = 2 * speex_resampler_get_input_latency(resampler) - 1; } return; } } } else { for (uint32_t i = 0; true; ) { uint32_t inSamples = mRemainingResamplerTail; uint32_t outSamples = aAvailableInOutput; float* outputData = aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock; // AudioDataValue* for aIn selects the function that does not try to // copy and format-convert input data. WebAudioUtils::SpeexResamplerProcess(resampler, i, static_cast(nullptr), &inSamples, outputData, &outSamples); if (++i == aChannels) { MOZ_ASSERT(inSamples <= mRemainingResamplerTail); mRemainingResamplerTail -= inSamples; *aOffsetWithinBlock += outSamples; *aCurrentPosition += outSamples; break; } } } } /** * Fill aOutput with as many zero frames as we can, and advance * aOffsetWithinBlock and aCurrentPosition based on how many frames we write. * This will never advance aOffsetWithinBlock past WEBAUDIO_BLOCK_SIZE or * aCurrentPosition past aMaxPos. This function knows when it needs to * allocate the output buffer, and also optimizes the case where it can avoid * memory allocations. */ void FillWithZeroes(AudioBlock* aOutput, uint32_t aChannels, uint32_t* aOffsetWithinBlock, StreamTime* aCurrentPosition, StreamTime aMaxPos) { MOZ_ASSERT(*aCurrentPosition < aMaxPos); uint32_t numFrames = std::min(WEBAUDIO_BLOCK_SIZE - *aOffsetWithinBlock, aMaxPos - *aCurrentPosition); if (numFrames == WEBAUDIO_BLOCK_SIZE || !aChannels) { aOutput->SetNull(numFrames); } else { if (*aOffsetWithinBlock == 0) { aOutput->AllocateChannels(aChannels); } WriteZeroesToAudioBlock(aOutput, *aOffsetWithinBlock, numFrames); } *aOffsetWithinBlock += numFrames; *aCurrentPosition += numFrames; } /** * Copy as many frames as possible from the source buffer to aOutput, and * advance aOffsetWithinBlock and aCurrentPosition based on how many frames * we write. This will never advance aOffsetWithinBlock past * WEBAUDIO_BLOCK_SIZE, or aCurrentPosition past mStop. It takes data from * the buffer at aBufferOffset, and never takes more data than aBufferMax. * This function knows when it needs to allocate the output buffer, and also * optimizes the case where it can avoid memory allocations. */ void CopyFromBuffer(AudioBlock* aOutput, uint32_t aChannels, uint32_t* aOffsetWithinBlock, StreamTime* aCurrentPosition, uint32_t aBufferMax) { MOZ_ASSERT(*aCurrentPosition < mStop); uint32_t availableInOutput = std::min(WEBAUDIO_BLOCK_SIZE - *aOffsetWithinBlock, mStop - *aCurrentPosition); if (mResampler) { CopyFromInputBufferWithResampling(aOutput, aChannels, aOffsetWithinBlock, availableInOutput, aCurrentPosition, aBufferMax); return; } if (aChannels == 0) { aOutput->SetNull(WEBAUDIO_BLOCK_SIZE); // There is no attempt here to limit advance so that mBufferPosition is // limited to aBufferMax. The only observable affect of skipping the // check would be in the precise timing of the ended event if the loop // attribute is reset after playback has looped. *aOffsetWithinBlock += availableInOutput; *aCurrentPosition += availableInOutput; // Rounding at the start and end of the period means that fractional // increments essentially accumulate if outRate remains constant. If // outRate is varying, then accumulation happens on average but not // precisely. TrackTicks start = *aCurrentPosition * mBufferSampleRate / mResamplerOutRate; TrackTicks end = (*aCurrentPosition + availableInOutput) * mBufferSampleRate / mResamplerOutRate; mBufferPosition += end - start; return; } uint32_t numFrames = std::min(aBufferMax - mBufferPosition, availableInOutput); bool inputBufferAligned = true; for (uint32_t i = 0; i < aChannels; ++i) { if (!IS_ALIGNED16(mBuffer->GetData(i) + mBufferPosition)) { inputBufferAligned = false; } } if (numFrames == WEBAUDIO_BLOCK_SIZE && inputBufferAligned) { MOZ_ASSERT(mBufferPosition < aBufferMax); BorrowFromInputBuffer(aOutput, aChannels); } else { if (*aOffsetWithinBlock == 0) { aOutput->AllocateChannels(aChannels); } MOZ_ASSERT(mBufferPosition < aBufferMax); CopyFromInputBuffer(aOutput, aChannels, *aOffsetWithinBlock, numFrames); } *aOffsetWithinBlock += numFrames; *aCurrentPosition += numFrames; mBufferPosition += numFrames; } int32_t ComputeFinalOutSampleRate(float aPlaybackRate, float aDetune) { float computedPlaybackRate = aPlaybackRate * pow(2, aDetune / 1200.f); // Make sure the playback rate and the doppler shift are something // our resampler can work with. int32_t rate = WebAudioUtils:: TruncateFloatToInt(mSource->SampleRate() / (computedPlaybackRate * mDopplerShift)); return rate ? rate : mBufferSampleRate; } void UpdateSampleRateIfNeeded(uint32_t aChannels, StreamTime aStreamPosition) { float playbackRate; float detune; if (mPlaybackRateTimeline.HasSimpleValue()) { playbackRate = mPlaybackRateTimeline.GetValue(); } else { playbackRate = mPlaybackRateTimeline.GetValueAtTime(aStreamPosition); } if (mDetuneTimeline.HasSimpleValue()) { detune = mDetuneTimeline.GetValue(); } else { detune = mDetuneTimeline.GetValueAtTime(aStreamPosition); } if (playbackRate <= 0 || mozilla::IsNaN(playbackRate)) { playbackRate = 1.0f; } detune = std::min(std::max(-1200.f, detune), 1200.f); int32_t outRate = ComputeFinalOutSampleRate(playbackRate, detune); UpdateResampler(outRate, aChannels); } void ProcessBlock(AudioNodeStream* aStream, GraphTime aFrom, const AudioBlock& aInput, AudioBlock* aOutput, bool* aFinished) override { if (mBufferSampleRate == 0) { // start() has not yet been called or no buffer has yet been set aOutput->SetNull(WEBAUDIO_BLOCK_SIZE); return; } StreamTime streamPosition = mDestination->GraphTimeToStreamTime(aFrom); uint32_t channels = mBuffer ? mBuffer->GetChannels() : 0; UpdateSampleRateIfNeeded(channels, streamPosition); uint32_t written = 0; while (written < WEBAUDIO_BLOCK_SIZE) { if (mStop != STREAM_TIME_MAX && streamPosition >= mStop) { FillWithZeroes(aOutput, channels, &written, &streamPosition, STREAM_TIME_MAX); continue; } if (streamPosition < mBeginProcessing) { FillWithZeroes(aOutput, channels, &written, &streamPosition, mBeginProcessing); continue; } if (mLoop) { // mLoopEnd can become less than mBufferPosition when a LOOPEND engine // parameter is received after "loopend" is changed on the node or a // new buffer with lower samplerate is set. if (mBufferPosition >= mLoopEnd) { mBufferPosition = mLoopStart; } CopyFromBuffer(aOutput, channels, &written, &streamPosition, mLoopEnd); } else { if (mBufferPosition < mBufferEnd || mRemainingResamplerTail) { CopyFromBuffer(aOutput, channels, &written, &streamPosition, mBufferEnd); } else { FillWithZeroes(aOutput, channels, &written, &streamPosition, STREAM_TIME_MAX); } } } // We've finished if we've gone past mStop, or if we're past mDuration when // looping is disabled. if (streamPosition >= mStop || (!mLoop && mBufferPosition >= mBufferEnd && !mRemainingResamplerTail)) { *aFinished = true; } } bool IsActive() const override { // Whether buffer has been set and start() has been called. return mBufferSampleRate != 0; } size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override { // Not owned: // - mBuffer - shared w/ AudioNode // - mPlaybackRateTimeline - shared w/ AudioNode // - mDetuneTimeline - shared w/ AudioNode size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf); // NB: We need to modify speex if we want the full memory picture, internal // fields that need measuring noted below. // - mResampler->mem // - mResampler->sinc_table // - mResampler->last_sample // - mResampler->magic_samples // - mResampler->samp_frac_num amount += aMallocSizeOf(mResampler); return amount; } size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } double mStart; // including the fractional position between ticks // Low pass filter effects from the resampler mean that samples before the // start time are influenced by resampling the buffer. mBeginProcessing // includes the extent of this filter. The special value of -STREAM_TIME_MAX // indicates that the resampler has begun processing. StreamTime mBeginProcessing; StreamTime mStop; RefPtr mBuffer; SpeexResamplerState* mResampler; // mRemainingResamplerTail, like mBufferPosition, and // mBufferEnd, is measured in input buffer samples. uint32_t mRemainingResamplerTail; uint32_t mBufferEnd; uint32_t mLoopStart; uint32_t mLoopEnd; uint32_t mBufferPosition; int32_t mBufferSampleRate; int32_t mResamplerOutRate; uint32_t mChannels; float mDopplerShift; AudioNodeStream* mDestination; AudioNodeStream* mSource; AudioParamTimeline mPlaybackRateTimeline; AudioParamTimeline mDetuneTimeline; bool mLoop; }; AudioBufferSourceNode::AudioBufferSourceNode(AudioContext* aContext) : AudioNode(aContext, 2, ChannelCountMode::Max, ChannelInterpretation::Speakers) , mLoopStart(0.0) , mLoopEnd(0.0) // mOffset and mDuration are initialized in Start(). , mPlaybackRate(new AudioParam(this, PLAYBACKRATE, 1.0f, "playbackRate")) , mDetune(new AudioParam(this, DETUNE, 0.0f, "detune")) , mLoop(false) , mStartCalled(false) { AudioBufferSourceNodeEngine* engine = new AudioBufferSourceNodeEngine(this, aContext->Destination()); mStream = AudioNodeStream::Create(aContext, engine, AudioNodeStream::NEED_MAIN_THREAD_FINISHED, aContext->Graph()); engine->SetSourceStream(mStream); mStream->AddMainThreadListener(this); } AudioBufferSourceNode::~AudioBufferSourceNode() { } void AudioBufferSourceNode::DestroyMediaStream() { bool hadStream = mStream; if (hadStream) { mStream->RemoveMainThreadListener(this); } AudioNode::DestroyMediaStream(); if (hadStream && Context()) { Context()->UnregisterAudioBufferSourceNode(this); } } size_t AudioBufferSourceNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf); /* mBuffer can be shared and is accounted for separately. */ amount += mPlaybackRate->SizeOfIncludingThis(aMallocSizeOf); amount += mDetune->SizeOfIncludingThis(aMallocSizeOf); return amount; } size_t AudioBufferSourceNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } JSObject* AudioBufferSourceNode::WrapObject(JSContext* aCx, JS::Handle aGivenProto) { return AudioBufferSourceNodeBinding::Wrap(aCx, this, aGivenProto); } void AudioBufferSourceNode::Start(double aWhen, double aOffset, const Optional& aDuration, ErrorResult& aRv) { if (!WebAudioUtils::IsTimeValid(aWhen) || (aDuration.WasPassed() && !WebAudioUtils::IsTimeValid(aDuration.Value()))) { aRv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR); return; } if (mStartCalled) { aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR); return; } mStartCalled = true; AudioNodeStream* ns = mStream; if (!ns) { // Nothing to play, or we're already dead for some reason return; } // Remember our arguments so that we can use them when we get a new buffer. mOffset = aOffset; mDuration = aDuration.WasPassed() ? aDuration.Value() : std::numeric_limits::min(); WEB_AUDIO_API_LOG("%f: %s %u Start(%f, %g, %g)", Context()->CurrentTime(), NodeType(), Id(), aWhen, aOffset, mDuration); // We can't send these parameters without a buffer because we don't know the // buffer's sample rate or length. if (mBuffer) { SendOffsetAndDurationParametersToStream(ns); } // Don't set parameter unnecessarily if (aWhen > 0.0) { ns->SetDoubleParameter(START, aWhen); } } void AudioBufferSourceNode::SendBufferParameterToStream(JSContext* aCx) { AudioNodeStream* ns = mStream; if (!ns) { return; } if (mBuffer) { RefPtr data = mBuffer->GetThreadSharedChannelsForRate(aCx); ns->SetBuffer(data.forget()); if (mStartCalled) { SendOffsetAndDurationParametersToStream(ns); } } else { ns->SetInt32Parameter(BUFFEREND, 0); ns->SetBuffer(nullptr); MarkInactive(); } } void AudioBufferSourceNode::SendOffsetAndDurationParametersToStream(AudioNodeStream* aStream) { NS_ASSERTION(mBuffer && mStartCalled, "Only call this when we have a buffer and start() has been called"); float rate = mBuffer->SampleRate(); aStream->SetInt32Parameter(SAMPLE_RATE, rate); int32_t bufferEnd = mBuffer->Length(); int32_t offsetSamples = std::max(0, NS_lround(mOffset * rate)); // Don't set parameter unnecessarily if (offsetSamples > 0) { aStream->SetInt32Parameter(BUFFERSTART, offsetSamples); } if (mDuration != std::numeric_limits::min()) { MOZ_ASSERT(mDuration >= 0.0); // provided by Start() MOZ_ASSERT(rate >= 0.0f); // provided by AudioBuffer::Create() static_assert(std::numeric_limits::digits >= std::numeric_limits::digits, "bufferEnd should be represented exactly by double"); // + 0.5 rounds mDuration to nearest sample when assigned to bufferEnd. bufferEnd = std::min(bufferEnd, offsetSamples + mDuration * rate + 0.5); } aStream->SetInt32Parameter(BUFFEREND, bufferEnd); MarkActive(); } void AudioBufferSourceNode::Stop(double aWhen, ErrorResult& aRv) { if (!WebAudioUtils::IsTimeValid(aWhen)) { aRv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR); return; } if (!mStartCalled) { aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR); return; } WEB_AUDIO_API_LOG("%f: %s %u Stop(%f)", Context()->CurrentTime(), NodeType(), Id(), aWhen); AudioNodeStream* ns = mStream; if (!ns || !Context()) { // We've already stopped and had our stream shut down return; } ns->SetStreamTimeParameter(STOP, Context(), std::max(0.0, aWhen)); } void AudioBufferSourceNode::NotifyMainThreadStreamFinished() { MOZ_ASSERT(mStream->IsFinished()); class EndedEventDispatcher final : public Runnable { public: explicit EndedEventDispatcher(AudioBufferSourceNode* aNode) : mNode(aNode) {} NS_IMETHOD Run() override { // If it's not safe to run scripts right now, schedule this to run later if (!nsContentUtils::IsSafeToRunScript()) { nsContentUtils::AddScriptRunner(this); return NS_OK; } mNode->DispatchTrustedEvent(NS_LITERAL_STRING("ended")); // Release stream resources. mNode->DestroyMediaStream(); return NS_OK; } private: RefPtr mNode; }; NS_DispatchToMainThread(new EndedEventDispatcher(this)); // Drop the playing reference // Warning: The below line might delete this. MarkInactive(); } void AudioBufferSourceNode::SendDopplerShiftToStream(double aDopplerShift) { MOZ_ASSERT(mStream, "Should have disconnected panner if no stream"); SendDoubleParameterToStream(DOPPLERSHIFT, aDopplerShift); } void AudioBufferSourceNode::SendLoopParametersToStream() { if (!mStream) { return; } // Don't compute and set the loop parameters unnecessarily if (mLoop && mBuffer) { float rate = mBuffer->SampleRate(); double length = (double(mBuffer->Length()) / mBuffer->SampleRate()); double actualLoopStart, actualLoopEnd; if (mLoopStart >= 0.0 && mLoopEnd > 0.0 && mLoopStart < mLoopEnd) { MOZ_ASSERT(mLoopStart != 0.0 || mLoopEnd != 0.0); actualLoopStart = (mLoopStart > length) ? 0.0 : mLoopStart; actualLoopEnd = std::min(mLoopEnd, length); } else { actualLoopStart = 0.0; actualLoopEnd = length; } int32_t loopStartTicks = NS_lround(actualLoopStart * rate); int32_t loopEndTicks = NS_lround(actualLoopEnd * rate); if (loopStartTicks < loopEndTicks) { SendInt32ParameterToStream(LOOPSTART, loopStartTicks); SendInt32ParameterToStream(LOOPEND, loopEndTicks); SendInt32ParameterToStream(LOOP, 1); } else { // Be explicit about looping not happening if the offsets make // looping impossible. SendInt32ParameterToStream(LOOP, 0); } } else { SendInt32ParameterToStream(LOOP, 0); } } } // namespace dom } // namespace mozilla