From f83f62e1bff0c2aedc32e67fe369ba923c5b104a Mon Sep 17 00:00:00 2001 From: JustOff Date: Sat, 9 Jun 2018 15:11:22 +0300 Subject: Update NSS to 3.36.4-RTM --- security/nss/automation/saw/chacha20.cry | 357 +++++++++++++++++++++++++++++++ 1 file changed, 357 insertions(+) create mode 100644 security/nss/automation/saw/chacha20.cry (limited to 'security/nss/automation/saw/chacha20.cry') diff --git a/security/nss/automation/saw/chacha20.cry b/security/nss/automation/saw/chacha20.cry new file mode 100644 index 000000000..0b52d51ad --- /dev/null +++ b/security/nss/automation/saw/chacha20.cry @@ -0,0 +1,357 @@ +/* +** ChaCha20 specification +** Author: Austin Seipp . Released in the Public Domain. +** +** Based on RFC 7539 - "ChaCha20 and Poly1305 for IETF Protocols" +** https://tools.ietf.org/html/rfc7539 +*/ +module chacha20 where + +/* -------------------------------------------------------------------------- */ +/* -- Implementation -------------------------------------------------------- */ + +type Round = [16][32] // An input to the ChaCha20 core function +type Block = [64][8] // An output block from the ChaCha20 core function. +type Key = [32][8] // A 32-byte input key +type Nonce = [12][8] // A 12-byte nonce +type Counter = [32] // Starting block counter. Usually 1 or 0. + +/* ---------------------------------- */ +/* -- Quarter Round ----------------- */ + +// The quarter round. This takes 4 32-bit integers and diffuses them +// appropriately, and is the core of the column and diagonal round. +qround : [4][32] -> [4][32] +qround [ a0, b0, c0, d0 ] = [ a2, b4, c2, d4 ] + where + a1 = a0 + b0 /* a += b; d ^= a; d <<<= 16 */ + d1 = d0 ^ a1 + d2 = d1 <<< 16 + + c1 = c0 + d2 /* c += d; b ^= c; b <<<= 12 */ + b1 = b0 ^ c1 + b2 = b1 <<< 12 + + a2 = a1 + b2 /* a += b; d ^= a; d <<<= 8 */ + d3 = d2 ^ a2 + d4 = d3 <<< 8 + + c2 = c1 + d4 /* c += d; b ^= c; b <<<= 7 */ + b3 = b2 ^ c2 + b4 = b3 <<< 7 + + +/* ---------------------------------- */ +/* -- Column and diagonal rounds ---- */ + +// Perform the column round, followed by the diagonal round on the +// input state, which are both defined in terms of the quarter +// round. ChaCha20 requires 20 total rounds of interleaving +// column/diagonal passes on the state, and therefore `cdround` actually +// does two passes at once (mostly for simplicity). +cdround : Round -> Round +cdround [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ] + = [ z0, z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15 ] + where + // Column round + [ y0, y4, y8, y12 ] = qround [ x0, x4, x8, x12 ] + [ y1, y5, y9, y13 ] = qround [ x1, x5, x9, x13 ] + [ y2, y6, y10, y14 ] = qround [ x2, x6, x10, x14 ] + [ y3, y7, y11, y15 ] = qround [ x3, x7, x11, x15 ] + + // Diagonal round + [ z0, z5, z10, z15 ] = qround [ y0, y5, y10, y15 ] + [ z1, z6, z11, z12 ] = qround [ y1, y6, y11, y12 ] + [ z2, z7, z8, z13 ] = qround [ y2, y7, y8, y13 ] + [ z3, z4, z9, z14 ] = qround [ y3, y4, y9, y14 ] + + +/* ---------------------------------- */ +/* -- Block encryption -------------- */ + +// Given an input round, calculate the core ChaCha20 algorithm over +// the round and return an output block. These output blocks form the +// stream which you XOR your plaintext with, and successive iterations of +// the core algorithm result in an infinite stream you can use as a +// cipher. +core : Round -> Block +core x = block + where + rounds = iterate cdround x // Do a bunch of column/diagonal passes... + result = rounds @ 10 // And grab the 10th result (20 total passes) + block = blocked (x + result) // Add to input, convert to output block + + +/* ---------------------------------- */ +/* -- Key Expansion ----------------- */ + +// Key expansion. Given a nonce and a key, compute a round (which is +// fed to the core algorithm above) by taking the initial round state and +// mixing in the key and nonce appropriately. +kexp : Key -> Counter -> Nonce -> Round +kexp k c n = [ c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ] + where + // The following describes the layout of the output round, which + // is fed into the core algorithm successively. + + // Bytes 0-3: Constants + [ c0, c1, c2, c3 ] = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 ] + + // Bytes 4-11: Key + [ c4, c5, c6, c7 ] = map rjoin (groupBy`{4} kslice1 : [4][4][8]) : [4][32] + [ c8, c9, c10, c11 ] = map rjoin (groupBy`{4} kslice2 : [4][4][8]) : [4][32] + kslice1 = k @@ ([ 0 .. 15 ] : [16][32]) // Top half + kslice2 = k @@ ([ 16 .. 31 ] : [16][32]) // Bottom half + + // Bytes 12: Counter, starts off with whatever the user specified + // (usually 0 or 1) + [ c12 ] = [ c ] + + // Bytes 14-15: Nonce + [ c13, c14, c15 ] = map rjoin (groupBy`{4} n) + + +/* ---------------------------------- */ +/* -- Round increments -------------- */ + +// Take a given number of iterations and the input round (after key +// expansion!), and calculate the input round for the core algorithm +// function. This allows you to index into a particular Round which +// can be passed to the 'core' function. +iround : [64] -> Round -> Round +iround n r = (iterate once r) @ n where + // Given a round, increment the counter inside (index no 12) + once [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ] + = [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12+1, x13, x14, x15 ] + +/* ---------------------------------- */ +/* -- ChaCha20 encryption ----------- */ + +// Produce a psuedo-random stream given a nonce and a key, which can +// be XOR'd with your data to encrypt it. +stream : {n} (fin n) => Key -> Counter -> Nonce -> [n][8] +stream k c n = take`{n} (join rounds) // Take n bytes from the final result + where + // Expand key + key = kexp k c n + + // Produce the stream by successively incrementing the input round + // by `i`, and running the core algorithm to get the resulting + // stream for the `i`th input. Once these are concatenated, you have + // an infinite list representing the ChaCha20 stream. + rounds = [ core (iround i key) | i <- [ 0, 1 ... ] ] + + +// Given an message, a nonce, and a key, produce an encrypted +// message. This is simply defined as the XOR of the message and the +// corresponding encryption stream. +encrypt : {n} (fin n) => Key -> Counter -> Nonce -> [n][8] -> [n][8] +encrypt k c n m = m ^ (stream k c n) + +/* -------------------------------------------------------------------------- */ +/* -- Theorems, tests ------------------------------------------------------- */ + +// Tests are private +private + qround01 = qround in == out + where + in = [ 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 ] + out = [ 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb ] + + core01 = kexp k 1 n == out + where + n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, + 0x00, 0x00, 0x00, 0x00 ] + k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ] + out = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574, + 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c, + 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c, + 0x00000001, 0x09000000, 0x4a000000, 0x00000000 ] + + core02 = core (kexp k 1 n) == out + where + n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, + 0x00, 0x00, 0x00, 0x00 ] + k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ] + out = [ 0x10, 0xf1, 0xe7, 0xe4, 0xd1, 0x3b, 0x59, 0x15, + 0x50, 0x0f, 0xdd, 0x1f, 0xa3, 0x20, 0x71, 0xc4, + 0xc7, 0xd1, 0xf4, 0xc7, 0x33, 0xc0, 0x68, 0x03, + 0x04, 0x22, 0xaa, 0x9a, 0xc3, 0xd4, 0x6c, 0x4e, + 0xd2, 0x82, 0x64, 0x46, 0x07, 0x9f, 0xaa, 0x09, + 0x14, 0xc2, 0xd7, 0x05, 0xd9, 0x8b, 0x02, 0xa2, + 0xb5, 0x12, 0x9c, 0xd1, 0xde, 0x16, 0x4e, 0xb9, + 0xcb, 0xd0, 0x83, 0xe8, 0xa2, 0x50, 0x3c, 0x4e ] + + rfctest01 = encrypt zero zero zero zero + == [ 0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, 0x40, 0x5d, + 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, 0xbd, 0xd2, 0x19, 0xb8, + 0xa0, 0x8d, 0xed, 0x1a, 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, + 0x0d, 0xc7, 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d, + 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, 0x6a, 0x43, + 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, 0xc3, 0x87, 0xb6, 0x69, + 0xb2, 0xee, 0x65, 0x86 ] + + rfctest02 = encrypt (zero # [1]) 1 (zero # [2]) msg == out + where + out = [ 0xa3, 0xfb, 0xf0, 0x7d, 0xf3, 0xfa, 0x2f, 0xde, 0x4f, 0x37, + 0x6c, 0xa2, 0x3e, 0x82, 0x73, 0x70, 0x41, 0x60, 0x5d, 0x9f, + 0x4f, 0x4f, 0x57, 0xbd, 0x8c, 0xff, 0x2c, 0x1d, 0x4b, 0x79, + 0x55, 0xec, 0x2a, 0x97, 0x94, 0x8b, 0xd3, 0x72, 0x29, 0x15, + 0xc8, 0xf3, 0xd3, 0x37, 0xf7, 0xd3, 0x70, 0x05, 0x0e, 0x9e, + 0x96, 0xd6, 0x47, 0xb7, 0xc3, 0x9f, 0x56, 0xe0, 0x31, 0xca, + 0x5e, 0xb6, 0x25, 0x0d, 0x40, 0x42, 0xe0, 0x27, 0x85, 0xec, + 0xec, 0xfa, 0x4b, 0x4b, 0xb5, 0xe8, 0xea, 0xd0, 0x44, 0x0e, + 0x20, 0xb6, 0xe8, 0xdb, 0x09, 0xd8, 0x81, 0xa7, 0xc6, 0x13, + 0x2f, 0x42, 0x0e, 0x52, 0x79, 0x50, 0x42, 0xbd, 0xfa, 0x77, + 0x73, 0xd8, 0xa9, 0x05, 0x14, 0x47, 0xb3, 0x29, 0x1c, 0xe1, + 0x41, 0x1c, 0x68, 0x04, 0x65, 0x55, 0x2a, 0xa6, 0xc4, 0x05, + 0xb7, 0x76, 0x4d, 0x5e, 0x87, 0xbe, 0xa8, 0x5a, 0xd0, 0x0f, + 0x84, 0x49, 0xed, 0x8f, 0x72, 0xd0, 0xd6, 0x62, 0xab, 0x05, + 0x26, 0x91, 0xca, 0x66, 0x42, 0x4b, 0xc8, 0x6d, 0x2d, 0xf8, + 0x0e, 0xa4, 0x1f, 0x43, 0xab, 0xf9, 0x37, 0xd3, 0x25, 0x9d, + 0xc4, 0xb2, 0xd0, 0xdf, 0xb4, 0x8a, 0x6c, 0x91, 0x39, 0xdd, + 0xd7, 0xf7, 0x69, 0x66, 0xe9, 0x28, 0xe6, 0x35, 0x55, 0x3b, + 0xa7, 0x6c, 0x5c, 0x87, 0x9d, 0x7b, 0x35, 0xd4, 0x9e, 0xb2, + 0xe6, 0x2b, 0x08, 0x71, 0xcd, 0xac, 0x63, 0x89, 0x39, 0xe2, + 0x5e, 0x8a, 0x1e, 0x0e, 0xf9, 0xd5, 0x28, 0x0f, 0xa8, 0xca, + 0x32, 0x8b, 0x35, 0x1c, 0x3c, 0x76, 0x59, 0x89, 0xcb, 0xcf, + 0x3d, 0xaa, 0x8b, 0x6c, 0xcc, 0x3a, 0xaf, 0x9f, 0x39, 0x79, + 0xc9, 0x2b, 0x37, 0x20, 0xfc, 0x88, 0xdc, 0x95, 0xed, 0x84, + 0xa1, 0xbe, 0x05, 0x9c, 0x64, 0x99, 0xb9, 0xfd, 0xa2, 0x36, + 0xe7, 0xe8, 0x18, 0xb0, 0x4b, 0x0b, 0xc3, 0x9c, 0x1e, 0x87, + 0x6b, 0x19, 0x3b, 0xfe, 0x55, 0x69, 0x75, 0x3f, 0x88, 0x12, + 0x8c, 0xc0, 0x8a, 0xaa, 0x9b, 0x63, 0xd1, 0xa1, 0x6f, 0x80, + 0xef, 0x25, 0x54, 0xd7, 0x18, 0x9c, 0x41, 0x1f, 0x58, 0x69, + 0xca, 0x52, 0xc5, 0xb8, 0x3f, 0xa3, 0x6f, 0xf2, 0x16, 0xb9, + 0xc1, 0xd3, 0x00, 0x62, 0xbe, 0xbc, 0xfd, 0x2d, 0xc5, 0xbc, + 0xe0, 0x91, 0x19, 0x34, 0xfd, 0xa7, 0x9a, 0x86, 0xf6, 0xe6, + 0x98, 0xce, 0xd7, 0x59, 0xc3, 0xff, 0x9b, 0x64, 0x77, 0x33, + 0x8f, 0x3d, 0xa4, 0xf9, 0xcd, 0x85, 0x14, 0xea, 0x99, 0x82, + 0xcc, 0xaf, 0xb3, 0x41, 0xb2, 0x38, 0x4d, 0xd9, 0x02, 0xf3, + 0xd1, 0xab, 0x7a, 0xc6, 0x1d, 0xd2, 0x9c, 0x6f, 0x21, 0xba, + 0x5b, 0x86, 0x2f, 0x37, 0x30, 0xe3, 0x7c, 0xfd, 0xc4, 0xfd, + 0x80, 0x6c, 0x22, 0xf2, 0x21 ] + + msg = [ 0x41, 0x6e, 0x79, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, + 0x65, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x69, 0x6e, 0x74, + 0x65, 0x6e, 0x64, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x74, + 0x68, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69, 0x62, + 0x75, 0x74, 0x6f, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, + 0x75, 0x62, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, + 0x20, 0x61, 0x73, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x6f, 0x72, + 0x20, 0x70, 0x61, 0x72, 0x74, 0x20, 0x6f, 0x66, 0x20, 0x61, + 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x49, 0x6e, 0x74, + 0x65, 0x72, 0x6e, 0x65, 0x74, 0x2d, 0x44, 0x72, 0x61, 0x66, + 0x74, 0x20, 0x6f, 0x72, 0x20, 0x52, 0x46, 0x43, 0x20, 0x61, + 0x6e, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x73, 0x74, 0x61, + 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x20, 0x6d, 0x61, 0x64, + 0x65, 0x20, 0x77, 0x69, 0x74, 0x68, 0x69, 0x6e, 0x20, 0x74, + 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, + 0x20, 0x6f, 0x66, 0x20, 0x61, 0x6e, 0x20, 0x49, 0x45, 0x54, + 0x46, 0x20, 0x61, 0x63, 0x74, 0x69, 0x76, 0x69, 0x74, 0x79, + 0x20, 0x69, 0x73, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x69, 0x64, + 0x65, 0x72, 0x65, 0x64, 0x20, 0x61, 0x6e, 0x20, 0x22, 0x49, + 0x45, 0x54, 0x46, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69, + 0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2e, 0x20, 0x53, + 0x75, 0x63, 0x68, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x6d, + 0x65, 0x6e, 0x74, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6c, 0x75, + 0x64, 0x65, 0x20, 0x6f, 0x72, 0x61, 0x6c, 0x20, 0x73, 0x74, + 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x69, + 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x73, 0x65, 0x73, + 0x73, 0x69, 0x6f, 0x6e, 0x73, 0x2c, 0x20, 0x61, 0x73, 0x20, + 0x77, 0x65, 0x6c, 0x6c, 0x20, 0x61, 0x73, 0x20, 0x77, 0x72, + 0x69, 0x74, 0x74, 0x65, 0x6e, 0x20, 0x61, 0x6e, 0x64, 0x20, + 0x65, 0x6c, 0x65, 0x63, 0x74, 0x72, 0x6f, 0x6e, 0x69, 0x63, + 0x20, 0x63, 0x6f, 0x6d, 0x6d, 0x75, 0x6e, 0x69, 0x63, 0x61, + 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x64, 0x65, + 0x20, 0x61, 0x74, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x74, 0x69, + 0x6d, 0x65, 0x20, 0x6f, 0x72, 0x20, 0x70, 0x6c, 0x61, 0x63, + 0x65, 0x2c, 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x61, + 0x72, 0x65, 0x20, 0x61, 0x64, 0x64, 0x72, 0x65, 0x73, 0x73, + 0x65, 0x64, 0x20, 0x74, 0x6f ] + + rfctest03 = encrypt key 42 (zero # [2]) msg == out + where + key = [ 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a, 0xf3, 0x33, + 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0, 0x47, 0x39, 0x17, 0xc1, + 0x40, 0x2b, 0x80, 0x09, 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, + 0x75, 0xc0 ] + out = [ 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72, 0x69, 0x6c, + 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x74, + 0x68, 0x65, 0x20, 0x73, 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, + 0x74, 0x6f, 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20, + 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x67, + 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x74, + 0x68, 0x65, 0x20, 0x77, 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, + 0x6c, 0x6c, 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77, + 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x62, 0x6f, + 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65, 0x73, 0x2c, 0x0a, 0x41, + 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, + 0x65, 0x20, 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75, + 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e ] + + msg = [ 0x62, 0xe6, 0x34, 0x7f, 0x95, 0xed, 0x87, 0xa4, 0x5f, 0xfa, + 0xe7, 0x42, 0x6f, 0x27, 0xa1, 0xdf, 0x5f, 0xb6, 0x91, 0x10, + 0x04, 0x4c, 0x0d, 0x73, 0x11, 0x8e, 0xff, 0xa9, 0x5b, 0x01, + 0xe5, 0xcf, 0x16, 0x6d, 0x3d, 0xf2, 0xd7, 0x21, 0xca, 0xf9, + 0xb2, 0x1e, 0x5f, 0xb1, 0x4c, 0x61, 0x68, 0x71, 0xfd, 0x84, + 0xc5, 0x4f, 0x9d, 0x65, 0xb2, 0x83, 0x19, 0x6c, 0x7f, 0xe4, + 0xf6, 0x05, 0x53, 0xeb, 0xf3, 0x9c, 0x64, 0x02, 0xc4, 0x22, + 0x34, 0xe3, 0x2a, 0x35, 0x6b, 0x3e, 0x76, 0x43, 0x12, 0xa6, + 0x1a, 0x55, 0x32, 0x05, 0x57, 0x16, 0xea, 0xd6, 0x96, 0x25, + 0x68, 0xf8, 0x7d, 0x3f, 0x3f, 0x77, 0x04, 0xc6, 0xa8, 0xd1, + 0xbc, 0xd1, 0xbf, 0x4d, 0x50, 0xd6, 0x15, 0x4b, 0x6d, 0xa7, + 0x31, 0xb1, 0x87, 0xb5, 0x8d, 0xfd, 0x72, 0x8a, 0xfa, 0x36, + 0x75, 0x7a, 0x79, 0x7a, 0xc1, 0x88, 0xd1 ] + +property allTestsPass = + ([ // Basic tests + qround01, core01, core02 + // Full RFC test vectors + , rfctest01, rfctest02, rfctest03 + ] : [_]Bit) == ~zero // All test bits should equal one + +/* -------------------------------------------------------------------------- */ +/* -- Private utilities ----------------------------------------------------- */ + +private + // Convert a round into a block, by splitting every 32-bit round entry + // into 4 bytes, and then serialize those values into a full block. + blocked : Round -> Block + blocked x = join (map toBytes x) + where + // This essentially splits a 32-bit number into 4-byte + // little-endian form, where 'rjoin' is the inverse and would merge + // 4 bytes as a 32-bit little endian number. + toBytes : [32] -> [4][8] + toBytes v = reverse (groupBy`{8} v) + + // Map a function over a finite list. + map : { a, b, c } + (a -> b) -> [c]a -> [c]b + map f xs = [ f x | x <- xs ] + + // Map a function iteratively over a seed value, producing an infinite + // list of successive function applications: + // + // iterate f 0 == [ 0, f 0, f (f 0), f (f (f 0)), ... ] + iterate : { a } (a -> a) -> a -> [inf]a + iterate f x = [x] # [ f v | v <- iterate f x ] + where + // NB: Needs a binded name in order to tie the recursive knot. + xs = [x] # [ f v | v <- xs ] + + // rjoin = join . reverse + // This encodes a sequence of values as a little endian number + // e.g. [ 0xaa, 0xbb, 0xcc, 0xdd ] is serialized as \xdd\xcc\xbb\xaa + rjoin : {a, b, c} + ( fin a, fin c + ) => [c][a]b -> [a * c]b + rjoin x = join (reverse x) -- cgit v1.2.3