From 5f8de423f190bbb79a62f804151bc24824fa32d8 Mon Sep 17 00:00:00 2001 From: "Matt A. Tobin" Date: Fri, 2 Feb 2018 04:16:08 -0500 Subject: Add m-esr52 at 52.6.0 --- gfx/2d/convolverSSE2.cpp | 471 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 471 insertions(+) create mode 100644 gfx/2d/convolverSSE2.cpp (limited to 'gfx/2d/convolverSSE2.cpp') diff --git a/gfx/2d/convolverSSE2.cpp b/gfx/2d/convolverSSE2.cpp new file mode 100644 index 000000000..20ddd45f1 --- /dev/null +++ b/gfx/2d/convolverSSE2.cpp @@ -0,0 +1,471 @@ +// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in +// the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google, Inc. nor the names of its contributors +// may be used to endorse or promote products derived from this +// software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS +// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED +// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT +// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +// SUCH DAMAGE. + +#include "convolver.h" +#include +#include "skia/include/core/SkTypes.h" + +#include // ARCH_CPU_X86_FAMILY was defined in build/config.h + +namespace skia { + +// Convolves horizontally along a single row. The row data is given in +// |src_data| and continues for the num_values() of the filter. +void ConvolveHorizontally_SSE2(const unsigned char* src_data, + const ConvolutionFilter1D& filter, + unsigned char* out_row) { + int num_values = filter.num_values(); + + int filter_offset, filter_length; + __m128i zero = _mm_setzero_si128(); + __m128i mask[4]; + // |mask| will be used to decimate all extra filter coefficients that are + // loaded by SIMD when |filter_length| is not divisible by 4. + // mask[0] is not used in following algorithm. + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); + + // Output one pixel each iteration, calculating all channels (RGBA) together. + for (int out_x = 0; out_x < num_values; out_x++) { + const ConvolutionFilter1D::Fixed* filter_values = + filter.FilterForValue(out_x, &filter_offset, &filter_length); + + __m128i accum = _mm_setzero_si128(); + + // Compute the first pixel in this row that the filter affects. It will + // touch |filter_length| pixels (4 bytes each) after this. + const __m128i* row_to_filter = + reinterpret_cast(&src_data[filter_offset << 2]); + + // We will load and accumulate with four coefficients per iteration. + for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { + + // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. + __m128i coeff, coeff16; + // [16] xx xx xx xx c3 c2 c1 c0 + coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); + // [16] xx xx xx xx c1 c1 c0 c0 + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); + // [16] c1 c1 c1 c1 c0 c0 c0 c0 + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); + + // Load four pixels => unpack the first two pixels to 16 bits => + // multiply with coefficients => accumulate the convolution result. + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + __m128i src8 = _mm_loadu_si128(row_to_filter); + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + __m128i src16 = _mm_unpacklo_epi8(src8, zero); + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a0*c0 b0*c0 g0*c0 r0*c0 + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + // [32] a1*c1 b1*c1 g1*c1 r1*c1 + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + + // Duplicate 3rd and 4th coefficients for all channels => + // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients + // => accumulate the convolution results. + // [16] xx xx xx xx c3 c3 c2 c2 + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); + // [16] c3 c3 c3 c3 c2 c2 c2 c2 + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); + // [16] a3 g3 b3 r3 a2 g2 b2 r2 + src16 = _mm_unpackhi_epi8(src8, zero); + mul_hi = _mm_mulhi_epi16(src16, coeff16); + mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a2*c2 b2*c2 g2*c2 r2*c2 + t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + // [32] a3*c3 b3*c3 g3*c3 r3*c3 + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + + // Advance the pixel and coefficients pointers. + row_to_filter += 1; + filter_values += 4; + } + + // When |filter_length| is not divisible by 4, we need to decimate some of + // the filter coefficient that was loaded incorrectly to zero; Other than + // that the algorithm is same with above, exceot that the 4th pixel will be + // always absent. + int r = filter_length&3; + if (r) { + // Note: filter_values must be padded to align_up(filter_offset, 8). + __m128i coeff, coeff16; + coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); + // Mask out extra filter taps. + coeff = _mm_and_si128(coeff, mask[r]); + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); + + // Note: line buffer must be padded to align_up(filter_offset, 16). + // We resolve this by use C-version for the last horizontal line. + __m128i src8 = _mm_loadu_si128(row_to_filter); + __m128i src16 = _mm_unpacklo_epi8(src8, zero); + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + + src16 = _mm_unpackhi_epi8(src8, zero); + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); + mul_hi = _mm_mulhi_epi16(src16, coeff16); + mul_lo = _mm_mullo_epi16(src16, coeff16); + t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum = _mm_add_epi32(accum, t); + } + + // Shift right for fixed point implementation. + accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); + + // Packing 32 bits |accum| to 16 bits per channel (signed saturation). + accum = _mm_packs_epi32(accum, zero); + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). + accum = _mm_packus_epi16(accum, zero); + + // Store the pixel value of 32 bits. + *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum); + out_row += 4; + } +} + +// Convolves horizontally along four rows. The row data is given in +// |src_data| and continues for the num_values() of the filter. +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please +// refer to that function for detailed comments. +void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], + const ConvolutionFilter1D& filter, + unsigned char* out_row[4]) { + int num_values = filter.num_values(); + + int filter_offset, filter_length; + __m128i zero = _mm_setzero_si128(); + __m128i mask[4]; + // |mask| will be used to decimate all extra filter coefficients that are + // loaded by SIMD when |filter_length| is not divisible by 4. + // mask[0] is not used in following algorithm. + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); + + // Output one pixel each iteration, calculating all channels (RGBA) together. + for (int out_x = 0; out_x < num_values; out_x++) { + const ConvolutionFilter1D::Fixed* filter_values = + filter.FilterForValue(out_x, &filter_offset, &filter_length); + + // four pixels in a column per iteration. + __m128i accum0 = _mm_setzero_si128(); + __m128i accum1 = _mm_setzero_si128(); + __m128i accum2 = _mm_setzero_si128(); + __m128i accum3 = _mm_setzero_si128(); + int start = (filter_offset<<2); + // We will load and accumulate with four coefficients per iteration. + for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { + __m128i coeff, coeff16lo, coeff16hi; + // [16] xx xx xx xx c3 c2 c1 c0 + coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); + // [16] xx xx xx xx c1 c1 c0 c0 + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); + // [16] c1 c1 c1 c1 c0 c0 c0 c0 + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); + // [16] xx xx xx xx c3 c3 c2 c2 + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); + // [16] c3 c3 c3 c3 c2 c2 c2 c2 + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); + + __m128i src8, src16, mul_hi, mul_lo, t; + +#define ITERATION(src, accum) \ + src8 = _mm_loadu_si128(reinterpret_cast(src)); \ + src16 = _mm_unpacklo_epi8(src8, zero); \ + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ + accum = _mm_add_epi32(accum, t); \ + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ + accum = _mm_add_epi32(accum, t); \ + src16 = _mm_unpackhi_epi8(src8, zero); \ + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ + accum = _mm_add_epi32(accum, t); \ + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ + accum = _mm_add_epi32(accum, t) + + ITERATION(src_data[0] + start, accum0); + ITERATION(src_data[1] + start, accum1); + ITERATION(src_data[2] + start, accum2); + ITERATION(src_data[3] + start, accum3); + + start += 16; + filter_values += 4; + } + + int r = filter_length & 3; + if (r) { + // Note: filter_values must be padded to align_up(filter_offset, 8); + __m128i coeff; + coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); + // Mask out extra filter taps. + coeff = _mm_and_si128(coeff, mask[r]); + + __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); + /* c1 c1 c1 c1 c0 c0 c0 c0 */ + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); + __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); + + __m128i src8, src16, mul_hi, mul_lo, t; + + ITERATION(src_data[0] + start, accum0); + ITERATION(src_data[1] + start, accum1); + ITERATION(src_data[2] + start, accum2); + ITERATION(src_data[3] + start, accum3); + } + + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); + accum0 = _mm_packs_epi32(accum0, zero); + accum0 = _mm_packus_epi16(accum0, zero); + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); + accum1 = _mm_packs_epi32(accum1, zero); + accum1 = _mm_packus_epi16(accum1, zero); + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); + accum2 = _mm_packs_epi32(accum2, zero); + accum2 = _mm_packus_epi16(accum2, zero); + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); + accum3 = _mm_packs_epi32(accum3, zero); + accum3 = _mm_packus_epi16(accum3, zero); + + *(reinterpret_cast(out_row[0])) = _mm_cvtsi128_si32(accum0); + *(reinterpret_cast(out_row[1])) = _mm_cvtsi128_si32(accum1); + *(reinterpret_cast(out_row[2])) = _mm_cvtsi128_si32(accum2); + *(reinterpret_cast(out_row[3])) = _mm_cvtsi128_si32(accum3); + + out_row[0] += 4; + out_row[1] += 4; + out_row[2] += 4; + out_row[3] += 4; + } +} + +// Does vertical convolution to produce one output row. The filter values and +// length are given in the first two parameters. These are applied to each +// of the rows pointed to in the |source_data_rows| array, with each row +// being |pixel_width| wide. +// +// The output must have room for |pixel_width * 4| bytes. +template +void ConvolveVertically_SSE2_impl(const ConvolutionFilter1D::Fixed* filter_values, + int filter_length, + unsigned char* const* source_data_rows, + int pixel_width, + unsigned char* out_row) { + int width = pixel_width & ~3; + + __m128i zero = _mm_setzero_si128(); + __m128i accum0, accum1, accum2, accum3, coeff16; + const __m128i* src; + // Output four pixels per iteration (16 bytes). + for (int out_x = 0; out_x < width; out_x += 4) { + + // Accumulated result for each pixel. 32 bits per RGBA channel. + accum0 = _mm_setzero_si128(); + accum1 = _mm_setzero_si128(); + accum2 = _mm_setzero_si128(); + accum3 = _mm_setzero_si128(); + + // Convolve with one filter coefficient per iteration. + for (int filter_y = 0; filter_y < filter_length; filter_y++) { + + // Duplicate the filter coefficient 8 times. + // [16] cj cj cj cj cj cj cj cj + coeff16 = _mm_set1_epi16(filter_values[filter_y]); + + // Load four pixels (16 bytes) together. + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + src = reinterpret_cast( + &source_data_rows[filter_y][out_x << 2]); + __m128i src8 = _mm_loadu_si128(src); + + // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => + // multiply with current coefficient => accumulate the result. + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + __m128i src16 = _mm_unpacklo_epi8(src8, zero); + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a0 b0 g0 r0 + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum0 = _mm_add_epi32(accum0, t); + // [32] a1 b1 g1 r1 + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum1 = _mm_add_epi32(accum1, t); + + // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => + // multiply with current coefficient => accumulate the result. + // [16] a3 b3 g3 r3 a2 b2 g2 r2 + src16 = _mm_unpackhi_epi8(src8, zero); + mul_hi = _mm_mulhi_epi16(src16, coeff16); + mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a2 b2 g2 r2 + t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum2 = _mm_add_epi32(accum2, t); + // [32] a3 b3 g3 r3 + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum3 = _mm_add_epi32(accum3, t); + } + + // Shift right for fixed point implementation. + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); + + // Packing 32 bits |accum| to 16 bits per channel (signed saturation). + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + accum0 = _mm_packs_epi32(accum0, accum1); + // [16] a3 b3 g3 r3 a2 b2 g2 r2 + accum2 = _mm_packs_epi32(accum2, accum3); + + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + accum0 = _mm_packus_epi16(accum0, accum2); + + if (has_alpha) { + // Compute the max(ri, gi, bi) for each pixel. + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 + __m128i a = _mm_srli_epi32(accum0, 8); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 + a = _mm_srli_epi32(accum0, 16); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + b = _mm_max_epu8(a, b); // Max of r and g and b. + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 + b = _mm_slli_epi32(b, 24); + + // Make sure the value of alpha channel is always larger than maximum + // value of color channels. + accum0 = _mm_max_epu8(b, accum0); + } else { + // Set value of alpha channels to 0xFF. + __m128i mask = _mm_set1_epi32(0xff000000); + accum0 = _mm_or_si128(accum0, mask); + } + + // Store the convolution result (16 bytes) and advance the pixel pointers. + _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); + out_row += 16; + } + + // When the width of the output is not divisible by 4, We need to save one + // pixel (4 bytes) each time. And also the fourth pixel is always absent. + if (pixel_width & 3) { + accum0 = _mm_setzero_si128(); + accum1 = _mm_setzero_si128(); + accum2 = _mm_setzero_si128(); + for (int filter_y = 0; filter_y < filter_length; ++filter_y) { + coeff16 = _mm_set1_epi16(filter_values[filter_y]); + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + src = reinterpret_cast( + &source_data_rows[filter_y][width<<2]); + __m128i src8 = _mm_loadu_si128(src); + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + __m128i src16 = _mm_unpacklo_epi8(src8, zero); + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a0 b0 g0 r0 + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum0 = _mm_add_epi32(accum0, t); + // [32] a1 b1 g1 r1 + t = _mm_unpackhi_epi16(mul_lo, mul_hi); + accum1 = _mm_add_epi32(accum1, t); + // [16] a3 b3 g3 r3 a2 b2 g2 r2 + src16 = _mm_unpackhi_epi8(src8, zero); + mul_hi = _mm_mulhi_epi16(src16, coeff16); + mul_lo = _mm_mullo_epi16(src16, coeff16); + // [32] a2 b2 g2 r2 + t = _mm_unpacklo_epi16(mul_lo, mul_hi); + accum2 = _mm_add_epi32(accum2, t); + } + + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + accum0 = _mm_packs_epi32(accum0, accum1); + // [16] a3 b3 g3 r3 a2 b2 g2 r2 + accum2 = _mm_packs_epi32(accum2, zero); + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + accum0 = _mm_packus_epi16(accum0, accum2); + if (has_alpha) { + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 + __m128i a = _mm_srli_epi32(accum0, 8); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 + a = _mm_srli_epi32(accum0, 16); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + b = _mm_max_epu8(a, b); // Max of r and g and b. + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 + b = _mm_slli_epi32(b, 24); + accum0 = _mm_max_epu8(b, accum0); + } else { + __m128i mask = _mm_set1_epi32(0xff000000); + accum0 = _mm_or_si128(accum0, mask); + } + + for (int out_x = width; out_x < pixel_width; out_x++) { + *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum0); + accum0 = _mm_srli_si128(accum0, 4); + out_row += 4; + } + } +} + +void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, + int filter_length, + unsigned char* const* source_data_rows, + int pixel_width, + unsigned char* out_row, bool has_alpha) { + if (has_alpha) { + ConvolveVertically_SSE2_impl(filter_values, filter_length, + source_data_rows, pixel_width, out_row); + } else { + ConvolveVertically_SSE2_impl(filter_values, filter_length, + source_data_rows, pixel_width, out_row); + } +} + +} // namespace skia -- cgit v1.2.3