summaryrefslogtreecommitdiffstats
path: root/widget/gonk/ProcessOrientation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'widget/gonk/ProcessOrientation.cpp')
-rw-r--r--widget/gonk/ProcessOrientation.cpp519
1 files changed, 0 insertions, 519 deletions
diff --git a/widget/gonk/ProcessOrientation.cpp b/widget/gonk/ProcessOrientation.cpp
deleted file mode 100644
index bbdcface8..000000000
--- a/widget/gonk/ProcessOrientation.cpp
+++ /dev/null
@@ -1,519 +0,0 @@
-/*
- * Copyright (c) 2013, Linux Foundation. All rights reserved
- *
- * Copyright (C) 2008 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "base/basictypes.h"
-#include "mozilla/Hal.h"
-#include "mozilla/Unused.h"
-#include "nsIScreen.h"
-#include "nsIScreenManager.h"
-#include "OrientationObserver.h"
-#include "ProcessOrientation.h"
-#include "mozilla/HalSensor.h"
-#include "math.h"
-#include "limits.h"
-#include "android/log.h"
-
-#if 0
-#define LOGD(args...) __android_log_print(ANDROID_LOG_DEBUG, "ProcessOrientation" , ## args)
-#else
-#define LOGD(args...)
-#endif
-
-namespace mozilla {
-
-// We work with all angles in degrees in this class.
-#define RADIANS_TO_DEGREES (180/M_PI)
-
-// Number of nanoseconds per millisecond.
-#define NANOS_PER_MS 1000000
-
-// Indices into SensorEvent.values for the accelerometer sensor.
-#define ACCELEROMETER_DATA_X 0
-#define ACCELEROMETER_DATA_Y 1
-#define ACCELEROMETER_DATA_Z 2
-
-// The minimum amount of time that a predicted rotation must be stable before
-// it is accepted as a valid rotation proposal. This value can be quite small
-// because the low-pass filter already suppresses most of the noise so we're
-// really just looking for quick confirmation that the last few samples are in
-// agreement as to the desired orientation.
-#define PROPOSAL_SETTLE_TIME_NANOS (40*NANOS_PER_MS)
-
-// The minimum amount of time that must have elapsed since the device last
-// exited the flat state (time since it was picked up) before the proposed
-// rotation can change.
-#define PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS (500*NANOS_PER_MS)
-
-// The minimum amount of time that must have elapsed since the device stopped
-// swinging (time since device appeared to be in the process of being put down
-// or put away into a pocket) before the proposed rotation can change.
-#define PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS (300*NANOS_PER_MS)
-
-// The minimum amount of time that must have elapsed since the device stopped
-// undergoing external acceleration before the proposed rotation can change.
-#define PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS (500*NANOS_PER_MS)
-
-// If the tilt angle remains greater than the specified angle for a minimum of
-// the specified time, then the device is deemed to be lying flat
-// (just chillin' on a table).
-#define FLAT_ANGLE 75
-#define FLAT_TIME_NANOS (1000*NANOS_PER_MS)
-
-// If the tilt angle has increased by at least delta degrees within the
-// specified amount of time, then the device is deemed to be swinging away
-// from the user down towards flat (tilt = 90).
-#define SWING_AWAY_ANGLE_DELTA 20
-#define SWING_TIME_NANOS (300*NANOS_PER_MS)
-
-// The maximum sample inter-arrival time in milliseconds. If the acceleration
-// samples are further apart than this amount in time, we reset the state of
-// the low-pass filter and orientation properties. This helps to handle
-// boundary conditions when the device is turned on, wakes from suspend or
-// there is a significant gap in samples.
-#define MAX_FILTER_DELTA_TIME_NANOS (1000*NANOS_PER_MS)
-
-// The acceleration filter time constant.
-//
-// This time constant is used to tune the acceleration filter such that
-// impulses and vibrational noise (think car dock) is suppressed before we try
-// to calculate the tilt and orientation angles.
-//
-// The filter time constant is related to the filter cutoff frequency, which
-// is the frequency at which signals are attenuated by 3dB (half the passband
-// power). Each successive octave beyond this frequency is attenuated by an
-// additional 6dB.
-//
-// Given a time constant t in seconds, the filter cutoff frequency Fc in Hertz
-// is given by Fc = 1 / (2pi * t).
-//
-// The higher the time constant, the lower the cutoff frequency, so more noise
-// will be suppressed.
-//
-// Filtering adds latency proportional the time constant (inversely
-// proportional to the cutoff frequency) so we don't want to make the time
-// constant too large or we can lose responsiveness. Likewise we don't want
-// to make it too small or we do a poor job suppressing acceleration spikes.
-// Empirically, 100ms seems to be too small and 500ms is too large. Android
-// default is 200.
-#define FILTER_TIME_CONSTANT_MS 200.0f
-
-// State for orientation detection. Thresholds for minimum and maximum
-// allowable deviation from gravity.
-//
-// If the device is undergoing external acceleration (being bumped, in a car
-// that is turning around a corner or a plane taking off) then the magnitude
-// may be substantially more or less than gravity. This can skew our
-// orientation detection by making us think that up is pointed in a different
-// direction.
-//
-// Conversely, if the device is in freefall, then there will be no gravity to
-// measure at all. This is problematic because we cannot detect the orientation
-// without gravity to tell us which way is up. A magnitude near 0 produces
-// singularities in the tilt and orientation calculations.
-//
-// In both cases, we postpone choosing an orientation.
-//
-// However, we need to tolerate some acceleration because the angular momentum
-// of turning the device can skew the observed acceleration for a short period
-// of time.
-#define NEAR_ZERO_MAGNITUDE 1 // m/s^2
-#define ACCELERATION_TOLERANCE 4 // m/s^2
-#define STANDARD_GRAVITY 9.80665f
-#define MIN_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY-ACCELERATION_TOLERANCE)
-#define MAX_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY+ACCELERATION_TOLERANCE)
-
-// Maximum absolute tilt angle at which to consider orientation data. Beyond
-// this (i.e. when screen is facing the sky or ground), we completely ignore
-// orientation data.
-#define MAX_TILT 75
-
-// The gap angle in degrees between adjacent orientation angles for
-// hysteresis.This creates a "dead zone" between the current orientation and a
-// proposed adjacent orientation. No orientation proposal is made when the
-// orientation angle is within the gap between the current orientation and the
-// adjacent orientation.
-#define ADJACENT_ORIENTATION_ANGLE_GAP 45
-
-const int
-ProcessOrientation::tiltTolerance[][4] = {
- {-25, 70}, // ROTATION_0
- {-25, 65}, // ROTATION_90
- {-25, 60}, // ROTATION_180
- {-25, 65} // ROTATION_270
-};
-
-int
-ProcessOrientation::GetProposedRotation()
-{
- return mProposedRotation;
-}
-
-int
-ProcessOrientation::OnSensorChanged(const SensorData& event,
- int deviceCurrentRotation)
-{
- // The vector given in the SensorEvent points straight up (towards the sky)
- // under ideal conditions (the phone is not accelerating). I'll call this up
- // vector elsewhere.
- const InfallibleTArray<float>& values = event.values();
- float x = values[ACCELEROMETER_DATA_X];
- float y = values[ACCELEROMETER_DATA_Y];
- float z = values[ACCELEROMETER_DATA_Z];
-
- LOGD
- ("ProcessOrientation: Raw acceleration vector: x = %f, y = %f, z = %f,"
- "magnitude = %f\n", x, y, z, sqrt(x * x + y * y + z * z));
- // Apply a low-pass filter to the acceleration up vector in cartesian space.
- // Reset the orientation listener state if the samples are too far apart in
- // time or when we see values of (0, 0, 0) which indicates that we polled the
- // accelerometer too soon after turning it on and we don't have any data yet.
- const int64_t now = (int64_t) event.timestamp();
- const int64_t then = mLastFilteredTimestampNanos;
- const float timeDeltaMS = (now - then) * 0.000001f;
- bool skipSample = false;
- if (now < then
- || now > then + MAX_FILTER_DELTA_TIME_NANOS
- || (x == 0 && y == 0 && z == 0)) {
- LOGD
- ("ProcessOrientation: Resetting orientation listener.");
- Reset();
- skipSample = true;
- } else {
- const float alpha = timeDeltaMS / (FILTER_TIME_CONSTANT_MS + timeDeltaMS);
- x = alpha * (x - mLastFilteredX) + mLastFilteredX;
- y = alpha * (y - mLastFilteredY) + mLastFilteredY;
- z = alpha * (z - mLastFilteredZ) + mLastFilteredZ;
- LOGD
- ("ProcessOrientation: Filtered acceleration vector: x=%f, y=%f, z=%f,"
- "magnitude=%f", z, y, z, sqrt(x * x + y * y + z * z));
- skipSample = false;
- }
- mLastFilteredTimestampNanos = now;
- mLastFilteredX = x;
- mLastFilteredY = y;
- mLastFilteredZ = z;
-
- bool isAccelerating = false;
- bool isFlat = false;
- bool isSwinging = false;
- if (skipSample) {
- return -1;
- }
-
- // Calculate the magnitude of the acceleration vector.
- const float magnitude = sqrt(x * x + y * y + z * z);
- if (magnitude < NEAR_ZERO_MAGNITUDE) {
- LOGD
- ("ProcessOrientation: Ignoring sensor data, magnitude too close to"
- " zero.");
- ClearPredictedRotation();
- } else {
- // Determine whether the device appears to be undergoing external
- // acceleration.
- if (this->IsAccelerating(magnitude)) {
- isAccelerating = true;
- mAccelerationTimestampNanos = now;
- }
- // Calculate the tilt angle. This is the angle between the up vector and
- // the x-y plane (the plane of the screen) in a range of [-90, 90]
- // degrees.
- // -90 degrees: screen horizontal and facing the ground (overhead)
- // 0 degrees: screen vertical
- // 90 degrees: screen horizontal and facing the sky (on table)
- const int tiltAngle =
- static_cast<int>(roundf(asin(z / magnitude) * RADIANS_TO_DEGREES));
- AddTiltHistoryEntry(now, tiltAngle);
-
- // Determine whether the device appears to be flat or swinging.
- if (this->IsFlat(now)) {
- isFlat = true;
- mFlatTimestampNanos = now;
- }
- if (this->IsSwinging(now, tiltAngle)) {
- isSwinging = true;
- mSwingTimestampNanos = now;
- }
- // If the tilt angle is too close to horizontal then we cannot determine
- // the orientation angle of the screen.
- if (abs(tiltAngle) > MAX_TILT) {
- LOGD
- ("ProcessOrientation: Ignoring sensor data, tilt angle too high:"
- " tiltAngle=%d", tiltAngle);
- ClearPredictedRotation();
- } else {
- // Calculate the orientation angle.
- // This is the angle between the x-y projection of the up vector onto
- // the +y-axis, increasing clockwise in a range of [0, 360] degrees.
- int orientationAngle =
- static_cast<int>(roundf(-atan2f(-x, y) * RADIANS_TO_DEGREES));
- if (orientationAngle < 0) {
- // atan2 returns [-180, 180]; normalize to [0, 360]
- orientationAngle += 360;
- }
- // Find the nearest rotation.
- int nearestRotation = (orientationAngle + 45) / 90;
- if (nearestRotation == 4) {
- nearestRotation = 0;
- }
- // Determine the predicted orientation.
- if (IsTiltAngleAcceptable(nearestRotation, tiltAngle)
- &&
- IsOrientationAngleAcceptable
- (nearestRotation, orientationAngle, deviceCurrentRotation)) {
- UpdatePredictedRotation(now, nearestRotation);
- LOGD
- ("ProcessOrientation: Predicted: tiltAngle=%d, orientationAngle=%d,"
- " predictedRotation=%d, predictedRotationAgeMS=%f",
- tiltAngle,
- orientationAngle,
- mPredictedRotation,
- ((now - mPredictedRotationTimestampNanos) * 0.000001f));
- } else {
- LOGD
- ("ProcessOrientation: Ignoring sensor data, no predicted rotation:"
- " tiltAngle=%d, orientationAngle=%d",
- tiltAngle,
- orientationAngle);
- ClearPredictedRotation();
- }
- }
- }
-
- // Determine new proposed rotation.
- const int oldProposedRotation = mProposedRotation;
- if (mPredictedRotation < 0 || IsPredictedRotationAcceptable(now)) {
- mProposedRotation = mPredictedRotation;
- }
- // Write final statistics about where we are in the orientation detection
- // process.
- LOGD
- ("ProcessOrientation: Result: oldProposedRotation=%d,currentRotation=%d, "
- "proposedRotation=%d, predictedRotation=%d, timeDeltaMS=%f, "
- "isAccelerating=%d, isFlat=%d, isSwinging=%d, timeUntilSettledMS=%f, "
- "timeUntilAccelerationDelayExpiredMS=%f, timeUntilFlatDelayExpiredMS=%f, "
- "timeUntilSwingDelayExpiredMS=%f",
- oldProposedRotation,
- deviceCurrentRotation, mProposedRotation,
- mPredictedRotation, timeDeltaMS, isAccelerating, isFlat,
- isSwinging, RemainingMS(now,
- mPredictedRotationTimestampNanos +
- PROPOSAL_SETTLE_TIME_NANOS),
- RemainingMS(now,
- mAccelerationTimestampNanos +
- PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS),
- RemainingMS(now,
- mFlatTimestampNanos +
- PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS),
- RemainingMS(now,
- mSwingTimestampNanos +
- PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS));
-
- // Avoid unused-but-set compile warnings for these variables, when LOGD is
- // a no-op, as it is by default:
- Unused << isAccelerating;
- Unused << isFlat;
- Unused << isSwinging;
-
- // Tell the listener.
- if (mProposedRotation != oldProposedRotation && mProposedRotation >= 0) {
- LOGD
- ("ProcessOrientation: Proposed rotation changed! proposedRotation=%d, "
- "oldProposedRotation=%d",
- mProposedRotation,
- oldProposedRotation);
- return mProposedRotation;
- }
- // Don't rotate screen
- return -1;
-}
-
-bool
-ProcessOrientation::IsTiltAngleAcceptable(int rotation, int tiltAngle)
-{
- return (tiltAngle >= tiltTolerance[rotation][0]
- && tiltAngle <= tiltTolerance[rotation][1]);
-}
-
-bool
-ProcessOrientation::IsOrientationAngleAcceptable(int rotation,
- int orientationAngle,
- int currentRotation)
-{
- // If there is no current rotation, then there is no gap.
- // The gap is used only to introduce hysteresis among advertised orientation
- // changes to avoid flapping.
- if (currentRotation < 0) {
- return true;
- }
- // If the specified rotation is the same or is counter-clockwise adjacent
- // to the current rotation, then we set a lower bound on the orientation
- // angle. For example, if currentRotation is ROTATION_0 and proposed is
- // ROTATION_90, then we want to check orientationAngle > 45 + GAP / 2.
- if (rotation == currentRotation || rotation == (currentRotation + 1) % 4) {
- int lowerBound = rotation * 90 - 45 + ADJACENT_ORIENTATION_ANGLE_GAP / 2;
- if (rotation == 0) {
- if (orientationAngle >= 315 && orientationAngle < lowerBound + 360) {
- return false;
- }
- } else {
- if (orientationAngle < lowerBound) {
- return false;
- }
- }
- }
- // If the specified rotation is the same or is clockwise adjacent, then we
- // set an upper bound on the orientation angle. For example, if
- // currentRotation is ROTATION_0 and rotation is ROTATION_270, then we want
- // to check orientationAngle < 315 - GAP / 2.
- if (rotation == currentRotation || rotation == (currentRotation + 3) % 4) {
- int upperBound = rotation * 90 + 45 - ADJACENT_ORIENTATION_ANGLE_GAP / 2;
- if (rotation == 0) {
- if (orientationAngle <= 45 && orientationAngle > upperBound) {
- return false;
- }
- } else {
- if (orientationAngle > upperBound) {
- return false;
- }
- }
- }
- return true;
-}
-
-bool
-ProcessOrientation::IsPredictedRotationAcceptable(int64_t now)
-{
- // The predicted rotation must have settled long enough.
- if (now < mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) {
- return false;
- }
- // The last flat state (time since picked up) must have been sufficiently long
- // ago.
- if (now < mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) {
- return false;
- }
- // The last swing state (time since last movement to put down) must have been
- // sufficiently long ago.
- if (now < mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) {
- return false;
- }
- // The last acceleration state must have been sufficiently long ago.
- if (now < mAccelerationTimestampNanos
- + PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS) {
- return false;
- }
- // Looks good!
- return true;
-}
-
-int
-ProcessOrientation::Reset()
-{
- mLastFilteredTimestampNanos = std::numeric_limits<int64_t>::min();
- mProposedRotation = -1;
- mFlatTimestampNanos = std::numeric_limits<int64_t>::min();
- mSwingTimestampNanos = std::numeric_limits<int64_t>::min();
- mAccelerationTimestampNanos = std::numeric_limits<int64_t>::min();
- ClearPredictedRotation();
- ClearTiltHistory();
- return -1;
-}
-
-void
-ProcessOrientation::ClearPredictedRotation()
-{
- mPredictedRotation = -1;
- mPredictedRotationTimestampNanos = std::numeric_limits<int64_t>::min();
-}
-
-void
-ProcessOrientation::UpdatePredictedRotation(int64_t now, int rotation)
-{
- if (mPredictedRotation != rotation) {
- mPredictedRotation = rotation;
- mPredictedRotationTimestampNanos = now;
- }
-}
-
-bool
-ProcessOrientation::IsAccelerating(float magnitude)
-{
- return magnitude < MIN_ACCELERATION_MAGNITUDE
- || magnitude > MAX_ACCELERATION_MAGNITUDE;
-}
-
-void
-ProcessOrientation::ClearTiltHistory()
-{
- mTiltHistory.history[0].timestampNanos = std::numeric_limits<int64_t>::min();
- mTiltHistory.index = 1;
-}
-
-void
-ProcessOrientation::AddTiltHistoryEntry(int64_t now, float tilt)
-{
- mTiltHistory.history[mTiltHistory.index].tiltAngle = tilt;
- mTiltHistory.history[mTiltHistory.index].timestampNanos = now;
- mTiltHistory.index = (mTiltHistory.index + 1) % TILT_HISTORY_SIZE;
- mTiltHistory.history[mTiltHistory.index].timestampNanos = std::numeric_limits<int64_t>::min();
-}
-
-bool
-ProcessOrientation::IsFlat(int64_t now)
-{
- for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
- if (mTiltHistory.history[i].tiltAngle < FLAT_ANGLE) {
- break;
- }
- if (mTiltHistory.history[i].timestampNanos + FLAT_TIME_NANOS <= now) {
- // Tilt has remained greater than FLAT_TILT_ANGLE for FLAT_TIME_NANOS.
- return true;
- }
- }
- return false;
-}
-
-bool
-ProcessOrientation::IsSwinging(int64_t now, float tilt)
-{
- for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
- if (mTiltHistory.history[i].timestampNanos + SWING_TIME_NANOS < now) {
- break;
- }
- if (mTiltHistory.history[i].tiltAngle + SWING_AWAY_ANGLE_DELTA <= tilt) {
- // Tilted away by SWING_AWAY_ANGLE_DELTA within SWING_TIME_NANOS.
- return true;
- }
- }
- return false;
-}
-
-int
-ProcessOrientation::NextTiltHistoryIndex(int index)
-{
- index = (index == 0 ? TILT_HISTORY_SIZE : index) - 1;
- return mTiltHistory.history[index].timestampNanos != std::numeric_limits<int64_t>::min() ? index : -1;
-}
-
-float
-ProcessOrientation::RemainingMS(int64_t now, int64_t until)
-{
- return now >= until ? 0 : (until - now) * 0.000001f;
-}
-
-} // namespace mozilla