summaryrefslogtreecommitdiffstats
path: root/tools/profiler/tests/gtest
diff options
context:
space:
mode:
Diffstat (limited to 'tools/profiler/tests/gtest')
-rw-r--r--tools/profiler/tests/gtest/LulTest.cpp51
-rw-r--r--tools/profiler/tests/gtest/LulTestDwarf.cpp2597
-rw-r--r--tools/profiler/tests/gtest/LulTestInfrastructure.cpp491
-rw-r--r--tools/profiler/tests/gtest/LulTestInfrastructure.h666
-rw-r--r--tools/profiler/tests/gtest/ThreadProfileTest.cpp75
-rw-r--r--tools/profiler/tests/gtest/moz.build30
6 files changed, 3910 insertions, 0 deletions
diff --git a/tools/profiler/tests/gtest/LulTest.cpp b/tools/profiler/tests/gtest/LulTest.cpp
new file mode 100644
index 000000000..8a165ab34
--- /dev/null
+++ b/tools/profiler/tests/gtest/LulTest.cpp
@@ -0,0 +1,51 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "gtest/gtest.h"
+#include "mozilla/Atomics.h"
+#include "LulMain.h"
+#include "GeckoProfiler.h" // for TracingMetadata
+#include "platform-linux-lul.h" // for read_procmaps
+
+// Set this to 0 to make LUL be completely silent during tests.
+// Set it to 1 to get logging output from LUL, presumably for
+// the purpose of debugging it.
+#define DEBUG_LUL_TEST 0
+
+// LUL needs a callback for its logging sink.
+static void
+gtest_logging_sink_for_LulIntegration(const char* str) {
+ if (DEBUG_LUL_TEST == 0) {
+ return;
+ }
+ // Ignore any trailing \n, since LOG will add one anyway.
+ size_t n = strlen(str);
+ if (n > 0 && str[n-1] == '\n') {
+ char* tmp = strdup(str);
+ tmp[n-1] = 0;
+ fprintf(stderr, "LUL-in-gtest: %s\n", tmp);
+ free(tmp);
+ } else {
+ fprintf(stderr, "LUL-in-gtest: %s\n", str);
+ }
+}
+
+TEST(LulIntegration, unwind_consistency) {
+ // Set up LUL and get it to read unwind info for libxul.so, which is
+ // all we care about here, plus (incidentally) practically every
+ // other object in the process too.
+ lul::LUL* lul = new lul::LUL(gtest_logging_sink_for_LulIntegration);
+ read_procmaps(lul);
+
+ // Run unwind tests and receive information about how many there
+ // were and how many were successful.
+ lul->EnableUnwinding();
+ int nTests = 0, nTestsPassed = 0;
+ RunLulUnitTests(&nTests, &nTestsPassed, lul);
+ EXPECT_TRUE(nTests == 6) << "Unexpected number of tests";
+ EXPECT_TRUE(nTestsPassed == nTests) << "Not all tests passed";
+
+ delete lul;
+}
diff --git a/tools/profiler/tests/gtest/LulTestDwarf.cpp b/tools/profiler/tests/gtest/LulTestDwarf.cpp
new file mode 100644
index 000000000..5cfd71fd4
--- /dev/null
+++ b/tools/profiler/tests/gtest/LulTestDwarf.cpp
@@ -0,0 +1,2597 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "gtest/gtest.h"
+#include "gmock/gmock.h"
+#include "LulCommonExt.h"
+#include "LulDwarfExt.h"
+#include "LulDwarfInt.h"
+#include "LulTestInfrastructure.h"
+
+using testing::Test;
+using testing::Return;
+using testing::Sequence;
+using testing::InSequence;
+using testing::_;
+using lul_test::CFISection;
+using lul_test::test_assembler::kBigEndian;
+using lul_test::test_assembler::kLittleEndian;
+using lul_test::test_assembler::Label;
+
+#define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) /**/
+#define PERHAPS_WRITE_EH_FRAME_FILE(name, section) /**/
+
+// Set this to 0 to make LUL be completely silent during tests.
+// Set it to 1 to get logging output from LUL, presumably for
+// the purpose of debugging it.
+#define DEBUG_LUL_TEST_DWARF 0
+
+// LUL needs a callback for its logging sink.
+static void
+gtest_logging_sink_for_LulTestDwarf(const char* str) {
+ if (DEBUG_LUL_TEST_DWARF == 0) {
+ return;
+ }
+ // Ignore any trailing \n, since LOG will add one anyway.
+ size_t n = strlen(str);
+ if (n > 0 && str[n-1] == '\n') {
+ char* tmp = strdup(str);
+ tmp[n-1] = 0;
+ fprintf(stderr, "LUL-in-gtest: %s\n", tmp);
+ free(tmp);
+ } else {
+ fprintf(stderr, "LUL-in-gtest: %s\n", str);
+ }
+}
+
+namespace lul {
+
+class MockCallFrameInfoHandler : public CallFrameInfo::Handler {
+ public:
+ MOCK_METHOD6(Entry, bool(size_t offset, uint64 address, uint64 length,
+ uint8 version, const std::string &augmentation,
+ unsigned return_address));
+ MOCK_METHOD2(UndefinedRule, bool(uint64 address, int reg));
+ MOCK_METHOD2(SameValueRule, bool(uint64 address, int reg));
+ MOCK_METHOD4(OffsetRule, bool(uint64 address, int reg, int base_register,
+ long offset));
+ MOCK_METHOD4(ValOffsetRule, bool(uint64 address, int reg, int base_register,
+ long offset));
+ MOCK_METHOD3(RegisterRule, bool(uint64 address, int reg, int base_register));
+ MOCK_METHOD3(ExpressionRule, bool(uint64 address, int reg,
+ const std::string &expression));
+ MOCK_METHOD3(ValExpressionRule, bool(uint64 address, int reg,
+ const std::string &expression));
+ MOCK_METHOD0(End, bool());
+ MOCK_METHOD2(PersonalityRoutine, bool(uint64 address, bool indirect));
+ MOCK_METHOD2(LanguageSpecificDataArea, bool(uint64 address, bool indirect));
+ MOCK_METHOD0(SignalHandler, bool());
+};
+
+class MockCallFrameErrorReporter : public CallFrameInfo::Reporter {
+ public:
+ MockCallFrameErrorReporter()
+ : Reporter(gtest_logging_sink_for_LulTestDwarf,
+ "mock filename", "mock section")
+ { }
+ MOCK_METHOD2(Incomplete, void(uint64, CallFrameInfo::EntryKind));
+ MOCK_METHOD1(EarlyEHTerminator, void(uint64));
+ MOCK_METHOD2(CIEPointerOutOfRange, void(uint64, uint64));
+ MOCK_METHOD2(BadCIEId, void(uint64, uint64));
+ MOCK_METHOD2(UnrecognizedVersion, void(uint64, int version));
+ MOCK_METHOD2(UnrecognizedAugmentation, void(uint64, const string &));
+ MOCK_METHOD2(InvalidPointerEncoding, void(uint64, uint8));
+ MOCK_METHOD2(UnusablePointerEncoding, void(uint64, uint8));
+ MOCK_METHOD2(RestoreInCIE, void(uint64, uint64));
+ MOCK_METHOD3(BadInstruction, void(uint64, CallFrameInfo::EntryKind, uint64));
+ MOCK_METHOD3(NoCFARule, void(uint64, CallFrameInfo::EntryKind, uint64));
+ MOCK_METHOD3(EmptyStateStack, void(uint64, CallFrameInfo::EntryKind, uint64));
+ MOCK_METHOD3(ClearingCFARule, void(uint64, CallFrameInfo::EntryKind, uint64));
+};
+
+struct CFIFixture {
+
+ enum { kCFARegister = CallFrameInfo::Handler::kCFARegister };
+
+ CFIFixture() {
+ // Default expectations for the data handler.
+ //
+ // - Leave Entry and End without expectations, as it's probably a
+ // good idea to set those explicitly in each test.
+ //
+ // - Expect the *Rule functions to not be called,
+ // so that each test can simply list the calls they expect.
+ //
+ // I gather I could use StrictMock for this, but the manual seems
+ // to suggest using that only as a last resort, and this isn't so
+ // bad.
+ EXPECT_CALL(handler, UndefinedRule(_, _)).Times(0);
+ EXPECT_CALL(handler, SameValueRule(_, _)).Times(0);
+ EXPECT_CALL(handler, OffsetRule(_, _, _, _)).Times(0);
+ EXPECT_CALL(handler, ValOffsetRule(_, _, _, _)).Times(0);
+ EXPECT_CALL(handler, RegisterRule(_, _, _)).Times(0);
+ EXPECT_CALL(handler, ExpressionRule(_, _, _)).Times(0);
+ EXPECT_CALL(handler, ValExpressionRule(_, _, _)).Times(0);
+ EXPECT_CALL(handler, PersonalityRoutine(_, _)).Times(0);
+ EXPECT_CALL(handler, LanguageSpecificDataArea(_, _)).Times(0);
+ EXPECT_CALL(handler, SignalHandler()).Times(0);
+
+ // Default expectations for the error/warning reporer.
+ EXPECT_CALL(reporter, Incomplete(_, _)).Times(0);
+ EXPECT_CALL(reporter, EarlyEHTerminator(_)).Times(0);
+ EXPECT_CALL(reporter, CIEPointerOutOfRange(_, _)).Times(0);
+ EXPECT_CALL(reporter, BadCIEId(_, _)).Times(0);
+ EXPECT_CALL(reporter, UnrecognizedVersion(_, _)).Times(0);
+ EXPECT_CALL(reporter, UnrecognizedAugmentation(_, _)).Times(0);
+ EXPECT_CALL(reporter, InvalidPointerEncoding(_, _)).Times(0);
+ EXPECT_CALL(reporter, UnusablePointerEncoding(_, _)).Times(0);
+ EXPECT_CALL(reporter, RestoreInCIE(_, _)).Times(0);
+ EXPECT_CALL(reporter, BadInstruction(_, _, _)).Times(0);
+ EXPECT_CALL(reporter, NoCFARule(_, _, _)).Times(0);
+ EXPECT_CALL(reporter, EmptyStateStack(_, _, _)).Times(0);
+ EXPECT_CALL(reporter, ClearingCFARule(_, _, _)).Times(0);
+ }
+
+ MockCallFrameInfoHandler handler;
+ MockCallFrameErrorReporter reporter;
+};
+
+class LulDwarfCFI: public CFIFixture, public Test { };
+
+TEST_F(LulDwarfCFI, EmptyRegion) {
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+ static const char data[1] = { 42 };
+
+ ByteReader reader(ENDIANNESS_BIG);
+ CallFrameInfo parser(data, 0, &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+TEST_F(LulDwarfCFI, IncompleteLength32) {
+ CFISection section(kBigEndian, 8);
+ section
+ // Not even long enough for an initial length.
+ .D16(0xa0f)
+ // Padding to keep valgrind happy. We subtract these off when we
+ // construct the parser.
+ .D16(0);
+
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+
+ EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
+ .WillOnce(Return());
+
+ string contents;
+ ASSERT_TRUE(section.GetContents(&contents));
+
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(8);
+ CallFrameInfo parser(contents.data(), contents.size() - 2,
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+TEST_F(LulDwarfCFI, IncompleteLength64) {
+ CFISection section(kLittleEndian, 4);
+ section
+ // An incomplete 64-bit DWARF initial length.
+ .D32(0xffffffff).D32(0x71fbaec2)
+ // Padding to keep valgrind happy. We subtract these off when we
+ // construct the parser.
+ .D32(0);
+
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+
+ EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
+ .WillOnce(Return());
+
+ string contents;
+ ASSERT_TRUE(section.GetContents(&contents));
+
+ ByteReader reader(ENDIANNESS_LITTLE);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size() - 4,
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+TEST_F(LulDwarfCFI, IncompleteId32) {
+ CFISection section(kBigEndian, 8);
+ section
+ .D32(3) // Initial length, not long enough for id
+ .D8(0xd7).D8(0xe5).D8(0xf1) // incomplete id
+ .CIEHeader(8727, 3983, 8889, 3, "")
+ .FinishEntry();
+
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+
+ EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
+ .WillOnce(Return());
+
+ string contents;
+ ASSERT_TRUE(section.GetContents(&contents));
+
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(8);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+TEST_F(LulDwarfCFI, BadId32) {
+ CFISection section(kBigEndian, 8);
+ section
+ .D32(0x100) // Initial length
+ .D32(0xe802fade) // bogus ID
+ .Append(0x100 - 4, 0x42); // make the length true
+ section
+ .CIEHeader(1672, 9872, 8529, 3, "")
+ .FinishEntry();
+
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+
+ EXPECT_CALL(reporter, CIEPointerOutOfRange(_, 0xe802fade))
+ .WillOnce(Return());
+
+ string contents;
+ ASSERT_TRUE(section.GetContents(&contents));
+
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(8);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+// A lone CIE shouldn't cause any handler calls.
+TEST_F(LulDwarfCFI, SingleCIE) {
+ CFISection section(kLittleEndian, 4);
+ section.CIEHeader(0xffe799a8, 0x3398dcdd, 0x6e9683de, 3, "");
+ section.Append(10, lul::DW_CFA_nop);
+ section.FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("SingleCIE", section);
+
+ EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(handler, End()).Times(0);
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_LITTLE);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+// One FDE, one CIE.
+TEST_F(LulDwarfCFI, OneFDE) {
+ CFISection section(kBigEndian, 4);
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "")
+ .FinishEntry()
+ .FDEHeader(cie, 0x7714740d, 0x3d5a10cd)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("OneFDE", section);
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, 0x7714740d, 0x3d5a10cd, 3, "", 0x6b6efb87))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+// Two FDEs share a CIE.
+TEST_F(LulDwarfCFI, TwoFDEsOneCIE) {
+ CFISection section(kBigEndian, 4);
+ Label cie;
+ section
+ // First FDE. readelf complains about this one because it makes
+ // a forward reference to its CIE.
+ .FDEHeader(cie, 0xa42744df, 0xa3b42121)
+ .FinishEntry()
+ // CIE.
+ .Mark(&cie)
+ .CIEHeader(0x04f7dc7b, 0x3d00c05f, 0xbd43cb59, 3, "")
+ .FinishEntry()
+ // Second FDE.
+ .FDEHeader(cie, 0x6057d391, 0x700f608d)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsOneCIE", section);
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, 0xa42744df, 0xa3b42121, 3, "", 0xbd43cb59))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, 0x6057d391, 0x700f608d, 3, "", 0xbd43cb59))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+// Two FDEs, two CIEs.
+TEST_F(LulDwarfCFI, TwoFDEsTwoCIEs) {
+ CFISection section(kLittleEndian, 8);
+ Label cie1, cie2;
+ section
+ // First CIE.
+ .Mark(&cie1)
+ .CIEHeader(0x694d5d45, 0x4233221b, 0xbf45e65a, 3, "")
+ .FinishEntry()
+ // First FDE which cites second CIE. readelf complains about
+ // this one because it makes a forward reference to its CIE.
+ .FDEHeader(cie2, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL)
+ .FinishEntry()
+ // Second FDE, which cites first CIE.
+ .FDEHeader(cie1, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL)
+ .FinishEntry()
+ // Second CIE.
+ .Mark(&cie2)
+ .CIEHeader(0xfba3fad7, 0x6287e1fd, 0x61d2c581, 2, "")
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsTwoCIEs", section);
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL, 2,
+ "", 0x61d2c581))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL, 3,
+ "", 0xbf45e65a))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_LITTLE);
+ reader.SetAddressSize(8);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+// An FDE whose CIE specifies a version we don't recognize.
+TEST_F(LulDwarfCFI, BadVersion) {
+ CFISection section(kBigEndian, 4);
+ Label cie1, cie2;
+ section
+ .Mark(&cie1)
+ .CIEHeader(0xca878cf0, 0x7698ec04, 0x7b616f54, 0x52, "")
+ .FinishEntry()
+ // We should skip this entry, as its CIE specifies a version we
+ // don't recognize.
+ .FDEHeader(cie1, 0x08852292, 0x2204004a)
+ .FinishEntry()
+ // Despite the above, we should visit this entry.
+ .Mark(&cie2)
+ .CIEHeader(0x7c3ae7c9, 0xb9b9a512, 0x96cb3264, 3, "")
+ .FinishEntry()
+ .FDEHeader(cie2, 0x2094735a, 0x6e875501)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("BadVersion", section);
+
+ EXPECT_CALL(reporter, UnrecognizedVersion(_, 0x52))
+ .WillOnce(Return());
+
+ {
+ InSequence s;
+ // We should see no mention of the first FDE, but we should get
+ // a call to Entry for the second.
+ EXPECT_CALL(handler, Entry(_, 0x2094735a, 0x6e875501, 3, "",
+ 0x96cb3264))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+// An FDE whose CIE specifies an augmentation we don't recognize.
+TEST_F(LulDwarfCFI, BadAugmentation) {
+ CFISection section(kBigEndian, 4);
+ Label cie1, cie2;
+ section
+ .Mark(&cie1)
+ .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "spaniels!")
+ .FinishEntry()
+ // We should skip this entry, as its CIE specifies an
+ // augmentation we don't recognize.
+ .FDEHeader(cie1, 0x7714740d, 0x3d5a10cd)
+ .FinishEntry()
+ // Despite the above, we should visit this entry.
+ .Mark(&cie2)
+ .CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 3, "")
+ .FinishEntry()
+ .FDEHeader(cie2, 0x7bf0fda0, 0xcbcd28d8)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("BadAugmentation", section);
+
+ EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "spaniels!"))
+ .WillOnce(Return());
+
+ {
+ InSequence s;
+ // We should see no mention of the first FDE, but we should get
+ // a call to Entry for the second.
+ EXPECT_CALL(handler, Entry(_, 0x7bf0fda0, 0xcbcd28d8, 3, "",
+ 0xf2f519b2))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_FALSE(parser.Start());
+}
+
+// The return address column field is a byte in CFI version 1
+// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
+TEST_F(LulDwarfCFI, CIEVersion1ReturnColumn) {
+ CFISection section(kBigEndian, 4);
+ Label cie;
+ section
+ // CIE, using the version 1 format: return column is a ubyte.
+ .Mark(&cie)
+ // Use a value for the return column that is parsed differently
+ // as a ubyte and as a ULEB128.
+ .CIEHeader(0xbcdea24f, 0x5be28286, 0x9f, 1, "")
+ .FinishEntry()
+ // FDE, citing that CIE.
+ .FDEHeader(cie, 0xb8d347b5, 0x825e55dc)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion1ReturnColumn", section);
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler, Entry(_, 0xb8d347b5, 0x825e55dc, 1, "", 0x9f))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+// The return address column field is a byte in CFI version 1
+// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
+TEST_F(LulDwarfCFI, CIEVersion3ReturnColumn) {
+ CFISection section(kBigEndian, 4);
+ Label cie;
+ section
+ // CIE, using the version 3 format: return column is a ULEB128.
+ .Mark(&cie)
+ // Use a value for the return column that is parsed differently
+ // as a ubyte and as a ULEB128.
+ .CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 3, "")
+ .FinishEntry()
+ // FDE, citing that CIE.
+ .FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section);
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 3, "", 0x89))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ string contents;
+ EXPECT_TRUE(section.GetContents(&contents));
+ ByteReader reader(ENDIANNESS_BIG);
+ reader.SetAddressSize(4);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter);
+ EXPECT_TRUE(parser.Start());
+}
+
+struct CFIInsnFixture: public CFIFixture {
+ CFIInsnFixture() : CFIFixture() {
+ data_factor = 0xb6f;
+ return_register = 0x9be1ed9f;
+ version = 3;
+ cfa_base_register = 0x383a3aa;
+ cfa_offset = 0xf748;
+ }
+
+ // Prepare SECTION to receive FDE instructions.
+ //
+ // - Append a stock CIE header that establishes the fixture's
+ // code_factor, data_factor, return_register, version, and
+ // augmentation values.
+ // - Have the CIE set up a CFA rule using cfa_base_register and
+ // cfa_offset.
+ // - Append a stock FDE header, referring to the above CIE, for the
+ // fde_size bytes at fde_start. Choose fde_start and fde_size
+ // appropriately for the section's address size.
+ // - Set appropriate expectations on handler in sequence s for the
+ // frame description entry and the CIE's CFA rule.
+ //
+ // On return, SECTION is ready to have FDE instructions appended to
+ // it, and its FinishEntry member called.
+ void StockCIEAndFDE(CFISection *section) {
+ // Choose appropriate constants for our address size.
+ if (section->AddressSize() == 4) {
+ fde_start = 0xc628ecfbU;
+ fde_size = 0x5dee04a2;
+ code_factor = 0x60b;
+ } else {
+ assert(section->AddressSize() == 8);
+ fde_start = 0x0005c57ce7806bd3ULL;
+ fde_size = 0x2699521b5e333100ULL;
+ code_factor = 0x01008e32855274a8ULL;
+ }
+
+ // Create the CIE.
+ (*section)
+ .Mark(&cie_label)
+ .CIEHeader(code_factor, data_factor, return_register, version,
+ "")
+ .D8(lul::DW_CFA_def_cfa)
+ .ULEB128(cfa_base_register)
+ .ULEB128(cfa_offset)
+ .FinishEntry();
+
+ // Create the FDE.
+ section->FDEHeader(cie_label, fde_start, fde_size);
+
+ // Expect an Entry call for the FDE and a ValOffsetRule call for the
+ // CIE's CFA rule.
+ EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "",
+ return_register))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister,
+ cfa_base_register, cfa_offset))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ }
+
+ // Run the contents of SECTION through a CallFrameInfo parser,
+ // expecting parser.Start to return SUCCEEDS. Caller may optionally
+ // supply, via READER, its own ByteReader. If that's absent, a
+ // local one is used.
+ void ParseSection(CFISection *section,
+ bool succeeds = true, ByteReader* reader = nullptr) {
+ string contents;
+ EXPECT_TRUE(section->GetContents(&contents));
+ lul::Endianness endianness;
+ if (section->endianness() == kBigEndian)
+ endianness = ENDIANNESS_BIG;
+ else {
+ assert(section->endianness() == kLittleEndian);
+ endianness = ENDIANNESS_LITTLE;
+ }
+ ByteReader local_reader(endianness);
+ ByteReader* reader_to_use = reader ? reader : &local_reader;
+ reader_to_use->SetAddressSize(section->AddressSize());
+ CallFrameInfo parser(contents.data(), contents.size(),
+ reader_to_use, &handler, &reporter);
+ if (succeeds)
+ EXPECT_TRUE(parser.Start());
+ else
+ EXPECT_FALSE(parser.Start());
+ }
+
+ Label cie_label;
+ Sequence s;
+ uint64 code_factor;
+ int data_factor;
+ unsigned return_register;
+ unsigned version;
+ unsigned cfa_base_register;
+ int cfa_offset;
+ uint64 fde_start, fde_size;
+};
+
+class LulDwarfCFIInsn: public CFIInsnFixture, public Test { };
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_set_loc) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_set_loc).D32(0xb1ee3e7a)
+ // Use DW_CFA_def_cfa to force a handler call that we can use to
+ // check the effect of the DW_CFA_set_loc.
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x4defb431).ULEB128(0x6d17b0ee)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_set_loc", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(0xb1ee3e7a, kCFARegister, 0x4defb431, 0x6d17b0ee))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc) {
+ CFISection section(kBigEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_advance_loc | 0x2a)
+ // Use DW_CFA_def_cfa to force a handler call that we can use to
+ // check the effect of the DW_CFA_advance_loc.
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x5bbb3715).ULEB128(0x0186c7bf)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start + 0x2a * code_factor,
+ kCFARegister, 0x5bbb3715, 0x0186c7bf))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc1) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_advance_loc1).D8(0xd8)
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x69d5696a).ULEB128(0x1eb7fc93)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc1", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule((fde_start + 0xd8 * code_factor),
+ kCFARegister, 0x69d5696a, 0x1eb7fc93))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc2) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_advance_loc2).D16(0x3adb)
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x3a368bed).ULEB128(0x3194ee37)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc2", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule((fde_start + 0x3adb * code_factor),
+ kCFARegister, 0x3a368bed, 0x3194ee37))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc4) {
+ CFISection section(kBigEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_advance_loc4).D32(0x15813c88)
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x135270c5).ULEB128(0x24bad7cb)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc4", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule((fde_start + 0x15813c88ULL * code_factor),
+ kCFARegister, 0x135270c5, 0x24bad7cb))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_MIPS_advance_loc8) {
+ code_factor = 0x2d;
+ CFISection section(kBigEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_MIPS_advance_loc8).D64(0x3c4f3945b92c14ULL)
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0xe17ed602).ULEB128(0x3d162e7f)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc8", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule((fde_start + 0x3c4f3945b92c14ULL * code_factor),
+ kCFARegister, 0xe17ed602, 0x3d162e7f))
+ .InSequence(s)
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x4e363a85).ULEB128(0x815f9aa7)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_def_cfa", section);
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x4e363a85, 0x815f9aa7))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_sf) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_sf).ULEB128(0x8ccb32b7).LEB128(0x9ea)
+ .D8(lul::DW_CFA_def_cfa_sf).ULEB128(0x9b40f5da).LEB128(-0x40a2)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x8ccb32b7,
+ 0x9ea * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x9b40f5da,
+ -0x40a2 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_register) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_register).ULEB128(0x3e7e9363)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x3e7e9363, cfa_offset))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+// DW_CFA_def_cfa_register should have no effect when applied to a
+// non-base/offset rule.
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_registerBadRule) {
+ ByteReader reader(ENDIANNESS_BIG);
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_expression).Block("needle in a haystack")
+ .D8(lul::DW_CFA_def_cfa_register).ULEB128(0xf1b49e49)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValExpressionRule(fde_start, kCFARegister,
+ "needle in a haystack"))
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
+ 0x1e8e3b9b))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset_sf) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_offset_sf).LEB128(0x970)
+ .D8(lul::DW_CFA_def_cfa_offset_sf).LEB128(-0x2cd)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
+ 0x970 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
+ -0x2cd * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+// DW_CFA_def_cfa_offset should have no effect when applied to a
+// non-base/offset rule.
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offsetBadRule) {
+ ByteReader reader(ENDIANNESS_BIG);
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_expression).Block("six ways to Sunday")
+ .D8(lul::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValExpressionRule(fde_start, kCFARegister,
+ "six ways to Sunday"))
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_expression) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_def_cfa_expression).Block("eating crow")
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister,
+ "eating crow"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_undefined) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_undefined).ULEB128(0x300ce45d)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, UndefinedRule(fde_start, 0x300ce45d))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_same_value) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_same_value).ULEB128(0x3865a760)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, SameValueRule(fde_start, 0x3865a760))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_offset) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset | 0x2c).ULEB128(0x9f6)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x2c, kCFARegister, 0x9f6 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset_extended).ULEB128(0x402b).ULEB128(0xb48)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start,
+ 0x402b, kCFARegister, 0xb48 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended_sf) {
+ CFISection section(kBigEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset_extended_sf)
+ .ULEB128(0x997c23ee).LEB128(0x2d00)
+ .D8(lul::DW_CFA_offset_extended_sf)
+ .ULEB128(0x9519eb82).LEB128(-0xa77)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x997c23ee,
+ kCFARegister, 0x2d00 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x9519eb82,
+ kCFARegister, -0xa77 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_offset).ULEB128(0x623562fe).ULEB128(0x673)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, 0x623562fe,
+ kCFARegister, 0x673 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset_sf) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_offset_sf).ULEB128(0x6f4f).LEB128(0xaab)
+ .D8(lul::DW_CFA_val_offset_sf).ULEB128(0x2483).LEB128(-0x8a2)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, 0x6f4f,
+ kCFARegister, 0xaab * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, 0x2483,
+ kCFARegister, -0x8a2 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_register) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_register).ULEB128(0x278d18f9).ULEB128(0x1a684414)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, RegisterRule(fde_start, 0x278d18f9, 0x1a684414))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_expression) {
+ ByteReader reader(ENDIANNESS_BIG);
+ CFISection section(kBigEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_expression).ULEB128(0xa1619fb2)
+ .Block("plus ça change, plus c'est la même chose")
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ExpressionRule(fde_start, 0xa1619fb2,
+ "plus ça change, plus c'est la même chose"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_val_expression) {
+ ByteReader reader(ENDIANNESS_BIG);
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_expression).ULEB128(0xc5e4a9e3)
+ .Block("he who has the gold makes the rules")
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValExpressionRule(fde_start, 0xc5e4a9e3,
+ "he who has the gold makes the rules"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_restore) {
+ CFISection section(kLittleEndian, 8);
+ code_factor = 0x01bd188a9b1fa083ULL;
+ data_factor = -0x1ac8;
+ return_register = 0x8c35b049;
+ version = 2;
+ fde_start = 0x2d70fe998298bbb1ULL;
+ fde_size = 0x46ccc2e63cf0b108ULL;
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(code_factor, data_factor, return_register, version,
+ "")
+ // Provide a CFA rule, because register rules require them.
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x6ca1d50e).ULEB128(0x372e38e8)
+ // Provide an offset(N) rule for register 0x3c.
+ .D8(lul::DW_CFA_offset | 0x3c).ULEB128(0xb348)
+ .FinishEntry()
+ // In the FDE...
+ .FDEHeader(cie, fde_start, fde_size)
+ // At a second address, provide a new offset(N) rule for register 0x3c.
+ .D8(lul::DW_CFA_advance_loc | 0x13)
+ .D8(lul::DW_CFA_offset | 0x3c).ULEB128(0x9a50)
+ // At a third address, restore the original rule for register 0x3c.
+ .D8(lul::DW_CFA_advance_loc | 0x01)
+ .D8(lul::DW_CFA_restore | 0x3c)
+ .FinishEntry();
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, fde_start, fde_size, version, "", return_register))
+ .WillOnce(Return(true));
+ // CIE's CFA rule.
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start,
+ kCFARegister, 0x6ca1d50e, 0x372e38e8))
+ .WillOnce(Return(true));
+ // CIE's rule for register 0x3c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x3c,
+ kCFARegister, 0xb348 * data_factor))
+ .WillOnce(Return(true));
+ // FDE's rule for register 0x3c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start + 0x13 * code_factor, 0x3c,
+ kCFARegister, 0x9a50 * data_factor))
+ .WillOnce(Return(true));
+ // Restore CIE's rule for register 0x3c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start + (0x13 + 0x01) * code_factor, 0x3c,
+ kCFARegister, 0xb348 * data_factor))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_restoreNoRule) {
+ CFISection section(kBigEndian, 4);
+ code_factor = 0x005f78143c1c3b82ULL;
+ data_factor = 0x25d0;
+ return_register = 0xe8;
+ version = 1;
+ fde_start = 0x4062e30f;
+ fde_size = 0x5302a389;
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(code_factor, data_factor, return_register, version, "")
+ // Provide a CFA rule, because register rules require them.
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x470aa334).ULEB128(0x099ef127)
+ .FinishEntry()
+ // In the FDE...
+ .FDEHeader(cie, fde_start, fde_size)
+ // At a second address, provide an offset(N) rule for register 0x2c.
+ .D8(lul::DW_CFA_advance_loc | 0x7)
+ .D8(lul::DW_CFA_offset | 0x2c).ULEB128(0x1f47)
+ // At a third address, restore the (missing) CIE rule for register 0x2c.
+ .D8(lul::DW_CFA_advance_loc | 0xb)
+ .D8(lul::DW_CFA_restore | 0x2c)
+ .FinishEntry();
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, fde_start, fde_size, version, "", return_register))
+ .WillOnce(Return(true));
+ // CIE's CFA rule.
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start,
+ kCFARegister, 0x470aa334, 0x099ef127))
+ .WillOnce(Return(true));
+ // FDE's rule for register 0x2c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start + 0x7 * code_factor, 0x2c,
+ kCFARegister, 0x1f47 * data_factor))
+ .WillOnce(Return(true));
+ // Restore CIE's (missing) rule for register 0x2c.
+ EXPECT_CALL(handler,
+ SameValueRule(fde_start + (0x7 + 0xb) * code_factor, 0x2c))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_restore_extended) {
+ CFISection section(kBigEndian, 4);
+ code_factor = 0x126e;
+ data_factor = -0xd8b;
+ return_register = 0x77711787;
+ version = 3;
+ fde_start = 0x01f55a45;
+ fde_size = 0x452adb80;
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(code_factor, data_factor, return_register, version,
+ "", true /* dwarf64 */ )
+ // Provide a CFA rule, because register rules require them.
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x56fa0edd).ULEB128(0x097f78a5)
+ // Provide an offset(N) rule for register 0x0f9b8a1c.
+ .D8(lul::DW_CFA_offset_extended)
+ .ULEB128(0x0f9b8a1c).ULEB128(0xc979)
+ .FinishEntry()
+ // In the FDE...
+ .FDEHeader(cie, fde_start, fde_size)
+ // At a second address, provide a new offset(N) rule for reg 0x0f9b8a1c.
+ .D8(lul::DW_CFA_advance_loc | 0x3)
+ .D8(lul::DW_CFA_offset_extended)
+ .ULEB128(0x0f9b8a1c).ULEB128(0x3b7b)
+ // At a third address, restore the original rule for register 0x0f9b8a1c.
+ .D8(lul::DW_CFA_advance_loc | 0x04)
+ .D8(lul::DW_CFA_restore_extended).ULEB128(0x0f9b8a1c)
+ .FinishEntry();
+
+ {
+ InSequence s;
+ EXPECT_CALL(handler,
+ Entry(_, fde_start, fde_size, version, "", return_register))
+ .WillOnce(Return(true));
+ // CIE's CFA rule.
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x56fa0edd, 0x097f78a5))
+ .WillOnce(Return(true));
+ // CIE's rule for register 0x0f9b8a1c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x0f9b8a1c, kCFARegister,
+ 0xc979 * data_factor))
+ .WillOnce(Return(true));
+ // FDE's rule for register 0x0f9b8a1c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start + 0x3 * code_factor, 0x0f9b8a1c,
+ kCFARegister, 0x3b7b * data_factor))
+ .WillOnce(Return(true));
+ // Restore CIE's rule for register 0x0f9b8a1c.
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start + (0x3 + 0x4) * code_factor, 0x0f9b8a1c,
+ kCFARegister, 0xc979 * data_factor))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+ }
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_state) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+
+ // We create a state, save it, modify it, and then restore. We
+ // refer to the state that is overridden the restore as the
+ // "outgoing" state, and the restored state the "incoming" state.
+ //
+ // Register outgoing incoming expect
+ // 1 offset(N) no rule new "same value" rule
+ // 2 register(R) offset(N) report changed rule
+ // 3 offset(N) offset(M) report changed offset
+ // 4 offset(N) offset(N) no report
+ // 5 offset(N) no rule new "same value" rule
+ section
+ // Create the "incoming" state, which we will save and later restore.
+ .D8(lul::DW_CFA_offset | 2).ULEB128(0x9806)
+ .D8(lul::DW_CFA_offset | 3).ULEB128(0x995d)
+ .D8(lul::DW_CFA_offset | 4).ULEB128(0x7055)
+ .D8(lul::DW_CFA_remember_state)
+ // Advance to a new instruction; an implementation could legitimately
+ // ignore all but the final rule for a given register at a given address.
+ .D8(lul::DW_CFA_advance_loc | 1)
+ // Create the "outgoing" state, which we will discard.
+ .D8(lul::DW_CFA_offset | 1).ULEB128(0xea1a)
+ .D8(lul::DW_CFA_register).ULEB128(2).ULEB128(0x1d2a3767)
+ .D8(lul::DW_CFA_offset | 3).ULEB128(0xdd29)
+ .D8(lul::DW_CFA_offset | 5).ULEB128(0xf1ce)
+ // At a third address, restore the incoming state.
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ uint64 addr = fde_start;
+
+ // Expect the incoming rules to be reported.
+ EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 4, kCFARegister, 0x7055 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+
+ addr += code_factor;
+
+ // After the save, we establish the outgoing rule set.
+ EXPECT_CALL(handler, OffsetRule(addr, 1, kCFARegister, 0xea1a * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(addr, 2, 0x1d2a3767))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0xdd29 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 5, kCFARegister, 0xf1ce * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+
+ addr += code_factor;
+
+ // Finally, after the restore, expect to see the differences from
+ // the outgoing to the incoming rules reported.
+ EXPECT_CALL(handler, SameValueRule(addr, 1))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, SameValueRule(addr, 5))
+ .InSequence(s).WillOnce(Return(true));
+
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+// Check that restoring a rule set reports changes to the CFA rule.
+TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_stateCFA) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+
+ section
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_def_cfa_offset).ULEB128(0x90481102)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, kCFARegister,
+ cfa_base_register, 0x90481102))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor * 2, kCFARegister,
+ cfa_base_register, cfa_offset))
+ .InSequence(s).WillOnce(Return(true));
+
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_nop) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_nop)
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x3fb8d4f1).ULEB128(0x078dc67b)
+ .D8(lul::DW_CFA_nop)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ ValOffsetRule(fde_start, kCFARegister, 0x3fb8d4f1, 0x078dc67b))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_window_save) {
+ CFISection section(kBigEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_GNU_window_save)
+ .FinishEntry();
+
+ // Don't include all the rules in any particular sequence.
+
+ // The caller's %o0-%o7 have become the callee's %i0-%i7. This is
+ // the GCC register numbering.
+ for (int i = 8; i < 16; i++)
+ EXPECT_CALL(handler, RegisterRule(fde_start, i, i + 16))
+ .WillOnce(Return(true));
+ // The caller's %l0-%l7 and %i0-%i7 have been saved at the top of
+ // its frame.
+ for (int i = 16; i < 32; i++)
+ EXPECT_CALL(handler, OffsetRule(fde_start, i, kCFARegister, (i-16) * 4))
+ .WillOnce(Return(true));
+
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_args_size) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_GNU_args_size).ULEB128(0xeddfa520)
+ // Verify that we see this, meaning we parsed the above properly.
+ .D8(lul::DW_CFA_offset | 0x23).ULEB128(0x269)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x23, kCFARegister, 0x269 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_negative_offset_extended) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_GNU_negative_offset_extended)
+ .ULEB128(0x430cc87a).ULEB128(0x613)
+ .FinishEntry();
+
+ EXPECT_CALL(handler,
+ OffsetRule(fde_start, 0x430cc87a,
+ kCFARegister, -0x613 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+// Three FDEs: skip the second
+TEST_F(LulDwarfCFIInsn, SkipFDE) {
+ CFISection section(kBigEndian, 4);
+ Label cie;
+ section
+ // CIE, used by all FDEs.
+ .Mark(&cie)
+ .CIEHeader(0x010269f2, 0x9177, 0xedca5849, 2, "")
+ .D8(lul::DW_CFA_def_cfa).ULEB128(0x42ed390b).ULEB128(0x98f43aad)
+ .FinishEntry()
+ // First FDE.
+ .FDEHeader(cie, 0xa870ebdd, 0x60f6aa4)
+ .D8(lul::DW_CFA_register).ULEB128(0x3a860351).ULEB128(0x6c9a6bcf)
+ .FinishEntry()
+ // Second FDE.
+ .FDEHeader(cie, 0xc534f7c0, 0xf6552e9, true /* dwarf64 */)
+ .D8(lul::DW_CFA_register).ULEB128(0x1b62c234).ULEB128(0x26586b18)
+ .FinishEntry()
+ // Third FDE.
+ .FDEHeader(cie, 0xf681cfc8, 0x7e4594e)
+ .D8(lul::DW_CFA_register).ULEB128(0x26c53934).ULEB128(0x18eeb8a4)
+ .FinishEntry();
+
+ {
+ InSequence s;
+
+ // Process the first FDE.
+ EXPECT_CALL(handler, Entry(_, 0xa870ebdd, 0x60f6aa4, 2, "", 0xedca5849))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(0xa870ebdd, kCFARegister,
+ 0x42ed390b, 0x98f43aad))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(0xa870ebdd, 0x3a860351, 0x6c9a6bcf))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .WillOnce(Return(true));
+
+ // Skip the second FDE.
+ EXPECT_CALL(handler, Entry(_, 0xc534f7c0, 0xf6552e9, 2, "", 0xedca5849))
+ .WillOnce(Return(false));
+
+ // Process the third FDE.
+ EXPECT_CALL(handler, Entry(_, 0xf681cfc8, 0x7e4594e, 2, "", 0xedca5849))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(0xf681cfc8, kCFARegister,
+ 0x42ed390b, 0x98f43aad))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(0xf681cfc8, 0x26c53934, 0x18eeb8a4))
+ .WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .WillOnce(Return(true));
+ }
+
+ ParseSection(&section);
+}
+
+// Quit processing in the middle of an entry's instructions.
+TEST_F(LulDwarfCFIInsn, QuitMidentry) {
+ CFISection section(kLittleEndian, 8);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_register).ULEB128(0xe0cf850d).ULEB128(0x15aab431)
+ .D8(lul::DW_CFA_expression).ULEB128(0x46750aa5).Block("meat")
+ .FinishEntry();
+
+ EXPECT_CALL(handler, RegisterRule(fde_start, 0xe0cf850d, 0x15aab431))
+ .InSequence(s).WillOnce(Return(false));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseSection(&section, false);
+}
+
+class LulDwarfCFIRestore: public CFIInsnFixture, public Test { };
+
+TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleUnchanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_undefined).ULEB128(0x0bac878e)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, UndefinedRule(fde_start, 0x0bac878e))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleChanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_undefined).ULEB128(0x7dedff5f)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_same_value).ULEB128(0x7dedff5f)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, UndefinedRule(fde_start, 0x7dedff5f))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, SameValueRule(fde_start + code_factor, 0x7dedff5f))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + 2 * code_factor, 0x7dedff5f))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleUnchanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_same_value).ULEB128(0xadbc9b3a)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, SameValueRule(fde_start, 0xadbc9b3a))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleChanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_same_value).ULEB128(0x3d90dcb5)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0x3d90dcb5)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, SameValueRule(fde_start, 0x3d90dcb5))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x3d90dcb5))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, SameValueRule(fde_start + 2 * code_factor, 0x3d90dcb5))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleUnchanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset | 0x14).ULEB128(0xb6f)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, OffsetRule(fde_start, 0x14,
+ kCFARegister, 0xb6f * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset | 0x21).ULEB128(0xeb7)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0x21)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, OffsetRule(fde_start, 0x21,
+ kCFARegister, 0xeb7 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x21))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
+ kCFARegister, 0xeb7 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChangedOffset) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_offset | 0x21).ULEB128(0x134)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_offset | 0x21).ULEB128(0xf4f)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, OffsetRule(fde_start, 0x21,
+ kCFARegister, 0x134 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(fde_start + code_factor, 0x21,
+ kCFARegister, 0xf4f * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
+ kCFARegister, 0x134 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleUnchanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_offset).ULEB128(0x829caee6).ULEB128(0xe4c)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x829caee6,
+ kCFARegister, 0xe4c * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_offset).ULEB128(0xf17c36d6).ULEB128(0xeb7)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0xf17c36d6)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValOffsetRule(fde_start, 0xf17c36d6,
+ kCFARegister, 0xeb7 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xf17c36d6))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0xf17c36d6,
+ kCFARegister, 0xeb7 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChangedValOffset) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0x562)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0xe88)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2cf0ab1b,
+ kCFARegister, 0x562 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, 0x2cf0ab1b,
+ kCFARegister, 0xe88 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0x2cf0ab1b,
+ kCFARegister, 0x562 * data_factor))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleUnchanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_register).ULEB128(0x77514acc).ULEB128(0x464de4ce)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, RegisterRule(fde_start, 0x77514acc, 0x464de4ce))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChanged) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_register).ULEB128(0xe39acce5).ULEB128(0x095f1559)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0xe39acce5)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, RegisterRule(fde_start, 0xe39acce5, 0x095f1559))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xe39acce5))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xe39acce5,
+ 0x095f1559))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChangedRegister) {
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0x16607d6a)
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0xbabb4742)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, RegisterRule(fde_start, 0xd40e21b1, 0x16607d6a))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(fde_start + code_factor, 0xd40e21b1,
+ 0xbabb4742))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xd40e21b1,
+ 0x16607d6a))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleUnchanged) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_expression).ULEB128(0x666ae152).Block("dwarf")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ExpressionRule(fde_start, 0x666ae152, "dwarf"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChanged) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_expression).ULEB128(0xb5ca5c46).Block("elf")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0xb5ca5c46)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ExpressionRule(fde_start, 0xb5ca5c46, "elf"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46,
+ "elf"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChangedExpression) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_expression).ULEB128(0x500f5739).Block("smurf")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_expression).ULEB128(0x500f5739).Block("orc")
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ExpressionRule(fde_start, 0x500f5739, "smurf"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ExpressionRule(fde_start + code_factor, 0x500f5739,
+ "orc"))
+ .InSequence(s).WillOnce(Return(true));
+ // Expectations are not wishes.
+ EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0x500f5739,
+ "smurf"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleUnchanged) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_expression).ULEB128(0x666ae152)
+ .Block("hideous")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x666ae152, "hideous"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChanged) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_expression).ULEB128(0xb5ca5c46)
+ .Block("revolting")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_undefined).ULEB128(0xb5ca5c46)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChanged", section);
+
+ EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xb5ca5c46, "revolting"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46,
+ "revolting"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChangedValExpression) {
+ ByteReader reader(ENDIANNESS_LITTLE);
+ CFISection section(kLittleEndian, 4);
+ StockCIEAndFDE(&section);
+ section
+ .D8(lul::DW_CFA_val_expression).ULEB128(0x500f5739)
+ .Block("repulsive")
+ .D8(lul::DW_CFA_remember_state)
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_val_expression).ULEB128(0x500f5739)
+ .Block("nauseous")
+ .D8(lul::DW_CFA_advance_loc | 1)
+ .D8(lul::DW_CFA_restore_state)
+ .FinishEntry();
+
+ PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChangedValExpression",
+ section);
+
+ EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x500f5739, "repulsive"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValExpressionRule(fde_start + code_factor, 0x500f5739,
+ "nauseous"))
+ .InSequence(s).WillOnce(Return(true));
+ // Expectations are not wishes.
+ EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0x500f5739,
+ "repulsive"))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End()).WillOnce(Return(true));
+
+ ParseSection(&section, true, &reader);
+}
+
+struct EHFrameFixture: public CFIInsnFixture {
+ EHFrameFixture()
+ : CFIInsnFixture(), section(kBigEndian, 4, true) {
+ encoded_pointer_bases.cfi = 0x7f496cb2;
+ encoded_pointer_bases.text = 0x540f67b6;
+ encoded_pointer_bases.data = 0xe3eab768;
+ section.SetEncodedPointerBases(encoded_pointer_bases);
+ }
+ CFISection section;
+ CFISection::EncodedPointerBases encoded_pointer_bases;
+
+ // Parse CFIInsnFixture::ParseSection, but parse the section as
+ // .eh_frame data, supplying stock base addresses.
+ void ParseEHFrameSection(CFISection *section, bool succeeds = true) {
+ EXPECT_TRUE(section->ContainsEHFrame());
+ string contents;
+ EXPECT_TRUE(section->GetContents(&contents));
+ lul::Endianness endianness;
+ if (section->endianness() == kBigEndian)
+ endianness = ENDIANNESS_BIG;
+ else {
+ assert(section->endianness() == kLittleEndian);
+ endianness = ENDIANNESS_LITTLE;
+ }
+ ByteReader reader(endianness);
+ reader.SetAddressSize(section->AddressSize());
+ reader.SetCFIDataBase(encoded_pointer_bases.cfi, contents.data());
+ reader.SetTextBase(encoded_pointer_bases.text);
+ reader.SetDataBase(encoded_pointer_bases.data);
+ CallFrameInfo parser(contents.data(), contents.size(),
+ &reader, &handler, &reporter, true);
+ if (succeeds)
+ EXPECT_TRUE(parser.Start());
+ else
+ EXPECT_FALSE(parser.Start());
+ }
+
+};
+
+class LulDwarfEHFrame: public EHFrameFixture, public Test { };
+
+// A simple CIE, an FDE, and a terminator.
+TEST_F(LulDwarfEHFrame, Terminator) {
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(9968, 2466, 67, 1, "")
+ .D8(lul::DW_CFA_def_cfa).ULEB128(3772).ULEB128(1372)
+ .FinishEntry()
+ .FDEHeader(cie, 0x848037a1, 0x7b30475e)
+ .D8(lul::DW_CFA_set_loc).D32(0x17713850)
+ .D8(lul::DW_CFA_undefined).ULEB128(5721)
+ .FinishEntry()
+ .D32(0) // Terminate the sequence.
+ // This FDE should be ignored.
+ .FDEHeader(cie, 0xf19629fe, 0x439fb09b)
+ .FinishEntry();
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.Terminator", section);
+
+ EXPECT_CALL(handler, Entry(_, 0x848037a1, 0x7b30475e, 1, "", 67))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(0x848037a1, kCFARegister, 3772, 1372))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(0x17713850, 5721))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(reporter, EarlyEHTerminator(_))
+ .InSequence(s).WillOnce(Return());
+
+ ParseEHFrameSection(&section);
+}
+
+// The parser should recognize the Linux Standards Base 'z' augmentations.
+TEST_F(LulDwarfEHFrame, SimpleFDE) {
+ lul::DwarfPointerEncoding lsda_encoding =
+ lul::DwarfPointerEncoding(lul::DW_EH_PE_indirect
+ | lul::DW_EH_PE_datarel
+ | lul::DW_EH_PE_sdata2);
+ lul::DwarfPointerEncoding fde_encoding =
+ lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel
+ | lul::DW_EH_PE_udata2);
+
+ section.SetPointerEncoding(fde_encoding);
+ section.SetEncodedPointerBases(encoded_pointer_bases);
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(4873, 7012, 100, 1, "zSLPR")
+ .ULEB128(7) // Augmentation data length
+ .D8(lsda_encoding) // LSDA pointer format
+ .D8(lul::DW_EH_PE_pcrel) // personality pointer format
+ .EncodedPointer(0x97baa00, lul::DW_EH_PE_pcrel) // and value
+ .D8(fde_encoding) // FDE pointer format
+ .D8(lul::DW_CFA_def_cfa).ULEB128(6706).ULEB128(31)
+ .FinishEntry()
+ .FDEHeader(cie, 0x540f6b56, 0xf686)
+ .ULEB128(2) // Augmentation data length
+ .EncodedPointer(0xe3eab475, lsda_encoding) // LSDA pointer, signed
+ .D8(lul::DW_CFA_set_loc)
+ .EncodedPointer(0x540fa4ce, fde_encoding)
+ .D8(lul::DW_CFA_undefined).ULEB128(0x675e)
+ .FinishEntry()
+ .D32(0); // terminator
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.SimpleFDE", section);
+
+ EXPECT_CALL(handler, Entry(_, 0x540f6b56, 0xf686, 1, "zSLPR", 100))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, PersonalityRoutine(0x97baa00, false))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, LanguageSpecificDataArea(0xe3eab475, true))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, SignalHandler())
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(0x540f6b56, kCFARegister, 6706, 31))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(0x540fa4ce, 0x675e))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+// Check that we can handle an empty 'z' augmentation.
+TEST_F(LulDwarfEHFrame, EmptyZ) {
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(5955, 5805, 228, 1, "z")
+ .ULEB128(0) // Augmentation data length
+ .D8(lul::DW_CFA_def_cfa).ULEB128(3629).ULEB128(247)
+ .FinishEntry()
+ .FDEHeader(cie, 0xda007738, 0xfb55c641)
+ .ULEB128(0) // Augmentation data length
+ .D8(lul::DW_CFA_advance_loc1).D8(11)
+ .D8(lul::DW_CFA_undefined).ULEB128(3769)
+ .FinishEntry();
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.EmptyZ", section);
+
+ EXPECT_CALL(handler, Entry(_, 0xda007738, 0xfb55c641, 1, "z", 228))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, ValOffsetRule(0xda007738, kCFARegister, 3629, 247))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, UndefinedRule(0xda007738 + 11 * 5955, 3769))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+// Check that we recognize bad 'z' augmentation characters.
+TEST_F(LulDwarfEHFrame, BadZ) {
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(6937, 1045, 142, 1, "zQ")
+ .ULEB128(0) // Augmentation data length
+ .D8(lul::DW_CFA_def_cfa).ULEB128(9006).ULEB128(7725)
+ .FinishEntry()
+ .FDEHeader(cie, 0x1293efa8, 0x236f53f2)
+ .ULEB128(0) // Augmentation data length
+ .D8(lul::DW_CFA_advance_loc | 12)
+ .D8(lul::DW_CFA_register).ULEB128(5667).ULEB128(3462)
+ .FinishEntry();
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.BadZ", section);
+
+ EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "zQ"))
+ .WillOnce(Return());
+
+ ParseEHFrameSection(&section, false);
+}
+
+TEST_F(LulDwarfEHFrame, zL) {
+ Label cie;
+ lul::DwarfPointerEncoding lsda_encoding =
+ lul::DwarfPointerEncoding(lul::DW_EH_PE_funcrel | lul::DW_EH_PE_udata2);
+ section
+ .Mark(&cie)
+ .CIEHeader(9285, 9959, 54, 1, "zL")
+ .ULEB128(1) // Augmentation data length
+ .D8(lsda_encoding) // encoding for LSDA pointer in FDE
+
+ .FinishEntry()
+ .FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
+ .ULEB128(2) // Augmentation data length
+ .EncodedPointer(0xd40099cd, lsda_encoding) // LSDA pointer
+ .FinishEntry()
+ .D32(0); // terminator
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zL", section);
+
+ EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zL", 54))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, LanguageSpecificDataArea(0xd40099cd, false))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+TEST_F(LulDwarfEHFrame, zP) {
+ Label cie;
+ lul::DwarfPointerEncoding personality_encoding =
+ lul::DwarfPointerEncoding(lul::DW_EH_PE_datarel | lul::DW_EH_PE_udata2);
+ section
+ .Mark(&cie)
+ .CIEHeader(1097, 6313, 17, 1, "zP")
+ .ULEB128(3) // Augmentation data length
+ .D8(personality_encoding) // encoding for personality routine
+ .EncodedPointer(0xe3eaccac, personality_encoding) // value
+ .FinishEntry()
+ .FDEHeader(cie, 0x0c8350c9, 0xbef11087)
+ .ULEB128(0) // Augmentation data length
+ .FinishEntry()
+ .D32(0); // terminator
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zP", section);
+
+ EXPECT_CALL(handler, Entry(_, 0x0c8350c9, 0xbef11087, 1, "zP", 17))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, PersonalityRoutine(0xe3eaccac, false))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+TEST_F(LulDwarfEHFrame, zR) {
+ Label cie;
+ lul::DwarfPointerEncoding pointer_encoding =
+ lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel | lul::DW_EH_PE_sdata2);
+ section.SetPointerEncoding(pointer_encoding);
+ section
+ .Mark(&cie)
+ .CIEHeader(8011, 5496, 75, 1, "zR")
+ .ULEB128(1) // Augmentation data length
+ .D8(pointer_encoding) // encoding for FDE addresses
+ .FinishEntry()
+ .FDEHeader(cie, 0x540f9431, 0xbd0)
+ .ULEB128(0) // Augmentation data length
+ .FinishEntry()
+ .D32(0); // terminator
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zR", section);
+
+ EXPECT_CALL(handler, Entry(_, 0x540f9431, 0xbd0, 1, "zR", 75))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+TEST_F(LulDwarfEHFrame, zS) {
+ Label cie;
+ section
+ .Mark(&cie)
+ .CIEHeader(9217, 7694, 57, 1, "zS")
+ .ULEB128(0) // Augmentation data length
+ .FinishEntry()
+ .FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
+ .ULEB128(0) // Augmentation data length
+ .FinishEntry()
+ .D32(0); // terminator
+
+ PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zS", section);
+
+ EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zS", 57))
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, SignalHandler())
+ .InSequence(s).WillOnce(Return(true));
+ EXPECT_CALL(handler, End())
+ .InSequence(s).WillOnce(Return(true));
+
+ ParseEHFrameSection(&section);
+}
+
+// These tests require manual inspection of the test output.
+struct CFIReporterFixture {
+ CFIReporterFixture() : reporter(gtest_logging_sink_for_LulTestDwarf,
+ "test file name", "test section name") { }
+ CallFrameInfo::Reporter reporter;
+};
+
+class LulDwarfCFIReporter: public CFIReporterFixture, public Test { };
+
+TEST_F(LulDwarfCFIReporter, Incomplete) {
+ reporter.Incomplete(0x0102030405060708ULL, CallFrameInfo::kUnknown);
+}
+
+TEST_F(LulDwarfCFIReporter, EarlyEHTerminator) {
+ reporter.EarlyEHTerminator(0x0102030405060708ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, CIEPointerOutOfRange) {
+ reporter.CIEPointerOutOfRange(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, BadCIEId) {
+ reporter.BadCIEId(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, UnrecognizedVersion) {
+ reporter.UnrecognizedVersion(0x0123456789abcdefULL, 43);
+}
+
+TEST_F(LulDwarfCFIReporter, UnrecognizedAugmentation) {
+ reporter.UnrecognizedAugmentation(0x0123456789abcdefULL, "poodles");
+}
+
+TEST_F(LulDwarfCFIReporter, InvalidPointerEncoding) {
+ reporter.InvalidPointerEncoding(0x0123456789abcdefULL, 0x42);
+}
+
+TEST_F(LulDwarfCFIReporter, UnusablePointerEncoding) {
+ reporter.UnusablePointerEncoding(0x0123456789abcdefULL, 0x42);
+}
+
+TEST_F(LulDwarfCFIReporter, RestoreInCIE) {
+ reporter.RestoreInCIE(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, BadInstruction) {
+ reporter.BadInstruction(0x0123456789abcdefULL, CallFrameInfo::kFDE,
+ 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, NoCFARule) {
+ reporter.NoCFARule(0x0123456789abcdefULL, CallFrameInfo::kCIE,
+ 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, EmptyStateStack) {
+ reporter.EmptyStateStack(0x0123456789abcdefULL, CallFrameInfo::kTerminator,
+ 0xfedcba9876543210ULL);
+}
+
+TEST_F(LulDwarfCFIReporter, ClearingCFARule) {
+ reporter.ClearingCFARule(0x0123456789abcdefULL, CallFrameInfo::kFDE,
+ 0xfedcba9876543210ULL);
+}
+class LulDwarfExpr : public Test { };
+
+class MockSummariser : public Summariser {
+public:
+ MockSummariser() : Summariser(nullptr, 0, nullptr) {}
+ MOCK_METHOD2(Entry, void(uintptr_t, uintptr_t));
+ MOCK_METHOD0(End, void());
+ MOCK_METHOD5(Rule, void(uintptr_t, int, LExprHow, int16_t, int64_t));
+ MOCK_METHOD1(AddPfxInstr, uint32_t(PfxInstr));
+};
+
+TEST_F(LulDwarfExpr, SimpleTransliteration) {
+ MockSummariser summ;
+ ByteReader reader(ENDIANNESS_LITTLE);
+
+ CFISection section(kLittleEndian, 8);
+ section
+ .D8(DW_OP_lit0)
+ .D8(DW_OP_lit31)
+ .D8(DW_OP_breg0 + 17).LEB128(-1234)
+ .D8(DW_OP_const4s).D32(0xFEDC9876)
+ .D8(DW_OP_deref)
+ .D8(DW_OP_and)
+ .D8(DW_OP_plus)
+ .D8(DW_OP_minus)
+ .D8(DW_OP_shl)
+ .D8(DW_OP_ge);
+ string expr;
+ bool ok = section.GetContents(&expr);
+ EXPECT_TRUE(ok);
+
+ {
+ InSequence s;
+ // required start marker
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
+ // DW_OP_lit0
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0)));
+ // DW_OP_lit31
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 31)));
+ // DW_OP_breg17 -1234
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_DwReg, 17)));
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, -1234)));
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add)));
+ // DW_OP_const4s 0xFEDC9876
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0xFEDC9876)));
+ // DW_OP_deref
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Deref)));
+ // DW_OP_and
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_And)));
+ // DW_OP_plus
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add)));
+ // DW_OP_minus
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Sub)));
+ // DW_OP_shl
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Shl)));
+ // DW_OP_ge
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_CmpGES)));
+ // required end marker
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_End)));
+ }
+
+ int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false);
+ EXPECT_TRUE(ix >= 0);
+}
+
+TEST_F(LulDwarfExpr, UnknownOpcode) {
+ MockSummariser summ;
+ ByteReader reader(ENDIANNESS_LITTLE);
+
+ CFISection section(kLittleEndian, 8);
+ section
+ .D8(DW_OP_lo_user - 1);
+ string expr;
+ bool ok = section.GetContents(&expr);
+ EXPECT_TRUE(ok);
+
+ {
+ InSequence s;
+ // required start marker
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
+ }
+
+ int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false);
+ EXPECT_TRUE(ix == -1);
+}
+
+TEST_F(LulDwarfExpr, ExpressionOverrun) {
+ MockSummariser summ;
+ ByteReader reader(ENDIANNESS_LITTLE);
+
+ CFISection section(kLittleEndian, 8);
+ section
+ .D8(DW_OP_const4s).D8(0x12).D8(0x34).D8(0x56);
+ string expr;
+ bool ok = section.GetContents(&expr);
+ EXPECT_TRUE(ok);
+
+ {
+ InSequence s;
+ // required start marker
+ EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
+ // DW_OP_const4s followed by 3 (a.k.a. not enough) bytes
+ // We expect PfxInstr(PX_Simm32, not-known-for-sure-32-bit-immediate)
+ // Hence must use _ as the argument.
+ EXPECT_CALL(summ, AddPfxInstr(_));
+ }
+
+ int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false);
+ EXPECT_TRUE(ix == -1);
+}
+
+// We'll need to mention specific Dwarf registers in the EvaluatePfxExpr tests,
+// and those names are arch-specific, so a bit of macro magic is helpful.
+#if defined(LUL_ARCH_arm)
+# define TESTED_REG_STRUCT_NAME r11
+# define TESTED_REG_DWARF_NAME DW_REG_ARM_R11
+#elif defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
+# define TESTED_REG_STRUCT_NAME xbp
+# define TESTED_REG_DWARF_NAME DW_REG_INTEL_XBP
+#else
+# error "Unknown plat"
+#endif
+
+struct EvaluatePfxExprFixture {
+ // Creates:
+ // initial stack, AVMA 0x12345678, at offset 4 bytes = 0xdeadbeef
+ // initial regs, with XBP = 0x14141356
+ // initial CFA = 0x5432ABCD
+ EvaluatePfxExprFixture() {
+ // The test stack.
+ si.mStartAvma = 0x12345678;
+ si.mLen = 0;
+# define XX(_byte) do { si.mContents[si.mLen++] = (_byte); } while (0)
+ XX(0x55); XX(0x55); XX(0x55); XX(0x55);
+ if (sizeof(void*) == 8) {
+ // le64
+ XX(0xEF); XX(0xBE); XX(0xAD); XX(0xDE); XX(0); XX(0); XX(0); XX(0);
+ } else {
+ // le32
+ XX(0xEF); XX(0xBE); XX(0xAD); XX(0xDE);
+ }
+ XX(0xAA); XX(0xAA); XX(0xAA); XX(0xAA);
+# undef XX
+ // The initial CFA.
+ initialCFA = TaggedUWord(0x5432ABCD);
+ // The initial register state.
+ memset(&regs, 0, sizeof(regs));
+ regs.TESTED_REG_STRUCT_NAME = TaggedUWord(0x14141356);
+ }
+
+ StackImage si;
+ TaggedUWord initialCFA;
+ UnwindRegs regs;
+};
+
+class LulDwarfEvaluatePfxExpr : public EvaluatePfxExprFixture, public Test { };
+
+TEST_F(LulDwarfEvaluatePfxExpr, NormalEvaluation) {
+ vector<PfxInstr> instrs;
+ // Put some junk at the start of the insn sequence.
+ instrs.push_back(PfxInstr(PX_End));
+ instrs.push_back(PfxInstr(PX_End));
+
+ // Now the real sequence
+ // stack is empty
+ instrs.push_back(PfxInstr(PX_Start, 1));
+ // 0x5432ABCD
+ instrs.push_back(PfxInstr(PX_SImm32, 0x31415927));
+ // 0x5432ABCD 0x31415927
+ instrs.push_back(PfxInstr(PX_DwReg, TESTED_REG_DWARF_NAME));
+ // 0x5432ABCD 0x31415927 0x14141356
+ instrs.push_back(PfxInstr(PX_SImm32, 42));
+ // 0x5432ABCD 0x31415927 0x14141356 42
+ instrs.push_back(PfxInstr(PX_Sub));
+ // 0x5432ABCD 0x31415927 0x1414132c
+ instrs.push_back(PfxInstr(PX_Add));
+ // 0x5432ABCD 0x45556c53
+ instrs.push_back(PfxInstr(PX_SImm32, si.mStartAvma + 4));
+ // 0x5432ABCD 0x45556c53 0x1234567c
+ instrs.push_back(PfxInstr(PX_Deref));
+ // 0x5432ABCD 0x45556c53 0xdeadbeef
+ instrs.push_back(PfxInstr(PX_SImm32, 0xFE01DC23));
+ // 0x5432ABCD 0x45556c53 0xdeadbeef 0xFE01DC23
+ instrs.push_back(PfxInstr(PX_And));
+ // 0x5432ABCD 0x45556c53 0xde019c23
+ instrs.push_back(PfxInstr(PX_SImm32, 7));
+ // 0x5432ABCD 0x45556c53 0xde019c23 7
+ instrs.push_back(PfxInstr(PX_Shl));
+ // 0x5432ABCD 0x45556c53 0x6f00ce1180
+ instrs.push_back(PfxInstr(PX_SImm32, 0x7fffffff));
+ // 0x5432ABCD 0x45556c53 0x6f00ce1180 7fffffff
+ instrs.push_back(PfxInstr(PX_And));
+ // 0x5432ABCD 0x45556c53 0x00ce1180
+ instrs.push_back(PfxInstr(PX_Add));
+ // 0x5432ABCD 0x46237dd3
+ instrs.push_back(PfxInstr(PX_Sub));
+ // 0xe0f2dfa
+
+ instrs.push_back(PfxInstr(PX_End));
+
+ TaggedUWord res = EvaluatePfxExpr(2/*offset of start insn*/,
+ &regs, initialCFA, &si, instrs);
+ EXPECT_TRUE(res.Valid());
+ EXPECT_TRUE(res.Value() == 0xe0f2dfa);
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, EmptySequence) {
+ vector<PfxInstr> instrs;
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_FALSE(res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, BogusStartPoint) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_SImm32, 42));
+ instrs.push_back(PfxInstr(PX_SImm32, 24));
+ instrs.push_back(PfxInstr(PX_SImm32, 4224));
+ TaggedUWord res = EvaluatePfxExpr(1, &regs, initialCFA, &si, instrs);
+ EXPECT_FALSE(res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, MissingEndMarker) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ instrs.push_back(PfxInstr(PX_SImm32, 24));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_FALSE(res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, StackUnderflow) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ instrs.push_back(PfxInstr(PX_End));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_FALSE(res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, StackNoUnderflow) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 1/*push the initial CFA*/));
+ instrs.push_back(PfxInstr(PX_End));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_TRUE(res.Valid());
+ EXPECT_TRUE(res == initialCFA);
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, StackOverflow) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ for (int i = 0; i < 10+1; i++) {
+ instrs.push_back(PfxInstr(PX_SImm32, i + 100));
+ }
+ instrs.push_back(PfxInstr(PX_End));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_FALSE(res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, StackNoOverflow) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ for (int i = 0; i < 10+0; i++) {
+ instrs.push_back(PfxInstr(PX_SImm32, i + 100));
+ }
+ instrs.push_back(PfxInstr(PX_End));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_TRUE(res.Valid());
+ EXPECT_TRUE(res == TaggedUWord(109));
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, OutOfRangeShl) {
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ instrs.push_back(PfxInstr(PX_SImm32, 1234));
+ instrs.push_back(PfxInstr(PX_SImm32, 5678));
+ instrs.push_back(PfxInstr(PX_Shl));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_TRUE(!res.Valid());
+}
+
+TEST_F(LulDwarfEvaluatePfxExpr, TestCmpGES) {
+ const int32_t argsL[6] = { 0, 0, 1, -2, -1, -2 };
+ const int32_t argsR[6] = { 0, 1, 0, -2, -2, -1 };
+ // expecting: t f t t t f = 101110 = 0x2E
+ vector<PfxInstr> instrs;
+ instrs.push_back(PfxInstr(PX_Start, 0));
+ // The "running total"
+ instrs.push_back(PfxInstr(PX_SImm32, 0));
+ for (unsigned int i = 0; i < sizeof(argsL)/sizeof(argsL[0]); i++) {
+ // Shift the "running total" at the bottom of the stack left by one bit
+ instrs.push_back(PfxInstr(PX_SImm32, 1));
+ instrs.push_back(PfxInstr(PX_Shl));
+ // Push both test args and do the comparison
+ instrs.push_back(PfxInstr(PX_SImm32, argsL[i]));
+ instrs.push_back(PfxInstr(PX_SImm32, argsR[i]));
+ instrs.push_back(PfxInstr(PX_CmpGES));
+ // Or the result into the running total
+ instrs.push_back(PfxInstr(PX_Or));
+ }
+ instrs.push_back(PfxInstr(PX_End));
+ TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
+ EXPECT_TRUE(res.Valid());
+ EXPECT_TRUE(res == TaggedUWord(0x2E));
+}
+
+} // namespace lul
diff --git a/tools/profiler/tests/gtest/LulTestInfrastructure.cpp b/tools/profiler/tests/gtest/LulTestInfrastructure.cpp
new file mode 100644
index 000000000..ba8e2e41e
--- /dev/null
+++ b/tools/profiler/tests/gtest/LulTestInfrastructure.cpp
@@ -0,0 +1,491 @@
+// Copyright (c) 2010, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
+
+// Derived from:
+// test_assembler.cc: Implementation of google_breakpad::TestAssembler.
+// See test_assembler.h for details.
+
+// Derived from:
+// cfi_assembler.cc: Implementation of google_breakpad::CFISection class.
+// See cfi_assembler.h for details.
+
+#include "LulTestInfrastructure.h"
+
+namespace lul_test {
+namespace test_assembler {
+
+using std::back_insert_iterator;
+
+Label::Label() : value_(new Binding()) { }
+Label::Label(uint64_t value) : value_(new Binding(value)) { }
+Label::Label(const Label &label) {
+ value_ = label.value_;
+ value_->Acquire();
+}
+Label::~Label() {
+ if (value_->Release()) delete value_;
+}
+
+Label &Label::operator=(uint64_t value) {
+ value_->Set(NULL, value);
+ return *this;
+}
+
+Label &Label::operator=(const Label &label) {
+ value_->Set(label.value_, 0);
+ return *this;
+}
+
+Label Label::operator+(uint64_t addend) const {
+ Label l;
+ l.value_->Set(this->value_, addend);
+ return l;
+}
+
+Label Label::operator-(uint64_t subtrahend) const {
+ Label l;
+ l.value_->Set(this->value_, -subtrahend);
+ return l;
+}
+
+// When NDEBUG is #defined, assert doesn't evaluate its argument. This
+// means you can't simply use assert to check the return value of a
+// function with necessary side effects.
+//
+// ALWAYS_EVALUATE_AND_ASSERT(x) evaluates x regardless of whether
+// NDEBUG is #defined; when NDEBUG is not #defined, it further asserts
+// that x is true.
+#ifdef NDEBUG
+#define ALWAYS_EVALUATE_AND_ASSERT(x) x
+#else
+#define ALWAYS_EVALUATE_AND_ASSERT(x) assert(x)
+#endif
+
+uint64_t Label::operator-(const Label &label) const {
+ uint64_t offset;
+ ALWAYS_EVALUATE_AND_ASSERT(IsKnownOffsetFrom(label, &offset));
+ return offset;
+}
+
+bool Label::IsKnownConstant(uint64_t *value_p) const {
+ Binding *base;
+ uint64_t addend;
+ value_->Get(&base, &addend);
+ if (base != NULL) return false;
+ if (value_p) *value_p = addend;
+ return true;
+}
+
+bool Label::IsKnownOffsetFrom(const Label &label, uint64_t *offset_p) const
+{
+ Binding *label_base, *this_base;
+ uint64_t label_addend, this_addend;
+ label.value_->Get(&label_base, &label_addend);
+ value_->Get(&this_base, &this_addend);
+ // If this and label are related, Get will find their final
+ // common ancestor, regardless of how indirect the relation is. This
+ // comparison also handles the constant vs. constant case.
+ if (this_base != label_base) return false;
+ if (offset_p) *offset_p = this_addend - label_addend;
+ return true;
+}
+
+Label::Binding::Binding() : base_(this), addend_(), reference_count_(1) { }
+
+Label::Binding::Binding(uint64_t addend)
+ : base_(NULL), addend_(addend), reference_count_(1) { }
+
+Label::Binding::~Binding() {
+ assert(reference_count_ == 0);
+ if (base_ && base_ != this && base_->Release())
+ delete base_;
+}
+
+void Label::Binding::Set(Binding *binding, uint64_t addend) {
+ if (!base_ && !binding) {
+ // We're equating two constants. This could be okay.
+ assert(addend_ == addend);
+ } else if (!base_) {
+ // We are a known constant, but BINDING may not be, so turn the
+ // tables and try to set BINDING's value instead.
+ binding->Set(NULL, addend_ - addend);
+ } else {
+ if (binding) {
+ // Find binding's final value. Since the final value is always either
+ // completely unconstrained or a constant, never a reference to
+ // another variable (otherwise, it wouldn't be final), this
+ // guarantees we won't create cycles here, even for code like this:
+ // l = m, m = n, n = l;
+ uint64_t binding_addend;
+ binding->Get(&binding, &binding_addend);
+ addend += binding_addend;
+ }
+
+ // It seems likely that setting a binding to itself is a bug
+ // (although I can imagine this might turn out to be helpful to
+ // permit).
+ assert(binding != this);
+
+ if (base_ != this) {
+ // Set the other bindings on our chain as well. Note that this
+ // is sufficient even though binding relationships form trees:
+ // All binding operations traverse their chains to the end, and
+ // all bindings related to us share some tail of our chain, so
+ // they will see the changes we make here.
+ base_->Set(binding, addend - addend_);
+ // We're not going to use base_ any more.
+ if (base_->Release()) delete base_;
+ }
+
+ // Adopt BINDING as our base. Note that it should be correct to
+ // acquire here, after the release above, even though the usual
+ // reference-counting rules call for acquiring first, and then
+ // releasing: the self-reference assertion above should have
+ // complained if BINDING were 'this' or anywhere along our chain,
+ // so we didn't release BINDING.
+ if (binding) binding->Acquire();
+ base_ = binding;
+ addend_ = addend;
+ }
+}
+
+void Label::Binding::Get(Binding **base, uint64_t *addend) {
+ if (base_ && base_ != this) {
+ // Recurse to find the end of our reference chain (the root of our
+ // tree), and then rewrite every binding along the chain to refer
+ // to it directly, adjusting addends appropriately. (This is why
+ // this member function isn't this-const.)
+ Binding *final_base;
+ uint64_t final_addend;
+ base_->Get(&final_base, &final_addend);
+ if (final_base) final_base->Acquire();
+ if (base_->Release()) delete base_;
+ base_ = final_base;
+ addend_ += final_addend;
+ }
+ *base = base_;
+ *addend = addend_;
+}
+
+template<typename Inserter>
+static inline void InsertEndian(test_assembler::Endianness endianness,
+ size_t size, uint64_t number, Inserter dest) {
+ assert(size > 0);
+ if (endianness == kLittleEndian) {
+ for (size_t i = 0; i < size; i++) {
+ *dest++ = (char) (number & 0xff);
+ number >>= 8;
+ }
+ } else {
+ assert(endianness == kBigEndian);
+ // The loop condition is odd, but it's correct for size_t.
+ for (size_t i = size - 1; i < size; i--)
+ *dest++ = (char) ((number >> (i * 8)) & 0xff);
+ }
+}
+
+Section &Section::Append(Endianness endianness, size_t size, uint64_t number) {
+ InsertEndian(endianness, size, number,
+ back_insert_iterator<string>(contents_));
+ return *this;
+}
+
+Section &Section::Append(Endianness endianness, size_t size,
+ const Label &label) {
+ // If this label's value is known, there's no reason to waste an
+ // entry in references_ on it.
+ uint64_t value;
+ if (label.IsKnownConstant(&value))
+ return Append(endianness, size, value);
+
+ // This will get caught when the references are resolved, but it's
+ // nicer to find out earlier.
+ assert(endianness != kUnsetEndian);
+
+ references_.push_back(Reference(contents_.size(), endianness, size, label));
+ contents_.append(size, 0);
+ return *this;
+}
+
+#define ENDIANNESS_L kLittleEndian
+#define ENDIANNESS_B kBigEndian
+#define ENDIANNESS(e) ENDIANNESS_ ## e
+
+#define DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
+ Section &Section::e ## bits(uint ## bits ## _t v) { \
+ InsertEndian(ENDIANNESS(e), bits / 8, v, \
+ back_insert_iterator<string>(contents_)); \
+ return *this; \
+ }
+
+#define DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits) \
+ Section &Section::e ## bits(const Label &v) { \
+ return Append(ENDIANNESS(e), bits / 8, v); \
+ }
+
+// Define L16, B32, and friends.
+#define DEFINE_SHORT_APPEND_ENDIAN(e, bits) \
+ DEFINE_SHORT_APPEND_NUMBER_ENDIAN(e, bits) \
+ DEFINE_SHORT_APPEND_LABEL_ENDIAN(e, bits)
+
+DEFINE_SHORT_APPEND_LABEL_ENDIAN(L, 8);
+DEFINE_SHORT_APPEND_LABEL_ENDIAN(B, 8);
+DEFINE_SHORT_APPEND_ENDIAN(L, 16);
+DEFINE_SHORT_APPEND_ENDIAN(L, 32);
+DEFINE_SHORT_APPEND_ENDIAN(L, 64);
+DEFINE_SHORT_APPEND_ENDIAN(B, 16);
+DEFINE_SHORT_APPEND_ENDIAN(B, 32);
+DEFINE_SHORT_APPEND_ENDIAN(B, 64);
+
+#define DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
+ Section &Section::D ## bits(uint ## bits ## _t v) { \
+ InsertEndian(endianness_, bits / 8, v, \
+ back_insert_iterator<string>(contents_)); \
+ return *this; \
+ }
+#define DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits) \
+ Section &Section::D ## bits(const Label &v) { \
+ return Append(endianness_, bits / 8, v); \
+ }
+#define DEFINE_SHORT_APPEND_DEFAULT(bits) \
+ DEFINE_SHORT_APPEND_NUMBER_DEFAULT(bits) \
+ DEFINE_SHORT_APPEND_LABEL_DEFAULT(bits)
+
+DEFINE_SHORT_APPEND_LABEL_DEFAULT(8)
+DEFINE_SHORT_APPEND_DEFAULT(16);
+DEFINE_SHORT_APPEND_DEFAULT(32);
+DEFINE_SHORT_APPEND_DEFAULT(64);
+
+Section &Section::LEB128(long long value) {
+ while (value < -0x40 || 0x3f < value) {
+ contents_ += (value & 0x7f) | 0x80;
+ if (value < 0)
+ value = (value >> 7) | ~(((unsigned long long) -1) >> 7);
+ else
+ value = (value >> 7);
+ }
+ contents_ += value & 0x7f;
+ return *this;
+}
+
+Section &Section::ULEB128(uint64_t value) {
+ while (value > 0x7f) {
+ contents_ += (value & 0x7f) | 0x80;
+ value = (value >> 7);
+ }
+ contents_ += value;
+ return *this;
+}
+
+Section &Section::Align(size_t alignment, uint8_t pad_byte) {
+ // ALIGNMENT must be a power of two.
+ assert(((alignment - 1) & alignment) == 0);
+ size_t new_size = (contents_.size() + alignment - 1) & ~(alignment - 1);
+ contents_.append(new_size - contents_.size(), pad_byte);
+ assert((contents_.size() & (alignment - 1)) == 0);
+ return *this;
+}
+
+bool Section::GetContents(string *contents) {
+ // For each label reference, find the label's value, and patch it into
+ // the section's contents.
+ for (size_t i = 0; i < references_.size(); i++) {
+ Reference &r = references_[i];
+ uint64_t value;
+ if (!r.label.IsKnownConstant(&value)) {
+ fprintf(stderr, "Undefined label #%zu at offset 0x%zx\n", i, r.offset);
+ return false;
+ }
+ assert(r.offset < contents_.size());
+ assert(contents_.size() - r.offset >= r.size);
+ InsertEndian(r.endianness, r.size, value, contents_.begin() + r.offset);
+ }
+ contents->clear();
+ std::swap(contents_, *contents);
+ references_.clear();
+ return true;
+}
+
+} // namespace test_assembler
+} // namespace lul_test
+
+
+namespace lul_test {
+
+CFISection &CFISection::CIEHeader(uint64_t code_alignment_factor,
+ int data_alignment_factor,
+ unsigned return_address_register,
+ uint8_t version,
+ const string &augmentation,
+ bool dwarf64) {
+ assert(!entry_length_);
+ entry_length_ = new PendingLength();
+ in_fde_ = false;
+
+ if (dwarf64) {
+ D32(kDwarf64InitialLengthMarker);
+ D64(entry_length_->length);
+ entry_length_->start = Here();
+ D64(eh_frame_ ? kEHFrame64CIEIdentifier : kDwarf64CIEIdentifier);
+ } else {
+ D32(entry_length_->length);
+ entry_length_->start = Here();
+ D32(eh_frame_ ? kEHFrame32CIEIdentifier : kDwarf32CIEIdentifier);
+ }
+ D8(version);
+ AppendCString(augmentation);
+ ULEB128(code_alignment_factor);
+ LEB128(data_alignment_factor);
+ if (version == 1)
+ D8(return_address_register);
+ else
+ ULEB128(return_address_register);
+ return *this;
+}
+
+CFISection &CFISection::FDEHeader(Label cie_pointer,
+ uint64_t initial_location,
+ uint64_t address_range,
+ bool dwarf64) {
+ assert(!entry_length_);
+ entry_length_ = new PendingLength();
+ in_fde_ = true;
+ fde_start_address_ = initial_location;
+
+ if (dwarf64) {
+ D32(0xffffffff);
+ D64(entry_length_->length);
+ entry_length_->start = Here();
+ if (eh_frame_)
+ D64(Here() - cie_pointer);
+ else
+ D64(cie_pointer);
+ } else {
+ D32(entry_length_->length);
+ entry_length_->start = Here();
+ if (eh_frame_)
+ D32(Here() - cie_pointer);
+ else
+ D32(cie_pointer);
+ }
+ EncodedPointer(initial_location);
+ // The FDE length in an .eh_frame section uses the same encoding as the
+ // initial location, but ignores the base address (selected by the upper
+ // nybble of the encoding), as it's a length, not an address that can be
+ // made relative.
+ EncodedPointer(address_range,
+ DwarfPointerEncoding(pointer_encoding_ & 0x0f));
+ return *this;
+}
+
+CFISection &CFISection::FinishEntry() {
+ assert(entry_length_);
+ Align(address_size_, lul::DW_CFA_nop);
+ entry_length_->length = Here() - entry_length_->start;
+ delete entry_length_;
+ entry_length_ = NULL;
+ in_fde_ = false;
+ return *this;
+}
+
+CFISection &CFISection::EncodedPointer(uint64_t address,
+ DwarfPointerEncoding encoding,
+ const EncodedPointerBases &bases) {
+ // Omitted data is extremely easy to emit.
+ if (encoding == lul::DW_EH_PE_omit)
+ return *this;
+
+ // If (encoding & lul::DW_EH_PE_indirect) != 0, then we assume
+ // that ADDRESS is the address at which the pointer is stored --- in
+ // other words, that bit has no effect on how we write the pointer.
+ encoding = DwarfPointerEncoding(encoding & ~lul::DW_EH_PE_indirect);
+
+ // Find the base address to which this pointer is relative. The upper
+ // nybble of the encoding specifies this.
+ uint64_t base;
+ switch (encoding & 0xf0) {
+ case lul::DW_EH_PE_absptr: base = 0; break;
+ case lul::DW_EH_PE_pcrel: base = bases.cfi + Size(); break;
+ case lul::DW_EH_PE_textrel: base = bases.text; break;
+ case lul::DW_EH_PE_datarel: base = bases.data; break;
+ case lul::DW_EH_PE_funcrel: base = fde_start_address_; break;
+ case lul::DW_EH_PE_aligned: base = 0; break;
+ default: abort();
+ };
+
+ // Make ADDRESS relative. Yes, this is appropriate even for "absptr"
+ // values; see gcc/unwind-pe.h.
+ address -= base;
+
+ // Align the pointer, if required.
+ if ((encoding & 0xf0) == lul::DW_EH_PE_aligned)
+ Align(AddressSize());
+
+ // Append ADDRESS to this section in the appropriate form. For the
+ // fixed-width forms, we don't need to differentiate between signed and
+ // unsigned encodings, because ADDRESS has already been extended to 64
+ // bits before it was passed to us.
+ switch (encoding & 0x0f) {
+ case lul::DW_EH_PE_absptr:
+ Address(address);
+ break;
+
+ case lul::DW_EH_PE_uleb128:
+ ULEB128(address);
+ break;
+
+ case lul::DW_EH_PE_sleb128:
+ LEB128(address);
+ break;
+
+ case lul::DW_EH_PE_udata2:
+ case lul::DW_EH_PE_sdata2:
+ D16(address);
+ break;
+
+ case lul::DW_EH_PE_udata4:
+ case lul::DW_EH_PE_sdata4:
+ D32(address);
+ break;
+
+ case lul::DW_EH_PE_udata8:
+ case lul::DW_EH_PE_sdata8:
+ D64(address);
+ break;
+
+ default:
+ abort();
+ }
+
+ return *this;
+};
+
+} // namespace lul_test
diff --git a/tools/profiler/tests/gtest/LulTestInfrastructure.h b/tools/profiler/tests/gtest/LulTestInfrastructure.h
new file mode 100644
index 000000000..37b1b7d49
--- /dev/null
+++ b/tools/profiler/tests/gtest/LulTestInfrastructure.h
@@ -0,0 +1,666 @@
+// -*- mode: C++ -*-
+
+// Copyright (c) 2010, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
+
+// Derived from:
+// cfi_assembler.h: Define CFISection, a class for creating properly
+// (and improperly) formatted DWARF CFI data for unit tests.
+
+// Derived from:
+// test-assembler.h: interface to class for building complex binary streams.
+
+// To test the Breakpad symbol dumper and processor thoroughly, for
+// all combinations of host system and minidump processor
+// architecture, we need to be able to easily generate complex test
+// data like debugging information and minidump files.
+//
+// For example, if we want our unit tests to provide full code
+// coverage for stack walking, it may be difficult to persuade the
+// compiler to generate every possible sort of stack walking
+// information that we want to support; there are probably DWARF CFI
+// opcodes that GCC never emits. Similarly, if we want to test our
+// error handling, we will need to generate damaged minidumps or
+// debugging information that (we hope) the client or compiler will
+// never produce on its own.
+//
+// google_breakpad::TestAssembler provides a predictable and
+// (relatively) simple way to generate complex formatted data streams
+// like minidumps and CFI. Furthermore, because TestAssembler is
+// portable, developers without access to (say) Visual Studio or a
+// SPARC assembler can still work on test data for those targets.
+
+#ifndef LUL_TEST_INFRASTRUCTURE_H
+#define LUL_TEST_INFRASTRUCTURE_H
+
+#include <string>
+#include <vector>
+
+using std::string;
+using std::vector;
+
+namespace lul_test {
+namespace test_assembler {
+
+// A Label represents a value not yet known that we need to store in a
+// section. As long as all the labels a section refers to are defined
+// by the time we retrieve its contents as bytes, we can use undefined
+// labels freely in that section's construction.
+//
+// A label can be in one of three states:
+// - undefined,
+// - defined as the sum of some other label and a constant, or
+// - a constant.
+//
+// A label's value never changes, but it can accumulate constraints.
+// Adding labels and integers is permitted, and yields a label.
+// Subtracting a constant from a label is permitted, and also yields a
+// label. Subtracting two labels that have some relationship to each
+// other is permitted, and yields a constant.
+//
+// For example:
+//
+// Label a; // a's value is undefined
+// Label b; // b's value is undefined
+// {
+// Label c = a + 4; // okay, even though a's value is unknown
+// b = c + 4; // also okay; b is now a+8
+// }
+// Label d = b - 2; // okay; d == a+6, even though c is gone
+// d.Value(); // error: d's value is not yet known
+// d - a; // is 6, even though their values are not known
+// a = 12; // now b == 20, and d == 18
+// d.Value(); // 18: no longer an error
+// b.Value(); // 20
+// d = 10; // error: d is already defined.
+//
+// Label objects' lifetimes are unconstrained: notice that, in the
+// above example, even though a and b are only related through c, and
+// c goes out of scope, the assignment to a sets b's value as well. In
+// particular, it's not necessary to ensure that a Label lives beyond
+// Sections that refer to it.
+class Label {
+ public:
+ Label(); // An undefined label.
+ explicit Label(uint64_t value); // A label with a fixed value
+ Label(const Label &value); // A label equal to another.
+ ~Label();
+
+ Label &operator=(uint64_t value);
+ Label &operator=(const Label &value);
+ Label operator+(uint64_t addend) const;
+ Label operator-(uint64_t subtrahend) const;
+ uint64_t operator-(const Label &subtrahend) const;
+
+ // We could also provide == and != that work on undefined, but
+ // related, labels.
+
+ // Return true if this label's value is known. If VALUE_P is given,
+ // set *VALUE_P to the known value if returning true.
+ bool IsKnownConstant(uint64_t *value_p = NULL) const;
+
+ // Return true if the offset from LABEL to this label is known. If
+ // OFFSET_P is given, set *OFFSET_P to the offset when returning true.
+ //
+ // You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
+ // except that it also returns a value indicating whether the
+ // subtraction is possible given what we currently know of l and m.
+ // It can be possible even if we don't know l and m's values. For
+ // example:
+ //
+ // Label l, m;
+ // m = l + 10;
+ // l.IsKnownConstant(); // false
+ // m.IsKnownConstant(); // false
+ // uint64_t d;
+ // l.IsKnownOffsetFrom(m, &d); // true, and sets d to -10.
+ // l-m // -10
+ // m-l // 10
+ // m.Value() // error: m's value is not known
+ bool IsKnownOffsetFrom(const Label &label, uint64_t *offset_p = NULL) const;
+
+ private:
+ // A label's value, or if that is not yet known, how the value is
+ // related to other labels' values. A binding may be:
+ // - a known constant,
+ // - constrained to be equal to some other binding plus a constant, or
+ // - unconstrained, and free to take on any value.
+ //
+ // Many labels may point to a single binding, and each binding may
+ // refer to another, so bindings and labels form trees whose leaves
+ // are labels, whose interior nodes (and roots) are bindings, and
+ // where links point from children to parents. Bindings are
+ // reference counted, allowing labels to be lightweight, copyable,
+ // assignable, placed in containers, and so on.
+ class Binding {
+ public:
+ Binding();
+ explicit Binding(uint64_t addend);
+ ~Binding();
+
+ // Increment our reference count.
+ void Acquire() { reference_count_++; };
+ // Decrement our reference count, and return true if it is zero.
+ bool Release() { return --reference_count_ == 0; }
+
+ // Set this binding to be equal to BINDING + ADDEND. If BINDING is
+ // NULL, then set this binding to the known constant ADDEND.
+ // Update every binding on this binding's chain to point directly
+ // to BINDING, or to be a constant, with addends adjusted
+ // appropriately.
+ void Set(Binding *binding, uint64_t value);
+
+ // Return what we know about the value of this binding.
+ // - If this binding's value is a known constant, set BASE to
+ // NULL, and set ADDEND to its value.
+ // - If this binding is not a known constant but related to other
+ // bindings, set BASE to the binding at the end of the relation
+ // chain (which will always be unconstrained), and set ADDEND to the
+ // value to add to that binding's value to get this binding's
+ // value.
+ // - If this binding is unconstrained, set BASE to this, and leave
+ // ADDEND unchanged.
+ void Get(Binding **base, uint64_t *addend);
+
+ private:
+ // There are three cases:
+ //
+ // - A binding representing a known constant value has base_ NULL,
+ // and addend_ equal to the value.
+ //
+ // - A binding representing a completely unconstrained value has
+ // base_ pointing to this; addend_ is unused.
+ //
+ // - A binding whose value is related to some other binding's
+ // value has base_ pointing to that other binding, and addend_
+ // set to the amount to add to that binding's value to get this
+ // binding's value. We only represent relationships of the form
+ // x = y+c.
+ //
+ // Thus, the bind_ links form a chain terminating in either a
+ // known constant value or a completely unconstrained value. Most
+ // operations on bindings do path compression: they change every
+ // binding on the chain to point directly to the final value,
+ // adjusting addends as appropriate.
+ Binding *base_;
+ uint64_t addend_;
+
+ // The number of Labels and Bindings pointing to this binding.
+ // (When a binding points to itself, indicating a completely
+ // unconstrained binding, that doesn't count as a reference.)
+ int reference_count_;
+ };
+
+ // This label's value.
+ Binding *value_;
+};
+
+// Conventions for representing larger numbers as sequences of bytes.
+enum Endianness {
+ kBigEndian, // Big-endian: the most significant byte comes first.
+ kLittleEndian, // Little-endian: the least significant byte comes first.
+ kUnsetEndian, // used internally
+};
+
+// A section is a sequence of bytes, constructed by appending bytes
+// to the end. Sections have a convenient and flexible set of member
+// functions for appending data in various formats: big-endian and
+// little-endian signed and unsigned values of different sizes;
+// LEB128 and ULEB128 values (see below), and raw blocks of bytes.
+//
+// If you need to append a value to a section that is not convenient
+// to compute immediately, you can create a label, append the
+// label's value to the section, and then set the label's value
+// later, when it's convenient to do so. Once a label's value is
+// known, the section class takes care of updating all previously
+// appended references to it.
+//
+// Once all the labels to which a section refers have had their
+// values determined, you can get a copy of the section's contents
+// as a string.
+//
+// Note that there is no specified "start of section" label. This is
+// because there are typically several different meanings for "the
+// start of a section": the offset of the section within an object
+// file, the address in memory at which the section's content appear,
+// and so on. It's up to the code that uses the Section class to
+// keep track of these explicitly, as they depend on the application.
+class Section {
+ public:
+ explicit Section(Endianness endianness = kUnsetEndian)
+ : endianness_(endianness) { };
+
+ // A base class destructor should be either public and virtual,
+ // or protected and nonvirtual.
+ virtual ~Section() { };
+
+ // Return the default endianness of this section.
+ Endianness endianness() const { return endianness_; }
+
+ // Append the SIZE bytes at DATA to the end of this section. Return
+ // a reference to this section.
+ Section &Append(const string &data) {
+ contents_.append(data);
+ return *this;
+ };
+
+ // Append SIZE copies of BYTE to the end of this section. Return a
+ // reference to this section.
+ Section &Append(size_t size, uint8_t byte) {
+ contents_.append(size, (char) byte);
+ return *this;
+ }
+
+ // Append NUMBER to this section. ENDIANNESS is the endianness to
+ // use to write the number. SIZE is the length of the number in
+ // bytes. Return a reference to this section.
+ Section &Append(Endianness endianness, size_t size, uint64_t number);
+ Section &Append(Endianness endianness, size_t size, const Label &label);
+
+ // Append SECTION to the end of this section. The labels SECTION
+ // refers to need not be defined yet.
+ //
+ // Note that this has no effect on any Labels' values, or on
+ // SECTION. If placing SECTION within 'this' provides new
+ // constraints on existing labels' values, then it's up to the
+ // caller to fiddle with those labels as needed.
+ Section &Append(const Section &section);
+
+ // Append the contents of DATA as a series of bytes terminated by
+ // a NULL character.
+ Section &AppendCString(const string &data) {
+ Append(data);
+ contents_ += '\0';
+ return *this;
+ }
+
+ // Append VALUE or LABEL to this section, with the given bit width and
+ // endianness. Return a reference to this section.
+ //
+ // The names of these functions have the form <ENDIANNESS><BITWIDTH>:
+ // <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
+ // 'B' (big-endian, most significant byte first), or
+ // 'D' (default, the section's default endianness)
+ // <BITWIDTH> is 8, 16, 32, or 64.
+ //
+ // Since endianness doesn't matter for a single byte, all the
+ // <BITWIDTH>=8 functions are equivalent.
+ //
+ // These can be used to write both signed and unsigned values, as
+ // the compiler will properly sign-extend a signed value before
+ // passing it to the function, at which point the function's
+ // behavior is the same either way.
+ Section &L8(uint8_t value) { contents_ += value; return *this; }
+ Section &B8(uint8_t value) { contents_ += value; return *this; }
+ Section &D8(uint8_t value) { contents_ += value; return *this; }
+ Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t),
+ &B16(uint16_t), &B32(uint32_t), &B64(uint64_t),
+ &D16(uint16_t), &D32(uint32_t), &D64(uint64_t);
+ Section &L8(const Label &label), &L16(const Label &label),
+ &L32(const Label &label), &L64(const Label &label),
+ &B8(const Label &label), &B16(const Label &label),
+ &B32(const Label &label), &B64(const Label &label),
+ &D8(const Label &label), &D16(const Label &label),
+ &D32(const Label &label), &D64(const Label &label);
+
+ // Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
+ //
+ // The signed LEB128 representation of an integer N is a variable
+ // number of bytes:
+ //
+ // - If N is between -0x40 and 0x3f, then its signed LEB128
+ // representation is a single byte whose value is N.
+ //
+ // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
+ // 0x80, followed by the signed LEB128 representation of N / 128,
+ // rounded towards negative infinity.
+ //
+ // In other words, we break VALUE into groups of seven bits, put
+ // them in little-endian order, and then write them as eight-bit
+ // bytes with the high bit on all but the last.
+ //
+ // Note that VALUE cannot be a Label (we would have to implement
+ // relaxation).
+ Section &LEB128(long long value);
+
+ // Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
+ //
+ // The unsigned LEB128 representation of an integer N is a variable
+ // number of bytes:
+ //
+ // - If N is between 0 and 0x7f, then its unsigned LEB128
+ // representation is a single byte whose value is N.
+ //
+ // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
+ // 0x80, followed by the unsigned LEB128 representation of N /
+ // 128, rounded towards negative infinity.
+ //
+ // Note that VALUE cannot be a Label (we would have to implement
+ // relaxation).
+ Section &ULEB128(uint64_t value);
+
+ // Jump to the next location aligned on an ALIGNMENT-byte boundary,
+ // relative to the start of the section. Fill the gap with PAD_BYTE.
+ // ALIGNMENT must be a power of two. Return a reference to this
+ // section.
+ Section &Align(size_t alignment, uint8_t pad_byte = 0);
+
+ // Return the current size of the section.
+ size_t Size() const { return contents_.size(); }
+
+ // Return a label representing the start of the section.
+ //
+ // It is up to the user whether this label represents the section's
+ // position in an object file, the section's address in memory, or
+ // what have you; some applications may need both, in which case
+ // this simple-minded interface won't be enough. This class only
+ // provides a single start label, for use with the Here and Mark
+ // member functions.
+ //
+ // Ideally, we'd provide this in a subclass that actually knows more
+ // about the application at hand and can provide an appropriate
+ // collection of start labels. But then the appending member
+ // functions like Append and D32 would return a reference to the
+ // base class, not the derived class, and the chaining won't work.
+ // Since the only value here is in pretty notation, that's a fatal
+ // flaw.
+ Label start() const { return start_; }
+
+ // Return a label representing the point at which the next Appended
+ // item will appear in the section, relative to start().
+ Label Here() const { return start_ + Size(); }
+
+ // Set *LABEL to Here, and return a reference to this section.
+ Section &Mark(Label *label) { *label = Here(); return *this; }
+
+ // If there are no undefined label references left in this
+ // section, set CONTENTS to the contents of this section, as a
+ // string, and clear this section. Return true on success, or false
+ // if there were still undefined labels.
+ bool GetContents(string *contents);
+
+ private:
+ // Used internally. A reference to a label's value.
+ struct Reference {
+ Reference(size_t set_offset, Endianness set_endianness, size_t set_size,
+ const Label &set_label)
+ : offset(set_offset), endianness(set_endianness), size(set_size),
+ label(set_label) { }
+
+ // The offset of the reference within the section.
+ size_t offset;
+
+ // The endianness of the reference.
+ Endianness endianness;
+
+ // The size of the reference.
+ size_t size;
+
+ // The label to which this is a reference.
+ Label label;
+ };
+
+ // The default endianness of this section.
+ Endianness endianness_;
+
+ // The contents of the section.
+ string contents_;
+
+ // References to labels within those contents.
+ vector<Reference> references_;
+
+ // A label referring to the beginning of the section.
+ Label start_;
+};
+
+} // namespace test_assembler
+} // namespace lul_test
+
+
+namespace lul_test {
+
+using lul::DwarfPointerEncoding;
+using lul_test::test_assembler::Endianness;
+using lul_test::test_assembler::Label;
+using lul_test::test_assembler::Section;
+
+class CFISection: public Section {
+ public:
+
+ // CFI augmentation strings beginning with 'z', defined by the
+ // Linux/IA-64 C++ ABI, can specify interesting encodings for
+ // addresses appearing in FDE headers and call frame instructions (and
+ // for additional fields whose presence the augmentation string
+ // specifies). In particular, pointers can be specified to be relative
+ // to various base address: the start of the .text section, the
+ // location holding the address itself, and so on. These allow the
+ // frame data to be position-independent even when they live in
+ // write-protected pages. These variants are specified at the
+ // following two URLs:
+ //
+ // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
+ // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
+ //
+ // CFISection leaves the production of well-formed 'z'-augmented CIEs and
+ // FDEs to the user, but does provide EncodedPointer, to emit
+ // properly-encoded addresses for a given pointer encoding.
+ // EncodedPointer uses an instance of this structure to find the base
+ // addresses it should use; you can establish a default for all encoded
+ // pointers appended to this section with SetEncodedPointerBases.
+ struct EncodedPointerBases {
+ EncodedPointerBases() : cfi(), text(), data() { }
+
+ // The starting address of this CFI section in memory, for
+ // DW_EH_PE_pcrel. DW_EH_PE_pcrel pointers may only be used in data
+ // that has is loaded into the program's address space.
+ uint64_t cfi;
+
+ // The starting address of this file's .text section, for DW_EH_PE_textrel.
+ uint64_t text;
+
+ // The starting address of this file's .got or .eh_frame_hdr section,
+ // for DW_EH_PE_datarel.
+ uint64_t data;
+ };
+
+ // Create a CFISection whose endianness is ENDIANNESS, and where
+ // machine addresses are ADDRESS_SIZE bytes long. If EH_FRAME is
+ // true, use the .eh_frame format, as described by the Linux
+ // Standards Base Core Specification, instead of the DWARF CFI
+ // format.
+ CFISection(Endianness endianness, size_t address_size,
+ bool eh_frame = false)
+ : Section(endianness), address_size_(address_size), eh_frame_(eh_frame),
+ pointer_encoding_(lul::DW_EH_PE_absptr),
+ encoded_pointer_bases_(), entry_length_(NULL), in_fde_(false) {
+ // The 'start', 'Here', and 'Mark' members of a CFISection all refer
+ // to section offsets.
+ start() = 0;
+ }
+
+ // Return this CFISection's address size.
+ size_t AddressSize() const { return address_size_; }
+
+ // Return true if this CFISection uses the .eh_frame format, or
+ // false if it contains ordinary DWARF CFI data.
+ bool ContainsEHFrame() const { return eh_frame_; }
+
+ // Use ENCODING for pointers in calls to FDEHeader and EncodedPointer.
+ void SetPointerEncoding(DwarfPointerEncoding encoding) {
+ pointer_encoding_ = encoding;
+ }
+
+ // Use the addresses in BASES as the base addresses for encoded
+ // pointers in subsequent calls to FDEHeader or EncodedPointer.
+ // This function makes a copy of BASES.
+ void SetEncodedPointerBases(const EncodedPointerBases &bases) {
+ encoded_pointer_bases_ = bases;
+ }
+
+ // Append a Common Information Entry header to this section with the
+ // given values. If dwarf64 is true, use the 64-bit DWARF initial
+ // length format for the CIE's initial length. Return a reference to
+ // this section. You should call FinishEntry after writing the last
+ // instruction for the CIE.
+ //
+ // Before calling this function, you will typically want to use Mark
+ // or Here to make a label to pass to FDEHeader that refers to this
+ // CIE's position in the section.
+ CFISection &CIEHeader(uint64_t code_alignment_factor,
+ int data_alignment_factor,
+ unsigned return_address_register,
+ uint8_t version = 3,
+ const string &augmentation = "",
+ bool dwarf64 = false);
+
+ // Append a Frame Description Entry header to this section with the
+ // given values. If dwarf64 is true, use the 64-bit DWARF initial
+ // length format for the CIE's initial length. Return a reference to
+ // this section. You should call FinishEntry after writing the last
+ // instruction for the CIE.
+ //
+ // This function doesn't support entries that are longer than
+ // 0xffffff00 bytes. (The "initial length" is always a 32-bit
+ // value.) Nor does it support .debug_frame sections longer than
+ // 0xffffff00 bytes.
+ CFISection &FDEHeader(Label cie_pointer,
+ uint64_t initial_location,
+ uint64_t address_range,
+ bool dwarf64 = false);
+
+ // Note the current position as the end of the last CIE or FDE we
+ // started, after padding with DW_CFA_nops for alignment. This
+ // defines the label representing the entry's length, cited in the
+ // entry's header. Return a reference to this section.
+ CFISection &FinishEntry();
+
+ // Append the contents of BLOCK as a DW_FORM_block value: an
+ // unsigned LEB128 length, followed by that many bytes of data.
+ CFISection &Block(const string &block) {
+ ULEB128(block.size());
+ Append(block);
+ return *this;
+ }
+
+ // Append ADDRESS to this section, in the appropriate size and
+ // endianness. Return a reference to this section.
+ CFISection &Address(uint64_t address) {
+ Section::Append(endianness(), address_size_, address);
+ return *this;
+ }
+
+ // Append ADDRESS to this section, using ENCODING and BASES. ENCODING
+ // defaults to this section's default encoding, established by
+ // SetPointerEncoding. BASES defaults to this section's bases, set by
+ // SetEncodedPointerBases. If the DW_EH_PE_indirect bit is set in the
+ // encoding, assume that ADDRESS is where the true address is stored.
+ // Return a reference to this section.
+ //
+ // (C++ doesn't let me use default arguments here, because I want to
+ // refer to members of *this in the default argument expression.)
+ CFISection &EncodedPointer(uint64_t address) {
+ return EncodedPointer(address, pointer_encoding_, encoded_pointer_bases_);
+ }
+ CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding) {
+ return EncodedPointer(address, encoding, encoded_pointer_bases_);
+ }
+ CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding,
+ const EncodedPointerBases &bases);
+
+ // Restate some member functions, to keep chaining working nicely.
+ CFISection &Mark(Label *label) { Section::Mark(label); return *this; }
+ CFISection &D8(uint8_t v) { Section::D8(v); return *this; }
+ CFISection &D16(uint16_t v) { Section::D16(v); return *this; }
+ CFISection &D16(Label v) { Section::D16(v); return *this; }
+ CFISection &D32(uint32_t v) { Section::D32(v); return *this; }
+ CFISection &D32(const Label &v) { Section::D32(v); return *this; }
+ CFISection &D64(uint64_t v) { Section::D64(v); return *this; }
+ CFISection &D64(const Label &v) { Section::D64(v); return *this; }
+ CFISection &LEB128(long long v) { Section::LEB128(v); return *this; }
+ CFISection &ULEB128(uint64_t v) { Section::ULEB128(v); return *this; }
+
+ private:
+ // A length value that we've appended to the section, but is not yet
+ // known. LENGTH is the appended value; START is a label referring
+ // to the start of the data whose length was cited.
+ struct PendingLength {
+ Label length;
+ Label start;
+ };
+
+ // Constants used in CFI/.eh_frame data:
+
+ // If the first four bytes of an "initial length" are this constant, then
+ // the data uses the 64-bit DWARF format, and the length itself is the
+ // subsequent eight bytes.
+ static const uint32_t kDwarf64InitialLengthMarker = 0xffffffffU;
+
+ // The CIE identifier for 32- and 64-bit DWARF CFI and .eh_frame data.
+ static const uint32_t kDwarf32CIEIdentifier = ~(uint32_t)0;
+ static const uint64_t kDwarf64CIEIdentifier = ~(uint64_t)0;
+ static const uint32_t kEHFrame32CIEIdentifier = 0;
+ static const uint64_t kEHFrame64CIEIdentifier = 0;
+
+ // The size of a machine address for the data in this section.
+ size_t address_size_;
+
+ // If true, we are generating a Linux .eh_frame section, instead of
+ // a standard DWARF .debug_frame section.
+ bool eh_frame_;
+
+ // The encoding to use for FDE pointers.
+ DwarfPointerEncoding pointer_encoding_;
+
+ // The base addresses to use when emitting encoded pointers.
+ EncodedPointerBases encoded_pointer_bases_;
+
+ // The length value for the current entry.
+ //
+ // Oddly, this must be dynamically allocated. Labels never get new
+ // values; they only acquire constraints on the value they already
+ // have, or assert if you assign them something incompatible. So
+ // each header needs truly fresh Label objects to cite in their
+ // headers and track their positions. The alternative is explicit
+ // destructor invocation and a placement new. Ick.
+ PendingLength *entry_length_;
+
+ // True if we are currently emitting an FDE --- that is, we have
+ // called FDEHeader but have not yet called FinishEntry.
+ bool in_fde_;
+
+ // If in_fde_ is true, this is its starting address. We use this for
+ // emitting DW_EH_PE_funcrel pointers.
+ uint64_t fde_start_address_;
+};
+
+} // namespace lul_test
+
+#endif // LUL_TEST_INFRASTRUCTURE_H
diff --git a/tools/profiler/tests/gtest/ThreadProfileTest.cpp b/tools/profiler/tests/gtest/ThreadProfileTest.cpp
new file mode 100644
index 000000000..4399a5bc2
--- /dev/null
+++ b/tools/profiler/tests/gtest/ThreadProfileTest.cpp
@@ -0,0 +1,75 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "gtest/gtest.h"
+
+#include "ProfileEntry.h"
+#include "ThreadProfile.h"
+
+// Make sure we can initialize our ThreadProfile
+TEST(ThreadProfile, Initialization) {
+ PseudoStack* stack = PseudoStack::create();
+ Thread::tid_t tid = 1000;
+ ThreadInfo info("testThread", tid, true, stack, nullptr);
+ RefPtr<ProfileBuffer> pb = new ProfileBuffer(10);
+ ThreadProfile tp(&info, pb);
+}
+
+// Make sure we can record one tag and read it
+TEST(ThreadProfile, InsertOneTag) {
+ PseudoStack* stack = PseudoStack::create();
+ Thread::tid_t tid = 1000;
+ ThreadInfo info("testThread", tid, true, stack, nullptr);
+ RefPtr<ProfileBuffer> pb = new ProfileBuffer(10);
+ pb->addTag(ProfileEntry('t', 123.1));
+ ASSERT_TRUE(pb->mEntries != nullptr);
+ ASSERT_TRUE(pb->mEntries[pb->mReadPos].mTagName == 't');
+ ASSERT_TRUE(pb->mEntries[pb->mReadPos].mTagDouble == 123.1);
+}
+
+// See if we can insert some tags
+TEST(ThreadProfile, InsertTagsNoWrap) {
+ PseudoStack* stack = PseudoStack::create();
+ Thread::tid_t tid = 1000;
+ ThreadInfo info("testThread", tid, true, stack, nullptr);
+ RefPtr<ProfileBuffer> pb = new ProfileBuffer(100);
+ int test_size = 50;
+ for (int i = 0; i < test_size; i++) {
+ pb->addTag(ProfileEntry('t', i));
+ }
+ ASSERT_TRUE(pb->mEntries != nullptr);
+ int readPos = pb->mReadPos;
+ while (readPos != pb->mWritePos) {
+ ASSERT_TRUE(pb->mEntries[readPos].mTagName == 't');
+ ASSERT_TRUE(pb->mEntries[readPos].mTagInt == readPos);
+ readPos = (readPos + 1) % pb->mEntrySize;
+ }
+}
+
+// See if wrapping works as it should in the basic case
+TEST(ThreadProfile, InsertTagsWrap) {
+ PseudoStack* stack = PseudoStack::create();
+ Thread::tid_t tid = 1000;
+ // we can fit only 24 tags in this buffer because of the empty slot
+ int tags = 24;
+ int buffer_size = tags + 1;
+ ThreadInfo info("testThread", tid, true, stack, nullptr);
+ RefPtr<ProfileBuffer> pb = new ProfileBuffer(buffer_size);
+ int test_size = 43;
+ for (int i = 0; i < test_size; i++) {
+ pb->addTag(ProfileEntry('t', i));
+ }
+ ASSERT_TRUE(pb->mEntries != nullptr);
+ int readPos = pb->mReadPos;
+ int ctr = 0;
+ while (readPos != pb->mWritePos) {
+ ASSERT_TRUE(pb->mEntries[readPos].mTagName == 't');
+ // the first few tags were discarded when we wrapped
+ ASSERT_TRUE(pb->mEntries[readPos].mTagInt == ctr + (test_size - tags));
+ ctr++;
+ readPos = (readPos + 1) % pb->mEntrySize;
+ }
+}
+
diff --git a/tools/profiler/tests/gtest/moz.build b/tools/profiler/tests/gtest/moz.build
new file mode 100644
index 000000000..33aded164
--- /dev/null
+++ b/tools/profiler/tests/gtest/moz.build
@@ -0,0 +1,30 @@
+# -*- Mode: python; indent-tabs-mode: nil; tab-width: 40 -*-
+# vim: set filetype=python:
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, you can obtain one at http://mozilla.org/MPL/2.0/.
+
+if CONFIG['OS_TARGET'] in ('Android', 'Linux'):
+ UNIFIED_SOURCES += [
+ 'LulTestDwarf.cpp',
+ 'LulTestInfrastructure.cpp',
+ ]
+ if CONFIG['CPU_ARCH'] != 'x86':
+ UNIFIED_SOURCES += [
+ 'LulTest.cpp',
+ ]
+
+LOCAL_INCLUDES += [
+ '/tools/profiler/core',
+ '/tools/profiler/gecko',
+ '/tools/profiler/lul',
+]
+
+UNIFIED_SOURCES += [
+ 'ThreadProfileTest.cpp',
+]
+
+FINAL_LIBRARY = 'xul-gtest'
+
+if CONFIG['GNU_CXX']:
+ CXXFLAGS += ['-Wno-error=shadow']