From 68569dee1416593955c1570d638b3d9250b33012 Mon Sep 17 00:00:00 2001 From: trav90 Date: Mon, 15 Oct 2018 21:45:30 -0500 Subject: Import aom library This is the reference implementation for the Alliance for Open Media's av1 video code. The commit used was 4d668d7feb1f8abd809d1bca0418570a7f142a36. --- third_party/aom/av1/encoder/rd.c | 1204 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 1204 insertions(+) create mode 100644 third_party/aom/av1/encoder/rd.c (limited to 'third_party/aom/av1/encoder/rd.c') diff --git a/third_party/aom/av1/encoder/rd.c b/third_party/aom/av1/encoder/rd.c new file mode 100644 index 000000000..f06e569e7 --- /dev/null +++ b/third_party/aom/av1/encoder/rd.c @@ -0,0 +1,1204 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include +#include +#include + +#include "./av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/bitops.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/tokenize.h" + +#define RD_THRESH_POW 1.25 + +// Factor to weigh the rate for switchable interp filters. +#define SWITCHABLE_INTERP_RATE_FACTOR 1 + +// The baseline rd thresholds for breaking out of the rd loop for +// certain modes are assumed to be based on 8x8 blocks. +// This table is used to correct for block size. +// The factors here are << 2 (2 = x0.5, 32 = x8 etc). +static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = { +#if CONFIG_CB4X4 + 2, 2, 2, +#endif + 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, +#if CONFIG_EXT_PARTITION + 48, 48, 64 +#endif // CONFIG_EXT_PARTITION +}; + +static void fill_mode_costs(AV1_COMP *cpi) { + const FRAME_CONTEXT *const fc = cpi->common.fc; + int i, j; + + for (i = 0; i < INTRA_MODES; ++i) + for (j = 0; j < INTRA_MODES; ++j) + av1_cost_tokens(cpi->y_mode_costs[i][j], av1_kf_y_mode_prob[i][j], + av1_intra_mode_tree); + + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) + av1_cost_tokens(cpi->mbmode_cost[i], fc->y_mode_prob[i], + av1_intra_mode_tree); + + for (i = 0; i < INTRA_MODES; ++i) + av1_cost_tokens(cpi->intra_uv_mode_cost[i], fc->uv_mode_prob[i], + av1_intra_mode_tree); + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + av1_cost_tokens(cpi->switchable_interp_costs[i], + fc->switchable_interp_prob[i], av1_switchable_interp_tree); + +#if CONFIG_PALETTE + for (i = 0; i < PALETTE_BLOCK_SIZES; ++i) { + av1_cost_tokens(cpi->palette_y_size_cost[i], + av1_default_palette_y_size_prob[i], av1_palette_size_tree); + av1_cost_tokens(cpi->palette_uv_size_cost[i], + av1_default_palette_uv_size_prob[i], av1_palette_size_tree); + } + + for (i = 0; i < PALETTE_SIZES; ++i) { + for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { + av1_cost_tokens(cpi->palette_y_color_cost[i][j], + av1_default_palette_y_color_index_prob[i][j], + av1_palette_color_index_tree[i]); + av1_cost_tokens(cpi->palette_uv_color_cost[i][j], + av1_default_palette_uv_color_index_prob[i][j], + av1_palette_color_index_tree[i]); + } + } +#endif // CONFIG_PALETTE + + for (i = 0; i < MAX_TX_DEPTH; ++i) + for (j = 0; j < TX_SIZE_CONTEXTS; ++j) + av1_cost_tokens(cpi->tx_size_cost[i][j], fc->tx_size_probs[i][j], + av1_tx_size_tree[i]); + +#if CONFIG_EXT_TX + for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { + int s; + for (s = 1; s < EXT_TX_SETS_INTER; ++s) { + if (use_inter_ext_tx_for_txsize[s][i]) { + av1_cost_tokens(cpi->inter_tx_type_costs[s][i], + fc->inter_ext_tx_prob[s][i], av1_ext_tx_inter_tree[s]); + } + } + for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { + if (use_intra_ext_tx_for_txsize[s][i]) { + for (j = 0; j < INTRA_MODES; ++j) + av1_cost_tokens(cpi->intra_tx_type_costs[s][i][j], + fc->intra_ext_tx_prob[s][i][j], + av1_ext_tx_intra_tree[s]); + } + } + } +#else + for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { + for (j = 0; j < TX_TYPES; ++j) + av1_cost_tokens(cpi->intra_tx_type_costs[i][j], + fc->intra_ext_tx_prob[i][j], av1_ext_tx_tree); + } + for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { + av1_cost_tokens(cpi->inter_tx_type_costs[i], fc->inter_ext_tx_prob[i], + av1_ext_tx_tree); + } +#endif // CONFIG_EXT_TX +#if CONFIG_EXT_INTRA +#if CONFIG_INTRA_INTERP + for (i = 0; i < INTRA_FILTERS + 1; ++i) + av1_cost_tokens(cpi->intra_filter_cost[i], fc->intra_filter_probs[i], + av1_intra_filter_tree); +#endif // CONFIG_INTRA_INTERP +#endif // CONFIG_EXT_INTRA +#if CONFIG_LOOP_RESTORATION + av1_cost_tokens(cpi->switchable_restore_cost, fc->switchable_restore_prob, + av1_switchable_restore_tree); +#endif // CONFIG_LOOP_RESTORATION +#if CONFIG_GLOBAL_MOTION + av1_cost_tokens(cpi->gmtype_cost, fc->global_motion_types_prob, + av1_global_motion_types_tree); +#endif // CONFIG_GLOBAL_MOTION +} + +void av1_fill_token_costs(av1_coeff_cost *c, + av1_coeff_probs_model (*p)[PLANE_TYPES]) { + int i, j, k, l; + TX_SIZE t; + for (t = 0; t < TX_SIZES; ++t) + for (i = 0; i < PLANE_TYPES; ++i) + for (j = 0; j < REF_TYPES; ++j) + for (k = 0; k < COEF_BANDS; ++k) + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + aom_prob probs[ENTROPY_NODES]; + av1_model_to_full_probs(p[t][i][j][k][l], probs); + av1_cost_tokens((int *)c[t][i][j][k][0][l], probs, av1_coef_tree); + av1_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, + av1_coef_tree); + assert(c[t][i][j][k][0][l][EOB_TOKEN] == + c[t][i][j][k][1][l][EOB_TOKEN]); + } +} + +// Values are now correlated to quantizer. +static int sad_per_bit16lut_8[QINDEX_RANGE]; +static int sad_per_bit4lut_8[QINDEX_RANGE]; + +#if CONFIG_HIGHBITDEPTH +static int sad_per_bit16lut_10[QINDEX_RANGE]; +static int sad_per_bit4lut_10[QINDEX_RANGE]; +static int sad_per_bit16lut_12[QINDEX_RANGE]; +static int sad_per_bit4lut_12[QINDEX_RANGE]; +#endif + +static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, + aom_bit_depth_t bit_depth) { + int i; + // Initialize the sad lut tables using a formulaic calculation for now. + // This is to make it easier to resolve the impact of experimental changes + // to the quantizer tables. + for (i = 0; i < range; i++) { + const double q = av1_convert_qindex_to_q(i, bit_depth); + bit16lut[i] = (int)(0.0418 * q + 2.4107); + bit4lut[i] = (int)(0.063 * q + 2.742); + } +} + +void av1_init_me_luts(void) { + init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, + AOM_BITS_8); +#if CONFIG_HIGHBITDEPTH + init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, + AOM_BITS_10); + init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, + AOM_BITS_12); +#endif +} + +static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, + 8, 8, 4, 4, 2, 2, 1, 0 }; +static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { + 128, 144, 128, 128, 144, +#if CONFIG_EXT_REFS + // TODO(zoeliu): To adjust further following factor values. + 128, 128, 128 + // TODO(weitinglin): We should investigate if the values should be the same + // as the value used by OVERLAY frame + , + 144 +#endif // CONFIG_EXT_REFS +}; + +int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { + const int64_t q = av1_dc_quant(qindex, 0, cpi->common.bit_depth); +#if CONFIG_HIGHBITDEPTH + int64_t rdmult = 0; + switch (cpi->common.bit_depth) { + case AOM_BITS_8: rdmult = 88 * q * q / 24; break; + case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break; + case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } +#else + int64_t rdmult = 88 * q * q / 24; +#endif // CONFIG_HIGHBITDEPTH + if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; + const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); + + rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7; + rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); + } + if (rdmult < 1) rdmult = 1; + return (int)rdmult; +} + +static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { + double q; +#if CONFIG_HIGHBITDEPTH + switch (bit_depth) { + case AOM_BITS_8: q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; break; + case AOM_BITS_10: q = av1_dc_quant(qindex, 0, AOM_BITS_10) / 16.0; break; + case AOM_BITS_12: q = av1_dc_quant(qindex, 0, AOM_BITS_12) / 64.0; break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } +#else + (void)bit_depth; + q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; +#endif // CONFIG_HIGHBITDEPTH + // TODO(debargha): Adjust the function below. + return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); +} + +void av1_initialize_me_consts(const AV1_COMP *cpi, MACROBLOCK *x, int qindex) { +#if CONFIG_HIGHBITDEPTH + switch (cpi->common.bit_depth) { + case AOM_BITS_8: + x->sadperbit16 = sad_per_bit16lut_8[qindex]; + x->sadperbit4 = sad_per_bit4lut_8[qindex]; + break; + case AOM_BITS_10: + x->sadperbit16 = sad_per_bit16lut_10[qindex]; + x->sadperbit4 = sad_per_bit4lut_10[qindex]; + break; + case AOM_BITS_12: + x->sadperbit16 = sad_per_bit16lut_12[qindex]; + x->sadperbit4 = sad_per_bit4lut_12[qindex]; + break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + } +#else + (void)cpi; + x->sadperbit16 = sad_per_bit16lut_8[qindex]; + x->sadperbit4 = sad_per_bit4lut_8[qindex]; +#endif // CONFIG_HIGHBITDEPTH +} + +static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { + int i, bsize, segment_id; + + for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { + const int qindex = + clamp(av1_get_qindex(&cm->seg, segment_id, cm->base_qindex) + + cm->y_dc_delta_q, + 0, MAXQ); + const int q = compute_rd_thresh_factor(qindex, cm->bit_depth); + + for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { + // Threshold here seems unnecessarily harsh but fine given actual + // range of values used for cpi->sf.thresh_mult[]. + const int t = q * rd_thresh_block_size_factor[bsize]; + const int thresh_max = INT_MAX / t; + +#if CONFIG_CB4X4 + for (i = 0; i < MAX_MODES; ++i) + rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max + ? rd->thresh_mult[i] * t / 4 + : INT_MAX; +#else + if (bsize >= BLOCK_8X8) { + for (i = 0; i < MAX_MODES; ++i) + rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max + ? rd->thresh_mult[i] * t / 4 + : INT_MAX; + } else { + for (i = 0; i < MAX_REFS; ++i) + rd->threshes[segment_id][bsize][i] = + rd->thresh_mult_sub8x8[i] < thresh_max + ? rd->thresh_mult_sub8x8[i] * t / 4 + : INT_MAX; + } +#endif + } + } +} + +#if CONFIG_REF_MV +void av1_set_mvcost(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, int ref, + int ref_mv_idx) { + MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; + int8_t rf_type = av1_ref_frame_type(x->e_mbd.mi[0]->mbmi.ref_frame); + int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], + mbmi_ext->ref_mv_stack[rf_type], ref, ref_mv_idx); + (void)ref_frame; + x->mvcost = x->mv_cost_stack[nmv_ctx]; + x->nmvjointcost = x->nmv_vec_cost[nmv_ctx]; + x->mvsadcost = x->mvcost; + x->nmvjointsadcost = x->nmvjointcost; +} +#endif + +void av1_initialize_rd_consts(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + RD_OPT *const rd = &cpi->rd; + int i; +#if CONFIG_REF_MV + int nmv_ctx; +#endif + + aom_clear_system_state(); + + rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128). + rd->RDMULT = av1_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); + + set_error_per_bit(x, rd->RDMULT); + + set_block_thresholds(cm, rd); + +#if CONFIG_REF_MV + for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) { + av1_build_nmv_cost_table( + x->nmv_vec_cost[nmv_ctx], + cm->allow_high_precision_mv ? x->nmvcost_hp[nmv_ctx] + : x->nmvcost[nmv_ctx], + &cm->fc->nmvc[nmv_ctx], cm->allow_high_precision_mv); + } + x->mvcost = x->mv_cost_stack[0]; + x->nmvjointcost = x->nmv_vec_cost[0]; + x->mvsadcost = x->mvcost; + x->nmvjointsadcost = x->nmvjointcost; +#else + av1_build_nmv_cost_table( + x->nmvjointcost, cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, + &cm->fc->nmvc, cm->allow_high_precision_mv); +#endif + + if (cpi->oxcf.pass != 1) { + av1_fill_token_costs(x->token_costs, cm->fc->coef_probs); + + if (cpi->sf.partition_search_type != VAR_BASED_PARTITION || + cm->frame_type == KEY_FRAME) { +#if CONFIG_EXT_PARTITION_TYPES + for (i = 0; i < PARTITION_PLOFFSET; ++i) + av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], + av1_partition_tree); + for (; i < PARTITION_CONTEXTS_PRIMARY; ++i) + av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], + av1_ext_partition_tree); +#else + for (i = 0; i < PARTITION_CONTEXTS_PRIMARY; ++i) + av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], + av1_partition_tree); +#endif // CONFIG_EXT_PARTITION_TYPES +#if CONFIG_UNPOISON_PARTITION_CTX + for (; i < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++i) { + aom_prob p = cm->fc->partition_prob[i][PARTITION_VERT]; + assert(p > 0); + cpi->partition_cost[i][PARTITION_NONE] = INT_MAX; + cpi->partition_cost[i][PARTITION_HORZ] = INT_MAX; + cpi->partition_cost[i][PARTITION_VERT] = av1_cost_bit(p, 0); + cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); + } + for (; i < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++i) { + aom_prob p = cm->fc->partition_prob[i][PARTITION_HORZ]; + assert(p > 0); + cpi->partition_cost[i][PARTITION_NONE] = INT_MAX; + cpi->partition_cost[i][PARTITION_HORZ] = av1_cost_bit(p, 0); + cpi->partition_cost[i][PARTITION_VERT] = INT_MAX; + cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); + } + cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_NONE] = INT_MAX; + cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_HORZ] = INT_MAX; + cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_VERT] = INT_MAX; + cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_SPLIT] = 0; +#endif // CONFIG_UNPOISON_PARTITION_CTX + } + + fill_mode_costs(cpi); + + if (!frame_is_intra_only(cm)) { +#if CONFIG_REF_MV + for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { + cpi->newmv_mode_cost[i][0] = av1_cost_bit(cm->fc->newmv_prob[i], 0); + cpi->newmv_mode_cost[i][1] = av1_cost_bit(cm->fc->newmv_prob[i], 1); + } + + for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) { + cpi->zeromv_mode_cost[i][0] = av1_cost_bit(cm->fc->zeromv_prob[i], 0); + cpi->zeromv_mode_cost[i][1] = av1_cost_bit(cm->fc->zeromv_prob[i], 1); + } + + for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { + cpi->refmv_mode_cost[i][0] = av1_cost_bit(cm->fc->refmv_prob[i], 0); + cpi->refmv_mode_cost[i][1] = av1_cost_bit(cm->fc->refmv_prob[i], 1); + } + + for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { + cpi->drl_mode_cost0[i][0] = av1_cost_bit(cm->fc->drl_prob[i], 0); + cpi->drl_mode_cost0[i][1] = av1_cost_bit(cm->fc->drl_prob[i], 1); + } +#else + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + av1_cost_tokens((int *)cpi->inter_mode_cost[i], + cm->fc->inter_mode_probs[i], av1_inter_mode_tree); +#endif // CONFIG_REF_MV +#if CONFIG_EXT_INTER + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + av1_cost_tokens((int *)cpi->inter_compound_mode_cost[i], + cm->fc->inter_compound_mode_probs[i], + av1_inter_compound_mode_tree); + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) + av1_cost_tokens((int *)cpi->interintra_mode_cost[i], + cm->fc->interintra_mode_prob[i], + av1_interintra_mode_tree); +#endif // CONFIG_EXT_INTER +#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION + for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) { + av1_cost_tokens((int *)cpi->motion_mode_cost[i], + cm->fc->motion_mode_prob[i], av1_motion_mode_tree); + } +#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION + for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) { + cpi->motion_mode_cost1[i][0] = av1_cost_bit(cm->fc->obmc_prob[i], 0); + cpi->motion_mode_cost1[i][1] = av1_cost_bit(cm->fc->obmc_prob[i], 1); + } +#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION +#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION + } + } +} + +static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { + // NOTE: The tables below must be of the same size. + + // The functions described below are sampled at the four most significant + // bits of x^2 + 8 / 256. + + // Normalized rate: + // This table models the rate for a Laplacian source with given variance + // when quantized with a uniform quantizer with given stepsize. The + // closed form expression is: + // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], + // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), + // and H(x) is the binary entropy function. + static const int rate_tab_q10[] = { + 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, + 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, + 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, + 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, + 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, + 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, + 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, + 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, + 5, 3, 2, 1, 1, 1, 0, 0, + }; + // Normalized distortion: + // This table models the normalized distortion for a Laplacian source + // with given variance when quantized with a uniform quantizer + // with given stepsize. The closed form expression is: + // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) + // where x = qpstep / sqrt(variance). + // Note the actual distortion is Dn * variance. + static const int dist_tab_q10[] = { + 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, + 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, + 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, + 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, + 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, + 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, + 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, + 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, + 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, + }; + static const int xsq_iq_q10[] = { + 0, 4, 8, 12, 16, 20, 24, 28, 32, + 40, 48, 56, 64, 72, 80, 88, 96, 112, + 128, 144, 160, 176, 192, 208, 224, 256, 288, + 320, 352, 384, 416, 448, 480, 544, 608, 672, + 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, + 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, + 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, + 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, + 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, + 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, + 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, + 180192, 196576, 212960, 229344, 245728, + }; + const int tmp = (xsq_q10 >> 2) + 8; + const int k = get_msb(tmp) - 3; + const int xq = (k << 3) + ((tmp >> k) & 0x7); + const int one_q10 = 1 << 10; + const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); + const int b_q10 = one_q10 - a_q10; + *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; + *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; +} + +void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, + unsigned int qstep, int *rate, + int64_t *dist) { + // This function models the rate and distortion for a Laplacian + // source with given variance when quantized with a uniform quantizer + // with given stepsize. The closed form expressions are in: + // Hang and Chen, "Source Model for transform video coder and its + // application - Part I: Fundamental Theory", IEEE Trans. Circ. + // Sys. for Video Tech., April 1997. + if (var == 0) { + *rate = 0; + *dist = 0; + } else { + int d_q10, r_q10; + static const uint32_t MAX_XSQ_Q10 = 245727; + const uint64_t xsq_q10_64 = + (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; + const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); + model_rd_norm(xsq_q10, &r_q10, &d_q10); + *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); + *dist = (var * (int64_t)d_q10 + 512) >> 10; + } +} + +static void get_entropy_contexts_plane( + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], + ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { + const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const ENTROPY_CONTEXT *const above = pd->above_context; + const ENTROPY_CONTEXT *const left = pd->left_context; + + int i; + +#if CONFIG_CB4X4 + switch (tx_size) { + case TX_2X2: + memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); + memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); + break; + case TX_4X4: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_8X8: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_16X16: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; + case TX_32X32: + for (i = 0; i < num_4x4_w; i += 16) + t_above[i] = + !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); + for (i = 0; i < num_4x4_h; i += 16) + t_left[i] = + !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); + break; + case TX_4X8: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_8X4: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_8X16: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; + case TX_16X8: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_16X32: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 16) + t_left[i] = + !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); + break; + case TX_32X16: + for (i = 0; i < num_4x4_w; i += 16) + t_above[i] = + !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; + + default: assert(0 && "Invalid transform size."); break; + } + return; +#endif + + switch (tx_size) { + case TX_4X4: + memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); + memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); + break; + case TX_8X8: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_16X16: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_32X32: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; +#if CONFIG_TX64X64 + case TX_64X64: + for (i = 0; i < num_4x4_w; i += 16) + t_above[i] = + !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); + for (i = 0; i < num_4x4_h; i += 16) + t_left[i] = + !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); + break; +#endif // CONFIG_TX64X64 + case TX_4X8: + memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_8X4: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); + break; + case TX_8X16: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_16X8: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_16X32: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; + case TX_32X16: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + default: assert(0 && "Invalid transform size."); break; + } +} + +void av1_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], + ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); + get_entropy_contexts_plane(plane_bsize, tx_size, pd, t_above, t_left); +} + +void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, + int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { + int i; + int zero_seen = 0; + int best_index = 0; + int best_sad = INT_MAX; + int this_sad = INT_MAX; + int max_mv = 0; + int near_same_nearest; + uint8_t *src_y_ptr = x->plane[0].src.buf; + uint8_t *ref_y_ptr; + const int num_mv_refs = + MAX_MV_REF_CANDIDATES + + (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size); + + MV pred_mv[3]; + pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv; + pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv; + pred_mv[2] = x->pred_mv[ref_frame]; + assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); + + near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int == + x->mbmi_ext->ref_mvs[ref_frame][1].as_int; + // Get the sad for each candidate reference mv. + for (i = 0; i < num_mv_refs; ++i) { + const MV *this_mv = &pred_mv[i]; + int fp_row, fp_col; + + if (i == 1 && near_same_nearest) continue; + fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; + fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; + max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); + + if (fp_row == 0 && fp_col == 0 && zero_seen) continue; + zero_seen |= (fp_row == 0 && fp_col == 0); + + ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; + // Find sad for current vector. + this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, + ref_y_ptr, ref_y_stride); + // Note if it is the best so far. + if (this_sad < best_sad) { + best_sad = this_sad; + best_index = i; + } + } + + // Note the index of the mv that worked best in the reference list. + x->mv_best_ref_index[ref_frame] = best_index; + x->max_mv_context[ref_frame] = max_mv; + x->pred_mv_sad[ref_frame] = best_sad; +} + +void av1_setup_pred_block(const MACROBLOCKD *xd, + struct buf_2d dst[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *scale, + const struct scale_factors *scale_uv) { + int i; + + dst[0].buf = src->y_buffer; + dst[0].stride = src->y_stride; + dst[1].buf = src->u_buffer; + dst[2].buf = src->v_buffer; + dst[1].stride = dst[2].stride = src->uv_stride; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + setup_pred_plane(dst + i, xd->mi[0]->mbmi.sb_type, dst[i].buf, + i ? src->uv_crop_width : src->y_crop_width, + i ? src->uv_crop_height : src->y_crop_height, + dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, + xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); + } +} + +int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, + int stride) { + const int bw = b_width_log2_lookup[plane_bsize]; + const int y = 4 * (raster_block >> bw); + const int x = 4 * (raster_block & ((1 << bw) - 1)); + return y * stride + x; +} + +int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, + int16_t *base) { + const int stride = block_size_wide[plane_bsize]; + return base + av1_raster_block_offset(plane_bsize, raster_block, stride); +} + +YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, + int ref_frame) { + const AV1_COMMON *const cm = &cpi->common; + const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; + const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) + ? &cm->buffer_pool->frame_bufs[scaled_idx].buf + : NULL; +} + +#if CONFIG_DUAL_FILTER +int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) { + const AV1_COMMON *const cm = &cpi->common; + if (cm->interp_filter == SWITCHABLE) { + const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; + int inter_filter_cost = 0; + int dir; + + for (dir = 0; dir < 2; ++dir) { + if (has_subpel_mv_component(xd->mi[0], xd, dir) || + (mbmi->ref_frame[1] > INTRA_FRAME && + has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + inter_filter_cost += + cpi->switchable_interp_costs[ctx][mbmi->interp_filter[dir]]; + } + } + return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; + } else { + return 0; + } +} +#else +int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) { + const AV1_COMMON *const cm = &cpi->common; + if (cm->interp_filter == SWITCHABLE) { + const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; + const int ctx = av1_get_pred_context_switchable_interp(xd); + return SWITCHABLE_INTERP_RATE_FACTOR * + cpi->switchable_interp_costs[ctx][mbmi->interp_filter]; + } + return 0; +} +#endif + +void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { + int i; + RD_OPT *const rd = &cpi->rd; + SPEED_FEATURES *const sf = &cpi->sf; + + // Set baseline threshold values. + for (i = 0; i < MAX_MODES; ++i) rd->thresh_mult[i] = cpi->oxcf.mode == 0; + + if (sf->adaptive_rd_thresh) { + rd->thresh_mult[THR_NEARESTMV] = 300; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARESTL2] = 300; + rd->thresh_mult[THR_NEARESTL3] = 300; + rd->thresh_mult[THR_NEARESTB] = 300; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARESTA] = 300; + rd->thresh_mult[THR_NEARESTG] = 300; + } else { + rd->thresh_mult[THR_NEARESTMV] = 0; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARESTL2] = 0; + rd->thresh_mult[THR_NEARESTL3] = 0; + rd->thresh_mult[THR_NEARESTB] = 0; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARESTA] = 0; + rd->thresh_mult[THR_NEARESTG] = 0; + } + + rd->thresh_mult[THR_DC] += 1000; + + rd->thresh_mult[THR_NEWMV] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_NEWL2] += 1000; + rd->thresh_mult[THR_NEWL3] += 1000; + rd->thresh_mult[THR_NEWB] += 1000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_NEWA] += 1000; + rd->thresh_mult[THR_NEWG] += 1000; + + rd->thresh_mult[THR_NEARMV] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARL2] += 1000; + rd->thresh_mult[THR_NEARL3] += 1000; + rd->thresh_mult[THR_NEARB] += 1000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_NEARA] += 1000; + rd->thresh_mult[THR_NEARG] += 1000; + + rd->thresh_mult[THR_ZEROMV] += 2000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_ZEROL2] += 2000; + rd->thresh_mult[THR_ZEROL3] += 2000; + rd->thresh_mult[THR_ZEROB] += 2000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_ZEROG] += 2000; + rd->thresh_mult[THR_ZEROA] += 2000; + + rd->thresh_mult[THR_TM] += 1000; + +#if CONFIG_EXT_INTER + + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] += 1000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] += 1000; +#endif // CONFIG_EXT_REFS + +#else // CONFIG_EXT_INTER + + rd->thresh_mult[THR_COMP_NEARESTLA] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARESTL2A] += 1000; + rd->thresh_mult[THR_COMP_NEARESTL3A] += 1000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARESTGA] += 1000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARESTLB] += 1000; + rd->thresh_mult[THR_COMP_NEARESTL2B] += 1000; + rd->thresh_mult[THR_COMP_NEARESTL3B] += 1000; + rd->thresh_mult[THR_COMP_NEARESTGB] += 1000; +#endif // CONFIG_EXT_REFS + +#endif // CONFIG_EXT_INTER + +#if CONFIG_EXT_INTER + + rd->thresh_mult[THR_COMP_NEAREST_NEARLA] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTLA] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARLA] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWLA] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTLA] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWLA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARLA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWLA] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROLA] += 2500; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEAREST_NEARL2A] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTL2A] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARL2A] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL2A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL2A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL2A] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROL2A] += 2500; + + rd->thresh_mult[THR_COMP_NEAREST_NEARL3A] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTL3A] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARL3A] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL3A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL3A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL3A] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROL3A] += 2500; +#endif // CONFIG_EXT_REFS + + rd->thresh_mult[THR_COMP_NEAREST_NEARGA] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTGA] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARGA] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWGA] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTGA] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWGA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARGA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWGA] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROGA] += 2500; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEAREST_NEARLB] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTLB] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARLB] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWLB] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTLB] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWLB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARLB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWLB] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROLB] += 2500; + + rd->thresh_mult[THR_COMP_NEAREST_NEARL2B] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTL2B] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARL2B] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL2B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL2B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL2B] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROL2B] += 2500; + + rd->thresh_mult[THR_COMP_NEAREST_NEARL3B] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTL3B] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARL3B] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL3B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL3B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL3B] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROL3B] += 2500; + + rd->thresh_mult[THR_COMP_NEAREST_NEARGB] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARESTGB] += 1200; + rd->thresh_mult[THR_COMP_NEAR_NEARGB] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWGB] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTGB] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWGB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARGB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWGB] += 2000; + rd->thresh_mult[THR_COMP_ZERO_ZEROGB] += 2500; +#endif // CONFIG_EXT_REFS + +#else // CONFIG_EXT_INTER + + rd->thresh_mult[THR_COMP_NEARLA] += 1500; + rd->thresh_mult[THR_COMP_NEWLA] += 2000; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARL2A] += 1500; + rd->thresh_mult[THR_COMP_NEWL2A] += 2000; + rd->thresh_mult[THR_COMP_NEARL3A] += 1500; + rd->thresh_mult[THR_COMP_NEWL3A] += 2000; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARGA] += 1500; + rd->thresh_mult[THR_COMP_NEWGA] += 2000; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_NEARLB] += 1500; + rd->thresh_mult[THR_COMP_NEWLB] += 2000; + rd->thresh_mult[THR_COMP_NEARL2B] += 1500; + rd->thresh_mult[THR_COMP_NEWL2B] += 2000; + rd->thresh_mult[THR_COMP_NEARL3B] += 1500; + rd->thresh_mult[THR_COMP_NEWL3B] += 2000; + rd->thresh_mult[THR_COMP_NEARGB] += 1500; + rd->thresh_mult[THR_COMP_NEWGB] += 2000; +#endif // CONFIG_EXT_REFS + + rd->thresh_mult[THR_COMP_ZEROLA] += 2500; +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_ZEROL2A] += 2500; + rd->thresh_mult[THR_COMP_ZEROL3A] += 2500; +#endif // CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_ZEROGA] += 2500; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_ZEROLB] += 2500; + rd->thresh_mult[THR_COMP_ZEROL2B] += 2500; + rd->thresh_mult[THR_COMP_ZEROL3B] += 2500; + rd->thresh_mult[THR_COMP_ZEROGB] += 2500; +#endif // CONFIG_EXT_REFS + +#endif // CONFIG_EXT_INTER + + rd->thresh_mult[THR_H_PRED] += 2000; + rd->thresh_mult[THR_V_PRED] += 2000; + rd->thresh_mult[THR_D135_PRED] += 2500; + rd->thresh_mult[THR_D207_PRED] += 2500; + rd->thresh_mult[THR_D153_PRED] += 2500; + rd->thresh_mult[THR_D63_PRED] += 2500; + rd->thresh_mult[THR_D117_PRED] += 2500; + rd->thresh_mult[THR_D45_PRED] += 2500; + +#if CONFIG_EXT_INTER + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARL] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWL] += 2000; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL2] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL2] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARL2] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWL2] += 2000; + + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL3] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL3] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARL3] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWL3] += 2000; +#endif // CONFIG_EXT_REFS + + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROG] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARG] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWG] += 2000; + +#if CONFIG_EXT_REFS + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROB] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTB] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARB] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWB] += 2000; +#endif // CONFIG_EXT_REFS + + rd->thresh_mult[THR_COMP_INTERINTRA_ZEROA] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEARA] += 1500; + rd->thresh_mult[THR_COMP_INTERINTRA_NEWA] += 2000; +#endif // CONFIG_EXT_INTER +} + +void av1_set_rd_speed_thresholds_sub8x8(AV1_COMP *cpi) { + static const int thresh_mult[MAX_REFS] = { +#if CONFIG_EXT_REFS + 2500, + 2500, + 2500, + 2500, + 2500, + 2500, + 4500, + 4500, + 4500, + 4500, + 4500, + 4500, + 4500, + 4500, + 2500 +#else + 2500, + 2500, + 2500, + 4500, + 4500, + 2500 +#endif // CONFIG_EXT_REFS + }; + RD_OPT *const rd = &cpi->rd; + memcpy(rd->thresh_mult_sub8x8, thresh_mult, sizeof(thresh_mult)); +} + +void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, + int (*factor_buf)[MAX_MODES], int rd_thresh, + int bsize, int best_mode_index) { + if (rd_thresh > 0) { +#if CONFIG_CB4X4 + const int top_mode = MAX_MODES; +#else + const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES; +#endif + int mode; + for (mode = 0; mode < top_mode; ++mode) { + const BLOCK_SIZE min_size = AOMMAX(bsize - 1, BLOCK_4X4); + const BLOCK_SIZE max_size = AOMMIN(bsize + 2, (int)cm->sb_size); + BLOCK_SIZE bs; + for (bs = min_size; bs <= max_size; ++bs) { + int *const fact = &factor_buf[bs][mode]; + if (mode == best_mode_index) { + *fact -= (*fact >> 4); + } else { + *fact = AOMMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); + } + } + } + } +} + +int av1_get_intra_cost_penalty(int qindex, int qdelta, + aom_bit_depth_t bit_depth) { + const int q = av1_dc_quant(qindex, qdelta, bit_depth); +#if CONFIG_HIGHBITDEPTH + switch (bit_depth) { + case AOM_BITS_8: return 20 * q; + case AOM_BITS_10: return 5 * q; + case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } +#else + return 20 * q; +#endif // CONFIG_HIGHBITDEPTH +} -- cgit v1.2.3