From 68569dee1416593955c1570d638b3d9250b33012 Mon Sep 17 00:00:00 2001 From: trav90 Date: Mon, 15 Oct 2018 21:45:30 -0500 Subject: Import aom library This is the reference implementation for the Alliance for Open Media's av1 video code. The commit used was 4d668d7feb1f8abd809d1bca0418570a7f142a36. --- third_party/aom/av1/common/od_dering_simd.h | 390 ++++++++++++++++++++++++++++ 1 file changed, 390 insertions(+) create mode 100644 third_party/aom/av1/common/od_dering_simd.h (limited to 'third_party/aom/av1/common/od_dering_simd.h') diff --git a/third_party/aom/av1/common/od_dering_simd.h b/third_party/aom/av1/common/od_dering_simd.h new file mode 100644 index 000000000..4074e7e50 --- /dev/null +++ b/third_party/aom/av1/common/od_dering_simd.h @@ -0,0 +1,390 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "./av1_rtcd.h" +#include "./cdef_simd.h" +#include "./od_dering.h" + +/* partial A is a 16-bit vector of the form: + [x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form: + [0 y1 y2 y3 y4 y5 y6 y7]. + This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... + (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1 + and const2. */ +static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1, + v128 const2) { + v128 tmp; + /* Reverse partial B. */ + partialb = v128_shuffle_8( + partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c)); + /* Interleave the x and y values of identical indices and pair x8 with 0. */ + tmp = partiala; + partiala = v128_ziplo_16(partialb, partiala); + partialb = v128_ziphi_16(partialb, tmp); + /* Square and add the corresponding x and y values. */ + partiala = v128_madd_s16(partiala, partiala); + partialb = v128_madd_s16(partialb, partialb); + /* Multiply by constant. */ + partiala = v128_mullo_s32(partiala, const1); + partialb = v128_mullo_s32(partialb, const2); + /* Sum all results. */ + partiala = v128_add_32(partiala, partialb); + return partiala; +} + +static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) { + v128 t0, t1, t2, t3; + t0 = v128_ziplo_32(x1, x0); + t1 = v128_ziplo_32(x3, x2); + t2 = v128_ziphi_32(x1, x0); + t3 = v128_ziphi_32(x3, x2); + x0 = v128_ziplo_64(t1, t0); + x1 = v128_ziphi_64(t1, t0); + x2 = v128_ziplo_64(t3, t2); + x3 = v128_ziphi_64(t3, t2); + return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3)); +} + +/* Computes cost for directions 0, 5, 6 and 7. We can call this function again + to compute the remaining directions. */ +static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) { + v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; + v128 partial6; + v128 tmp; + /* Partial sums for lines 0 and 1. */ + partial4a = v128_shl_n_byte(lines[0], 14); + partial4b = v128_shr_n_byte(lines[0], 2); + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4)); + tmp = v128_add_16(lines[0], lines[1]); + partial5a = v128_shl_n_byte(tmp, 10); + partial5b = v128_shr_n_byte(tmp, 6); + partial7a = v128_shl_n_byte(tmp, 4); + partial7b = v128_shr_n_byte(tmp, 12); + partial6 = tmp; + + /* Partial sums for lines 2 and 3. */ + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6)); + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8)); + tmp = v128_add_16(lines[2], lines[3]); + partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8)); + partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8)); + partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6)); + partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10)); + partial6 = v128_add_16(partial6, tmp); + + /* Partial sums for lines 4 and 5. */ + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10)); + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12)); + tmp = v128_add_16(lines[4], lines[5]); + partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6)); + partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10)); + partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8)); + partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8)); + partial6 = v128_add_16(partial6, tmp); + + /* Partial sums for lines 6 and 7. */ + partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2)); + partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14)); + partial4a = v128_add_16(partial4a, lines[7]); + tmp = v128_add_16(lines[6], lines[7]); + partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4)); + partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12)); + partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10)); + partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6)); + partial6 = v128_add_16(partial6, tmp); + + /* Compute costs in terms of partial sums. */ + partial4a = + fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840), + v128_from_32(105, 120, 140, 168)); + partial7a = + fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0), + v128_from_32(105, 105, 105, 140)); + partial5a = + fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0), + v128_from_32(105, 105, 105, 140)); + partial6 = v128_madd_s16(partial6, partial6); + partial6 = v128_mullo_s32(partial6, v128_dup_32(105)); + + partial4a = hsum4(partial4a, partial5a, partial6, partial7a); + v128_store_unaligned(tmp_cost1, partial4a); + return partial4a; +} + +/* transpose and reverse the order of the lines -- equivalent to a 90-degree + counter-clockwise rotation of the pixels. */ +static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) { + const v128 tr0_0 = v128_ziplo_16(in[1], in[0]); + const v128 tr0_1 = v128_ziplo_16(in[3], in[2]); + const v128 tr0_2 = v128_ziphi_16(in[1], in[0]); + const v128 tr0_3 = v128_ziphi_16(in[3], in[2]); + const v128 tr0_4 = v128_ziplo_16(in[5], in[4]); + const v128 tr0_5 = v128_ziplo_16(in[7], in[6]); + const v128 tr0_6 = v128_ziphi_16(in[5], in[4]); + const v128 tr0_7 = v128_ziphi_16(in[7], in[6]); + + const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0); + const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4); + const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0); + const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4); + const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2); + const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6); + const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2); + const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6); + + res[7] = v128_ziplo_64(tr1_1, tr1_0); + res[6] = v128_ziphi_64(tr1_1, tr1_0); + res[5] = v128_ziplo_64(tr1_3, tr1_2); + res[4] = v128_ziphi_64(tr1_3, tr1_2); + res[3] = v128_ziplo_64(tr1_5, tr1_4); + res[2] = v128_ziphi_64(tr1_5, tr1_4); + res[1] = v128_ziplo_64(tr1_7, tr1_6); + res[0] = v128_ziphi_64(tr1_7, tr1_6); +} + +int SIMD_FUNC(od_dir_find8)(const od_dering_in *img, int stride, int32_t *var, + int coeff_shift) { + int i; + int32_t cost[8]; + int32_t best_cost = 0; + int best_dir = 0; + v128 lines[8]; + for (i = 0; i < 8; i++) { + lines[i] = v128_load_unaligned(&img[i * stride]); + lines[i] = + v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128)); + } + +#if defined(__SSE4_1__) + /* Compute "mostly vertical" directions. */ + __m128i dir47 = compute_directions(lines, cost + 4); + + array_reverse_transpose_8x8(lines, lines); + + /* Compute "mostly horizontal" directions. */ + __m128i dir03 = compute_directions(lines, cost); + + __m128i max = _mm_max_epi32(dir03, dir47); + max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(1, 0, 3, 2))); + max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(2, 3, 0, 1))); + best_cost = _mm_cvtsi128_si32(max); + __m128i t = + _mm_packs_epi32(_mm_cmpeq_epi32(max, dir03), _mm_cmpeq_epi32(max, dir47)); + best_dir = _mm_movemask_epi8(_mm_packs_epi16(t, t)); + best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros +#else + /* Compute "mostly vertical" directions. */ + compute_directions(lines, cost + 4); + + array_reverse_transpose_8x8(lines, lines); + + /* Compute "mostly horizontal" directions. */ + compute_directions(lines, cost); + + for (i = 0; i < 8; i++) { + if (cost[i] > best_cost) { + best_cost = cost[i]; + best_dir = i; + } + } +#endif + + /* Difference between the optimal variance and the variance along the + orthogonal direction. Again, the sum(x^2) terms cancel out. */ + *var = best_cost - cost[(best_dir + 4) & 7]; + /* We'd normally divide by 840, but dividing by 1024 is close enough + for what we're going to do with this. */ + *var >>= 10; + return best_dir; +} + +void SIMD_FUNC(od_filter_dering_direction_4x4)(uint16_t *y, int ystride, + const uint16_t *in, + int threshold, int dir, + int damping) { + int i; + v128 p0, p1, sum, row, res; + int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0]; + int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1]; + + if (threshold) damping -= get_msb(threshold); + for (i = 0; i < 4; i += 2) { + sum = v128_zero(); + row = v128_from_v64(v64_load_aligned(&in[i * OD_FILT_BSTRIDE]), + v64_load_aligned(&in[(i + 1) * OD_FILT_BSTRIDE])); + + // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) + p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]), + v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o1])); + p0 = constrain16(p0, row, threshold, damping); + + // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) + p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]), + v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o1])); + p1 = constrain16(p1, row, threshold, damping); + + // sum += 4 * (p0 + p1) + sum = v128_add_16(sum, v128_shl_n_16(v128_add_16(p0, p1), 2)); + + // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) + p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]), + v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o2])); + p0 = constrain16(p0, row, threshold, damping); + + // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) + p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]), + v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o2])); + p1 = constrain16(p1, row, threshold, damping); + + // sum += 1 * (p0 + p1) + sum = v128_add_16(sum, v128_add_16(p0, p1)); + + // res = row + ((sum + 8) >> 4) + res = v128_add_16(sum, v128_dup_16(8)); + res = v128_shr_n_s16(res, 4); + res = v128_add_16(row, res); + v64_store_aligned(&y[i * ystride], v128_high_v64(res)); + v64_store_aligned(&y[(i + 1) * ystride], v128_low_v64(res)); + } +} + +void SIMD_FUNC(od_filter_dering_direction_8x8)(uint16_t *y, int ystride, + const uint16_t *in, + int threshold, int dir, + int damping) { + int i; + v128 sum, p0, p1, row, res; + int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0]; + int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1]; + int o3 = OD_DIRECTION_OFFSETS_TABLE[dir][2]; + + if (threshold) damping -= get_msb(threshold); + for (i = 0; i < 8; i++) { + sum = v128_zero(); + row = v128_load_aligned(&in[i * OD_FILT_BSTRIDE]); + + // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) + p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]); + p0 = constrain16(p0, row, threshold, damping); + + // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) + p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]); + p1 = constrain16(p1, row, threshold, damping); + + // sum += 3 * (p0 + p1) + p0 = v128_add_16(p0, p1); + p0 = v128_add_16(p0, v128_shl_n_16(p0, 1)); + sum = v128_add_16(sum, p0); + + // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) + p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]); + p0 = constrain16(p0, row, threshold, damping); + + // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) + p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]); + p1 = constrain16(p1, row, threshold, damping); + + // sum += 2 * (p0 + p1) + p0 = v128_shl_n_16(v128_add_16(p0, p1), 1); + sum = v128_add_16(sum, p0); + + // p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping) + p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o3]); + p0 = constrain16(p0, row, threshold, damping); + + // p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping) + p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o3]); + p1 = constrain16(p1, row, threshold, damping); + + // sum += (p0 + p1) + p0 = v128_add_16(p0, p1); + sum = v128_add_16(sum, p0); + + // res = row + ((sum + 8) >> 4) + res = v128_add_16(sum, v128_dup_16(8)); + res = v128_shr_n_s16(res, 4); + res = v128_add_16(row, res); + v128_store_unaligned(&y[i * ystride], res); + } +} + +void SIMD_FUNC(copy_8x8_16bit_to_8bit)(uint8_t *dst, int dstride, + const uint16_t *src, int sstride) { + int i; + for (i = 0; i < 8; i++) { + v128 row = v128_load_unaligned(&src[i * sstride]); + row = v128_pack_s16_u8(row, row); + v64_store_unaligned(&dst[i * dstride], v128_low_v64(row)); + } +} + +void SIMD_FUNC(copy_4x4_16bit_to_8bit)(uint8_t *dst, int dstride, + const uint16_t *src, int sstride) { + int i; + for (i = 0; i < 4; i++) { + v128 row = v128_load_unaligned(&src[i * sstride]); + row = v128_pack_s16_u8(row, row); + u32_store_unaligned(&dst[i * dstride], v128_low_u32(row)); + } +} + +void SIMD_FUNC(copy_8x8_16bit_to_16bit)(uint16_t *dst, int dstride, + const uint16_t *src, int sstride) { + int i; + for (i = 0; i < 8; i++) { + v128 row = v128_load_unaligned(&src[i * sstride]); + v128_store_unaligned(&dst[i * dstride], row); + } +} + +void SIMD_FUNC(copy_4x4_16bit_to_16bit)(uint16_t *dst, int dstride, + const uint16_t *src, int sstride) { + int i; + for (i = 0; i < 4; i++) { + v64 row = v64_load_unaligned(&src[i * sstride]); + v64_store_unaligned(&dst[i * dstride], row); + } +} + +void SIMD_FUNC(copy_rect8_8bit_to_16bit)(uint16_t *dst, int dstride, + const uint8_t *src, int sstride, int v, + int h) { + int i, j; + for (i = 0; i < v; i++) { + for (j = 0; j < (h & ~0x7); j += 8) { + v64 row = v64_load_unaligned(&src[i * sstride + j]); + v128_store_unaligned(&dst[i * dstride + j], v128_unpack_u8_s16(row)); + } + for (; j < h; j++) { + dst[i * dstride + j] = src[i * sstride + j]; + } + } +} + +void SIMD_FUNC(copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride, + const uint16_t *src, int sstride, + int v, int h) { + int i, j; + for (i = 0; i < v; i++) { + for (j = 0; j < (h & ~0x7); j += 8) { + v128 row = v128_load_unaligned(&src[i * sstride + j]); + v128_store_unaligned(&dst[i * dstride + j], row); + } + for (; j < h; j++) { + dst[i * dstride + j] = src[i * sstride + j]; + } + } +} -- cgit v1.2.3