From 5f8de423f190bbb79a62f804151bc24824fa32d8 Mon Sep 17 00:00:00 2001 From: "Matt A. Tobin" Date: Fri, 2 Feb 2018 04:16:08 -0500 Subject: Add m-esr52 at 52.6.0 --- mfbt/Move.h | 238 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 238 insertions(+) create mode 100644 mfbt/Move.h (limited to 'mfbt/Move.h') diff --git a/mfbt/Move.h b/mfbt/Move.h new file mode 100644 index 000000000..f6d0bfc1c --- /dev/null +++ b/mfbt/Move.h @@ -0,0 +1,238 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* C++11-style, but C++98-usable, "move references" implementation. */ + +#ifndef mozilla_Move_h +#define mozilla_Move_h + +#include "mozilla/TypeTraits.h" + +namespace mozilla { + +/* + * "Move" References + * + * Some types can be copied much more efficiently if we know the original's + * value need not be preserved --- that is, if we are doing a "move", not a + * "copy". For example, if we have: + * + * Vector u; + * Vector v(u); + * + * the constructor for v must apply a copy constructor to each element of u --- + * taking time linear in the length of u. However, if we know we will not need u + * any more once v has been initialized, then we could initialize v very + * efficiently simply by stealing u's dynamically allocated buffer and giving it + * to v --- a constant-time operation, regardless of the size of u. + * + * Moves often appear in container implementations. For example, when we append + * to a vector, we may need to resize its buffer. This entails moving each of + * its extant elements from the old, smaller buffer to the new, larger buffer. + * But once the elements have been migrated, we're just going to throw away the + * old buffer; we don't care if they still have their values. So if the vector's + * element type can implement "move" more efficiently than "copy", the vector + * resizing should by all means use a "move" operation. Hash tables should also + * use moves when resizing their internal array as entries are added and + * removed. + * + * The details of the optimization, and whether it's worth applying, vary + * from one type to the next: copying an 'int' is as cheap as moving it, so + * there's no benefit in distinguishing 'int' moves from copies. And while + * some constructor calls for complex types are moves, many really have to + * be copies, and can't be optimized this way. So we need: + * + * 1) a way for a type (like Vector) to announce that it can be moved more + * efficiently than it can be copied, and provide an implementation of that + * move operation; and + * + * 2) a way for a particular invocation of a copy constructor to say that it's + * really a move, not a copy, and that the value of the original isn't + * important afterwards (although it must still be safe to destroy). + * + * If a constructor has a single argument of type 'T&&' (an 'rvalue reference + * to T'), that indicates that it is a 'move constructor'. That's 1). It should + * move, not copy, its argument into the object being constructed. It may leave + * the original in any safely-destructible state. + * + * If a constructor's argument is an rvalue, as in 'C(f(x))' or 'C(x + y)', as + * opposed to an lvalue, as in 'C(x)', then overload resolution will prefer the + * move constructor, if there is one. The 'mozilla::Move' function, defined in + * this file, is an identity function you can use in a constructor invocation to + * make any argument into an rvalue, like this: C(Move(x)). That's 2). (You + * could use any function that works, but 'Move' indicates your intention + * clearly.) + * + * Where we might define a copy constructor for a class C like this: + * + * C(const C& rhs) { ... copy rhs to this ... } + * + * we would declare a move constructor like this: + * + * C(C&& rhs) { .. move rhs to this ... } + * + * And where we might perform a copy like this: + * + * C c2(c1); + * + * we would perform a move like this: + * + * C c2(Move(c1)); + * + * Note that 'T&&' implicitly converts to 'T&'. So you can pass a 'T&&' to an + * ordinary copy constructor for a type that doesn't support a special move + * constructor, and you'll just get a copy. This means that templates can use + * Move whenever they know they won't use the original value any more, even if + * they're not sure whether the type at hand has a specialized move constructor. + * If it doesn't, the 'T&&' will just convert to a 'T&', and the ordinary copy + * constructor will apply. + * + * A class with a move constructor can also provide a move assignment operator. + * A generic definition would run this's destructor, and then apply the move + * constructor to *this's memory. A typical definition: + * + * C& operator=(C&& rhs) { + * MOZ_ASSERT(&rhs != this, "self-moves are prohibited"); + * this->~C(); + * new(this) C(Move(rhs)); + * return *this; + * } + * + * With that in place, one can write move assignments like this: + * + * c2 = Move(c1); + * + * This destroys c2, moves c1's value to c2, and leaves c1 in an undefined but + * destructible state. + * + * As we say, a move must leave the original in a "destructible" state. The + * original's destructor will still be called, so if a move doesn't + * actually steal all its resources, that's fine. We require only that the + * move destination must take on the original's value; and that destructing + * the original must not break the move destination. + * + * (Opinions differ on whether move assignment operators should deal with move + * assignment of an object onto itself. It seems wise to either handle that + * case, or assert that it does not occur.) + * + * Forwarding: + * + * Sometimes we want copy construction or assignment if we're passed an ordinary + * value, but move construction if passed an rvalue reference. For example, if + * our constructor takes two arguments and either could usefully be a move, it + * seems silly to write out all four combinations: + * + * C::C(X& x, Y& y) : x(x), y(y) { } + * C::C(X& x, Y&& y) : x(x), y(Move(y)) { } + * C::C(X&& x, Y& y) : x(Move(x)), y(y) { } + * C::C(X&& x, Y&& y) : x(Move(x)), y(Move(y)) { } + * + * To avoid this, C++11 has tweaks to make it possible to write what you mean. + * The four constructor overloads above can be written as one constructor + * template like so[0]: + * + * template + * C::C(XArg&& x, YArg&& y) : x(Forward(x)), y(Forward(y)) { } + * + * ("'Don't Repeat Yourself'? What's that?") + * + * This takes advantage of two new rules in C++11: + * + * - First, when a function template takes an argument that is an rvalue + * reference to a template argument (like 'XArg&& x' and 'YArg&& y' above), + * then when the argument is applied to an lvalue, the template argument + * resolves to 'T&'; and when it is applied to an rvalue, the template + * argument resolves to 'T'. Thus, in a call to C::C like: + * + * X foo(int); + * Y yy; + * + * C(foo(5), yy) + * + * XArg would resolve to 'X', and YArg would resolve to 'Y&'. + * + * - Second, Whereas C++ used to forbid references to references, C++11 defines + * 'collapsing rules': 'T& &', 'T&& &', and 'T& &&' (that is, any combination + * involving an lvalue reference) now collapse to simply 'T&'; and 'T&& &&' + * collapses to 'T&&'. + * + * Thus, in the call above, 'XArg&&' is 'X&&'; and 'YArg&&' is 'Y& &&', which + * collapses to 'Y&'. Because the arguments are declared as rvalue references + * to template arguments, the lvalue-ness "shines through" where present. + * + * Then, the 'Forward' function --- you must invoke 'Forward' with its type + * argument --- returns an lvalue reference or an rvalue reference to its + * argument, depending on what T is. In our unified constructor definition, that + * means that we'll invoke either the copy or move constructors for x and y, + * depending on what we gave C's constructor. In our call, we'll move 'foo()' + * into 'x', but copy 'yy' into 'y'. + * + * This header file defines Move and Forward in the mozilla namespace. It's up + * to individual containers to annotate moves as such, by calling Move; and it's + * up to individual types to define move constructors and assignment operators + * when valuable. + * + * (C++11 says that the header file should define 'std::move' and + * 'std::forward', which are just like our 'Move' and 'Forward'; but those + * definitions aren't available in that header on all our platforms, so we + * define them ourselves here.) + * + * 0. This pattern is known as "perfect forwarding". Interestingly, it is not + * actually perfect, and it can't forward all possible argument expressions! + * There is a C++11 issue: you can't form a reference to a bit-field. As a + * workaround, assign the bit-field to a local variable and use that: + * + * // C is as above + * struct S { int x : 1; } s; + * C(s.x, 0); // BAD: s.x is a reference to a bit-field, can't form those + * int tmp = s.x; + * C(tmp, 0); // OK: tmp not a bit-field + */ + +/** + * Identical to std::Move(); this is necessary until our stlport supports + * std::move(). + */ +template +inline typename RemoveReference::Type&& +Move(T&& aX) +{ + return static_cast::Type&&>(aX); +} + +/** + * These two overloads are identical to std::forward(); they are necessary until + * our stlport supports std::forward(). + */ +template +inline T&& +Forward(typename RemoveReference::Type& aX) +{ + return static_cast(aX); +} + +template +inline T&& +Forward(typename RemoveReference::Type&& aX) +{ + static_assert(!IsLvalueReference::value, + "misuse of Forward detected! try the other overload"); + return static_cast(aX); +} + +/** Swap |aX| and |aY| using move-construction if possible. */ +template +inline void +Swap(T& aX, T& aY) +{ + T tmp(Move(aX)); + aX = Move(aY); + aY = Move(tmp); +} + +} // namespace mozilla + +#endif /* mozilla_Move_h */ -- cgit v1.2.3