diff options
Diffstat (limited to 'third_party/aom/av1/encoder/rdopt.c')
-rw-r--r-- | third_party/aom/av1/encoder/rdopt.c | 12199 |
1 files changed, 12199 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/rdopt.c b/third_party/aom/av1/encoder/rdopt.c new file mode 100644 index 000000000..c2d15534f --- /dev/null +++ b/third_party/aom/av1/encoder/rdopt.c @@ -0,0 +1,12199 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <math.h> + +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/blend.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +#include "av1/common/cfl.h" +#include "av1/common/common.h" +#include "av1/common/common_data.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/idct.h" +#include "av1/common/mvref_common.h" +#include "av1/common/obmc.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/scan.h" +#include "av1/common/seg_common.h" +#include "av1/common/txb_common.h" +#include "av1/common/warped_motion.h" + +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/hybrid_fwd_txfm.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/ml.h" +#include "av1/encoder/palette.h" +#include "av1/encoder/pustats.h" +#include "av1/encoder/random.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/reconinter_enc.h" +#include "av1/encoder/tokenize.h" +#include "av1/encoder/tx_prune_model_weights.h" + +typedef void (*model_rd_for_sb_type)( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); + +static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int mi_row, int mi_col, + int *out_rate_sum, int64_t *out_dist_sum, + int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, + int64_t *plane_dist); +static void model_rd_for_sb_with_curvfit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_surffit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_dnn( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_fullrdy( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_from_sse(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist); +static void model_rd_with_dnn(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist); +static void model_rd_with_curvfit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); +static void model_rd_with_surffit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); + +typedef enum { + MODELRD_LEGACY, + MODELRD_CURVFIT, + MODELRD_SUFFIT, + MODELRD_DNN, + MODELRD_FULLRDY, + MODELRD_TYPES +} ModelRdType; + +static model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = { + model_rd_for_sb, model_rd_for_sb_with_curvfit, model_rd_for_sb_with_surffit, + model_rd_for_sb_with_dnn, model_rd_for_sb_with_fullrdy +}; + +static model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = { + model_rd_from_sse, model_rd_with_curvfit, model_rd_with_surffit, + model_rd_with_dnn, NULL +}; + +// 0: Legacy model +// 1: Curve fit model +// 2: Surface fit model +// 3: DNN regression model +// 4: Full rd model +#define MODELRD_TYPE_INTERP_FILTER 1 +#define MODELRD_TYPE_TX_SEARCH_PRUNE 2 +#define MODELRD_TYPE_MASKED_COMPOUND 1 +#define MODELRD_TYPE_INTERINTRA 1 +#define MODELRD_TYPE_INTRA 1 +#define MODELRD_TYPE_JNT_COMPOUND 1 + +#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS) +static const InterpFilters filter_sets[DUAL_FILTER_SET_SIZE] = { + 0x00000000, 0x00010000, 0x00020000, // y = 0 + 0x00000001, 0x00010001, 0x00020001, // y = 1 + 0x00000002, 0x00010002, 0x00020002, // y = 2 +}; + +#define SECOND_REF_FRAME_MASK \ + ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \ + (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01) + +#define ANGLE_SKIP_THRESH 10 + +static const double ADST_FLIP_SVM[8] = { + /* vertical */ + -6.6623, -2.8062, -3.2531, 3.1671, + /* horizontal */ + -7.7051, -3.2234, -3.6193, 3.4533 +}; + +typedef struct { + PREDICTION_MODE mode; + MV_REFERENCE_FRAME ref_frame[2]; +} MODE_DEFINITION; + +typedef struct { + MV_REFERENCE_FRAME ref_frame[2]; +} REF_DEFINITION; + +typedef enum { + FTXS_NONE = 0, + FTXS_DCT_AND_1D_DCT_ONLY = 1 << 0, + FTXS_DISABLE_TRELLIS_OPT = 1 << 1, + FTXS_USE_TRANSFORM_DOMAIN = 1 << 2 +} FAST_TX_SEARCH_MODE; + +static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row, + int mi_col, int64_t ref_best_rd); + +static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t non_skip_ref_best_rd, + int64_t skip_ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode); + +struct rdcost_block_args { + const AV1_COMP *cpi; + MACROBLOCK *x; + ENTROPY_CONTEXT t_above[MAX_MIB_SIZE]; + ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]; + RD_STATS rd_stats; + int64_t this_rd; + int64_t best_rd; + int exit_early; + int incomplete_exit; + int use_fast_coef_costing; + FAST_TX_SEARCH_MODE ftxs_mode; +}; + +#define LAST_NEW_MV_INDEX 6 +static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { + { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, + { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, + { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, + { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { NEWMV, { LAST_FRAME, NONE_FRAME } }, + { NEWMV, { LAST2_FRAME, NONE_FRAME } }, + { NEWMV, { LAST3_FRAME, NONE_FRAME } }, + { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEWMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { NEARMV, { LAST_FRAME, NONE_FRAME } }, + { NEARMV, { LAST2_FRAME, NONE_FRAME } }, + { NEARMV, { LAST3_FRAME, NONE_FRAME } }, + { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEARMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { GLOBALMV, { LAST_FRAME, NONE_FRAME } }, + { GLOBALMV, { LAST2_FRAME, NONE_FRAME } }, + { GLOBALMV, { LAST3_FRAME, NONE_FRAME } }, + { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } }, + { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } }, + { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } }, + { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } }, + + // TODO(zoeliu): May need to reconsider the order on the modes to check + + { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + + { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } }, + + { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } }, + + // intra modes + { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, + { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } }, + { H_PRED, { INTRA_FRAME, NONE_FRAME } }, + { V_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D203_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D157_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D67_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D113_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, +}; + +static const int16_t intra_to_mode_idx[INTRA_MODE_NUM] = { + 7, // DC_PRED, + 134, // V_PRED, + 133, // H_PRED, + 140, // D45_PRED, + 135, // D135_PRED, + 139, // D113_PRED, + 137, // D157_PRED, + 136, // D203_PRED, + 138, // D67_PRED, + 46, // SMOOTH_PRED, + 47, // SMOOTH_V_PRED, + 48, // SMOOTH_H_PRED, + 45, // PAETH_PRED, +}; + +/* clang-format off */ +static const int16_t single_inter_to_mode_idx[SINGLE_INTER_MODE_NUM] + [REF_FRAMES] = { + // NEARESTMV, + { -1, 0, 1, 2, 6, 3, 4, 5, }, + // NEARMV, + { -1, 15, 16, 17, 21, 18, 19, 20, }, + // GLOBALMV, + { -1, 22, 23, 24, 27, 25, 26, 28, }, + // NEWMV, + { -1, 8, 9, 10, 14, 11, 12, 13, }, +}; +/* clang-format on */ + +/* clang-format off */ +static const int16_t comp_inter_to_mode_idx[COMP_INTER_MODE_NUM][REF_FRAMES] + [REF_FRAMES] = { + // NEAREST_NEARESTMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 41, 42, 43, 33, 37, 29, }, + { -1, -1, -1, -1, -1, 34, 38, 30, }, + { -1, -1, -1, -1, -1, 35, 39, 31, }, + { -1, -1, -1, -1, -1, 36, 40, 32, }, + { -1, -1, -1, -1, -1, -1, -1, 44, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAR_NEARMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 141, 148, 155, 77, 105, 49, }, + { -1, -1, -1, -1, -1, 84, 112, 56, }, + { -1, -1, -1, -1, -1, 91, 119, 63, }, + { -1, -1, -1, -1, -1, 98, 126, 70, }, + { -1, -1, -1, -1, -1, -1, -1, 162, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAREST_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 143, 150, 157, 79, 107, 51, }, + { -1, -1, -1, -1, -1, 86, 114, 58, }, + { -1, -1, -1, -1, -1, 93, 121, 65, }, + { -1, -1, -1, -1, -1, 100, 128, 72, }, + { -1, -1, -1, -1, -1, -1, -1, 164, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEARESTMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 142, 149, 156, 78, 106, 50, }, + { -1, -1, -1, -1, -1, 85, 113, 57, }, + { -1, -1, -1, -1, -1, 92, 120, 64, }, + { -1, -1, -1, -1, -1, 99, 127, 71, }, + { -1, -1, -1, -1, -1, -1, -1, 163, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAR_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 145, 152, 159, 81, 109, 53, }, + { -1, -1, -1, -1, -1, 88, 116, 60, }, + { -1, -1, -1, -1, -1, 95, 123, 67, }, + { -1, -1, -1, -1, -1, 102, 130, 74, }, + { -1, -1, -1, -1, -1, -1, -1, 166, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEARMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 144, 151, 158, 80, 108, 52, }, + { -1, -1, -1, -1, -1, 87, 115, 59, }, + { -1, -1, -1, -1, -1, 94, 122, 66, }, + { -1, -1, -1, -1, -1, 101, 129, 73, }, + { -1, -1, -1, -1, -1, -1, -1, 165, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // GLOBAL_GLOBALMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 147, 154, 161, 83, 111, 55, }, + { -1, -1, -1, -1, -1, 90, 118, 62, }, + { -1, -1, -1, -1, -1, 97, 125, 69, }, + { -1, -1, -1, -1, -1, 104, 132, 76, }, + { -1, -1, -1, -1, -1, -1, -1, 168, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 146, 153, 160, 82, 110, 54, }, + { -1, -1, -1, -1, -1, 89, 117, 61, }, + { -1, -1, -1, -1, -1, 96, 124, 68, }, + { -1, -1, -1, -1, -1, 103, 131, 75, }, + { -1, -1, -1, -1, -1, -1, -1, 167, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, +}; +/* clang-format on */ + +static int get_prediction_mode_idx(PREDICTION_MODE this_mode, + MV_REFERENCE_FRAME ref_frame, + MV_REFERENCE_FRAME second_ref_frame) { + if (this_mode < INTRA_MODE_END) { + assert(ref_frame == INTRA_FRAME); + assert(second_ref_frame == NONE_FRAME); + return intra_to_mode_idx[this_mode - INTRA_MODE_START]; + } + if (this_mode >= SINGLE_INTER_MODE_START && + this_mode < SINGLE_INTER_MODE_END) { + assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); + return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START] + [ref_frame]; + } + if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END) { + assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); + assert((second_ref_frame > INTRA_FRAME) && + (second_ref_frame <= ALTREF_FRAME)); + return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame] + [second_ref_frame]; + } + assert(0); + return -1; +} + +static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { + DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, + SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, + D67_PRED, D113_PRED, D45_PRED, +}; + +static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { + UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, + UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, + UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, + UV_D113_PRED, UV_D45_PRED, +}; + +typedef struct SingleInterModeState { + int64_t rd; + MV_REFERENCE_FRAME ref_frame; + int valid; +} SingleInterModeState; + +typedef struct InterModeSearchState { + int64_t best_rd; + MB_MODE_INFO best_mbmode; + int best_rate_y; + int best_rate_uv; + int best_mode_skippable; + int best_skip2; + int best_mode_index; + int skip_intra_modes; + int num_available_refs; + int64_t dist_refs[REF_FRAMES]; + int dist_order_refs[REF_FRAMES]; + int64_t mode_threshold[MAX_MODES]; + PREDICTION_MODE best_intra_mode; + int64_t best_intra_rd; + int angle_stats_ready; + uint8_t directional_mode_skip_mask[INTRA_MODES]; + unsigned int best_pred_sse; + int rate_uv_intra[TX_SIZES_ALL]; + int rate_uv_tokenonly[TX_SIZES_ALL]; + int64_t dist_uvs[TX_SIZES_ALL]; + int skip_uvs[TX_SIZES_ALL]; + UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL]; + PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL]; + int8_t uv_angle_delta[TX_SIZES_ALL]; + int64_t best_pred_rd[REFERENCE_MODES]; + int64_t best_pred_diff[REFERENCE_MODES]; + // Save a set of single_newmv for each checked ref_mv. + int_mv single_newmv[MAX_REF_MV_SERCH][REF_FRAMES]; + int single_newmv_rate[MAX_REF_MV_SERCH][REF_FRAMES]; + int single_newmv_valid[MAX_REF_MV_SERCH][REF_FRAMES]; + int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES]; + // The rd of simple translation in single inter modes + int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES]; + + // Single search results by [directions][modes][reference frames] + SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; + int single_state_cnt[2][SINGLE_INTER_MODE_NUM]; + SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM] + [FWD_REFS]; + int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM]; + + MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; +} InterModeSearchState; + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +int inter_mode_data_block_idx(BLOCK_SIZE bsize) { + if (bsize == BLOCK_8X8) return 1; + if (bsize == BLOCK_16X16) return 2; + if (bsize == BLOCK_32X32) return 3; + return -1; +} + +void av1_inter_mode_data_init(TileDataEnc *tile_data) { + for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { + InterModeRdModel *md = &tile_data->inter_mode_rd_models[i]; + md->ready = 0; + md->num = 0; + md->dist_sum = 0; + md->ld_sum = 0; + md->sse_sum = 0; + md->sse_sse_sum = 0; + md->sse_ld_sum = 0; + } +} + +static int get_est_rate_dist(TileDataEnc *tile_data, BLOCK_SIZE bsize, + int64_t sse, int *est_residue_cost, + int64_t *est_dist) { + aom_clear_system_state(); + const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + if (md->ready) { + const double est_ld = md->a * sse + md->b; + if (sse < md->dist_mean) { + *est_residue_cost = 0; + *est_dist = sse; + } else { + *est_residue_cost = (int)round((sse - md->dist_mean) / est_ld); + *est_dist = (int64_t)round(md->dist_mean); + } + return 1; + } + return 0; +} + +static int64_t get_est_rd(TileDataEnc *tile_data, BLOCK_SIZE bsize, int rdmult, + int64_t sse, int curr_cost) { + int est_residue_cost; + int64_t est_dist; + if (get_est_rate_dist(tile_data, bsize, sse, &est_residue_cost, &est_dist)) { + int rate = est_residue_cost + curr_cost; + int64_t est_rd = RDCOST(rdmult, rate, est_dist); + return est_rd; + } + return 0; +} + +void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) { + aom_clear_system_state(); + for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { + const int block_idx = inter_mode_data_block_idx(bsize); + InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + if (block_idx == -1) continue; + if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) { + continue; + } else { + if (md->ready == 0) { + md->dist_mean = md->dist_sum / md->num; + md->ld_mean = md->ld_sum / md->num; + md->sse_mean = md->sse_sum / md->num; + md->sse_sse_mean = md->sse_sse_sum / md->num; + md->sse_ld_mean = md->sse_ld_sum / md->num; + } else { + const double factor = 3; + md->dist_mean = + (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1); + md->ld_mean = + (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1); + md->sse_mean = + (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1); + md->sse_sse_mean = + (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) / + (factor + 1); + md->sse_ld_mean = + (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) / + (factor + 1); + } + + const double my = md->ld_mean; + const double mx = md->sse_mean; + const double dx = sqrt(md->sse_sse_mean); + const double dxy = md->sse_ld_mean; + + md->a = (dxy - mx * my) / (dx * dx - mx * mx); + md->b = my - md->a * mx; + md->ready = 1; + + md->num = 0; + md->dist_sum = 0; + md->ld_sum = 0; + md->sse_sum = 0; + md->sse_sse_sum = 0; + md->sse_ld_sum = 0; + } + (void)rdmult; + } +} + +static void inter_mode_data_push(TileDataEnc *tile_data, BLOCK_SIZE bsize, + int64_t sse, int64_t dist, int residue_cost) { + if (residue_cost == 0 || sse == dist) return; + const int block_idx = inter_mode_data_block_idx(bsize); + if (block_idx == -1) return; + InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize]; + if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) { + aom_clear_system_state(); + const double ld = (sse - dist) * 1. / residue_cost; + ++rd_model->num; + rd_model->dist_sum += dist; + rd_model->ld_sum += ld; + rd_model->sse_sum += sse; + rd_model->sse_sse_sum += sse * sse; + rd_model->sse_ld_sum += sse * ld; + } +} + +static void inter_modes_info_push(InterModesInfo *inter_modes_info, + int mode_rate, int64_t sse, int64_t est_rd, + const MB_MODE_INFO *mbmi) { + const int num = inter_modes_info->num; + assert(num < MAX_INTER_MODES); + inter_modes_info->mbmi_arr[num] = *mbmi; + inter_modes_info->mode_rate_arr[num] = mode_rate; + inter_modes_info->sse_arr[num] = sse; + inter_modes_info->est_rd_arr[num] = est_rd; + ++inter_modes_info->num; +} + +static int compare_rd_idx_pair(const void *a, const void *b) { + if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) { + return 0; + } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) { + return 1; + } else { + return -1; + } +} + +static void inter_modes_info_sort(const InterModesInfo *inter_modes_info, + RdIdxPair *rd_idx_pair_arr) { + if (inter_modes_info->num == 0) { + return; + } + for (int i = 0; i < inter_modes_info->num; ++i) { + rd_idx_pair_arr[i].idx = i; + rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i]; + } + qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]), + compare_rd_idx_pair); +} +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + +static INLINE int write_uniform_cost(int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return 0; + if (v < m) + return av1_cost_literal(l - 1); + else + return av1_cost_literal(l); +} + +// Similar to store_cfl_required(), but for use during the RDO process, +// where we haven't yet determined whether this block uses CfL. +static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm, + const MACROBLOCK *x) { + const MACROBLOCKD *xd = &x->e_mbd; + + if (cm->seq_params.monochrome || x->skip_chroma_rd) return CFL_DISALLOWED; + + if (!xd->cfl.is_chroma_reference) { + // For non-chroma-reference blocks, we should always store the luma pixels, + // in case the corresponding chroma-reference block uses CfL. + // Note that this can only happen for block sizes which are <8 on + // their shortest side, as otherwise they would be chroma reference + // blocks. + return CFL_ALLOWED; + } + + // For chroma reference blocks, we should store data in the encoder iff we're + // allowed to try out CfL. + return is_cfl_allowed(xd); +} + +// constants for prune 1 and prune 2 decision boundaries +#define FAST_EXT_TX_CORR_MID 0.0 +#define FAST_EXT_TX_EDST_MID 0.1 +#define FAST_EXT_TX_CORR_MARGIN 0.5 +#define FAST_EXT_TX_EDST_MARGIN 0.3 + +static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode); + +static unsigned pixel_dist_visible_only( + const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, + const int src_stride, const uint8_t *dst, const int dst_stride, + const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, + int visible_cols) { + unsigned sse; + + if (txb_rows == visible_rows && txb_cols == visible_cols) { + cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); + return sse; + } + const MACROBLOCKD *xd = &x->e_mbd; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, + visible_cols, visible_rows); + return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); + } + sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, + visible_rows); + return sse; +} + +#if CONFIG_DIST_8X8 +static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, + int sstride, int coeff_shift) { + uint64_t svar = 0; + uint64_t dvar = 0; + uint64_t sum_s = 0; + uint64_t sum_d = 0; + uint64_t sum_s2 = 0; + uint64_t sum_d2 = 0; + uint64_t sum_sd = 0; + uint64_t dist = 0; + + int i, j; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + sum_s += src[i * sstride + j]; + sum_d += dst[i * dstride + j]; + sum_s2 += src[i * sstride + j] * src[i * sstride + j]; + sum_d2 += dst[i * dstride + j] * dst[i * dstride + j]; + sum_sd += src[i * sstride + j] * dst[i * dstride + j]; + } + } + /* Compute the variance -- the calculation cannot go negative. */ + svar = sum_s2 - ((sum_s * sum_s + 32) >> 6); + dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6); + + // Tuning of jm's original dering distortion metric used in CDEF tool, + // suggested by jm + const uint64_t a = 4; + const uint64_t b = 2; + const uint64_t c1 = (400 * a << 2 * coeff_shift); + const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift); + + dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * + (svar + dvar + c1) / + (sqrt(svar * (double)dvar + c2))); + + // Calibrate dist to have similar rate for the same QP with MSE only + // distortion (as in master branch) + dist = (uint64_t)((float)dist * 0.75); + + return dist; +} + +static int od_compute_var_4x4(uint16_t *x, int stride) { + int sum; + int s2; + int i; + sum = 0; + s2 = 0; + for (i = 0; i < 4; i++) { + int j; + for (j = 0; j < 4; j++) { + int t; + + t = x[i * stride + j]; + sum += t; + s2 += t * t; + } + } + + return (s2 - (sum * sum >> 4)) >> 4; +} + +/* OD_DIST_LP_MID controls the frequency weighting filter used for computing + the distortion. For a value X, the filter is [1 X 1]/(X + 2) and + is applied both horizontally and vertically. For X=5, the filter is + a good approximation for the OD_QM8_Q4_HVS quantization matrix. */ +#define OD_DIST_LP_MID (5) +#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2) + +static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x, + uint16_t *y, od_coeff *e_lp, int stride) { + double sum; + int min_var; + double mean_var; + double var_stat; + double activity; + double calibration; + int i; + int j; + double vardist; + + vardist = 0; + +#if 1 + min_var = INT_MAX; + mean_var = 0; + for (i = 0; i < 3; i++) { + for (j = 0; j < 3; j++) { + int varx; + int vary; + varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride); + vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride); + min_var = OD_MINI(min_var, varx); + mean_var += 1. / (1 + varx); + /* The cast to (double) is to avoid an overflow before the sqrt.*/ + vardist += varx - 2 * sqrt(varx * (double)vary) + vary; + } + } + /* We use a different variance statistic depending on whether activity + masking is used, since the harmonic mean appeared slightly worse with + masking off. The calibration constant just ensures that we preserve the + rate compared to activity=1. */ + if (use_activity_masking) { + calibration = 1.95; + var_stat = 9. / mean_var; + } else { + calibration = 1.62; + var_stat = min_var; + } + /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the + activity masking constant. */ + activity = calibration * pow(.25 + var_stat, -1. / 6); +#else + activity = 1; +#endif // 1 + sum = 0; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) + sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j]; + } + /* Normalize the filter to unit DC response. */ + sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM * + OD_DIST_LP_NORM); + return activity * activity * (sum + vardist); +} + +// Note : Inputs x and y are in a pixel domain +static double od_compute_dist_common(int activity_masking, uint16_t *x, + uint16_t *y, int bsize_w, int bsize_h, + int qindex, od_coeff *tmp, + od_coeff *e_lp) { + int i, j; + double sum = 0; + const int mid = OD_DIST_LP_MID; + + for (j = 0; j < bsize_w; j++) { + e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j]; + e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] + + 2 * tmp[(bsize_h - 2) * bsize_w + j]; + } + for (i = 1; i < bsize_h - 1; i++) { + for (j = 0; j < bsize_w; j++) { + e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] + + tmp[(i - 1) * bsize_w + j] + + tmp[(i + 1) * bsize_w + j]; + } + } + for (i = 0; i < bsize_h; i += 8) { + for (j = 0; j < bsize_w; j += 8) { + sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j], + &y[i * bsize_w + j], &e_lp[i * bsize_w + j], + bsize_w); + } + } + /* Scale according to linear regression against SSE, for 8x8 blocks. */ + if (activity_masking) { + sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) + + (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0); + } else { + sum *= qindex >= 128 + ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128) + : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43) + : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43); + } + + return sum; +} + +static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w, + int bsize_h, int qindex) { + assert(bsize_w >= 8 && bsize_h >= 8); + + int activity_masking = 0; + + int i, j; + DECLARE_ALIGNED(16, od_coeff, e[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); + for (i = 0; i < bsize_h; i++) { + for (j = 0; j < bsize_w; j++) { + e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j]; + } + } + int mid = OD_DIST_LP_MID; + for (i = 0; i < bsize_h; i++) { + tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; + tmp[i * bsize_w + bsize_w - 1] = + mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; + for (j = 1; j < bsize_w - 1; j++) { + tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + + e[i * bsize_w + j + 1]; + } + } + return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, + qindex, tmp, e_lp); +} + +static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w, + int bsize_h, int qindex) { + assert(bsize_w >= 8 && bsize_h >= 8); + + int activity_masking = 0; + + DECLARE_ALIGNED(16, uint16_t, y[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); + int i, j; + for (i = 0; i < bsize_h; i++) { + for (j = 0; j < bsize_w; j++) { + y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j]; + } + } + int mid = OD_DIST_LP_MID; + for (i = 0; i < bsize_h; i++) { + tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; + tmp[i * bsize_w + bsize_w - 1] = + mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; + for (j = 1; j < bsize_w - 1; j++) { + tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + + e[i * bsize_w + j + 1]; + } + } + return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, + qindex, tmp, e_lp); +} + +int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x, + const uint8_t *src, int src_stride, const uint8_t *dst, + int dst_stride, const BLOCK_SIZE tx_bsize, int bsw, + int bsh, int visible_w, int visible_h, int qindex) { + int64_t d = 0; + int i, j; + const MACROBLOCKD *xd = &x->e_mbd; + + DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, uint16_t, rec[MAX_SB_SQUARE]); + + assert(bsw >= 8); + assert(bsh >= 8); + assert((bsw & 0x07) == 0); + assert((bsh & 0x07) == 0); + + if (x->tune_metric == AOM_TUNE_CDEF_DIST || + x->tune_metric == AOM_TUNE_DAALA_DIST) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } + } + } else { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + rec[j * bsw + i] = dst[j * dst_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) + rec[j * bsw + i] = src[j * src_stride + i]; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = src[j * src_stride + i]; + } + } + } + } + + if (x->tune_metric == AOM_TUNE_DAALA_DIST) { + d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex); + } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { + int coeff_shift = AOMMAX(xd->bd - 8, 0); + + for (i = 0; i < bsh; i += 8) { + for (j = 0; j < bsw; j += 8) { + d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j], + bsw, coeff_shift); + } + } + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + d = ((uint64_t)d) >> 2 * coeff_shift; + } else { + // Otherwise, MSE by default + d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride, + tx_bsize, bsh, bsw, visible_h, visible_w); + } + + return d; +} + +static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src, + int src_stride, const int16_t *diff, + int diff_stride, int bsw, int bsh, int visible_w, + int visible_h, int qindex) { + int64_t d = 0; + int i, j; + const MACROBLOCKD *xd = &x->e_mbd; + + DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, int16_t, diff16[MAX_SB_SQUARE]); + + assert(bsw >= 8); + assert(bsh >= 8); + assert((bsw & 0x07) == 0); + assert((bsh & 0x07) == 0); + + if (x->tune_metric == AOM_TUNE_CDEF_DIST || + x->tune_metric == AOM_TUNE_DAALA_DIST) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } else { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; + } + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + diff16[j * bsw + i] = diff[j * diff_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + diff16[j * bsw + i] = diff[j * diff_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0; + } + } + } + + if (x->tune_metric == AOM_TUNE_DAALA_DIST) { + d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex); + } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { + int coeff_shift = AOMMAX(xd->bd - 8, 0); + DECLARE_ALIGNED(16, uint16_t, dst16[MAX_SB_SQUARE]); + + for (i = 0; i < bsh; i++) { + for (j = 0; j < bsw; j++) { + dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j]; + } + } + + for (i = 0; i < bsh; i += 8) { + for (j = 0; j < bsw; j += 8) { + d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j], + bsw, coeff_shift); + } + } + // Don't scale 'd' for HBD since it will be done by caller side for diff + // input + } else { + // Otherwise, MSE by default + d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h); + } + + return d; +} +#endif // CONFIG_DIST_8X8 + +static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + int need_4th, double *hordist, + double *verdist) { + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + + if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) { + // Special cases: calculate 'esq' values manually, as we don't have 'vf' + // functions for the 16 (very small) sub-blocks of this block. + const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3; + const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3; + assert(bw <= 32); + assert(bh <= 32); + assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15); + if (cpi->common.seq_params.use_highbitdepth) { + const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); + for (int i = 0; i < bh; ++i) + for (int j = 0; j < bw; ++j) { + const int index = (j >> w_shift) + ((i >> h_shift) << 2); + esq[index] += + (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * + (src16[j + i * src_stride] - dst16[j + i * dst_stride]); + } + } else { + for (int i = 0; i < bh; ++i) + for (int j = 0; j < bw; ++j) { + const int index = (j >> w_shift) + ((i >> h_shift) << 2); + esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * + (src[j + i * src_stride] - dst[j + i * dst_stride]); + } + } + } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks. + const int f_index = + (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16; + assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL); + const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index; + assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]); + assert(block_size_high[bsize] == 4 * block_size_high[subsize]); + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[1]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[2]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[3]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[5]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[6]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[7]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[9]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[10]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[11]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[13]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[14]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[15]); + } + + double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + + esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + + esq[12] + esq[13] + esq[14] + esq[15]; + if (total > 0) { + const double e_recip = 1.0 / total; + hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; + hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; + hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; + if (need_4th) { + hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip; + } + verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; + verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; + verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; + if (need_4th) { + verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip; + } + } else { + hordist[0] = verdist[0] = 0.25; + hordist[1] = verdist[1] = 0.25; + hordist[2] = verdist[2] = 0.25; + if (need_4th) { + hordist[3] = verdist[3] = 0.25; + } + } +} + +static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride) { + int prune_bitmask = 0; + double svm_proj_h = 0, svm_proj_v = 0; + double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; + get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, 0, + hdist, vdist); + + svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] + + vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3]; + svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] + + hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7]; + if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << FLIPADST_1D; + else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << ADST_1D; + + if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << (FLIPADST_1D + 8); + else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << (ADST_1D + 8); + + return prune_bitmask; +} + +static void get_horver_correlation(const int16_t *diff, int stride, int w, + int h, double *hcorr, double *vcorr) { + // Returns hor/ver correlation coefficient + const int num = (h - 1) * (w - 1); + double num_r; + int i, j; + int64_t xy_sum = 0, xz_sum = 0; + int64_t x_sum = 0, y_sum = 0, z_sum = 0; + int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0; + double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n; + *hcorr = *vcorr = 1; + + assert(num > 0); + num_r = 1.0 / num; + for (i = 1; i < h; ++i) { + for (j = 1; j < w; ++j) { + const int16_t x = diff[i * stride + j]; + const int16_t y = diff[i * stride + j - 1]; + const int16_t z = diff[(i - 1) * stride + j]; + xy_sum += x * y; + xz_sum += x * z; + x_sum += x; + y_sum += y; + z_sum += z; + x2_sum += x * x; + y2_sum += y * y; + z2_sum += z * z; + } + } + x_var_n = x2_sum - (x_sum * x_sum) * num_r; + y_var_n = y2_sum - (y_sum * y_sum) * num_r; + z_var_n = z2_sum - (z_sum * z_sum) * num_r; + xy_var_n = xy_sum - (x_sum * y_sum) * num_r; + xz_var_n = xz_sum - (x_sum * z_sum) * num_r; + if (x_var_n > 0 && y_var_n > 0) { + *hcorr = xy_var_n / sqrt(x_var_n * y_var_n); + *hcorr = *hcorr < 0 ? 0 : *hcorr; + } + if (x_var_n > 0 && z_var_n > 0) { + *vcorr = xz_var_n / sqrt(x_var_n * z_var_n); + *vcorr = *vcorr < 0 ? 0 : *vcorr; + } +} + +static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) { + double hcorr, vcorr; + int prune_bitmask = 0; + get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr); + + if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << IDTX_1D; + else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << DCT_1D; + + if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << (IDTX_1D + 8); + else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << (DCT_1D + 8); + return prune_bitmask; +} + +// Performance drop: 0.5%, Speed improvement: 24% +static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, const MACROBLOCKD *xd, + int adst_flipadst, int dct_idtx) { + int prune = 0; + + if (adst_flipadst) { + const struct macroblock_plane *const p = &x->plane[0]; + const struct macroblockd_plane *const pd = &xd->plane[0]; + prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride); + } + if (dct_idtx) { + av1_subtract_plane(x, bsize, 0); + const struct macroblock_plane *const p = &x->plane[0]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + prune |= dct_vs_idtx(p->src_diff, bw, bw, bh); + } + + return prune; +} + +// Performance drop: 0.3%, Speed improvement: 5% +static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const MACROBLOCK *x, const MACROBLOCKD *xd) { + const struct macroblock_plane *const p = &x->plane[0]; + const struct macroblockd_plane *const pd = &xd->plane[0]; + return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride); +} + +// 1D Transforms used in inter set, this needs to be changed if +// ext_tx_used_inter is changed +static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = { + { 1, 0, 0, 0 }, + { 1, 1, 1, 1 }, + { 1, 1, 1, 1 }, + { 1, 0, 0, 1 }, +}; + +static void get_energy_distribution_finer(const int16_t *diff, int stride, + int bw, int bh, float *hordist, + float *verdist) { + // First compute downscaled block energy values (esq); downscale factors + // are defined by w_shift and h_shift. + unsigned int esq[256]; + const int w_shift = bw <= 8 ? 0 : 1; + const int h_shift = bh <= 8 ? 0 : 1; + const int esq_w = bw >> w_shift; + const int esq_h = bh >> h_shift; + const int esq_sz = esq_w * esq_h; + int i, j; + memset(esq, 0, esq_sz * sizeof(esq[0])); + if (w_shift) { + for (i = 0; i < bh; i++) { + unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; + const int16_t *cur_diff_row = diff + i * stride; + for (j = 0; j < bw; j += 2) { + cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] + + cur_diff_row[j + 1] * cur_diff_row[j + 1]); + } + } + } else { + for (i = 0; i < bh; i++) { + unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; + const int16_t *cur_diff_row = diff + i * stride; + for (j = 0; j < bw; j++) { + cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j]; + } + } + } + + uint64_t total = 0; + for (i = 0; i < esq_sz; i++) total += esq[i]; + + // Output hordist and verdist arrays are normalized 1D projections of esq + if (total == 0) { + float hor_val = 1.0f / esq_w; + for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; + float ver_val = 1.0f / esq_h; + for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; + return; + } + + const float e_recip = 1.0f / (float)total; + memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); + memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); + const unsigned int *cur_esq_row; + for (i = 0; i < esq_h - 1; i++) { + cur_esq_row = esq + i * esq_w; + for (j = 0; j < esq_w - 1; j++) { + hordist[j] += (float)cur_esq_row[j]; + verdist[i] += (float)cur_esq_row[j]; + } + verdist[i] += (float)cur_esq_row[j]; + } + cur_esq_row = esq + i * esq_w; + for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; + + for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; + for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; +} + +// Similar to get_horver_correlation, but also takes into account first +// row/column, when computing horizontal/vertical correlation. +static void get_horver_correlation_full(const int16_t *diff, int stride, int w, + int h, float *hcorr, float *vcorr) { + const float num_hor = (float)(h * (w - 1)); + const float num_ver = (float)((h - 1) * w); + int i, j; + + // The following notation is used: + // x - current pixel + // y - left neighbor pixel + // z - top neighbor pixel + int64_t xy_sum = 0, xz_sum = 0; + int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0; + int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0; + + int16_t x, y, z; + for (j = 1; j < w; ++j) { + x = diff[j]; + y = diff[j - 1]; + xy_sum += x * y; + xhor_sum += x; + y_sum += y; + x2hor_sum += x * x; + y2_sum += y * y; + } + for (i = 1; i < h; ++i) { + x = diff[i * stride]; + z = diff[(i - 1) * stride]; + xz_sum += x * z; + xver_sum += x; + z_sum += z; + x2ver_sum += x * x; + z2_sum += z * z; + for (j = 1; j < w; ++j) { + x = diff[i * stride + j]; + y = diff[i * stride + j - 1]; + z = diff[(i - 1) * stride + j]; + xy_sum += x * y; + xz_sum += x * z; + xhor_sum += x; + xver_sum += x; + y_sum += y; + z_sum += z; + x2hor_sum += x * x; + x2ver_sum += x * x; + y2_sum += y * y; + z2_sum += z * z; + } + } + const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; + const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; + const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; + const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; + const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; + const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; + + *hcorr = *vcorr = 1; + if (xhor_var_n > 0 && y_var_n > 0) { + *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); + *hcorr = *hcorr < 0 ? 0 : *hcorr; + } + if (xver_var_n > 0 && z_var_n > 0) { + *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); + *vcorr = *vcorr < 0 ? 0 : *vcorr; + } +} + +// Transforms raw scores into a probability distribution across 16 TX types +static void score_2D_transform_pow8(float *scores_2D, float shift) { + float sum = 0.0f; + int i; + + for (i = 0; i < 16; i++) { + float v, v2, v4; + v = AOMMAX(scores_2D[i] + shift, 0.0f); + v2 = v * v; + v4 = v2 * v2; + scores_2D[i] = v4 * v4; + sum += scores_2D[i]; + } + for (i = 0; i < 16; i++) scores_2D[i] /= sum; +} + +// These thresholds were calibrated to provide a certain number of TX types +// pruned by the model on average, i.e. selecting a threshold with index i +// will lead to pruning i+1 TX types on average +static const float *prune_2D_adaptive_thresholds[] = { + // TX_4X4 + (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f, + 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f, + 0.09778f, 0.11780f }, + // TX_8X8 + (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f, + 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f, + 0.10803f, 0.14124f }, + // TX_16X16 + (float[]){ 0.01404f, 0.02820f, 0.04211f, 0.05164f, 0.05798f, 0.06335f, + 0.06897f, 0.07629f, 0.08875f, 0.11169f }, + // TX_32X32 + NULL, + // TX_64X64 + NULL, + // TX_4X8 + (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f, + 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f, + 0.10168f, 0.12585f }, + // TX_8X4 + (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f, + 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f, + 0.10583f, 0.13123f }, + // TX_8X16 + (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f, + 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f, + 0.10730f, 0.14221f }, + // TX_16X8 + (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f, + 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f, + 0.10339f, 0.13464f }, + // TX_16X32 + NULL, + // TX_32X16 + NULL, + // TX_32X64 + NULL, + // TX_64X32 + NULL, + // TX_4X16 + (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f, + 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f, + 0.10242f, 0.12878f }, + // TX_16X4 + (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f, + 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f, + 0.10217f, 0.12610f }, + // TX_8X32 + NULL, + // TX_32X8 + NULL, + // TX_16X64 + NULL, + // TX_64X16 + NULL, +}; + +static uint16_t prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size, + int blk_row, int blk_col, TxSetType tx_set_type, + TX_TYPE_PRUNE_MODE prune_mode) { + static const int tx_type_table_2D[16] = { + DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, + ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, + FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, + H_DCT, H_ADST, H_FLIPADST, IDTX + }; + if (tx_set_type != EXT_TX_SET_ALL16 && + tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT) + return 0; + const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; + const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; + if (!nn_config_hor || !nn_config_ver) return 0; // Model not established yet. + + aom_clear_system_state(); + float hfeatures[16], vfeatures[16]; + float hscores[4], vscores[4]; + float scores_2D[16]; + const int bw = tx_size_wide[tx_size]; + const int bh = tx_size_high[tx_size]; + const int hfeatures_num = bw <= 8 ? bw : bw / 2; + const int vfeatures_num = bh <= 8 ? bh : bh / 2; + assert(hfeatures_num <= 16); + assert(vfeatures_num <= 16); + + const struct macroblock_plane *const p = &x->plane[0]; + const int diff_stride = block_size_wide[bsize]; + const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col; + get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures, + vfeatures); + get_horver_correlation_full(diff, diff_stride, bw, bh, + &hfeatures[hfeatures_num - 1], + &vfeatures[vfeatures_num - 1]); + av1_nn_predict(hfeatures, nn_config_hor, hscores); + av1_nn_predict(vfeatures, nn_config_ver, vscores); + + float score_2D_average = 0.0f; + for (int i = 0; i < 4; i++) { + float *cur_scores_2D = scores_2D + i * 4; + cur_scores_2D[0] = vscores[i] * hscores[0]; + cur_scores_2D[1] = vscores[i] * hscores[1]; + cur_scores_2D[2] = vscores[i] * hscores[2]; + cur_scores_2D[3] = vscores[i] * hscores[3]; + score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] + + cur_scores_2D[3]; + } + score_2D_average /= 16; + + const int prune_aggr_table[2][2] = { { 6, 4 }, { 10, 7 } }; + int pruning_aggressiveness = 1; + if (tx_set_type == EXT_TX_SET_ALL16) { + score_2D_transform_pow8(scores_2D, (10 - score_2D_average)); + pruning_aggressiveness = + prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][0]; + } else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) { + score_2D_transform_pow8(scores_2D, (20 - score_2D_average)); + pruning_aggressiveness = + prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][1]; + } + + // Always keep the TX type with the highest score, prune all others with + // score below score_thresh. + int max_score_i = 0; + float max_score = 0.0f; + for (int i = 0; i < 16; i++) { + if (scores_2D[i] > max_score && + av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) { + max_score = scores_2D[i]; + max_score_i = i; + } + } + + const float score_thresh = + prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness - 1]; + + uint16_t prune_bitmask = 0; + for (int i = 0; i < 16; i++) { + if (scores_2D[i] < score_thresh && i != max_score_i) + prune_bitmask |= (1 << tx_type_table_2D[i]); + } + return prune_bitmask; +} + +// ((prune >> vtx_tab[tx_type]) & 1) +static const uint16_t prune_v_mask[] = { + 0x0000, 0x0425, 0x108a, 0x14af, 0x4150, 0x4575, 0x51da, 0x55ff, + 0xaa00, 0xae25, 0xba8a, 0xbeaf, 0xeb50, 0xef75, 0xfbda, 0xffff, +}; + +// ((prune >> (htx_tab[tx_type] + 8)) & 1) +static const uint16_t prune_h_mask[] = { + 0x0000, 0x0813, 0x210c, 0x291f, 0x80e0, 0x88f3, 0xa1ec, 0xa9ff, + 0x5600, 0x5e13, 0x770c, 0x7f1f, 0xd6e0, 0xdef3, 0xf7ec, 0xffff, +}; + +static INLINE uint16_t gen_tx_search_prune_mask(int tx_search_prune) { + uint8_t prune_v = tx_search_prune & 0x0F; + uint8_t prune_h = (tx_search_prune >> 8) & 0x0F; + return (prune_v_mask[prune_v] & prune_h_mask[prune_h]); +} + +static void prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, + const MACROBLOCKD *const xd, int tx_set_type) { + x->tx_search_prune[tx_set_type] = 0; + x->tx_split_prune_flag = 0; + const MB_MODE_INFO *mbmi = xd->mi[0]; + if (!is_inter_block(mbmi) || cpi->sf.tx_type_search.prune_mode == NO_PRUNE || + x->use_default_inter_tx_type || xd->lossless[mbmi->segment_id] || + x->cb_partition_scan) + return; + int tx_set = ext_tx_set_index[1][tx_set_type]; + assert(tx_set >= 0); + const int *tx_set_1D = ext_tx_used_inter_1D[tx_set]; + int prune = 0; + switch (cpi->sf.tx_type_search.prune_mode) { + case NO_PRUNE: return; + case PRUNE_ONE: + if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return; + prune = prune_one_for_sby(cpi, bsize, x, xd); + x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune); + break; + case PRUNE_TWO: + if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) { + if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return; + prune = prune_two_for_sby(cpi, bsize, x, xd, 0, 1); + } else if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) { + prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 0); + } else { + prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 1); + } + x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune); + break; + case PRUNE_2D_ACCURATE: + case PRUNE_2D_FAST: break; + default: assert(0); + } +} + +static void model_rd_from_sse(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist) { + (void)num_samples; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + + // Fast approximate the modelling function. + if (cpi->sf.simple_model_rd_from_var) { + const int64_t square_error = sse; + int quantizer = pd->dequant_Q3[1] >> dequant_shift; + if (quantizer < 120) + *rate = (int)AOMMIN( + (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT), + INT_MAX); + else + *rate = 0; + assert(*rate >= 0); + *dist = (square_error * quantizer) >> 8; + } else { + av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize], + pd->dequant_Q3[1] >> dequant_shift, rate, + dist); + } + *dist <<= 4; +} + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const MACROBLOCKD *xd = &x->e_mbd; + const MB_MODE_INFO *mbmi = xd->mi[0]; + int64_t total_sse = 0; + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bs = get_plane_block_size(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y); + unsigned int sse; + + if (x->skip_chroma_rd && plane) continue; + + cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + &sse); + total_sse += sse; + } + total_sse <<= 4; + return total_sse; +} +#endif + +static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int mi_row, int mi_col, + int *out_rate_sum, int64_t *out_dist_sum, + int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, + int64_t *plane_dist) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + int plane; + (void)mi_row; + (void)mi_col; + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + int64_t sse; + int rate; + int64_t dist; + + if (x->skip_chroma_rd && plane) continue; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); + + model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + assert(rate_sum >= 0); + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + rate_sum = AOMMIN(rate_sum, INT_MAX); + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static void check_block_skip(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int *skip_txfm_sb) { + *skip_txfm_sb = 1; + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bs = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + unsigned int sse; + + if (x->skip_chroma_rd && plane) continue; + + // Since fast HBD variance functions scale down sse by 4 bit, we first use + // fast vf implementation to rule out blocks with non-zero scaled sse. Then, + // only if the source is HBD and the scaled sse is 0, accurate sse + // computation is applied to determine if the sse is really 0. This step is + // necessary for HBD lossless coding. + cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + &sse); + if (sse) { + *skip_txfm_sb = 0; + return; + } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint64_t sse64 = aom_highbd_sse_odd_size( + p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + block_size_wide[bs], block_size_high[bs]); + + if (sse64) { + *skip_txfm_sb = 0; + return; + } + } + } + return; +} + +int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz) { + int i; + int64_t error = 0, sqcoeff = 0; + + for (i = 0; i < block_size; i++) { + const int diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += coeff[i] * coeff[i]; + } + + *ssz = sqcoeff; + return error; +} + +int64_t av1_highbd_block_error_c(const tran_low_t *coeff, + const tran_low_t *dqcoeff, intptr_t block_size, + int64_t *ssz, int bd) { + int i; + int64_t error = 0, sqcoeff = 0; + int shift = 2 * (bd - 8); + int rounding = shift > 0 ? 1 << (shift - 1) : 0; + + for (i = 0; i < block_size; i++) { + const int64_t diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; + } + assert(error >= 0 && sqcoeff >= 0); + error = (error + rounding) >> shift; + sqcoeff = (sqcoeff + rounding) >> shift; + + *ssz = sqcoeff; + return error; +} + +// Get transform block visible dimensions cropped to the MI units. +static void get_txb_dimensions(const MACROBLOCKD *xd, int plane, + BLOCK_SIZE plane_bsize, int blk_row, int blk_col, + BLOCK_SIZE tx_bsize, int *width, int *height, + int *visible_width, int *visible_height) { + assert(tx_bsize <= plane_bsize); + int txb_height = block_size_high[tx_bsize]; + int txb_width = block_size_wide[tx_bsize]; + const int block_height = block_size_high[plane_bsize]; + const int block_width = block_size_wide[plane_bsize]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + // TODO(aconverse@google.com): Investigate using crop_width/height here rather + // than the MI size + const int block_rows = + (xd->mb_to_bottom_edge >= 0) + ? block_height + : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; + const int block_cols = + (xd->mb_to_right_edge >= 0) + ? block_width + : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; + const int tx_unit_size = tx_size_wide_log2[0]; + if (width) *width = txb_width; + if (height) *height = txb_height; + *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width); + *visible_height = + clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height); +} + +// Compute the pixel domain distortion from src and dst on all visible 4x4s in +// the +// transform block. +static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, + int plane, const uint8_t *src, const int src_stride, + const uint8_t *dst, const int dst_stride, + int blk_row, int blk_col, + const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + int txb_rows, txb_cols, visible_rows, visible_cols; + const MACROBLOCKD *xd = &x->e_mbd; + + get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, + &txb_cols, &txb_rows, &visible_cols, &visible_rows); + assert(visible_rows > 0); + assert(visible_cols > 0); + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8 && plane == 0) + return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, + tx_bsize, txb_cols, txb_rows, visible_cols, + visible_rows, x->qindex); +#endif // CONFIG_DIST_8X8 + + unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, + dst_stride, tx_bsize, txb_rows, + txb_cols, visible_rows, visible_cols); + + return sse; +} + +// Compute the pixel domain distortion from diff on all visible 4x4s in the +// transform block. +static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane, + int blk_row, int blk_col, + const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + int visible_rows, visible_cols; + const MACROBLOCKD *xd = &x->e_mbd; + get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, + NULL, &visible_cols, &visible_rows); + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *diff = x->plane[plane].src_diff; +#if CONFIG_DIST_8X8 + int txb_height = block_size_high[tx_bsize]; + int txb_width = block_size_wide[tx_bsize]; + if (x->using_dist_8x8 && plane == 0) { + const int src_stride = x->plane[plane].src.stride; + const int src_idx = (blk_row * src_stride + blk_col) + << tx_size_wide_log2[0]; + const int diff_idx = (blk_row * diff_stride + blk_col) + << tx_size_wide_log2[0]; + const uint8_t *src = &x->plane[plane].src.buf[src_idx]; + return dist_8x8_diff(x, src, src_stride, diff + diff_idx, diff_stride, + txb_width, txb_height, visible_cols, visible_rows, + x->qindex); + } +#endif + diff += ((blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]); + return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); +} + +int av1_count_colors(const uint8_t *src, int stride, int rows, int cols, + int *val_count) { + const int max_pix_val = 1 << 8; + memset(val_count, 0, max_pix_val * sizeof(val_count[0])); + for (int r = 0; r < rows; ++r) { + for (int c = 0; c < cols; ++c) { + const int this_val = src[r * stride + c]; + assert(this_val < max_pix_val); + ++val_count[this_val]; + } + } + int n = 0; + for (int i = 0; i < max_pix_val; ++i) { + if (val_count[i]) ++n; + } + return n; +} + +int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, + int bit_depth, int *val_count) { + assert(bit_depth <= 12); + const int max_pix_val = 1 << bit_depth; + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + memset(val_count, 0, max_pix_val * sizeof(val_count[0])); + for (int r = 0; r < rows; ++r) { + for (int c = 0; c < cols; ++c) { + const int this_val = src[r * stride + c]; + assert(this_val < max_pix_val); + if (this_val >= max_pix_val) return 0; + ++val_count[this_val]; + } + } + int n = 0; + for (int i = 0; i < max_pix_val; ++i) { + if (val_count[i]) ++n; + } + return n; +} + +static void inverse_transform_block_facade(MACROBLOCKD *xd, int plane, + int block, int blk_row, int blk_col, + int eob, int reduced_tx_set) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const PLANE_TYPE plane_type = get_plane_type(plane); + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, reduced_tx_set); + const int dst_stride = pd->dst.stride; + uint8_t *dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, + dst_stride, eob, reduced_tx_set); +} + +static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, const uint32_t hash); + +static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size) { + int16_t tmp_data[64 * 64]; + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *diff = x->plane[plane].src_diff; + const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col; + const int txb_w = tx_size_wide[tx_size]; + const int txb_h = tx_size_high[tx_size]; + uint8_t *hash_data = (uint8_t *)cur_diff_row; + if (txb_w != diff_stride) { + int16_t *cur_hash_row = tmp_data; + for (int i = 0; i < txb_h; i++) { + memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w); + cur_hash_row += txb_w; + cur_diff_row += diff_stride; + } + hash_data = (uint8_t *)tmp_data; + } + CRC32C *crc = &x->mb_rd_record.crc_calculator; + const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h); + return (hash << 5) + tx_size; +} + +static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block, + TX_SIZE tx_size, int64_t *out_dist, + int64_t *out_sse) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + // Transform domain distortion computation is more efficient as it does + // not involve an inverse transform, but it is less accurate. + const int buffer_length = av1_get_max_eob(tx_size); + int64_t this_sse; + // TX-domain results need to shift down to Q2/D10 to match pixel + // domain distortion values which are in Q2^2 + int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, + xd->bd); + else + *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); + + *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); + *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); +} + +static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x, + int plane, BLOCK_SIZE plane_bsize, + int block, int blk_row, int blk_col, + TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const uint16_t eob = p->eobs[block]; + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const int bsw = block_size_wide[tx_bsize]; + const int bsh = block_size_high[tx_bsize]; + const int src_stride = x->plane[plane].src.stride; + const int dst_stride = xd->plane[plane].dst.stride; + // Scale the transform block index to pixel unit. + const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0]; + const int dst_idx = (blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]; + const uint8_t *src = &x->plane[plane].src.buf[src_idx]; + const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; + const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + + assert(cpi != NULL); + assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); + + uint8_t *recon; + DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + recon = CONVERT_TO_BYTEPTR(recon16); + av1_highbd_convolve_2d_copy_sr(CONVERT_TO_SHORTPTR(dst), dst_stride, + CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, + bsh, NULL, NULL, 0, 0, NULL, xd->bd); + } else { + recon = (uint8_t *)recon16; + av1_convolve_2d_copy_sr(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh, NULL, + NULL, 0, 0, NULL); + } + + const PLANE_TYPE plane_type = get_plane_type(plane); + TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, + cpi->common.reduced_tx_set_used); + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, + MAX_TX_SIZE, eob, + cpi->common.reduced_tx_set_used); + + return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, + blk_row, blk_col, plane_bsize, tx_bsize); +} + +static double get_mean(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + sum += diff[j * stride + i]; + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static double get_sse_norm(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + const int err = diff[j * stride + i]; + sum += err * err; + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static double get_sad_norm(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + sum += abs(diff[j * stride + i]); + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static void get_2x2_normalized_sses_and_sads( + const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src, + int src_stride, const uint8_t *const dst, int dst_stride, + const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr, + double *const sad_norm_arr) { + const BLOCK_SIZE tx_bsize_half = + get_partition_subsize(tx_bsize, PARTITION_SPLIT); + if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats + const int half_width = block_size_wide[tx_bsize] / 2; + const int half_height = block_size_high[tx_bsize] / 2; + for (int row = 0; row < 2; ++row) { + for (int col = 0; col < 2; ++col) { + const int16_t *const this_src_diff = + src_diff + row * half_height * diff_stride + col * half_width; + if (sse_norm_arr) { + sse_norm_arr[row * 2 + col] = + get_sse_norm(this_src_diff, diff_stride, half_width, half_height); + } + if (sad_norm_arr) { + sad_norm_arr[row * 2 + col] = + get_sad_norm(this_src_diff, diff_stride, half_width, half_height); + } + } + } + } else { // use function pointers to calculate stats + const int half_width = block_size_wide[tx_bsize_half]; + const int half_height = block_size_high[tx_bsize_half]; + const int num_samples_half = half_width * half_height; + for (int row = 0; row < 2; ++row) { + for (int col = 0; col < 2; ++col) { + const uint8_t *const this_src = + src + row * half_height * src_stride + col * half_width; + const uint8_t *const this_dst = + dst + row * half_height * dst_stride + col * half_width; + + if (sse_norm_arr) { + unsigned int this_sse; + cpi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst, + dst_stride, &this_sse); + sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half; + } + + if (sad_norm_arr) { + const unsigned int this_sad = cpi->fn_ptr[tx_bsize_half].sdf( + this_src, src_stride, this_dst, dst_stride); + sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half; + } + } + } + } +} + +// NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values +// 0: Do not collect any RD stats +// 1: Collect RD stats for transform units +// 2: Collect RD stats for partition units +#if CONFIG_COLLECT_RD_STATS + +#if CONFIG_COLLECT_RD_STATS == 1 +static void PrintTransformUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x, + const RD_STATS *const rd_stats, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, TX_TYPE tx_type, + int64_t rd) { + if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; + + // Generate small sample to restrict output size. + static unsigned int seed = 21743; + if (lcg_rand16(&seed) % 256 > 0) return; + + const char output_file[] = "tu_stats.txt"; + FILE *fout = fopen(output_file, "a"); + if (!fout) return; + + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const MACROBLOCKD *const xd = &x->e_mbd; + const int plane = 0; + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int txw = tx_size_wide[tx_size]; + const int txh = tx_size_high[tx_size]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = pd->dequant_Q3[1] >> dequant_shift; + const double num_samples = txw * txh; + + const double rate_norm = (double)rd_stats->rate / num_samples; + const double dist_norm = (double)rd_stats->dist / num_samples; + + fprintf(fout, "%g %g", rate_norm, dist_norm); + + const int src_stride = p->src.stride; + const uint8_t *const src = + &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + unsigned int sse; + cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); + const double sse_norm = (double)sse / num_samples; + + const unsigned int sad = + cpi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride); + const double sad_norm = (double)sad / num_samples; + + fprintf(fout, " %g %g", sse_norm, sad_norm); + + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *const src_diff = + &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; + + double sse_norm_arr[4], sad_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, sad_norm_arr); + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sse_norm_arr[i]); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sad_norm_arr[i]); + } + + const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; + const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; + + fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size], + tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col); + + int model_rate; + int64_t model_dist; + model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + const double model_rate_norm = (double)model_rate / num_samples; + const double model_dist_norm = (double)model_dist / num_samples; + fprintf(fout, " %g %g", model_rate_norm, model_dist_norm); + + const double mean = get_mean(src_diff, diff_stride, txw, txh); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, txw, txh, &hor_corr, + &vert_corr); + fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); + + double hdist[4] = { 0 }, vdist[4] = { 0 }; + get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride, + 1, hdist, vdist); + fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], + hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); + + fprintf(fout, " %d %" PRId64, x->rdmult, rd); + + fprintf(fout, "\n"); + fclose(fout); +} +#endif // CONFIG_COLLECT_RD_STATS == 1 + +#if CONFIG_COLLECT_RD_STATS >= 2 +static void PrintPredictionUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x, + const RD_STATS *const rd_stats, + BLOCK_SIZE plane_bsize) { + if (rd_stats->invalid_rate) return; + if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; + + // Generate small sample to restrict output size. + static unsigned int seed = 95014; + if (lcg_rand16(&seed) % 256 > 0) return; + + const char output_file[] = "pu_stats.txt"; + FILE *fout = fopen(output_file, "a"); + if (!fout) return; + + const MACROBLOCKD *const xd = &x->e_mbd; + const int plane = 0; + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int diff_stride = block_size_wide[plane_bsize]; + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, + &bh); + const int num_samples = bw * bh; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = pd->dequant_Q3[1] >> dequant_shift; + + const double rate_norm = (double)rd_stats->rate / num_samples; + const double dist_norm = (double)rd_stats->dist / num_samples; + const double rdcost_norm = + (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples; + + fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm); + + const int src_stride = p->src.stride; + const uint8_t *const src = p->src.buf; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = pd->dst.buf; + const int16_t *const src_diff = p->src_diff; + const int shift = (xd->bd - 8); + + int64_t sse = aom_sum_squares_2d_i16(src_diff, diff_stride, bw, bh); + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + const double sse_norm = (double)sse / num_samples; + + const unsigned int sad = + cpi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride); + const double sad_norm = + (double)sad / (1 << num_pels_log2_lookup[plane_bsize]); + + fprintf(fout, " %g %g", sse_norm, sad_norm); + + double sse_norm_arr[4], sad_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, sad_norm_arr); + if (shift) { + for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); + for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sse_norm_arr[i]); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sad_norm_arr[i]); + } + + fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh); + + int model_rate; + int64_t model_dist; + model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + const double model_rdcost_norm = + (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples; + const double model_rate_norm = (double)model_rate / num_samples; + const double model_dist_norm = (double)model_dist / num_samples; + fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm, + model_rdcost_norm); + + double mean = get_mean(src_diff, diff_stride, bw, bh); + mean /= (1 << shift); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr); + fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); + + double hdist[4] = { 0 }, vdist[4] = { 0 }; + get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst, + dst_stride, 1, hdist, vdist); + fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], + hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); + + fprintf(fout, "\n"); + fclose(fout); +} +#endif // CONFIG_COLLECT_RD_STATS >= 2 +#endif // CONFIG_COLLECT_RD_STATS + +static void model_rd_with_dnn(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int log_numpels = num_pels_log2_lookup[plane_bsize]; + + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + + const struct macroblock_plane *const p = &x->plane[plane]; + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, + &bh); + const int src_stride = p->src.stride; + const uint8_t *const src = p->src.buf; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = pd->dst.buf; + const int16_t *const src_diff = p->src_diff; + const int diff_stride = block_size_wide[plane_bsize]; + const int shift = (xd->bd - 8); + + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + if (plane) { + int model_rate; + int64_t model_dist; + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + if (rate) *rate = model_rate; + if (dist) *dist = model_dist; + return; + } + + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + + double sse_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, NULL); + double mean = get_mean(src_diff, bw, bw, bh); + if (shift) { + for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); + mean /= (1 << shift); + } + double sse_norm_sum = 0.0, sse_frac_arr[3]; + for (int k = 0; k < 4; ++k) sse_norm_sum += sse_norm_arr[k]; + for (int k = 0; k < 3; ++k) + sse_frac_arr[k] = + sse_norm_sum > 0.0 ? sse_norm_arr[k] / sse_norm_sum : 0.25; + const double q_sqr = (double)(q_step * q_step); + const double q_sqr_by_sse_norm = q_sqr / (sse_norm + 1.0); + const double mean_sqr_by_sse_norm = mean * mean / (sse_norm + 1.0); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr); + + float features[NUM_FEATURES_PUSTATS]; + features[0] = (float)hor_corr; + features[1] = (float)log_numpels; + features[2] = (float)mean_sqr_by_sse_norm; + features[3] = (float)q_sqr_by_sse_norm; + features[4] = (float)sse_frac_arr[0]; + features[5] = (float)sse_frac_arr[1]; + features[6] = (float)sse_frac_arr[2]; + features[7] = (float)vert_corr; + + float rate_f, dist_by_sse_norm_f; + av1_nn_predict(features, &av1_pustats_dist_nnconfig, &dist_by_sse_norm_f); + av1_nn_predict(features, &av1_pustats_rate_nnconfig, &rate_f); + const float dist_f = (float)((double)dist_by_sse_norm_f * (1.0 + sse_norm)); + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; + return; +} + +static void model_rd_for_sb_with_dnn( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + + model_rd_with_dnn(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +// Fits a surface for rate and distortion using as features: +// log2(sse_norm + 1) and log2(sse_norm/qstep^2) +static void model_rd_with_surffit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist) { + (void)cpi; + (void)plane_bsize; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + const double qstepsqr = (double)qstep * qstep; + const double xm = log(sse_norm + 1.0) / log(2.0); + const double yl = log(sse_norm / qstepsqr) / log(2.0); + double rate_f, dist_by_sse_norm_f; + + av1_model_rd_surffit(xm, yl, &rate_f, &dist_by_sse_norm_f); + + const double dist_f = dist_by_sse_norm_f * sse_norm; + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; +} + +static void model_rd_for_sb_with_surffit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + int bw, bh; + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + + model_rd_with_surffit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +// Fits a curve for rate and distortion using as feature: +// log2(sse_norm/qstep^2) +static void model_rd_with_curvfit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist) { + (void)cpi; + (void)plane_bsize; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + const double qstepsqr = (double)qstep * qstep; + const double xqr = log(sse_norm / qstepsqr) / log(2.0); + + double rate_f, dist_by_sse_norm_f; + av1_model_rd_curvfit(xqr, &rate_f, &dist_by_sse_norm_f); + + const double dist_f = dist_by_sse_norm_f * sse_norm; + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; +} + +static void model_rd_for_sb_with_curvfit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + int bw, bh; + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static void model_rd_for_sb_with_fullrdy( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + int64_t sse; + int rate; + int64_t dist; + + if (x->skip_chroma_rd && plane) continue; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); + + RD_STATS rd_stats; + if (plane == 0) { + select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX); + if (rd_stats.invalid_rate) { + rate = 0; + dist = sse << 4; + } else { + rate = rd_stats.rate; + dist = rd_stats.dist; + } + } else { + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + } + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, + int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + const TXB_CTX *const txb_ctx, + FAST_TX_SEARCH_MODE ftxs_mode, + int use_fast_coef_costing, int64_t ref_best_rd, + RD_STATS *best_rd_stats) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + struct macroblockd_plane *const pd = &xd->plane[plane]; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + int64_t best_rd = INT64_MAX; + uint16_t best_eob = 0; + TX_TYPE best_tx_type = DCT_DCT; + TX_TYPE last_tx_type = TX_TYPES; + const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY; + // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff + // of the best tx_type + DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]); + tran_low_t *orig_dqcoeff = pd->dqcoeff; + tran_low_t *best_dqcoeff = this_dqcoeff; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + av1_invalid_rd_stats(best_rd_stats); + + TXB_RD_INFO *intra_txb_rd_info = NULL; + uint16_t cur_joint_ctx = 0; + const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); + const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); + const int within_border = + mi_row >= xd->tile.mi_row_start && + (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) && + mi_col >= xd->tile.mi_col_start && + (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end); + if (within_border && cpi->sf.use_intra_txb_hash && frame_is_intra_only(cm) && + !is_inter && plane == 0 && + tx_size_wide[tx_size] == tx_size_high[tx_size]) { + const uint32_t intra_hash = + get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size); + const int intra_hash_idx = + find_tx_size_rd_info(&x->txb_rd_record_intra, intra_hash); + intra_txb_rd_info = &x->txb_rd_record_intra.tx_rd_info[intra_hash_idx]; + + cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; + if (intra_txb_rd_info->entropy_context == cur_joint_ctx && + x->txb_rd_record_intra.tx_rd_info[intra_hash_idx].valid) { + mbmi->txk_type[txk_type_idx] = intra_txb_rd_info->tx_type; + const TX_TYPE ref_tx_type = + av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, + tx_size, cpi->common.reduced_tx_set_used); + if (ref_tx_type == intra_txb_rd_info->tx_type) { + best_rd_stats->rate = intra_txb_rd_info->rate; + best_rd_stats->dist = intra_txb_rd_info->dist; + best_rd_stats->sse = intra_txb_rd_info->sse; + best_rd_stats->skip = intra_txb_rd_info->eob == 0; + x->plane[plane].eobs[block] = intra_txb_rd_info->eob; + x->plane[plane].txb_entropy_ctx[block] = + intra_txb_rd_info->txb_entropy_ctx; + best_rd = RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->dist); + best_eob = intra_txb_rd_info->eob; + best_tx_type = intra_txb_rd_info->tx_type; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + best_tx_type); + goto RECON_INTRA; + } + } + } + + int rate_cost = 0; + TX_TYPE txk_start = DCT_DCT; + TX_TYPE txk_end = TX_TYPES - 1; + if ((!is_inter && x->use_default_intra_tx_type) || + (is_inter && x->use_default_inter_tx_type)) { + txk_start = txk_end = get_default_tx_type(0, xd, tx_size); + } else if (x->rd_model == LOW_TXFM_RD || x->cb_partition_scan) { + if (plane == 0) txk_end = DCT_DCT; + } + + uint8_t best_txb_ctx = 0; + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); + + TX_TYPE uv_tx_type = DCT_DCT; + if (plane) { + // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y + uv_tx_type = txk_start = txk_end = + av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size, + cm->reduced_tx_set_used); + } + const uint16_t ext_tx_used_flag = av1_ext_tx_used_flag[tx_set_type]; + if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 || + ext_tx_used_flag == 0x0001) { + txk_start = txk_end = DCT_DCT; + } + uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip. + if (txk_start == txk_end) { + allowed_tx_mask = 1 << txk_start; + allowed_tx_mask &= ext_tx_used_flag; + } else if (fast_tx_search) { + allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT + allowed_tx_mask &= ext_tx_used_flag; + } else { + assert(plane == 0); + allowed_tx_mask = ext_tx_used_flag; + // !fast_tx_search && txk_end != txk_start && plane == 0 + const int do_prune = cpi->sf.tx_type_search.prune_mode > NO_PRUNE; + if (do_prune && is_inter) { + if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE) { + const uint16_t prune = + prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type, + cpi->sf.tx_type_search.prune_mode); + allowed_tx_mask &= (~prune); + } else { + allowed_tx_mask &= (~x->tx_search_prune[tx_set_type]); + } + } + } + // Need to have at least one transform type allowed. + if (allowed_tx_mask == 0) { + txk_start = txk_end = (plane ? uv_tx_type : DCT_DCT); + allowed_tx_mask = (1 << txk_start); + } + + int use_transform_domain_distortion = + (cpi->sf.use_transform_domain_distortion > 0) && + // Any 64-pt transforms only preserves half the coefficients. + // Therefore transform domain distortion is not valid for these + // transform sizes. + txsize_sqr_up_map[tx_size] != TX_64X64; +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) use_transform_domain_distortion = 0; +#endif + int calc_pixel_domain_distortion_final = + cpi->sf.use_transform_domain_distortion == 1 && + use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD && + !x->cb_partition_scan; + if (calc_pixel_domain_distortion_final && + (txk_start == txk_end || allowed_tx_mask == 0x0001)) + calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0; + + const uint16_t *eobs_ptr = x->plane[plane].eobs; + + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + int64_t block_sse = + pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, tx_bsize); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2); + block_sse *= 16; + + for (TX_TYPE tx_type = txk_start; tx_type <= txk_end; ++tx_type) { + if (!(allowed_tx_mask & (1 << tx_type))) continue; + if (plane == 0) mbmi->txk_type[txk_type_idx] = tx_type; + RD_STATS this_rd_stats; + av1_invalid_rd_stats(&this_rd_stats); + + if (!cpi->optimize_seg_arr[mbmi->segment_id]) { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type, + txb_ctx, use_fast_coef_costing); + } else { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, tx_type, AV1_XFORM_QUANT_FP); + if (cpi->sf.optimize_b_precheck && best_rd < INT64_MAX && + eobs_ptr[block] >= 4) { + // Calculate distortion quickly in transform domain. + dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, + &this_rd_stats.sse); + + const int64_t best_rd_ = AOMMIN(best_rd, ref_best_rd); + const int64_t dist_cost_estimate = + RDCOST(x->rdmult, 0, AOMMIN(this_rd_stats.dist, this_rd_stats.sse)); + if (dist_cost_estimate - (dist_cost_estimate >> 3) > best_rd_) continue; + + rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type, + txb_ctx, use_fast_coef_costing); + const int64_t rd_estimate = + AOMMIN(RDCOST(x->rdmult, rate_cost, this_rd_stats.dist), + RDCOST(x->rdmult, 0, this_rd_stats.sse)); + if (rd_estimate - (rd_estimate >> 3) > best_rd_) continue; + } + av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, 1, + &rate_cost); + } + if (eobs_ptr[block] == 0) { + // When eob is 0, pixel domain distortion is more efficient and accurate. + this_rd_stats.dist = this_rd_stats.sse = block_sse; + } else if (use_transform_domain_distortion) { + dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, + &this_rd_stats.sse); + } else { + this_rd_stats.dist = dist_block_px_domain( + cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); + this_rd_stats.sse = block_sse; + } + + this_rd_stats.rate = rate_cost; + + const int64_t rd = + RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); + + if (rd < best_rd) { + best_rd = rd; + *best_rd_stats = this_rd_stats; + best_tx_type = tx_type; + best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; + best_eob = x->plane[plane].eobs[block]; + last_tx_type = best_tx_type; + + // Swap qcoeff and dqcoeff buffers + tran_low_t *const tmp_dqcoeff = best_dqcoeff; + best_dqcoeff = pd->dqcoeff; + pd->dqcoeff = tmp_dqcoeff; + } + +#if CONFIG_COLLECT_RD_STATS == 1 + if (plane == 0) { + PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col, + plane_bsize, tx_size, tx_type, rd); + } +#endif // CONFIG_COLLECT_RD_STATS == 1 + + if (cpi->sf.adaptive_txb_search_level) { + if ((best_rd - (best_rd >> cpi->sf.adaptive_txb_search_level)) > + ref_best_rd) { + break; + } + } + + // Skip transform type search when we found the block has been quantized to + // all zero and at the same time, it has better rdcost than doing transform. + if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break; + } + + assert(best_rd != INT64_MAX); + + best_rd_stats->skip = best_eob == 0; + if (plane == 0) { + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + best_tx_type); + } + x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; + x->plane[plane].eobs[block] = best_eob; + + pd->dqcoeff = best_dqcoeff; + + if (calc_pixel_domain_distortion_final && best_eob) { + best_rd_stats->dist = dist_block_px_domain( + cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); + best_rd_stats->sse = block_sse; + } + + if (intra_txb_rd_info != NULL) { + intra_txb_rd_info->valid = 1; + intra_txb_rd_info->entropy_context = cur_joint_ctx; + intra_txb_rd_info->rate = best_rd_stats->rate; + intra_txb_rd_info->dist = best_rd_stats->dist; + intra_txb_rd_info->sse = best_rd_stats->sse; + intra_txb_rd_info->eob = best_eob; + intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx; + if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type; + } + +RECON_INTRA: + if (!is_inter && best_eob && + (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] || + blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) { + // intra mode needs decoded result such that the next transform block + // can use it for prediction. + // if the last search tx_type is the best tx_type, we don't need to + // do this again + if (best_tx_type != last_tx_type) { + if (!cpi->optimize_seg_arr[mbmi->segment_id]) { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + best_tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + } else { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, best_tx_type, AV1_XFORM_QUANT_FP); + av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, 1, + &rate_cost); + } + } + + inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, + x->plane[plane].eobs[block], + cm->reduced_tx_set_used); + + // This may happen because of hash collision. The eob stored in the hash + // table is non-zero, but the real eob is zero. We need to make sure tx_type + // is DCT_DCT in this case. + if (plane == 0 && x->plane[plane].eobs[block] == 0 && + best_tx_type != DCT_DCT) { + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } + } + pd->dqcoeff = orig_dqcoeff; + + return best_rd; +} + +static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { + struct rdcost_block_args *args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const AV1_COMP *cpi = args->cpi; + ENTROPY_CONTEXT *a = args->t_above + blk_col; + ENTROPY_CONTEXT *l = args->t_left + blk_row; + const AV1_COMMON *cm = &cpi->common; + int64_t rd1, rd2, rd; + RD_STATS this_rd_stats; + + av1_init_rd_stats(&this_rd_stats); + + if (args->exit_early) { + args->incomplete_exit = 1; + return; + } + + if (!is_inter_block(mbmi)) { + av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); + av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); + } + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); + search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + &txb_ctx, args->ftxs_mode, args->use_fast_coef_costing, + args->best_rd - args->this_rd, &this_rd_stats); + + if (plane == AOM_PLANE_Y && xd->cfl.store_y) { + assert(!is_inter_block(mbmi) || plane_bsize < BLOCK_8X8); + cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); + } + +#if CONFIG_RD_DEBUG + av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col, + this_rd_stats.rate); +#endif // CONFIG_RD_DEBUG + av1_set_txb_context(x, plane, block, tx_size, a, l); + + const int blk_idx = + blk_row * (block_size_wide[plane_bsize] >> tx_size_wide_log2[0]) + + blk_col; + + if (plane == 0) + set_blk_skip(x, plane, blk_idx, x->plane[plane].eobs[block] == 0); + else + set_blk_skip(x, plane, blk_idx, 0); + + rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); + rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse); + + // TODO(jingning): temporarily enabled only for luma component + rd = AOMMIN(rd1, rd2); + + this_rd_stats.skip &= !x->plane[plane].eobs[block]; + + av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); + + args->this_rd += rd; + + if (args->this_rd > args->best_rd) { + args->exit_early = 1; + return; + } +} + +static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, + RD_STATS *rd_stats, int64_t ref_best_rd, int plane, + BLOCK_SIZE bsize, TX_SIZE tx_size, + int use_fast_coef_casting, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + struct rdcost_block_args args; + av1_zero(args); + args.x = x; + args.cpi = cpi; + args.best_rd = ref_best_rd; + args.use_fast_coef_costing = use_fast_coef_casting; + args.ftxs_mode = ftxs_mode; + av1_init_rd_stats(&args.rd_stats); + + if (plane == 0) xd->mi[0]->tx_size = tx_size; + + av1_get_entropy_contexts(bsize, pd, args.t_above, args.t_left); + + av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, + &args); + + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early; + + if (invalid_rd) { + av1_invalid_rd_stats(rd_stats); + } else { + *rd_stats = args.rd_stats; + } +} + +static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x, + BLOCK_SIZE bsize, TX_SIZE tx_size) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type)) { + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + const int depth = tx_size_to_depth(tx_size, bsize); + const int tx_size_ctx = get_tx_size_context(xd); + int r_tx_size = x->tx_size_cost[tx_size_cat][tx_size_ctx][depth]; + return r_tx_size; + } else { + return 0; + } +} + +static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs, + TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + const int skip_ctx = av1_get_skip_context(xd); + int s0, s1; + const int is_inter = is_inter_block(mbmi); + const int tx_select = + cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type); + int ctx = txfm_partition_context( + xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size); + const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0] + : tx_size_cost(cm, x, bs, tx_size); + + assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); + + s0 = x->skip_cost[skip_ctx][0]; + s1 = x->skip_cost[skip_ctx][1]; + + mbmi->tx_size = tx_size; + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, tx_size, + cpi->sf.use_fast_coef_costing, ftxs_mode); + if (rd_stats->rate == INT_MAX) return INT64_MAX; + + if (rd_stats->skip) { + if (is_inter) { + rd = RDCOST(x->rdmult, s1, rd_stats->sse); + } else { + rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse); + } + } else { + rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select, + rd_stats->dist); + } + + if (tx_select) rd_stats->rate += r_tx_size; + + if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip)) + rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); + + return rd; +} + +static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs, + MACROBLOCK *x, int *r, int64_t *d, int *s, + int64_t *sse, int64_t ref_best_rd) { + RD_STATS rd_stats; + av1_subtract_plane(x, bs, 0); + x->rd_model = LOW_TXFM_RD; + int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs, + max_txsize_rect_lookup[bs], FTXS_NONE); + x->rd_model = FULL_TXFM_RD; + *r = rd_stats.rate; + *d = rd_stats.dist; + *s = rd_stats.skip; + *sse = rd_stats.sse; + return rd; +} + +static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, + BLOCK_SIZE bs) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(mbmi->tx_size, is_inter, cm->reduced_tx_set_used); + prune_tx(cpi, bs, x, xd, tx_set_type); + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, + mbmi->tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; +} + +static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, + BLOCK_SIZE bs) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + mbmi->tx_size = TX_4X4; + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, + cpi->sf.use_fast_coef_costing, FTXS_NONE); +} + +static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { + int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]); + return num_blk; +} + +static int get_search_init_depth(int mi_width, int mi_height, int is_inter, + const SPEED_FEATURES *sf) { + if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; + + if (sf->tx_size_search_lgr_block) { + if (mi_width > mi_size_wide[BLOCK_64X64] || + mi_height > mi_size_high[BLOCK_64X64]) + return MAX_VARTX_DEPTH; + } + + if (is_inter) { + return (mi_height != mi_width) ? sf->inter_tx_size_search_init_depth_rect + : sf->inter_tx_size_search_init_depth_sqr; + } else { + return (mi_height != mi_width) ? sf->intra_tx_size_search_init_depth_rect + : sf->intra_tx_size_search_init_depth_sqr; + } +} + +static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, + MACROBLOCK *x, RD_STATS *rd_stats, + int64_t ref_best_rd, BLOCK_SIZE bs) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + int n; + int start_tx; + int depth; + int64_t best_rd = INT64_MAX; + const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs]; + TX_SIZE best_tx_size = max_rect_tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int n4 = bsize_to_num_blk(bs); + const int tx_select = cm->tx_mode == TX_MODE_SELECT; + + av1_invalid_rd_stats(rd_stats); + + if (tx_select) { + start_tx = max_rect_tx_size; + depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], + is_inter_block(mbmi), &cpi->sf); + } else { + const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); + start_tx = chosen_tx_size; + depth = MAX_TX_DEPTH; + } + + prune_tx(cpi, bs, x, xd, EXT_TX_SET_ALL16); + + for (n = start_tx; depth <= MAX_TX_DEPTH; depth++, n = sub_tx_size_map[n]) { +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (tx_size_wide[n] < 8 || tx_size_high[n] < 8) continue; + } +#endif + RD_STATS this_rd_stats; + if (mbmi->ref_mv_idx > 0) x->rd_model = LOW_TXFM_RD; + rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, n, FTXS_NONE); + x->rd_model = FULL_TXFM_RD; + + if (rd < best_rd) { + memcpy(best_txk_type, mbmi->txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); + best_tx_size = n; + best_rd = rd; + *rd_stats = this_rd_stats; + } + if (n == TX_4X4) break; + } + + if (rd_stats->rate != INT_MAX) { + mbmi->tx_size = best_tx_size; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4); + } + + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; +} + +static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bs, + int64_t ref_best_rd) { + MACROBLOCKD *xd = &x->e_mbd; + av1_init_rd_stats(rd_stats); + + assert(bs == xd->mi[0]->sb_type); + + if (xd->lossless[xd->mi[0]->segment_id]) { + choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); + } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { + choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); + } else { + choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); + } +} + +// Return the rate cost for luma prediction mode info. of intra blocks. +static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, + const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, + int mode_cost) { + int total_rate = mode_cost; + const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0; + const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra; + const int use_intrabc = mbmi->use_intrabc; + // Can only activate one mode. + assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc + + use_filter_intra) <= 1); + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette && mbmi->mode == DC_PRED) { + const MACROBLOCKD *xd = &x->e_mbd; + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + const int mode_ctx = av1_get_palette_mode_ctx(xd); + total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette]; + if (use_palette) { + const uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + const int plt_size = mbmi->palette_mode_info.palette_size[0]; + int palette_mode_cost = + x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + + write_uniform_cost(plt_size, color_map[0]); + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + palette_mode_cost += + av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache, + n_cache, cpi->common.seq_params.bit_depth); + palette_mode_cost += + av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP); + total_rate += palette_mode_cost; + } + } + if (av1_filter_intra_allowed(&cpi->common, mbmi)) { + total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra]; + if (use_filter_intra) { + total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info + .filter_intra_mode]; + } + } + if (av1_is_directional_mode(mbmi->mode)) { + if (av1_use_angle_delta(bsize)) { + total_rate += x->angle_delta_cost[mbmi->mode - V_PRED] + [MAX_ANGLE_DELTA + + mbmi->angle_delta[PLANE_TYPE_Y]]; + } + } + if (av1_allow_intrabc(&cpi->common)) + total_rate += x->intrabc_cost[use_intrabc]; + return total_rate; +} + +// Return the rate cost for chroma prediction mode info. of intra blocks. +static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, + const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, + int mode_cost) { + int total_rate = mode_cost; + const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0; + const UV_PREDICTION_MODE mode = mbmi->uv_mode; + // Can only activate one mode. + assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1); + + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette && mode == UV_DC_PRED) { + const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info; + total_rate += + x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette]; + if (use_palette) { + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + const int plt_size = pmi->palette_size[1]; + const MACROBLOCKD *xd = &x->e_mbd; + const uint8_t *const color_map = xd->plane[1].color_index_map; + int palette_mode_cost = + x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + + write_uniform_cost(plt_size, color_map[0]); + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + palette_mode_cost += av1_palette_color_cost_uv( + pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth); + palette_mode_cost += + av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP); + total_rate += palette_mode_cost; + } + } + if (av1_is_directional_mode(get_uv_mode(mode))) { + if (av1_use_angle_delta(bsize)) { + total_rate += + x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] + + MAX_ANGLE_DELTA]; + } + } + return total_rate; +} + +static int conditional_skipintra(PREDICTION_MODE mode, + PREDICTION_MODE best_intra_mode) { + if (mode == D113_PRED && best_intra_mode != V_PRED && + best_intra_mode != D135_PRED) + return 1; + if (mode == D67_PRED && best_intra_mode != V_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D203_PRED && best_intra_mode != H_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D157_PRED && best_intra_mode != H_PRED && + best_intra_mode != D135_PRED) + return 1; + return 0; +} + +// Model based RD estimation for luma intra blocks. +static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mode_cost, int mi_row, + int mi_col) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + RD_STATS this_rd_stats; + int row, col; + int64_t temp_sse, this_rd; + TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + const int stepr = tx_size_high_unit[tx_size]; + const int stepc = tx_size_wide_unit[tx_size]; + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + mbmi->tx_size = tx_size; + // Prediction. + for (row = 0; row < max_blocks_high; row += stepr) { + for (col = 0; col < max_blocks_wide; col += stepc) { + av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size); + } + } + // RD estimation. + model_rd_sb_fn[MODELRD_TYPE_INTRA]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &this_rd_stats.rate, + &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse, NULL, NULL, NULL); + if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { + mode_cost += + x->angle_delta_cost[mbmi->mode - V_PRED] + [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]]; + } + if (mbmi->mode == DC_PRED && + av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) { + if (mbmi->filter_intra_mode_info.use_filter_intra) { + const int mode = mbmi->filter_intra_mode_info.filter_intra_mode; + mode_cost += x->filter_intra_cost[mbmi->sb_type][1] + + x->filter_intra_mode_cost[mode]; + } else { + mode_cost += x->filter_intra_cost[mbmi->sb_type][0]; + } + } + this_rd = + RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist); + return this_rd; +} + +// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x +// new_height'. Extra rows and columns are filled in by copying last valid +// row/column. +static void extend_palette_color_map(uint8_t *const color_map, int orig_width, + int orig_height, int new_width, + int new_height) { + int j; + assert(new_width >= orig_width); + assert(new_height >= orig_height); + if (new_width == orig_width && new_height == orig_height) return; + + for (j = orig_height - 1; j >= 0; --j) { + memmove(color_map + j * new_width, color_map + j * orig_width, orig_width); + // Copy last column to extra columns. + memset(color_map + j * new_width + orig_width, + color_map[j * new_width + orig_width - 1], new_width - orig_width); + } + // Copy last row to extra rows. + for (j = orig_height; j < new_height; ++j) { + memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width, + new_width); + } +} + +// Bias toward using colors in the cache. +// TODO(huisu): Try other schemes to improve compression. +static void optimize_palette_colors(uint16_t *color_cache, int n_cache, + int n_colors, int stride, int *centroids) { + if (n_cache <= 0) return; + for (int i = 0; i < n_colors * stride; i += stride) { + int min_diff = abs(centroids[i] - (int)color_cache[0]); + int idx = 0; + for (int j = 1; j < n_cache; ++j) { + const int this_diff = abs(centroids[i] - color_cache[j]); + if (this_diff < min_diff) { + min_diff = this_diff; + idx = j; + } + } + if (min_diff <= 1) centroids[i] = color_cache[idx]; + } +} + +// Given the base colors as specified in centroids[], calculate the RD cost +// of palette mode. +static void palette_rd_y(const AV1_COMP *const cpi, MACROBLOCK *x, + MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mi_row, + int mi_col, int dc_mode_cost, const int *data, + int *centroids, int n, uint16_t *color_cache, + int n_cache, MB_MODE_INFO *best_mbmi, + uint8_t *best_palette_color_map, int64_t *best_rd, + int64_t *best_model_rd, int *rate, int *rate_tokenonly, + int *rate_overhead, int64_t *distortion, + int *skippable, PICK_MODE_CONTEXT *ctx, + uint8_t *blk_skip) { + optimize_palette_colors(color_cache, n_cache, n, 1, centroids); + int k = av1_remove_duplicates(centroids, n); + if (k < PALETTE_MIN_SIZE) { + // Too few unique colors to create a palette. And DC_PRED will work + // well for that case anyway. So skip. + return; + } + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + if (cpi->common.seq_params.use_highbitdepth) + for (int i = 0; i < k; ++i) + pmi->palette_colors[i] = clip_pixel_highbd( + (int)centroids[i], cpi->common.seq_params.bit_depth); + else + for (int i = 0; i < k; ++i) + pmi->palette_colors[i] = clip_pixel(centroids[i]); + pmi->palette_size[0] = k; + MACROBLOCKD *const xd = &x->e_mbd; + uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); + extend_palette_color_map(color_map, cols, rows, block_width, block_height); + const int palette_mode_cost = + intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost); + int64_t this_model_rd = + intra_model_yrd(cpi, x, bsize, palette_mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + return; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + RD_STATS tokenonly_rd_stats; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) return; + int this_rate = tokenonly_rd_stats.rate + palette_mode_cost; + int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { + tokenonly_rd_stats.rate -= + tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + if (this_rd < *best_rd) { + *best_rd = this_rd; + memcpy(best_palette_color_map, color_map, + block_width * block_height * sizeof(color_map[0])); + *best_mbmi = *mbmi; + memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + *rate_overhead = this_rate - tokenonly_rd_stats.rate; + if (rate) *rate = this_rate; + if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate; + if (distortion) *distortion = tokenonly_rd_stats.dist; + if (skippable) *skippable = tokenonly_rd_stats.skip; + } +} + +static int rd_pick_palette_intra_sby( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, int dc_mode_cost, MB_MODE_INFO *best_mbmi, + uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd, + int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, + PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip) { + int rate_overhead = 0; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize)); + const SequenceHeader *const seq_params = &cpi->common.seq_params; + int colors, n; + const int src_stride = x->plane[0].src.stride; + const uint8_t *const src = x->plane[0].src.buf; + uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + + int count_buf[1 << 12]; // Maximum (1 << 12) color levels. + if (seq_params->use_highbitdepth) + colors = av1_count_colors_highbd(src, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + else + colors = av1_count_colors(src, src_stride, rows, cols, count_buf); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + + if (colors > 1 && colors <= 64) { + int r, c, i; + const int max_itr = 50; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[PALETTE_MAX_SIZE]; + int lb, ub, val; + uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + if (seq_params->use_highbitdepth) + lb = ub = src16[0]; + else + lb = ub = src[0]; + + if (seq_params->use_highbitdepth) { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + val = src16[r * src_stride + c]; + data[r * cols + c] = val; + if (val < lb) + lb = val; + else if (val > ub) + ub = val; + } + } + } else { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + val = src[r * src_stride + c]; + data[r * cols + c] = val; + if (val < lb) + lb = val; + else if (val > ub) + ub = val; + } + } + } + + mbmi->mode = DC_PRED; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + + // Find the dominant colors, stored in top_colors[]. + int top_colors[PALETTE_MAX_SIZE] = { 0 }; + for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) { + int max_count = 0; + for (int j = 0; j < (1 << seq_params->bit_depth); ++j) { + if (count_buf[j] > max_count) { + max_count = count_buf[j]; + top_colors[i] = j; + } + } + assert(max_count > 0); + count_buf[top_colors[i]] = 0; + } + + // Try the dominant colors directly. + // TODO(huisu@google.com): Try to avoid duplicate computation in cases + // where the dominant colors and the k-means results are similar. + for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { + for (i = 0; i < n; ++i) centroids[i] = top_colors[i]; + palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, + centroids, n, color_cache, n_cache, best_mbmi, + best_palette_color_map, best_rd, best_model_rd, rate, + rate_tokenonly, &rate_overhead, distortion, skippable, ctx, + best_blk_skip); + } + + // K-means clustering. + for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { + if (colors == PALETTE_MIN_SIZE) { + // Special case: These colors automatically become the centroids. + assert(colors == n); + assert(colors == 2); + centroids[0] = lb; + centroids[1] = ub; + } else { + for (i = 0; i < n; ++i) { + centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; + } + av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); + } + palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, + centroids, n, color_cache, n_cache, best_mbmi, + best_palette_color_map, best_rd, best_model_rd, rate, + rate_tokenonly, &rate_overhead, distortion, skippable, ctx, + best_blk_skip); + } + } + + if (best_mbmi->palette_mode_info.palette_size[0] > 0) { + memcpy(color_map, best_palette_color_map, + block_width * block_height * sizeof(best_palette_color_map[0])); + } + *mbmi = *best_mbmi; + return rate_overhead; +} + +// Return 1 if an filter intra mode is selected; return 0 otherwise. +static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + int mode_cost, int64_t *best_rd, + int64_t *best_model_rd, + PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + int filter_intra_selected_flag = 0; + FILTER_INTRA_MODE mode; + TX_SIZE best_tx_size = TX_8X8; + FILTER_INTRA_MODE_INFO filter_intra_mode_info; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + (void)ctx; + av1_zero(filter_intra_mode_info); + mbmi->filter_intra_mode_info.use_filter_intra = 1; + mbmi->mode = DC_PRED; + mbmi->palette_mode_info.palette_size[0] = 0; + + for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { + int64_t this_rd, this_model_rd; + RD_STATS tokenonly_rd_stats; + mbmi->filter_intra_mode_info.filter_intra_mode = mode; + this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + continue; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) continue; + const int this_rate = + tokenonly_rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < *best_rd) { + *best_rd = this_rd; + best_tx_size = mbmi->tx_size; + filter_intra_mode_info = mbmi->filter_intra_mode_info; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + *rate = this_rate; + *rate_tokenonly = tokenonly_rd_stats.rate; + *distortion = tokenonly_rd_stats.dist; + *skippable = tokenonly_rd_stats.skip; + filter_intra_selected_flag = 1; + } + } + + if (filter_intra_selected_flag) { + mbmi->mode = DC_PRED; + mbmi->tx_size = best_tx_size; + mbmi->filter_intra_mode_info = filter_intra_mode_info; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + return 1; + } else { + return 0; + } +} + +// Run RD calculation with given luma intra prediction angle., and return +// the RD cost. Update the best mode info. if the RD cost is the best so far. +static int64_t calc_rd_given_intra_angle( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, int mode_cost, int64_t best_rd_in, int8_t angle_delta, + int max_angle_delta, int *rate, RD_STATS *rd_stats, int *best_angle_delta, + TX_SIZE *best_tx_size, int64_t *best_rd, int64_t *best_model_rd, + TX_TYPE *best_txk_type, uint8_t *best_blk_skip) { + RD_STATS tokenonly_rd_stats; + int64_t this_rd, this_model_rd; + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + const int n4 = bsize_to_num_blk(bsize); + assert(!is_inter_block(mbmi)); + mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta; + this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + return INT64_MAX; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in); + if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX; + + int this_rate = + mode_cost + tokenonly_rd_stats.rate + + x->angle_delta_cost[mbmi->mode - V_PRED][max_angle_delta + angle_delta]; + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < *best_rd) { + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); + *best_rd = this_rd; + *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y]; + *best_tx_size = mbmi->tx_size; + *rate = this_rate; + rd_stats->rate = tokenonly_rd_stats.rate; + rd_stats->dist = tokenonly_rd_stats.dist; + rd_stats->skip = tokenonly_rd_stats.skip; + } + return this_rd; +} + +// With given luma directional intra prediction mode, pick the best angle delta +// Return the RD cost corresponding to the best angle delta. +static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int mode_cost, int64_t best_rd, + int64_t *best_model_rd) { + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + assert(!is_inter_block(mbmi)); + + int best_angle_delta = 0; + int64_t rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; + TX_SIZE best_tx_size = mbmi->tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + + for (int i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; + + int first_try = 1; + for (int angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (int i = 0; i < 2; ++i) { + const int64_t best_rd_in = + (best_rd == INT64_MAX) ? INT64_MAX + : (best_rd + (best_rd >> (first_try ? 3 : 5))); + const int64_t this_rd = calc_rd_given_intra_angle( + cpi, x, bsize, mi_row, mi_col, mode_cost, best_rd_in, + (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, rd_stats, + &best_angle_delta, &best_tx_size, &best_rd, best_model_rd, + best_txk_type, best_blk_skip); + rd_cost[2 * angle_delta + i] = this_rd; + if (first_try && this_rd == INT64_MAX) return best_rd; + first_try = 0; + if (angle_delta == 0) { + rd_cost[1] = this_rd; + break; + } + } + } + + assert(best_rd != INT64_MAX); + for (int angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (int i = 0; i < 2; ++i) { + int skip_search = 0; + const int64_t rd_thresh = best_rd + (best_rd >> 5); + if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && + rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) + skip_search = 1; + if (!skip_search) { + calc_rd_given_intra_angle(cpi, x, bsize, mi_row, mi_col, mode_cost, + best_rd, (1 - 2 * i) * angle_delta, + MAX_ANGLE_DELTA, rate, rd_stats, + &best_angle_delta, &best_tx_size, &best_rd, + best_model_rd, best_txk_type, best_blk_skip); + } + } + } + + if (rd_stats->rate != INT_MAX) { + mbmi->tx_size = best_tx_size; + mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); + } + return best_rd; +} + +// Indices are sign, integer, and fractional part of the gradient value +static const uint8_t gradient_to_angle_bin[2][7][16] = { + { + { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + }, + { + { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, + { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + }, +}; + +/* clang-format off */ +static const uint8_t mode_to_angle_bin[INTRA_MODES] = { + 0, 2, 6, 0, 4, 3, 5, 7, 1, 0, + 0, +}; +/* clang-format on */ + +static void angle_estimation(const uint8_t *src, int src_stride, int rows, + int cols, BLOCK_SIZE bsize, + uint8_t *directional_mode_skip_mask) { + memset(directional_mode_skip_mask, 0, + INTRA_MODES * sizeof(*directional_mode_skip_mask)); + // Check if angle_delta is used + if (!av1_use_angle_delta(bsize)) return; + uint64_t hist[DIRECTIONAL_MODES]; + memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); + src += src_stride; + int r, c, dx, dy; + for (r = 1; r < rows; ++r) { + for (c = 1; c < cols; ++c) { + dx = src[c] - src[c - 1]; + dy = src[c] - src[c - src_stride]; + int index; + const int temp = dx * dx + dy * dy; + if (dy == 0) { + index = 2; + } else { + const int sn = (dx > 0) ^ (dy > 0); + dx = abs(dx); + dy = abs(dy); + const int remd = (dx % dy) * 16 / dy; + const int quot = dx / dy; + index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; + } + hist[index] += temp; + } + src += src_stride; + } + + int i; + uint64_t hist_sum = 0; + for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; + for (i = 0; i < INTRA_MODES; ++i) { + if (av1_is_directional_mode(i)) { + const uint8_t angle_bin = mode_to_angle_bin[i]; + uint64_t score = 2 * hist[angle_bin]; + int weight = 2; + if (angle_bin > 0) { + score += hist[angle_bin - 1]; + ++weight; + } + if (angle_bin < DIRECTIONAL_MODES - 1) { + score += hist[angle_bin + 1]; + ++weight; + } + if (score * ANGLE_SKIP_THRESH < hist_sum * weight) + directional_mode_skip_mask[i] = 1; + } + } +} + +static void highbd_angle_estimation(const uint8_t *src8, int src_stride, + int rows, int cols, BLOCK_SIZE bsize, + uint8_t *directional_mode_skip_mask) { + memset(directional_mode_skip_mask, 0, + INTRA_MODES * sizeof(*directional_mode_skip_mask)); + // Check if angle_delta is used + if (!av1_use_angle_delta(bsize)) return; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint64_t hist[DIRECTIONAL_MODES]; + memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); + src += src_stride; + int r, c, dx, dy; + for (r = 1; r < rows; ++r) { + for (c = 1; c < cols; ++c) { + dx = src[c] - src[c - 1]; + dy = src[c] - src[c - src_stride]; + int index; + const int temp = dx * dx + dy * dy; + if (dy == 0) { + index = 2; + } else { + const int sn = (dx > 0) ^ (dy > 0); + dx = abs(dx); + dy = abs(dy); + const int remd = (dx % dy) * 16 / dy; + const int quot = dx / dy; + index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; + } + hist[index] += temp; + } + src += src_stride; + } + + int i; + uint64_t hist_sum = 0; + for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; + for (i = 0; i < INTRA_MODES; ++i) { + if (av1_is_directional_mode(i)) { + const uint8_t angle_bin = mode_to_angle_bin[i]; + uint64_t score = 2 * hist[angle_bin]; + int weight = 2; + if (angle_bin > 0) { + score += hist[angle_bin - 1]; + ++weight; + } + if (angle_bin < DIRECTIONAL_MODES - 1) { + score += hist[angle_bin + 1]; + ++weight; + } + if (score * ANGLE_SKIP_THRESH < hist_sum * weight) + directional_mode_skip_mask[i] = 1; + } + } +} + +// Given selected prediction mode, search for the best tx type and size. +static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, const int *bmode_costs, + int64_t *best_rd, int *rate, int *rate_tokenonly, + int64_t *distortion, int *skippable, + MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + RD_STATS rd_stats; + super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd); + if (rd_stats.rate == INT_MAX) return; + int this_rate_tokenonly = rd_stats.rate; + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + const int this_rate = + rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); + const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); + if (this_rd < *best_rd) { + *best_mbmi = *mbmi; + *best_rd = this_rd; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = rd_stats.dist; + *skippable = rd_stats.skip; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } +} + +// This function is used only for intra_only frames +static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + int64_t best_rd, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + int64_t best_model_rd = INT64_MAX; + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + int is_directional_mode; + uint8_t directional_mode_skip_mask[INTRA_MODES]; + const int src_stride = x->plane[0].src.stride; + const uint8_t *src = x->plane[0].src.buf; + int beat_best_rd = 0; + const int *bmode_costs; + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + uint8_t *best_palette_color_map = + try_palette ? x->palette_buffer->best_palette_color_map : NULL; + const MB_MODE_INFO *above_mi = xd->above_mbmi; + const MB_MODE_INFO *left_mi = xd->left_mbmi; + const PREDICTION_MODE A = av1_above_block_mode(above_mi); + const PREDICTION_MODE L = av1_left_block_mode(left_mi); + const int above_ctx = intra_mode_context[A]; + const int left_ctx = intra_mode_context[L]; + bmode_costs = x->y_mode_costs[above_ctx][left_ctx]; + + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + highbd_angle_estimation(src, src_stride, rows, cols, bsize, + directional_mode_skip_mask); + else + angle_estimation(src, src_stride, rows, cols, bsize, + directional_mode_skip_mask); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + pmi->palette_size[0] = 0; + + if (cpi->sf.tx_type_search.fast_intra_tx_type_search) + x->use_default_intra_tx_type = 1; + else + x->use_default_intra_tx_type = 0; + + MB_MODE_INFO best_mbmi = *mbmi; + /* Y Search for intra prediction mode */ + for (int mode_idx = INTRA_MODE_START; mode_idx < INTRA_MODE_END; ++mode_idx) { + RD_STATS this_rd_stats; + int this_rate, this_rate_tokenonly, s; + int64_t this_distortion, this_rd, this_model_rd; + mbmi->mode = intra_rd_search_mode_order[mode_idx]; + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + this_model_rd = + intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode], mi_row, mi_col); + if (best_model_rd != INT64_MAX && + this_model_rd > best_model_rd + (best_model_rd >> 1)) + continue; + if (this_model_rd < best_model_rd) best_model_rd = this_model_rd; + is_directional_mode = av1_is_directional_mode(mbmi->mode); + if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; + if (is_directional_mode && av1_use_angle_delta(bsize)) { + this_rd_stats.rate = INT_MAX; + rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &this_rate, + &this_rd_stats, bsize, bmode_costs[mbmi->mode], + best_rd, &best_model_rd); + } else { + super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); + } + this_rate_tokenonly = this_rd_stats.rate; + this_distortion = this_rd_stats.dist; + s = this_rd_stats.skip; + + if (this_rate_tokenonly == INT_MAX) continue; + + if (!xd->lossless[mbmi->segment_id] && + block_signals_txsize(mbmi->sb_type)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + this_rate_tokenonly -= + tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + this_rate = + this_rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); + this_rd = RDCOST(x->rdmult, this_rate, this_distortion); + if (this_rd < best_rd) { + best_mbmi = *mbmi; + best_rd = this_rd; + beat_best_rd = 1; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = this_distortion; + *skippable = s; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + if (try_palette) { + rd_pick_palette_intra_sby( + cpi, x, bsize, mi_row, mi_col, bmode_costs[DC_PRED], &best_mbmi, + best_palette_color_map, &best_rd, &best_model_rd, rate, rate_tokenonly, + distortion, skippable, ctx, ctx->blk_skip); + } + + if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { + if (rd_pick_filter_intra_sby( + cpi, x, mi_row, mi_col, rate, rate_tokenonly, distortion, skippable, + bsize, bmode_costs[DC_PRED], &best_rd, &best_model_rd, ctx)) { + best_mbmi = *mbmi; + } + } + + // If previous searches use only the default tx type, do an extra search for + // the best tx type. + if (x->use_default_intra_tx_type) { + *mbmi = best_mbmi; + x->use_default_intra_tx_type = 0; + intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly, + distortion, skippable, &best_mbmi, ctx); + } + + *mbmi = best_mbmi; + return best_rd; +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; + const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + int plane; + int is_cost_valid = 1; + av1_init_rd_stats(rd_stats); + + if (ref_best_rd < 0) is_cost_valid = 0; + + if (x->skip_chroma_rd) return is_cost_valid; + + bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + + if (is_inter_block(mbmi) && is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) + av1_subtract_plane(x, bsize, plane); + } + + if (is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) { + RD_STATS pn_rd_stats; + txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize, + uv_tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (pn_rd_stats.rate == INT_MAX) { + is_cost_valid = 0; + break; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) > ref_best_rd && + RDCOST(x->rdmult, 0, rd_stats->sse) > ref_best_rd) { + is_cost_valid = 0; + break; + } + } + } + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + + return is_cost_valid; +} + +static void tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, + int blk_row, int blk_col, int plane, int block, + int plane_bsize, TXB_CTX *txb_ctx, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode, int64_t ref_rdcost, + TXB_RD_INFO *rd_info_array) { + const struct macroblock_plane *const p = &x->plane[plane]; + const uint16_t cur_joint_ctx = + (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + // Look up RD and terminate early in case when we've already processed exactly + // the same residual with exactly the same entropy context. + if (rd_info_array != NULL && rd_info_array->valid && + rd_info_array->entropy_context == cur_joint_ctx) { + if (plane == 0) + x->e_mbd.mi[0]->txk_type[txk_type_idx] = rd_info_array->tx_type; + const TX_TYPE ref_tx_type = + av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, + tx_size, cpi->common.reduced_tx_set_used); + if (ref_tx_type == rd_info_array->tx_type) { + rd_stats->rate += rd_info_array->rate; + rd_stats->dist += rd_info_array->dist; + rd_stats->sse += rd_info_array->sse; + rd_stats->skip &= rd_info_array->eob == 0; + p->eobs[block] = rd_info_array->eob; + p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx; + return; + } + } + + RD_STATS this_rd_stats; + search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + txb_ctx, ftxs_mode, 0, ref_rdcost, &this_rd_stats); + + av1_merge_rd_stats(rd_stats, &this_rd_stats); + + // Save RD results for possible reuse in future. + if (rd_info_array != NULL) { + rd_info_array->valid = 1; + rd_info_array->entropy_context = cur_joint_ctx; + rd_info_array->rate = this_rd_stats.rate; + rd_info_array->dist = this_rd_stats.dist; + rd_info_array->sse = this_rd_stats.sse; + rd_info_array->eob = p->eobs[block]; + rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block]; + if (plane == 0) { + rd_info_array->tx_type = x->e_mbd.mi[0]->txk_type[txk_type_idx]; + } + } +} + +static void get_mean_and_dev(const int16_t *data, int stride, int bw, int bh, + float *mean, float *dev) { + int x_sum = 0; + uint64_t x2_sum = 0; + for (int i = 0; i < bh; ++i) { + for (int j = 0; j < bw; ++j) { + const int val = data[j]; + x_sum += val; + x2_sum += val * val; + } + data += stride; + } + + const int num = bw * bh; + const float e_x = (float)x_sum / num; + const float e_x2 = (float)((double)x2_sum / num); + const float diff = e_x2 - e_x * e_x; + *dev = (diff > 0) ? sqrtf(diff) : 0; + *mean = e_x; +} + +static void get_mean_and_dev_float(const float *data, int stride, int bw, + int bh, float *mean, float *dev) { + float x_sum = 0; + float x2_sum = 0; + for (int i = 0; i < bh; ++i) { + for (int j = 0; j < bw; ++j) { + const float val = data[j]; + x_sum += val; + x2_sum += val * val; + } + data += stride; + } + + const int num = bw * bh; + const float e_x = x_sum / num; + const float e_x2 = x2_sum / num; + const float diff = e_x2 - e_x * e_x; + *dev = (diff > 0) ? sqrtf(diff) : 0; + *mean = e_x; +} + +// Feature used by the model to predict tx split: the mean and standard +// deviation values of the block and sub-blocks. +static void get_mean_dev_features(const int16_t *data, int stride, int bw, + int bh, int levels, float *feature) { + int feature_idx = 0; + int width = bw; + int height = bh; + const int16_t *const data_ptr = &data[0]; + for (int lv = 0; lv < levels; ++lv) { + if (width < 2 || height < 2) break; + float mean_buf[16]; + float dev_buf[16]; + int blk_idx = 0; + for (int row = 0; row < bh; row += height) { + for (int col = 0; col < bw; col += width) { + float mean, dev; + get_mean_and_dev(data_ptr + row * stride + col, stride, width, height, + &mean, &dev); + feature[feature_idx++] = mean; + feature[feature_idx++] = dev; + mean_buf[blk_idx] = mean; + dev_buf[blk_idx++] = dev; + } + } + if (blk_idx > 1) { + float mean, dev; + // Deviation of means. + get_mean_and_dev_float(mean_buf, 1, 1, blk_idx, &mean, &dev); + feature[feature_idx++] = dev; + // Mean of deviations. + get_mean_and_dev_float(dev_buf, 1, 1, blk_idx, &mean, &dev); + feature[feature_idx++] = mean; + } + // Reduce the block size when proceeding to the next level. + if (height == width) { + height = height >> 1; + width = width >> 1; + } else if (height > width) { + height = height >> 1; + } else { + width = width >> 1; + } + } +} + +static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row, + int blk_col, TX_SIZE tx_size) { + const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size]; + if (!nn_config) return -1; + + const int diff_stride = block_size_wide[bsize]; + const int16_t *diff = + x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; + const int bw = tx_size_wide[tx_size]; + const int bh = tx_size_high[tx_size]; + aom_clear_system_state(); + + float features[64] = { 0.0f }; + get_mean_dev_features(diff, diff_stride, bw, bh, 2, features); + + float score = 0.0f; + av1_nn_predict(features, nn_config, &score); + if (score > 8.0f) return 100; + if (score < -8.0f) return 0; + score = 1.0f / (1.0f + (float)exp(-score)); + return (int)(score * 100); +} + +typedef struct { + int64_t rd; + int txb_entropy_ctx; + TX_TYPE tx_type; +} TxCandidateInfo; + +static void try_tx_block_no_split( + const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, + TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, + const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl, + int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, + TxCandidateInfo *no_split) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblock_plane *const p = &x->plane[0]; + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + + no_split->rd = INT64_MAX; + no_split->txb_entropy_ctx = 0; + no_split->tx_type = TX_TYPES; + + const ENTROPY_CONTEXT *const pta = ta + blk_col; + const ENTROPY_CONTEXT *const ptl = tl + blk_row; + + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx); + const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + + rd_stats->ref_rdcost = ref_best_rd; + rd_stats->zero_rate = zero_blk_rate; + const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); + mbmi->inter_tx_size[index] = tx_size; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, + rd_info_node != NULL ? rd_info_node->rd_info_array : NULL); + assert(rd_stats->rate < INT_MAX); + + if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) && + !xd->lossless[mbmi->segment_id]) { +#if CONFIG_RD_DEBUG + av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col, + zero_blk_rate - rd_stats->rate); +#endif // CONFIG_RD_DEBUG + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + set_blk_skip(x, 0, blk_row * bw + blk_col, 1); + p->eobs[block] = 0; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } else { + set_blk_skip(x, 0, blk_row * bw + blk_col, 0); + rd_stats->skip = 0; + } + + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[txfm_partition_ctx][0]; + + no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + no_split->txb_entropy_ctx = p->txb_entropy_ctx[block]; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + no_split->tx_type = mbmi->txk_type[txk_type_idx]; +} + +static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, int depth, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, + TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, + int64_t ref_best_rd, int *is_cost_valid, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_node); + +static void try_tx_block_split( + const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, + TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, + int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, + RD_STATS *split_rd_stats, int64_t *split_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int sub_step = bsw * bsh; + RD_STATS this_rd_stats; + int this_cost_valid = 1; + int64_t tmp_rd = 0; + + split_rd_stats->rate = x->txfm_partition_cost[txfm_partition_ctx][1]; + + assert(tx_size < TX_SIZES_ALL); + + int blk_idx = 0; + for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { + for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) { + const int offsetr = blk_row + r; + const int offsetc = blk_col + c; + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + assert(blk_idx < 4); + select_tx_block( + cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta, + tl, tx_above, tx_left, &this_rd_stats, ref_best_rd - tmp_rd, + &this_cost_valid, ftxs_mode, + (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL); + + if (!this_cost_valid) goto LOOP_EXIT; + + av1_merge_rd_stats(split_rd_stats, &this_rd_stats); + + tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist); + + if (no_split_rd < tmp_rd) { + this_cost_valid = 0; + goto LOOP_EXIT; + } + block += sub_step; + } + } + +LOOP_EXIT : {} + + if (this_cost_valid) *split_rd = tmp_rd; +} + +// Search for the best tx partition/type for a given luma block. +static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, int depth, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, + TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, + int64_t ref_best_rd, int *is_cost_valid, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_node) { + assert(tx_size < TX_SIZES_ALL); + av1_init_rd_stats(rd_stats); + if (ref_best_rd < 0) { + *is_cost_valid = 0; + return; + } + + MACROBLOCKD *const xd = &x->e_mbd; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, + mbmi->sb_type, tx_size); + struct macroblock_plane *const p = &x->plane[0]; + + const int try_no_split = 1; + int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH; +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) + try_split &= tx_size_wide[tx_size] >= 16 && tx_size_high[tx_size] >= 16; +#endif + TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES }; + + // TX no split + if (try_no_split) { + try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth, + plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd, + ftxs_mode, rd_info_node, &no_split); + + if (cpi->sf.adaptive_txb_search_level && + (no_split.rd - + (no_split.rd >> (1 + cpi->sf.adaptive_txb_search_level))) > + ref_best_rd) { + *is_cost_valid = 0; + return; + } + + if (cpi->sf.txb_split_cap) { + if (p->eobs[block] == 0) try_split = 0; + } + } + + if (x->e_mbd.bd == 8 && !x->cb_partition_scan && try_split) { + const int threshold = cpi->sf.tx_type_search.ml_tx_split_thresh; + if (threshold >= 0) { + const int split_score = + ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size); + if (split_score >= 0 && split_score < threshold) try_split = 0; + } + } + + // TX split + int64_t split_rd = INT64_MAX; + RD_STATS split_rd_stats; + av1_init_rd_stats(&split_rd_stats); + if (try_split) { + try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth, + plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd, + AOMMIN(no_split.rd, ref_best_rd), ftxs_mode, + rd_info_node, &split_rd_stats, &split_rd); + } + + if (no_split.rd < split_rd) { + ENTROPY_CONTEXT *pta = ta + blk_col; + ENTROPY_CONTEXT *ptl = tl + blk_row; + const TX_SIZE tx_size_selected = tx_size; + p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx; + av1_set_txb_context(x, 0, block, tx_size_selected, pta, ptl); + txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, + tx_size); + for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { + for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { + const int index = + av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); + mbmi->inter_tx_size[index] = tx_size_selected; + } + } + mbmi->tx_size = tx_size_selected; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + no_split.tx_type); + set_blk_skip(x, 0, blk_row * bw + blk_col, rd_stats->skip); + } else { + *rd_stats = split_rd_stats; + if (split_rd == INT64_MAX) *is_cost_valid = 0; + } +} + +static void select_inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_tree) { + MACROBLOCKD *const xd = &x->e_mbd; + int is_cost_valid = 1; + int64_t this_rd = 0, skip_rd = 0; + + if (ref_best_rd < 0) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (is_cost_valid) { + const struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int mi_width = mi_size_wide[plane_bsize]; + const int mi_height = mi_size_high[plane_bsize]; + const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; + ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; + + RD_STATS pn_rd_stats; + const int init_depth = + get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); + av1_init_rd_stats(&pn_rd_stats); + + av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); + memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); + memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); + const int skip_ctx = av1_get_skip_context(xd); + const int s0 = x->skip_cost[skip_ctx][0]; + const int s1 = x->skip_cost[skip_ctx][1]; + + skip_rd = RDCOST(x->rdmult, s1, 0); + this_rd = RDCOST(x->rdmult, s0, 0); + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + int64_t best_rd_sofar = (ref_best_rd - (AOMMIN(skip_rd, this_rd))); + select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, + plane_bsize, ctxa, ctxl, tx_above, tx_left, + &pn_rd_stats, best_rd_sofar, &is_cost_valid, ftxs_mode, + rd_info_tree); + if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); + this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + block += step; + if (rd_info_tree != NULL) rd_info_tree += 1; + } + } + if (skip_rd <= this_rd) { + rd_stats->rate = 0; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + } else { + rd_stats->skip = 0; + } + } + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } +} + +static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, + TXB_RD_INFO_NODE *rd_info_tree) { + const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + const int skip_ctx = av1_get_skip_context(xd); + int s0 = x->skip_cost[skip_ctx][0]; + int s1 = x->skip_cost[skip_ctx][1]; + int64_t rd; + + // TODO(debargha): enable this as a speed feature where the + // select_inter_block_yrd() function above will use a simplified search + // such as not using full optimize, but the inter_block_yrd() function + // will use more complex search given that the transform partitions have + // already been decided. + + int64_t rd_thresh = ref_best_rd; + if (fast_tx_search && rd_thresh < INT64_MAX) { + if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); + } + assert(rd_thresh > 0); + + FAST_TX_SEARCH_MODE ftxs_mode = + fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE; + select_inter_block_yrd(cpi, x, rd_stats, bsize, rd_thresh, ftxs_mode, + rd_info_tree); + if (rd_stats->rate == INT_MAX) return INT64_MAX; + + // If fast_tx_search is true, only DCT and 1D DCT were tested in + // select_inter_block_yrd() above. Do a better search for tx type with + // tx sizes already decided. + if (fast_tx_search) { + if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE)) + return INT64_MAX; + } + + if (rd_stats->skip) + rd = RDCOST(x->rdmult, s1, rd_stats->sse); + else + rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + + if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip)) + rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); + + return rd; +} + +// Finds rd cost for a y block, given the transform size partitions +static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, + BLOCK_SIZE plane_bsize, int depth, + ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, + TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, + int64_t ref_best_rd, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + + assert(tx_size < TX_SIZES_ALL); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( + plane_bsize, blk_row, blk_col)]; + + int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, + mbmi->sb_type, tx_size); + + av1_init_rd_stats(rd_stats); + if (tx_size == plane_tx_size) { + ENTROPY_CONTEXT *ta = above_ctx + blk_col; + ENTROPY_CONTEXT *tl = left_ctx + blk_row; + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx); + + const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(0)] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + rd_stats->zero_rate = zero_blk_rate; + rd_stats->ref_rdcost = ref_best_rd; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, NULL); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) { + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + set_blk_skip(x, 0, blk_row * mi_width + blk_col, 1); + x->plane[0].eobs[block] = 0; + x->plane[0].txb_entropy_ctx[block] = 0; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } else { + rd_stats->skip = 0; + set_blk_skip(x, 0, blk_row * mi_width + blk_col, 0); + } + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[ctx][0]; + av1_set_txb_context(x, 0, block, tx_size, ta, tl); + txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, + tx_size); + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsh * bsw; + RD_STATS pn_rd_stats; + int64_t this_rd = 0; + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + + av1_init_rd_stats(&pn_rd_stats); + tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize, + depth + 1, above_ctx, left_ctx, tx_above, tx_left, + ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); + block += step; + } + } + + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[ctx][1]; + } +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + int is_cost_valid = 1; + int64_t this_rd = 0; + + if (ref_best_rd < 0) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (is_cost_valid) { + const struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int mi_width = mi_size_wide[plane_bsize]; + const int mi_height = mi_size_high[plane_bsize]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + const int init_depth = + get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; + ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; + RD_STATS pn_rd_stats; + + av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); + memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); + memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); + + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + av1_init_rd_stats(&pn_rd_stats); + tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, plane_bsize, + init_depth, ctxa, ctxl, tx_above, tx_left, + ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd += + AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), + RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); + block += step; + } + } + } + + const int skip_ctx = av1_get_skip_context(xd); + const int s0 = x->skip_cost[skip_ctx][0]; + const int s1 = x->skip_cost[skip_ctx][1]; + int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); + this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + if (skip_rd < this_rd) { + this_rd = skip_rd; + rd_stats->rate = 0; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + } + if (this_rd > ref_best_rd) is_cost_valid = 0; + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + return is_cost_valid; +} + +static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + const int16_t *diff = x->plane[0].src_diff; + const uint32_t hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, + (uint8_t *)diff, 2 * rows * cols); + return (hash << 5) + bsize; +} + +static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x, + const RD_STATS *const rd_stats, + MB_RD_RECORD *tx_rd_record) { + int index; + if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) { + index = + (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN; + ++tx_rd_record->num; + } else { + index = tx_rd_record->index_start; + tx_rd_record->index_start = + (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; + } + MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index]; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + tx_rd_info->hash_value = hash; + tx_rd_info->tx_size = mbmi->tx_size; + memcpy(tx_rd_info->blk_skip, x->blk_skip, + sizeof(tx_rd_info->blk_skip[0]) * n4); + av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size); + av1_copy(tx_rd_info->txk_type, mbmi->txk_type); + tx_rd_info->rd_stats = *rd_stats; +} + +static void fetch_tx_rd_info(int n4, const MB_RD_INFO *const tx_rd_info, + RD_STATS *const rd_stats, MACROBLOCK *const x) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + mbmi->tx_size = tx_rd_info->tx_size; + memcpy(x->blk_skip, tx_rd_info->blk_skip, + sizeof(tx_rd_info->blk_skip[0]) * n4); + av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size); + av1_copy(mbmi->txk_type, tx_rd_info->txk_type); + *rd_stats = tx_rd_info->rd_stats; +} + +static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, + const uint32_t hash) { + // Linear search through the circular buffer to find matching hash. + for (int i = cur_record->index_start - 1; i >= 0; i--) { + if (cur_record->hash_vals[i] == hash) return i; + } + for (int i = cur_record->num - 1; i >= cur_record->index_start; i--) { + if (cur_record->hash_vals[i] == hash) return i; + } + int index; + // If not found - add new RD info into the buffer and return its index + if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) { + index = (cur_record->index_start + cur_record->num) % + TX_SIZE_RD_RECORD_BUFFER_LEN; + cur_record->num++; + } else { + index = cur_record->index_start; + cur_record->index_start = + (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN; + } + + cur_record->hash_vals[index] = hash; + av1_zero(cur_record->tx_rd_info[index]); + return index; +} + +typedef struct { + int leaf; + int8_t children[4]; +} RD_RECORD_IDX_NODE; + +static const RD_RECORD_IDX_NODE rd_record_tree_8x8[] = { + { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_8x16[] = { + { 0, { 1, 2, -1, -1 } }, + { 1, { 0, 0, 0, 0 } }, + { 1, { 0, 0, 0, 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_16x8[] = { + { 0, { 1, 2, -1, -1 } }, + { 1, { 0 } }, + { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_16x16[] = { + { 0, { 1, 2, 3, 4 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_1_2[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, 5, 6 } }, + { 0, { 7, 8, 9, 10 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_2_1[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, 7, 8 } }, + { 0, { 5, 6, 9, 10 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_sqr[] = { + { 0, { 1, 2, 3, 4 } }, { 0, { 5, 6, 9, 10 } }, { 0, { 7, 8, 11, 12 } }, + { 0, { 13, 14, 17, 18 } }, { 0, { 15, 16, 19, 20 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_64x128[] = { + { 0, { 2, 3, 4, 5 } }, { 0, { 6, 7, 8, 9 } }, + { 0, { 10, 11, 14, 15 } }, { 0, { 12, 13, 16, 17 } }, + { 0, { 18, 19, 22, 23 } }, { 0, { 20, 21, 24, 25 } }, + { 0, { 26, 27, 30, 31 } }, { 0, { 28, 29, 32, 33 } }, + { 0, { 34, 35, 38, 39 } }, { 0, { 36, 37, 40, 41 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_128x64[] = { + { 0, { 2, 3, 6, 7 } }, { 0, { 4, 5, 8, 9 } }, + { 0, { 10, 11, 18, 19 } }, { 0, { 12, 13, 20, 21 } }, + { 0, { 14, 15, 22, 23 } }, { 0, { 16, 17, 24, 25 } }, + { 0, { 26, 27, 34, 35 } }, { 0, { 28, 29, 36, 37 } }, + { 0, { 30, 31, 38, 39 } }, { 0, { 32, 33, 40, 41 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_128x128[] = { + { 0, { 4, 5, 8, 9 } }, { 0, { 6, 7, 10, 11 } }, + { 0, { 12, 13, 16, 17 } }, { 0, { 14, 15, 18, 19 } }, + { 0, { 20, 21, 28, 29 } }, { 0, { 22, 23, 30, 31 } }, + { 0, { 24, 25, 32, 33 } }, { 0, { 26, 27, 34, 35 } }, + { 0, { 36, 37, 44, 45 } }, { 0, { 38, 39, 46, 47 } }, + { 0, { 40, 41, 48, 49 } }, { 0, { 42, 43, 50, 51 } }, + { 0, { 52, 53, 60, 61 } }, { 0, { 54, 55, 62, 63 } }, + { 0, { 56, 57, 64, 65 } }, { 0, { 58, 59, 66, 67 } }, + { 0, { 68, 69, 76, 77 } }, { 0, { 70, 71, 78, 79 } }, + { 0, { 72, 73, 80, 81 } }, { 0, { 74, 75, 82, 83 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_1_4[] = { + { 0, { 1, -1, 2, -1 } }, + { 0, { 3, 4, -1, -1 } }, + { 0, { 5, 6, -1, -1 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_4_1[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, -1, -1 } }, + { 0, { 5, 6, -1, -1 } }, +}; + +static const RD_RECORD_IDX_NODE *rd_record_tree[BLOCK_SIZES_ALL] = { + NULL, // BLOCK_4X4 + NULL, // BLOCK_4X8 + NULL, // BLOCK_8X4 + rd_record_tree_8x8, // BLOCK_8X8 + rd_record_tree_8x16, // BLOCK_8X16 + rd_record_tree_16x8, // BLOCK_16X8 + rd_record_tree_16x16, // BLOCK_16X16 + rd_record_tree_1_2, // BLOCK_16X32 + rd_record_tree_2_1, // BLOCK_32X16 + rd_record_tree_sqr, // BLOCK_32X32 + rd_record_tree_1_2, // BLOCK_32X64 + rd_record_tree_2_1, // BLOCK_64X32 + rd_record_tree_sqr, // BLOCK_64X64 + rd_record_tree_64x128, // BLOCK_64X128 + rd_record_tree_128x64, // BLOCK_128X64 + rd_record_tree_128x128, // BLOCK_128X128 + NULL, // BLOCK_4X16 + NULL, // BLOCK_16X4 + rd_record_tree_1_4, // BLOCK_8X32 + rd_record_tree_4_1, // BLOCK_32X8 + rd_record_tree_1_4, // BLOCK_16X64 + rd_record_tree_4_1, // BLOCK_64X16 +}; + +static const int rd_record_tree_size[BLOCK_SIZES_ALL] = { + 0, // BLOCK_4X4 + 0, // BLOCK_4X8 + 0, // BLOCK_8X4 + sizeof(rd_record_tree_8x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X8 + sizeof(rd_record_tree_8x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X16 + sizeof(rd_record_tree_16x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X8 + sizeof(rd_record_tree_16x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X16 + sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X32 + sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X16 + sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X32 + sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X64 + sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X32 + sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X64 + sizeof(rd_record_tree_64x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X128 + sizeof(rd_record_tree_128x64) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X64 + sizeof(rd_record_tree_128x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X128 + 0, // BLOCK_4X16 + 0, // BLOCK_16X4 + sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X32 + sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X8 + sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X64 + sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X16 +}; + +static INLINE void init_rd_record_tree(TXB_RD_INFO_NODE *tree, + BLOCK_SIZE bsize) { + const RD_RECORD_IDX_NODE *rd_record = rd_record_tree[bsize]; + const int size = rd_record_tree_size[bsize]; + for (int i = 0; i < size; ++i) { + if (rd_record[i].leaf) { + av1_zero(tree[i].children); + } else { + for (int j = 0; j < 4; ++j) { + const int8_t idx = rd_record[i].children[j]; + tree[i].children[j] = idx > 0 ? &tree[idx] : NULL; + } + } + } +} + +// Go through all TX blocks that could be used in TX size search, compute +// residual hash values for them and find matching RD info that stores previous +// RD search results for these TX blocks. The idea is to prevent repeated +// rate/distortion computations that happen because of the combination of +// partition and TX size search. The resulting RD info records are returned in +// the form of a quadtree for easier access in actual TX size search. +static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, TXB_RD_INFO_NODE *dst_rd_info) { + TXB_RD_RECORD *rd_records_table[4] = { x->txb_rd_record_8X8, + x->txb_rd_record_16X16, + x->txb_rd_record_32X32, + x->txb_rd_record_64X64 }; + const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + + // Hashing is performed only for square TX sizes larger than TX_4X4 + if (max_square_tx_size < TX_8X8) return 0; + const int diff_stride = bw; + const struct macroblock_plane *const p = &x->plane[0]; + const int16_t *diff = &p->src_diff[0]; + init_rd_record_tree(dst_rd_info, bsize); + // Coordinates of the top-left corner of current block within the superblock + // measured in pixels: + const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2; + const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2; + int cur_rd_info_idx = 0; + int cur_tx_depth = 0; + TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize]; + while (cur_tx_depth <= MAX_VARTX_DEPTH) { + const int cur_tx_bw = tx_size_wide[cur_tx_size]; + const int cur_tx_bh = tx_size_high[cur_tx_size]; + if (cur_tx_bw < 8 || cur_tx_bh < 8) break; + const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size]; + const int tx_size_idx = cur_tx_size - TX_8X8; + for (int row = 0; row < bh; row += cur_tx_bh) { + for (int col = 0; col < bw; col += cur_tx_bw) { + if (cur_tx_bw != cur_tx_bh) { + // Use dummy nodes for all rectangular transforms within the + // TX size search tree. + dst_rd_info[cur_rd_info_idx].rd_info_array = NULL; + } else { + // Get spatial location of this TX block within the superblock + // (measured in cur_tx_bsize units). + const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh; + const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw; + + int16_t hash_data[MAX_SB_SQUARE]; + int16_t *cur_hash_row = hash_data; + const int16_t *cur_diff_row = diff + row * diff_stride + col; + for (int i = 0; i < cur_tx_bh; i++) { + memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw); + cur_hash_row += cur_tx_bw; + cur_diff_row += diff_stride; + } + const int hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, + (uint8_t *)hash_data, + 2 * cur_tx_bw * cur_tx_bh); + // Find corresponding RD info based on the hash value. + const int record_idx = + row_in_sb * (MAX_MIB_SIZE >> (tx_size_idx + 1)) + col_in_sb; + TXB_RD_RECORD *records = &rd_records_table[tx_size_idx][record_idx]; + int idx = find_tx_size_rd_info(records, hash); + dst_rd_info[cur_rd_info_idx].rd_info_array = + &records->tx_rd_info[idx]; + } + ++cur_rd_info_idx; + } + } + cur_tx_size = next_tx_size; + ++cur_tx_depth; + } + return 1; +} + +// origin_threshold * 128 / 100 +static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { + { + 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68, + 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68, + }, + { + 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68, + 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68, + }, + { + 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74, + 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74, + }, +}; + +// lookup table for predict_skip_flag +// int max_tx_size = max_txsize_rect_lookup[bsize]; +// if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) +// max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); +static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = { + TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8, + TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, + TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4, + TX_8X8, TX_8X8, TX_16X16, TX_16X16, +}; + +// Uses simple features on top of DCT coefficients to quickly predict +// whether optimal RD decision is to skip encoding the residual. +// The sse value is stored in dist. +static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, + int reduced_tx_set) { + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const MACROBLOCKD *xd = &x->e_mbd; + const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd); + + *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize); + const int64_t mse = *dist / bw / bh; + // Normalized quantizer takes the transform upscaling factor (8 for tx size + // smaller than 32) into account. + const int16_t normalized_dc_q = dc_q >> 3; + const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; + // Predict not to skip when mse is larger than threshold. + if (mse > mse_thresh) return 0; + + const int max_tx_size = max_predict_sf_tx_size[bsize]; + const int tx_h = tx_size_high[max_tx_size]; + const int tx_w = tx_size_wide[max_tx_size]; + DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]); + TxfmParam param; + param.tx_type = DCT_DCT; + param.tx_size = max_tx_size; + param.bd = xd->bd; + param.is_hbd = get_bitdepth_data_path_index(xd); + param.lossless = 0; + param.tx_set_type = av1_get_ext_tx_set_type( + param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set); + const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); + const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; + const int16_t *src_diff = x->plane[0].src_diff; + const int n_coeff = tx_w * tx_h; + const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); + const uint32_t dc_thresh = max_qcoef_thresh * dc_q; + const uint32_t ac_thresh = max_qcoef_thresh * ac_q; + for (int row = 0; row < bh; row += tx_h) { + for (int col = 0; col < bw; col += tx_w) { + av1_fwd_txfm(src_diff + col, coefs, bw, ¶m); + // Operating on TX domain, not pixels; we want the QTX quantizers + const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7); + if (dc_coef >= dc_thresh) return 0; + for (int i = 1; i < n_coeff; ++i) { + const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7); + if (ac_coef >= ac_thresh) return 0; + } + } + src_diff += tx_h * bw; + } + return 1; +} + +// Used to set proper context for early termination with skip = 1. +static void set_skip_flag(MACROBLOCK *x, RD_STATS *rd_stats, int bsize, + int64_t dist) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int n4 = bsize_to_num_blk(bsize); + const TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; + memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); + memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); + mbmi->tx_size = tx_size; + for (int i = 0; i < n4; ++i) set_blk_skip(x, 0, i, 1); + rd_stats->skip = 1; + rd_stats->rate = 0; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); + rd_stats->dist = rd_stats->sse = (dist << 4); +} + +static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row, + int mi_col, int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + int64_t best_rd = INT64_MAX; + const int is_inter = is_inter_block(mbmi); + const int n4 = bsize_to_num_blk(bsize); + // Get the tx_size 1 level down + const TX_SIZE min_tx_size = sub_tx_size_map[max_txsize_rect_lookup[bsize]]; + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(min_tx_size, is_inter, cm->reduced_tx_set_used); + const int within_border = + mi_row >= xd->tile.mi_row_start && + (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && + mi_col >= xd->tile.mi_col_start && + (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); + + av1_invalid_rd_stats(rd_stats); + + if (cpi->sf.model_based_prune_tx_search_level && ref_best_rd != INT64_MAX) { + int model_rate; + int64_t model_dist; + int model_skip; + model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &model_rate, &model_dist, + &model_skip, NULL, NULL, NULL, NULL); + const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist); + // If the modeled rd is a lot worse than the best so far, breakout. + // TODO(debargha, urvang): Improve the model and make the check below + // tighter. + assert(cpi->sf.model_based_prune_tx_search_level >= 0 && + cpi->sf.model_based_prune_tx_search_level <= 2); + static const int prune_factor_by8[] = { 2 + MODELRD_TYPE_TX_SEARCH_PRUNE, + 4 + MODELRD_TYPE_TX_SEARCH_PRUNE }; + if (!model_skip && + ((model_rd * + prune_factor_by8[cpi->sf.model_based_prune_tx_search_level - 1]) >> + 3) > ref_best_rd) + return; + } + + const uint32_t hash = get_block_residue_hash(x, bsize); + MB_RD_RECORD *mb_rd_record = &x->mb_rd_record; + + if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_mb_rd_hash) { + for (int i = 0; i < mb_rd_record->num; ++i) { + const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; + // If there is a match in the tx_rd_record, fetch the RD decision and + // terminate early. + if (mb_rd_record->tx_rd_info[index].hash_value == hash) { + MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[index]; + fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); + return; + } + } + } + + // If we predict that skip is the optimal RD decision - set the respective + // context and terminate early. + int64_t dist; + if (is_inter && cpi->sf.tx_type_search.use_skip_flag_prediction && + predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) { + set_skip_flag(x, rd_stats, bsize, dist); + // Save the RD search results into tx_rd_record. + if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); + return; + } + + // Precompute residual hashes and find existing or add new RD records to + // store and reuse rate and distortion values to speed up TX size search. + TXB_RD_INFO_NODE matched_rd_info[4 + 16 + 64]; + int found_rd_info = 0; + if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_inter_txb_hash) { + found_rd_info = + find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info); + } + + prune_tx(cpi, bsize, x, xd, tx_set_type); + + int found = 0; + + RD_STATS this_rd_stats; + av1_init_rd_stats(&this_rd_stats); + + rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd, + found_rd_info ? matched_rd_info : NULL); + assert(IMPLIES(this_rd_stats.skip && !this_rd_stats.invalid_rate, + this_rd_stats.rate == 0)); + + ref_best_rd = AOMMIN(rd, ref_best_rd); + if (rd < best_rd) { + *rd_stats = this_rd_stats; + found = 1; + } + + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; + + // We should always find at least one candidate unless ref_best_rd is less + // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type + // might have failed to find something better) + assert(IMPLIES(!found, ref_best_rd != INT64_MAX)); + if (!found) return; + + // Save the RD search results into tx_rd_record. + if (within_border && cpi->sf.use_mb_rd_hash) + save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); +} + +static void tx_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int plane, int block, TX_SIZE tx_size, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx, + ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode) { + assert(plane > 0); + assert(tx_size < TX_SIZES_ALL); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + ENTROPY_CONTEXT *ta = above_ctx + blk_col; + ENTROPY_CONTEXT *tl = left_ctx + blk_row; + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx); + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_UV] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, INT64_MAX, NULL); + + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int blk_idx = blk_row * mi_width + blk_col; + + av1_set_txb_context(x, plane, block, tx_size, ta, tl); + if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) && + !xd->lossless[mbmi->segment_id]) { + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + } + + // Set chroma blk_skip to 0 + set_blk_skip(x, plane, blk_idx, 0); +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t non_skip_ref_best_rd, + int64_t skip_ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int plane; + int is_cost_valid = 1; + int64_t this_rd = 0; + int64_t skip_rd = 0; + + if ((non_skip_ref_best_rd < 0) && (skip_ref_best_rd < 0)) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (x->skip_chroma_rd) { + if (!is_cost_valid) av1_invalid_rd_stats(rd_stats); + + return is_cost_valid; + } + + const BLOCK_SIZE bsizec = scale_chroma_bsize( + bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); + + if (is_inter_block(mbmi) && is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) + av1_subtract_plane(x, bsizec, plane); + } + + if (is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = + block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + int block = 0; + const int step = bh * bw; + ENTROPY_CONTEXT ta[MAX_MIB_SIZE]; + ENTROPY_CONTEXT tl[MAX_MIB_SIZE]; + av1_get_entropy_contexts(bsizec, pd, ta, tl); + + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + RD_STATS pn_rd_stats; + av1_init_rd_stats(&pn_rd_stats); + tx_block_uvrd(cpi, x, idy, idx, plane, block, max_tx_size, + plane_bsize, ta, tl, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + skip_rd = RDCOST(x->rdmult, 0, rd_stats->sse); + if ((this_rd > non_skip_ref_best_rd) && + (skip_rd > skip_ref_best_rd)) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + block += step; + } + } + } + } else { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + + return is_cost_valid; +} + +static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, + int dc_mode_cost, + uint8_t *best_palette_color_map, + MB_MODE_INFO *const best_mbmi, + int64_t *best_rd, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + assert( + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type)); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const BLOCK_SIZE bsize = mbmi->sb_type; + const SequenceHeader *const seq_params = &cpi->common.seq_params; + int this_rate; + int64_t this_rd; + int colors_u, colors_v, colors; + const int src_stride = x->plane[1].src.stride; + const uint8_t *const src_u = x->plane[1].src.buf; + const uint8_t *const src_v = x->plane[2].src.buf; + uint8_t *const color_map = xd->plane[1].color_index_map; + RD_STATS tokenonly_rd_stats; + int plane_block_width, plane_block_height, rows, cols; + av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, + &plane_block_height, &rows, &cols); + + mbmi->uv_mode = UV_DC_PRED; + + int count_buf[1 << 12]; // Maximum (1 << 12) color levels. + if (seq_params->use_highbitdepth) { + colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + } else { + colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf); + colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf); + } + + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + + colors = colors_u > colors_v ? colors_u : colors_v; + if (colors > 1 && colors <= 64) { + int r, c, n, i, j; + const int max_itr = 50; + int lb_u, ub_u, val_u; + int lb_v, ub_v, val_v; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[2 * PALETTE_MAX_SIZE]; + + uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); + uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); + if (seq_params->use_highbitdepth) { + lb_u = src_u16[0]; + ub_u = src_u16[0]; + lb_v = src_v16[0]; + ub_v = src_v16[0]; + } else { + lb_u = src_u[0]; + ub_u = src_u[0]; + lb_v = src_v[0]; + ub_v = src_v[0]; + } + + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + if (seq_params->use_highbitdepth) { + val_u = src_u16[r * src_stride + c]; + val_v = src_v16[r * src_stride + c]; + data[(r * cols + c) * 2] = val_u; + data[(r * cols + c) * 2 + 1] = val_v; + } else { + val_u = src_u[r * src_stride + c]; + val_v = src_v[r * src_stride + c]; + data[(r * cols + c) * 2] = val_u; + data[(r * cols + c) * 2 + 1] = val_v; + } + if (val_u < lb_u) + lb_u = val_u; + else if (val_u > ub_u) + ub_u = val_u; + if (val_v < lb_v) + lb_v = val_v; + else if (val_v > ub_v) + ub_v = val_v; + } + } + + for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; + --n) { + for (i = 0; i < n; ++i) { + centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; + centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; + } + av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); + optimize_palette_colors(color_cache, n_cache, n, 2, centroids); + // Sort the U channel colors in ascending order. + for (i = 0; i < 2 * (n - 1); i += 2) { + int min_idx = i; + int min_val = centroids[i]; + for (j = i + 2; j < 2 * n; j += 2) + if (centroids[j] < min_val) min_val = centroids[j], min_idx = j; + if (min_idx != i) { + int temp_u = centroids[i], temp_v = centroids[i + 1]; + centroids[i] = centroids[min_idx]; + centroids[i + 1] = centroids[min_idx + 1]; + centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v; + } + } + av1_calc_indices(data, centroids, color_map, rows * cols, n, 2); + extend_palette_color_map(color_map, cols, rows, plane_block_width, + plane_block_height); + pmi->palette_size[1] = n; + for (i = 1; i < 3; ++i) { + for (j = 0; j < n; ++j) { + if (seq_params->use_highbitdepth) + pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( + (int)centroids[j * 2 + i - 1], seq_params->bit_depth); + else + pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = + clip_pixel((int)centroids[j * 2 + i - 1]); + } + } + + super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) continue; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (this_rd < *best_rd) { + *best_rd = this_rd; + *best_mbmi = *mbmi; + memcpy(best_palette_color_map, color_map, + plane_block_width * plane_block_height * + sizeof(best_palette_color_map[0])); + *rate = this_rate; + *distortion = tokenonly_rd_stats.dist; + *rate_tokenonly = tokenonly_rd_stats.rate; + *skippable = tokenonly_rd_stats.skip; + } + } + } + if (best_mbmi->palette_mode_info.palette_size[1] > 0) { + memcpy(color_map, best_palette_color_map, + plane_block_width * plane_block_height * + sizeof(best_palette_color_map[0])); + } +} + +// Run RD calculation with given chroma intra prediction angle., and return +// the RD cost. Update the best mode info. if the RD cost is the best so far. +static int64_t pick_intra_angle_routine_sbuv( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, + int *best_angle_delta, int64_t *best_rd) { + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + assert(!is_inter_block(mbmi)); + int this_rate; + int64_t this_rd; + RD_STATS tokenonly_rd_stats; + + if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) + return INT64_MAX; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (this_rd < *best_rd) { + *best_rd = this_rd; + *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; + *rate = this_rate; + rd_stats->rate = tokenonly_rd_stats.rate; + rd_stats->dist = tokenonly_rd_stats.dist; + rd_stats->skip = tokenonly_rd_stats.skip; + } + return this_rd; +} + +// With given chroma directional intra prediction mode, pick the best angle +// delta. Return true if a RD cost that is smaller than the input one is found. +static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int rate_overhead, + int64_t best_rd, int *rate, + RD_STATS *rd_stats) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + int i, angle_delta, best_angle_delta = 0; + int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; + + rd_stats->rate = INT_MAX; + rd_stats->skip = 0; + rd_stats->dist = INT64_MAX; + for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; + + for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (i = 0; i < 2; ++i) { + best_rd_in = (best_rd == INT64_MAX) + ? INT64_MAX + : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); + mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; + this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, + best_rd_in, rate, rd_stats, + &best_angle_delta, &best_rd); + rd_cost[2 * angle_delta + i] = this_rd; + if (angle_delta == 0) { + if (this_rd == INT64_MAX) return 0; + rd_cost[1] = this_rd; + break; + } + } + } + + assert(best_rd != INT64_MAX); + for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + int64_t rd_thresh; + for (i = 0; i < 2; ++i) { + int skip_search = 0; + rd_thresh = best_rd + (best_rd >> 5); + if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && + rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) + skip_search = 1; + if (!skip_search) { + mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; + pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, + rate, rd_stats, &best_angle_delta, + &best_rd); + } + } + } + + mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; + return rd_stats->rate != INT_MAX; +} + +#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ + (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) +static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, + TX_SIZE tx_size, int64_t best_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + const BLOCK_SIZE bsize = mbmi->sb_type; +#if CONFIG_DEBUG + assert(is_cfl_allowed(xd)); + const int ssx = xd->plane[AOM_PLANE_U].subsampling_x; + const int ssy = xd->plane[AOM_PLANE_U].subsampling_y; + const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, ssx, ssy); + (void)plane_bsize; + assert(plane_bsize < BLOCK_SIZES_ALL); + if (!xd->lossless[mbmi->segment_id]) { + assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); + assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); + } +#endif // CONFIG_DEBUG + + xd->cfl.use_dc_pred_cache = 1; + const int64_t mode_rd = + RDCOST(x->rdmult, + x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0); + int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; + int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; +#if CONFIG_DEBUG + int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; +#endif // CONFIG_DEBUG + + for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { + RD_STATS rd_stats; + av1_init_rd_stats(&rd_stats); + for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { + best_rd_uv[joint_sign][plane] = INT64_MAX; + best_c[joint_sign][plane] = 0; + } + // Collect RD stats for an alpha value of zero in this plane. + // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid. + for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) { + const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i); + if (i == CFL_SIGN_NEG) { + mbmi->cfl_alpha_idx = 0; + mbmi->cfl_alpha_signs = joint_sign; + txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, tx_size, + cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (rd_stats.rate == INT_MAX) break; + } + const int alpha_rate = x->cfl_cost[joint_sign][plane][0]; + best_rd_uv[joint_sign][plane] = + RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); +#if CONFIG_DEBUG + best_rate_uv[joint_sign][plane] = rd_stats.rate; +#endif // CONFIG_DEBUG + } + } + + int best_joint_sign = -1; + + for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { + for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) { + int progress = 0; + for (int c = 0; c < CFL_ALPHABET_SIZE; c++) { + int flag = 0; + RD_STATS rd_stats; + if (c > 2 && progress < c) break; + av1_init_rd_stats(&rd_stats); + for (int i = 0; i < CFL_SIGNS; i++) { + const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i); + if (i == 0) { + mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c; + mbmi->cfl_alpha_signs = joint_sign; + txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, + tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (rd_stats.rate == INT_MAX) break; + } + const int alpha_rate = x->cfl_cost[joint_sign][plane][c]; + int64_t this_rd = + RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); + if (this_rd >= best_rd_uv[joint_sign][plane]) continue; + best_rd_uv[joint_sign][plane] = this_rd; + best_c[joint_sign][plane] = c; +#if CONFIG_DEBUG + best_rate_uv[joint_sign][plane] = rd_stats.rate; +#endif // CONFIG_DEBUG + flag = 2; + if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue; + this_rd += mode_rd + best_rd_uv[joint_sign][!plane]; + if (this_rd >= best_rd) continue; + best_rd = this_rd; + best_joint_sign = joint_sign; + } + progress += flag; + } + } + } + + int best_rate_overhead = INT_MAX; + int ind = 0; + if (best_joint_sign >= 0) { + const int u = best_c[best_joint_sign][CFL_PRED_U]; + const int v = best_c[best_joint_sign][CFL_PRED_V]; + ind = (u << CFL_ALPHABET_SIZE_LOG2) + v; + best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] + + x->cfl_cost[best_joint_sign][CFL_PRED_V][v]; +#if CONFIG_DEBUG + xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] + + best_rate_overhead + + best_rate_uv[best_joint_sign][CFL_PRED_U] + + best_rate_uv[best_joint_sign][CFL_PRED_V]; +#endif // CONFIG_DEBUG + } else { + best_joint_sign = 0; + } + + mbmi->cfl_alpha_idx = ind; + mbmi->cfl_alpha_signs = best_joint_sign; + xd->cfl.use_dc_pred_cache = 0; + xd->cfl.dc_pred_is_cached[0] = 0; + xd->cfl.dc_pred_is_cached[1] = 0; + return best_rate_overhead; +} + +static void init_sbuv_mode(MB_MODE_INFO *const mbmi) { + mbmi->uv_mode = UV_DC_PRED; + mbmi->palette_mode_info.palette_size[1] = 0; +} + +static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + int *rate, int *rate_tokenonly, + int64_t *distortion, int *skippable, + BLOCK_SIZE bsize, TX_SIZE max_tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + MB_MODE_INFO best_mbmi = *mbmi; + int64_t best_rd = INT64_MAX, this_rd; + + for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { + int this_rate; + RD_STATS tokenonly_rd_stats; + UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; + const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); + if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & + (1 << mode))) + continue; + + mbmi->uv_mode = mode; + int cfl_alpha_rate = 0; + if (mode == UV_CFL_PRED) { + if (!is_cfl_allowed(xd)) continue; + assert(!is_directional_mode); + const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd); + if (cfl_alpha_rate == INT_MAX) continue; + } + mbmi->angle_delta[PLANE_TYPE_UV] = 0; + if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type)) { + const int rate_overhead = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; + if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, + &this_rate, &tokenonly_rd_stats)) + continue; + } else { + if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { + continue; + } + } + const int mode_cost = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] + + cfl_alpha_rate; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); + if (mode == UV_CFL_PRED) { + assert(is_cfl_allowed(xd)); +#if CONFIG_DEBUG + if (!xd->lossless[mbmi->segment_id]) + assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost); +#endif // CONFIG_DEBUG + } + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < best_rd) { + best_mbmi = *mbmi; + best_rd = this_rd; + *rate = this_rate; + *rate_tokenonly = tokenonly_rd_stats.rate; + *distortion = tokenonly_rd_stats.dist; + *skippable = tokenonly_rd_stats.skip; + } + } + + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette) { + uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; + rd_pick_palette_intra_sbuv( + cpi, x, + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED], + best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, + distortion, skippable); + } + + *mbmi = best_mbmi; + // Make sure we actually chose a mode + assert(best_rd < INT64_MAX); + return best_rd; +} + +static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, TX_SIZE max_tx_size, + int *rate_uv, int *rate_uv_tokenonly, + int64_t *dist_uv, int *skip_uv, + UV_PREDICTION_MODE *mode_uv) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); + const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); + // Use an estimated rd for uv_intra based on DC_PRED if the + // appropriate speed flag is set. + init_sbuv_mode(mbmi); + if (x->skip_chroma_rd) { + *rate_uv = 0; + *rate_uv_tokenonly = 0; + *dist_uv = 0; + *skip_uv = 1; + *mode_uv = UV_DC_PRED; + return; + } + xd->cfl.is_chroma_reference = + is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x, + xd->plane[AOM_PLANE_U].subsampling_y); + // Only store reconstructed luma when there's chroma RDO. When there's no + // chroma RDO, the reconstructed luma will be stored in encode_superblock(). + xd->cfl.store_y = store_cfl_required_rdo(cm, x); + if (xd->cfl.store_y) { + // Restore reconstructed luma values. + av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y, + cpi->optimize_seg_arr[mbmi->segment_id], + mi_row, mi_col); + xd->cfl.store_y = 0; + } + rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, + bsize, max_tx_size); + *mode_uv = mbmi->uv_mode; +} + +static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode, + int16_t mode_context) { + if (is_inter_compound_mode(mode)) { + return x + ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; + } + + int mode_cost = 0; + int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; + + assert(is_inter_mode(mode)); + + if (mode == NEWMV) { + mode_cost = x->newmv_mode_cost[mode_ctx][0]; + return mode_cost; + } else { + mode_cost = x->newmv_mode_cost[mode_ctx][1]; + mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + + if (mode == GLOBALMV) { + mode_cost += x->zeromv_mode_cost[mode_ctx][0]; + return mode_cost; + } else { + mode_cost += x->zeromv_mode_cost[mode_ctx][1]; + mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; + mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; + return mode_cost; + } + } +} + +static int get_interinter_compound_mask_rate(const MACROBLOCK *const x, + const MB_MODE_INFO *const mbmi) { + switch (mbmi->interinter_comp.type) { + case COMPOUND_AVERAGE: return 0; + case COMPOUND_WEDGE: + return get_interinter_wedge_bits(mbmi->sb_type) > 0 + ? av1_cost_literal(1) + + x->wedge_idx_cost[mbmi->sb_type] + [mbmi->interinter_comp.wedge_index] + : 0; + case COMPOUND_DIFFWTD: return av1_cost_literal(1); + default: assert(0); return 0; + } +} + +typedef struct { + int eobs; + int brate; + int byrate; + int64_t bdist; + int64_t bsse; + int64_t brdcost; + int_mv mvs[2]; + int_mv pred_mv[2]; + int_mv ref_mv[2]; + + ENTROPY_CONTEXT ta[2]; + ENTROPY_CONTEXT tl[2]; +} SEG_RDSTAT; + +typedef struct { + int_mv *ref_mv[2]; + int_mv mvp; + + int64_t segment_rd; + int r; + int64_t d; + int64_t sse; + int segment_yrate; + PREDICTION_MODE modes[4]; + SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES]; + int mvthresh; +} BEST_SEG_INFO; + +static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { + return (mv->row >> 3) < mv_limits->row_min || + (mv->row >> 3) > mv_limits->row_max || + (mv->col >> 3) < mv_limits->col_min || + (mv->col >> 3) > mv_limits->col_max; +} + +static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode, + int ref_idx, int is_comp_pred) { + PREDICTION_MODE single_mode; + if (is_comp_pred) { + single_mode = + ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode); + } else { + single_mode = this_mode; + } + return single_mode; +} + +static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int_mv *cur_mv, int mi_row, + int mi_col, int_mv *ref_mv_sub8x8[2], + const uint8_t *mask, int mask_stride, + int *rate_mv, const int block) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + const int plane = 0; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + // This function should only ever be called for compound modes + assert(has_second_ref(mbmi)); + const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] }; + const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; + int_mv ref_mv[2]; + int ite, ref; + // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" + const int ic = block & 1; + const int ir = (block - ic) >> 1; + struct macroblockd_plane *const pd = &xd->plane[0]; + const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; + const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; + + ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); + conv_params.use_jnt_comp_avg = 0; + WarpTypesAllowed warp_types[2]; + for (ref = 0; ref < 2; ++ref) { + const WarpedMotionParams *const wm = + &xd->global_motion[xd->mi[0]->ref_frame[ref]]; + const int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); + warp_types[ref].global_warp_allowed = is_global; + warp_types[ref].local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; + } + + // Do joint motion search in compound mode to get more accurate mv. + struct buf_2d backup_yv12[2][MAX_MB_PLANE]; + int last_besterr[2] = { INT_MAX, INT_MAX }; + const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { + av1_get_scaled_ref_frame(cpi, refs[0]), + av1_get_scaled_ref_frame(cpi, refs[1]) + }; + + // Prediction buffer from second frame. + DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]); + uint8_t *second_pred = get_buf_by_bd(xd, second_pred16); + (void)ref_mv_sub8x8; + + const int have_newmv = have_nearmv_in_inter_mode(mbmi->mode); + const int ref_mv_idx = mbmi->ref_mv_idx + (have_newmv ? 1 : 0); + MV *const best_mv = &x->best_mv.as_mv; + const int search_range = SEARCH_RANGE_8P; + const int sadpb = x->sadperbit16; + // Allow joint search multiple times iteratively for each reference frame + // and break out of the search loop if it couldn't find a better mv. + for (ite = 0; ite < 4; ite++) { + struct buf_2d ref_yv12[2]; + int bestsme = INT_MAX; + MvLimits tmp_mv_limits = x->mv_limits; + int id = ite % 2; // Even iterations search in the first reference frame, + // odd iterations search in the second. The predictor + // found for the 'other' reference frame is factored in. + if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) { + if (cur_mv[id].as_int == init_mv[id].as_int) { + break; + } else { + int_mv cur_int_mv, init_int_mv; + cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3; + cur_int_mv.as_mv.row = cur_mv[id].as_mv.col >> 3; + init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3; + init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3; + if (cur_int_mv.as_int == init_int_mv.as_int) { + break; + } + } + } + for (ref = 0; ref < 2; ++ref) { + ref_mv[ref] = av1_get_ref_mv(x, ref); + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + if (scaled_ref_frame[ref]) { + int i; + for (i = 0; i < num_planes; i++) + backup_yv12[ref][i] = xd->plane[i].pre[ref]; + av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, + NULL, num_planes); + } + } + + assert(IMPLIES(scaled_ref_frame[0] != NULL, + cm->width == scaled_ref_frame[0]->y_crop_width && + cm->height == scaled_ref_frame[0]->y_crop_height)); + assert(IMPLIES(scaled_ref_frame[1] != NULL, + cm->width == scaled_ref_frame[1]->y_crop_width && + cm->height == scaled_ref_frame[1]->y_crop_height)); + + // Initialize based on (possibly scaled) prediction buffers. + ref_yv12[0] = xd->plane[plane].pre[0]; + ref_yv12[1] = xd->plane[plane].pre[1]; + + // Get the prediction block from the 'other' reference frame. + const InterpFilters interp_filters = EIGHTTAP_REGULAR; + + // Since we have scaled the reference frames to match the size of the + // current frame we must use a unit scaling factor during mode selection. + av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, + second_pred, pw, &cur_mv[!id].as_mv, + &cm->sf_identity, pw, ph, &conv_params, + interp_filters, &warp_types[!id], p_col, p_row, + plane, !id, MV_PRECISION_Q3, mi_col * MI_SIZE, + mi_row * MI_SIZE, xd, cm->allow_warped_motion); + + const int order_idx = id != 0; + av1_jnt_comp_weight_assign(cm, mbmi, order_idx, &xd->jcp_param.fwd_offset, + &xd->jcp_param.bck_offset, + &xd->jcp_param.use_jnt_comp_avg, 1); + + // Do full-pixel compound motion search on the current reference frame. + if (id) xd->plane[plane].pre[0] = ref_yv12[id]; + av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); + + // Use the mv result from the single mode as mv predictor. + *best_mv = cur_mv[id].as_mv; + + best_mv->col >>= 3; + best_mv->row >>= 3; + + av1_set_mvcost(x, id, ref_mv_idx); + + // Small-range full-pixel motion search. + bestsme = av1_refining_search_8p_c(x, sadpb, search_range, + &cpi->fn_ptr[bsize], mask, mask_stride, + id, &ref_mv[id].as_mv, second_pred); + if (bestsme < INT_MAX) { + if (mask) + bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv, + second_pred, mask, mask_stride, id, + &cpi->fn_ptr[bsize], 1); + else + bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, + second_pred, &cpi->fn_ptr[bsize], 1); + } + + x->mv_limits = tmp_mv_limits; + + // Restore the pointer to the first (possibly scaled) prediction buffer. + if (id) xd->plane[plane].pre[0] = ref_yv12[0]; + + for (ref = 0; ref < 2; ++ref) { + if (scaled_ref_frame[ref]) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref] = backup_yv12[ref][i]; + } + // Re-initialize based on unscaled prediction buffers. + ref_yv12[ref] = xd->plane[plane].pre[ref]; + } + } + + // Do sub-pixel compound motion search on the current reference frame. + if (id) xd->plane[plane].pre[0] = ref_yv12[id]; + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) { + int dis; /* TODO: use dis in distortion calculation later. */ + unsigned int sse; + bestsme = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv[id].as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, + x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, + mask_stride, id, pw, ph, cpi->sf.use_accurate_subpel_search); + } + + // Restore the pointer to the first prediction buffer. + if (id) xd->plane[plane].pre[0] = ref_yv12[0]; + if (bestsme < last_besterr[id]) { + cur_mv[id].as_mv = *best_mv; + last_besterr[id] = bestsme; + } else { + break; + } + } + + *rate_mv = 0; + + for (ref = 0; ref < 2; ++ref) { + av1_set_mvcost(x, ref, ref_mv_idx); + const int_mv curr_ref_mv = av1_get_ref_mv(x, ref); + *rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } +} + +static void estimate_ref_frame_costs( + const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x, + int segment_id, unsigned int *ref_costs_single, + unsigned int (*ref_costs_comp)[REF_FRAMES]) { + int seg_ref_active = + segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + if (seg_ref_active) { + memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); + int ref_frame; + for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) + memset(ref_costs_comp[ref_frame], 0, + REF_FRAMES * sizeof((*ref_costs_comp)[0])); + } else { + int intra_inter_ctx = av1_get_intra_inter_context(xd); + ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0]; + unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; + + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) + ref_costs_single[i] = base_cost; + + const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); + const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); + const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); + const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); + const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); + const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); + + // Determine cost of a single ref frame, where frame types are represented + // by a tree: + // Level 0: add cost whether this ref is a forward or backward ref + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + + // Level 1: if this ref is forward ref, + // add cost whether it is last/last2 or last3/golden + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0]; + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1]; + + // Level 1: if this ref is backward ref + // then add cost whether this ref is altref or backward ref + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0]; + ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1]; + + // Level 2: further add cost whether this ref is last or last2 + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1]; + + // Level 2: last3 or golden + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1]; + + // Level 2: bwdref or altref2 + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1]; + + if (cm->reference_mode != SINGLE_REFERENCE) { + // Similar to single ref, determine cost of compound ref frames. + // cost_compound_refs = cost_first_ref + cost_second_ref + const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); + const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); + const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); + const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); + const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); + + const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); + unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; + + ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = + ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1]; + ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; + ref_bicomp_costs[ALTREF_FRAME] = 0; + + // cost of first ref frame + ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; + ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; + ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; + ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; + + ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; + ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; + + ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; + ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; + + // cost of second ref frame + ref_bicomp_costs[BWDREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; + ref_bicomp_costs[ALTREF2_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; + ref_bicomp_costs[ALTREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; + + ref_bicomp_costs[BWDREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; + ref_bicomp_costs[ALTREF2_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; + + // cost: if one ref frame is forward ref, the other ref is backward ref + int ref0, ref1; + for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { + for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { + ref_costs_comp[ref0][ref1] = + ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; + } + } + + // cost: if both ref frames are the same side. + const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); + const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); + const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); + ref_costs_comp[LAST_FRAME][LAST2_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; + ref_costs_comp[LAST_FRAME][LAST3_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; + ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; + ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; + } else { + int ref0, ref1; + for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { + for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) + ref_costs_comp[ref0][ref1] = 512; + } + ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; + ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; + ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; + ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; + } + } +} + +static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, + int mode_index, + int64_t comp_pred_diff[REFERENCE_MODES], + int skippable) { + MACROBLOCKD *const xd = &x->e_mbd; + + // Take a snapshot of the coding context so it can be + // restored if we decide to encode this way + ctx->skip = x->skip; + ctx->skippable = skippable; + ctx->best_mode_index = mode_index; + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; + ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; + ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; + ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; +} + +static void setup_buffer_ref_mvs_inter( + const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, + BLOCK_SIZE block_size, int mi_row, int mi_col, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + + assert(yv12 != NULL); + + // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this + // use the UV scaling factors. + av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf, + num_planes); + + // Gets an initial list of candidate vectors from neighbours and orders them + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + + // Further refinement that is encode side only to test the top few candidates + // in full and choose the best as the centre point for subsequent searches. + // The current implementation doesn't support scaling. + (void)block_size; + av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, + block_size); +} + +static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int ref_idx, int *rate_mv) { + MACROBLOCKD *xd = &x->e_mbd; + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *mbmi = xd->mi[0]; + struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; + int bestsme = INT_MAX; + int step_param; + int sadpb = x->sadperbit16; + MV mvp_full; + int ref = mbmi->ref_frame[ref_idx]; + MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; + + MvLimits tmp_mv_limits = x->mv_limits; + int cost_list[5]; + + const YV12_BUFFER_CONFIG *scaled_ref_frame = + av1_get_scaled_ref_frame(cpi, ref); + + if (scaled_ref_frame) { + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // full-pixel motion search code to be used without additional + // modifications. + for (int i = 0; i < num_planes; i++) { + backup_yv12[i] = xd->plane[i].pre[ref_idx]; + } + av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, + num_planes); + } + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + + // Work out the size of the first step in the mv step search. + // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. + if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { + // Take the weighted average of the step_params based on the last frame's + // max mv magnitude and that based on the best ref mvs of the current + // block for the given reference. + step_param = + (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / + 2; + } else { + step_param = cpi->mv_step_param; + } + + if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) { + int boffset = + 2 * (mi_size_wide_log2[cm->seq_params.sb_size] - + AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize])); + step_param = AOMMAX(step_param, boffset); + } + + if (cpi->sf.adaptive_motion_search) { + int bwl = mi_size_wide_log2[bsize]; + int bhl = mi_size_high_log2[bsize]; + int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); + + if (tlevel < 5) { + step_param += 2; + step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1); + } + + // prev_mv_sad is not setup for dynamically scaled frames. + if (cpi->oxcf.resize_mode != RESIZE_RANDOM) { + int i; + for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { + if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { + x->pred_mv[ref].row = 0; + x->pred_mv[ref].col = 0; + x->best_mv.as_int = INVALID_MV; + + if (scaled_ref_frame) { + // Swap back the original buffers before returning. + for (int j = 0; j < num_planes; ++j) + xd->plane[j].pre[ref_idx] = backup_yv12[j]; + } + return; + } + } + } + } + + // Note: MV limits are modified here. Always restore the original values + // after full-pixel motion search. + av1_set_mv_search_range(&x->mv_limits, &ref_mv); + + if (mbmi->motion_mode != SIMPLE_TRANSLATION) + mvp_full = mbmi->mv[0].as_mv; + else + mvp_full = ref_mv; + + mvp_full.col >>= 3; + mvp_full.row >>= 3; + + x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; + + switch (mbmi->motion_mode) { + case SIMPLE_TRANSLATION: + bestsme = av1_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, + sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1, + (MI_SIZE * mi_col), (MI_SIZE * mi_row), 0); + break; + case OBMC_CAUSAL: + bestsme = av1_obmc_full_pixel_search(cpi, x, &mvp_full, step_param, sadpb, + MAX_MVSEARCH_STEPS - 1 - step_param, + 1, &cpi->fn_ptr[bsize], &ref_mv, + &(x->best_mv.as_mv), 0); + break; + default: assert(0 && "Invalid motion mode!\n"); + } + + if (scaled_ref_frame) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref_idx] = backup_yv12[i]; + } + } + + x->mv_limits = tmp_mv_limits; + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + const int use_fractional_mv = + bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; + if (use_fractional_mv) { + int dis; /* TODO: use dis in distortion calculation later. */ + switch (mbmi->motion_mode) { + case SIMPLE_TRANSLATION: + if (cpi->sf.use_accurate_subpel_search) { + int best_mv_var; + const int try_second = x->second_best_mv.as_int != INVALID_MV && + x->second_best_mv.as_int != x->best_mv.as_int; + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + + best_mv_var = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, + 0, 0, pw, ph, 1); + + if (try_second) { + const int minc = + AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); + const int maxc = + AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); + const int minr = + AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); + const int maxr = + AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); + int this_var; + MV best_mv = x->best_mv.as_mv; + + x->best_mv = x->second_best_mv; + if (x->best_mv.as_mv.row * 8 <= maxr && + x->best_mv.as_mv.row * 8 >= minr && + x->best_mv.as_mv.col * 8 <= maxc && + x->best_mv.as_mv.col * 8 >= minc) { + this_var = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, + &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph, 1); + if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; + x->best_mv.as_mv = best_mv; + } + } + } else { + cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, + 0, 0, 0, 0, 0); + } + break; + case OBMC_CAUSAL: + av1_find_best_obmc_sub_pixel_tree_up( + x, cm, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv, + cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0, + cpi->sf.use_accurate_subpel_search); + break; + default: assert(0 && "Invalid motion mode!\n"); + } + } + *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + + if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION) + x->pred_mv[ref] = x->best_mv.as_mv; +} + +static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst, + const int num_planes) { + int i; + for (i = 0; i < num_planes; i++) { + xd->plane[i].dst.buf = dst.plane[i]; + xd->plane[i].dst.stride = dst.stride[i]; + } +} + +static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, const MV *other_mv, + int mi_row, int mi_col, const int block, + int ref_idx, uint8_t *second_pred) { + const AV1_COMMON *const cm = &cpi->common; + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int other_ref = mbmi->ref_frame[!ref_idx]; + struct macroblockd_plane *const pd = &xd->plane[0]; + // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" + const int ic = block & 1; + const int ir = (block - ic) >> 1; + const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; + const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; + const WarpedMotionParams *const wm = &xd->global_motion[other_ref]; + int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); + + // This function should only ever be called for compound modes + assert(has_second_ref(mbmi)); + + const int plane = 0; + struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx]; + + struct scale_factors sf; + av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height, + cm->width, cm->height); + + ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global; + warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; + + // Get the prediction block from the 'other' reference frame. + av1_build_inter_predictor(ref_yv12.buf, ref_yv12.stride, second_pred, pw, + other_mv, &sf, pw, ph, &conv_params, + mbmi->interp_filters, &warp_types, p_col, p_row, + plane, !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE, + mi_row * MI_SIZE, xd, cm->allow_warped_motion); + + av1_jnt_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset, + &xd->jcp_param.bck_offset, + &xd->jcp_param.use_jnt_comp_avg, 1); +} + +// Search for the best mv for one component of a compound, +// given that the other component is fixed. +static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, MV *this_mv, + int mi_row, int mi_col, + const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, + int *rate_mv, int ref_idx) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int ref = mbmi->ref_frame[ref_idx]; + const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); + struct macroblockd_plane *const pd = &xd->plane[0]; + + struct buf_2d backup_yv12[MAX_MB_PLANE]; + const YV12_BUFFER_CONFIG *const scaled_ref_frame = + av1_get_scaled_ref_frame(cpi, ref); + + // Check that this is either an interinter or an interintra block + assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi))); + + // Store the first prediction buffer. + struct buf_2d orig_yv12; + if (ref_idx) { + orig_yv12 = pd->pre[0]; + pd->pre[0] = pd->pre[ref_idx]; + } + + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // full-pixel motion search code to be used without additional + // modifications. + for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; + av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, + num_planes); + } + + int bestsme = INT_MAX; + int sadpb = x->sadperbit16; + MV *const best_mv = &x->best_mv.as_mv; + int search_range = SEARCH_RANGE_8P; + + MvLimits tmp_mv_limits = x->mv_limits; + + // Do compound motion search on the current reference frame. + av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv); + + // Use the mv result from the single mode as mv predictor. + *best_mv = *this_mv; + + best_mv->col >>= 3; + best_mv->row >>= 3; + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + + // Small-range full-pixel motion search. + bestsme = av1_refining_search_8p_c(x, sadpb, search_range, + &cpi->fn_ptr[bsize], mask, mask_stride, + ref_idx, &ref_mv.as_mv, second_pred); + if (bestsme < INT_MAX) { + if (mask) + bestsme = + av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask, + mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1); + else + bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred, + &cpi->fn_ptr[bsize], 1); + } + + x->mv_limits = tmp_mv_limits; + + if (scaled_ref_frame) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref_idx] = backup_yv12[i]; + } + } + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + const int use_fractional_mv = + bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; + if (use_fractional_mv) { + int dis; /* TODO: use dis in distortion calculation later. */ + unsigned int sse; + bestsme = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv.as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, + x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, mask_stride, + ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search); + } + + // Restore the pointer to the first unscaled prediction buffer. + if (ref_idx) pd->pre[0] = orig_yv12; + + if (bestsme < INT_MAX) *this_mv = *best_mv; + + *rate_mv = 0; + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); +} + +// Wrapper for compound_single_motion_search, for the common case +// where the second prediction is also an inter mode. +static void compound_single_motion_search_interinter( + const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv, + int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv, + const int block, int ref_idx) { + MACROBLOCKD *xd = &x->e_mbd; + // This function should only ever be called for compound modes + assert(has_second_ref(xd->mi[0])); + + // Prediction buffer from second frame. + DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); + uint8_t *second_pred; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); + else + second_pred = (uint8_t *)second_pred_alloc_16; + + MV *this_mv = &cur_mv[ref_idx].as_mv; + const MV *other_mv = &cur_mv[!ref_idx].as_mv; + + build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block, + ref_idx, second_pred); + + compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col, + second_pred, mask, mask_stride, rate_mv, + ref_idx); +} + +static void do_masked_motion_search_indexed( + const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, + int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) { + // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + BLOCK_SIZE sb_type = mbmi->sb_type; + const uint8_t *mask; + const int mask_stride = block_size_wide[bsize]; + + mask = av1_get_compound_type_mask(comp_data, sb_type); + + tmp_mv[0].as_int = cur_mv[0].as_int; + tmp_mv[1].as_int = cur_mv[1].as_int; + if (which == 0 || which == 1) { + compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mi_row, + mi_col, mask, mask_stride, rate_mv, + 0, which); + } else if (which == 2) { + joint_motion_search(cpi, x, bsize, tmp_mv, mi_row, mi_col, NULL, mask, + mask_stride, rate_mv, 0); + } +} + +#define USE_DISCOUNT_NEWMV_TEST 0 +#if USE_DISCOUNT_NEWMV_TEST +// In some situations we want to discount the apparent cost of a new motion +// vector. Where there is a subtle motion field and especially where there is +// low spatial complexity then it can be hard to cover the cost of a new motion +// vector in a single block, even if that motion vector reduces distortion. +// However, once established that vector may be usable through the nearest and +// near mv modes to reduce distortion in subsequent blocks and also improve +// visual quality. +#define NEW_MV_DISCOUNT_FACTOR 8 +static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, + int ref_idx, int ref_mv_idx, + const MV_REFERENCE_FRAME *ref_frame, + const MB_MODE_INFO_EXT *mbmi_ext); +static int discount_newmv_test(const AV1_COMP *const cpi, const MACROBLOCK *x, + PREDICTION_MODE this_mode, int_mv this_mv) { + if (this_mode == NEWMV && this_mv.as_int != 0 && + !cpi->rc.is_src_frame_alt_ref) { + // Only discount new_mv when nearst_mv and all near_mv are zero, and the + // new_mv is not equal to global_mv + const AV1_COMMON *const cm = &cpi->common; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const MV_REFERENCE_FRAME tmp_ref_frames[2] = { mbmi->ref_frame[0], + NONE_FRAME }; + const uint8_t ref_frame_type = av1_ref_frame_type(tmp_ref_frames); + int_mv nearest_mv; + get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + int ret = nearest_mv.as_int == 0; + for (int ref_mv_idx = 0; + ref_mv_idx < x->mbmi_ext->ref_mv_count[ref_frame_type]; ++ref_mv_idx) { + int_mv near_mv; + get_this_mv(&near_mv, NEARMV, 0, ref_mv_idx, tmp_ref_frames, x->mbmi_ext); + ret &= near_mv.as_int == 0; + } + if (cm->global_motion[tmp_ref_frames[0]].wmtype <= TRANSLATION) { + int_mv global_mv; + get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + ret &= global_mv.as_int != this_mv.as_int; + } + return ret; + } + return 0; +} +#endif + +#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) +#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) + +// TODO(jingning): this mv clamping function should be block size dependent. +static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { + clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, + xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, + xd->mb_to_top_edge - LEFT_TOP_MARGIN, + xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); +} + +static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, + const BLOCK_SIZE bsize, const uint8_t *pred0, + int stride0, const uint8_t *pred1, int stride1) { + static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = { + // 4X4 + BLOCK_INVALID, + // 4X8, 8X4, 8X8 + BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4, + // 8X16, 16X8, 16X16 + BLOCK_4X8, BLOCK_8X4, BLOCK_8X8, + // 16X32, 32X16, 32X32 + BLOCK_8X16, BLOCK_16X8, BLOCK_16X16, + // 32X64, 64X32, 64X64 + BLOCK_16X32, BLOCK_32X16, BLOCK_32X32, + // 64x128, 128x64, 128x128 + BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, + // 4X16, 16X4, 8X32 + BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16, + // 32X8, 16X64, 64X16 + BLOCK_16X4, BLOCK_8X32, BLOCK_32X8 + }; + const struct macroblock_plane *const p = &x->plane[0]; + const uint8_t *src = p->src.buf; + int src_stride = p->src.stride; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + uint32_t esq[2][4]; + int64_t tl, br; + + const BLOCK_SIZE f_index = split_qtr[bsize]; + assert(f_index != BLOCK_INVALID); + + if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + pred0 = CONVERT_TO_BYTEPTR(pred0); + pred1 = CONVERT_TO_BYTEPTR(pred1); + } + + cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); + cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0, + &esq[0][1]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, + pred0 + bh / 2 * stride0, stride0, &esq[0][2]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, + pred0 + bh / 2 * stride0 + bw / 2, stride0, + &esq[0][3]); + cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); + cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1, + &esq[1][1]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, + pred1 + bh / 2 * stride1, stride0, &esq[1][2]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, + pred1 + bh / 2 * stride1 + bw / 2, stride0, + &esq[1][3]); + + tl = ((int64_t)esq[0][0] + esq[0][1] + esq[0][2]) - + ((int64_t)esq[1][0] + esq[1][1] + esq[1][2]); + br = ((int64_t)esq[1][3] + esq[1][1] + esq[1][2]) - + ((int64_t)esq[0][3] + esq[0][1] + esq[0][2]); + return (tl + br > 0); +} + +// Choose the best wedge index and sign +static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, + const BLOCK_SIZE bsize, const uint8_t *const p0, + const int16_t *const residual1, + const int16_t *const diff10, + int *const best_wedge_sign, + int *const best_wedge_index) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const src = &x->plane[0].src; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = bw * bh; + assert(N >= 64); + int rate; + int64_t dist; + int64_t rd, best_rd = INT64_MAX; + int wedge_index; + int wedge_sign; + int wedge_types = (1 << get_wedge_bits_lookup(bsize)); + const uint8_t *mask; + uint64_t sse; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + + DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]); // src - pred0 + if (hbd) { + aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(p0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw); + } + + int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) - + (int64_t)aom_sum_squares_i16(residual1, N)) * + (1 << WEDGE_WEIGHT_BITS) / 2; + int16_t *ds = residual0; + + av1_wedge_compute_delta_squares(ds, residual0, residual1, N); + + for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { + mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); + + wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); + + mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + // int rate2; + // int64_t dist2; + // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2); + // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n", + // sse, rate, dist, rate2, dist2); dist = dist2; + // rate = rate2; + + rate += x->wedge_idx_cost[bsize][wedge_index]; + rd = RDCOST(x->rdmult, rate, dist); + + if (rd < best_rd) { + *best_wedge_index = wedge_index; + *best_wedge_sign = wedge_sign; + best_rd = rd; + } + } + + return best_rd - + RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); +} + +// Choose the best wedge index the specified sign +static int64_t pick_wedge_fixed_sign(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + const BLOCK_SIZE bsize, + const int16_t *const residual1, + const int16_t *const diff10, + const int wedge_sign, + int *const best_wedge_index) { + const MACROBLOCKD *const xd = &x->e_mbd; + + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = bw * bh; + assert(N >= 64); + int rate; + int64_t dist; + int64_t rd, best_rd = INT64_MAX; + int wedge_index; + int wedge_types = (1 << get_wedge_bits_lookup(bsize)); + const uint8_t *mask; + uint64_t sse; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { + mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + rate += x->wedge_idx_cost[bsize][wedge_index]; + rd = RDCOST(x->rdmult, rate, dist); + + if (rd < best_rd) { + *best_wedge_index = wedge_index; + best_rd = rd; + } + } + return best_rd - + RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); +} + +static int64_t pick_interinter_wedge( + const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, + const uint8_t *const p0, const uint8_t *const p1, + const int16_t *const residual1, const int16_t *const diff10) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int bw = block_size_wide[bsize]; + + int64_t rd; + int wedge_index = -1; + int wedge_sign = 0; + + assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); + assert(cpi->common.seq_params.enable_masked_compound); + + if (cpi->sf.fast_wedge_sign_estimate) { + wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); + rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign, + &wedge_index); + } else { + rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign, + &wedge_index); + } + + mbmi->interinter_comp.wedge_sign = wedge_sign; + mbmi->interinter_comp.wedge_index = wedge_index; + return rd; +} + +static int64_t pick_interinter_seg(const AV1_COMP *const cpi, + MACROBLOCK *const x, const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1, + const int16_t *const residual1, + const int16_t *const diff10) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = 1 << num_pels_log2_lookup[bsize]; + int rate; + int64_t dist; + DIFFWTD_MASK_TYPE cur_mask_type; + int64_t best_rd = INT64_MAX; + DIFFWTD_MASK_TYPE best_mask_type = 0; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); + uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask }; + // try each mask type and its inverse + for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) { + // build mask and inverse + if (hbd) + av1_build_compound_diffwtd_mask_highbd( + tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw, + CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd); + else + av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type, + p0, bw, p1, bw, bh, bw); + + // compute rd for mask + uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10, + tmp_mask[cur_mask_type], N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + const int64_t rd0 = RDCOST(x->rdmult, rate, dist); + + if (rd0 < best_rd) { + best_mask_type = cur_mask_type; + best_rd = rd0; + } + } + mbmi->interinter_comp.mask_type = best_mask_type; + if (best_mask_type == DIFFWTD_38_INV) { + memcpy(xd->seg_mask, seg_mask, N * 2); + } + return best_rd; +} + +static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1) { + const MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(is_interintra_wedge_used(bsize)); + assert(cpi->common.seq_params.enable_interintra_compound); + + const struct buf_2d *const src = &x->plane[0].src; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]); // src - pred1 + DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]); // pred1 - pred0 + if (get_bitdepth_data_path_index(xd)) { + aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(p1), bw, xd->bd); + aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw, + CONVERT_TO_BYTEPTR(p0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw); + aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw); + } + int wedge_index = -1; + int64_t rd = + pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0, &wedge_index); + + mbmi->interintra_wedge_sign = 0; + mbmi->interintra_wedge_index = wedge_index; + return rd; +} + +static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x, + const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1, + const int16_t *const residual1, + const int16_t *const diff10) { + const COMPOUND_TYPE compound_type = x->e_mbd.mi[0]->interinter_comp.type; + switch (compound_type) { + case COMPOUND_WEDGE: + return pick_interinter_wedge(cpi, x, bsize, p0, p1, residual1, diff10); + case COMPOUND_DIFFWTD: + return pick_interinter_seg(cpi, x, bsize, p0, p1, residual1, diff10); + default: assert(0); return 0; + } +} + +static int interinter_compound_motion_search(const AV1_COMP *const cpi, + MACROBLOCK *x, + const int_mv *const cur_mv, + const BLOCK_SIZE bsize, + const PREDICTION_MODE this_mode, + int mi_row, int mi_col) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int_mv tmp_mv[2]; + int tmp_rate_mv = 0; + mbmi->interinter_comp.seg_mask = xd->seg_mask; + const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp; + + if (this_mode == NEW_NEWMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2); + mbmi->mv[0].as_int = tmp_mv[0].as_int; + mbmi->mv[1].as_int = tmp_mv[1].as_int; + } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0); + mbmi->mv[0].as_int = tmp_mv[0].as_int; + } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1); + mbmi->mv[1].as_int = tmp_mv[1].as_int; + } + return tmp_rate_mv; +} + +static void get_inter_predictors_masked_compound( + const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize, + int mi_row, int mi_col, uint8_t **preds0, uint8_t **preds1, + int16_t *residual1, int16_t *diff10, int *strides) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + int can_use_previous = cm->allow_warped_motion; + // get inter predictors to use for masked compound modes + av1_build_inter_predictors_for_planes_single_buf( + xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides, can_use_previous); + av1_build_inter_predictors_for_planes_single_buf( + xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides, can_use_previous); + const struct buf_2d *const src = &x->plane[0].src; + if (get_bitdepth_data_path_index(xd)) { + aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd); + aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1), + bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1, + bw); + aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw); + } +} + +static int64_t build_and_cost_compound_type( + const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, + const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2, + int rate_mv, BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, + uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides, + int mi_row, int mi_col, int mode_rate, int64_t ref_best_rd, + int *calc_pred_masked_compound) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int rate_sum; + int64_t dist_sum; + int64_t best_rd_cur = INT64_MAX; + int64_t rd = INT64_MAX; + int tmp_skip_txfm_sb; + int64_t tmp_skip_sse_sb; + const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type; + + if (*calc_pred_masked_compound) { + get_inter_predictors_masked_compound(cpi, x, bsize, mi_row, mi_col, preds0, + preds1, residual1, diff10, strides); + *calc_pred_masked_compound = 0; + } + + best_rd_cur = + pick_interinter_mask(cpi, x, bsize, *preds0, *preds1, residual1, diff10); + *rs2 += get_interinter_compound_mask_rate(x, mbmi); + best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0); + + // Although the true rate_mv might be different after motion search, but it + // is unlikely to be the best mode considering the transform rd cost and other + // mode overhead cost + int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0); + if (mode_rd > ref_best_rd) return INT64_MAX; + + if (have_newmv_in_inter_mode(this_mode) && compound_type == COMPOUND_WEDGE) { + *out_rate_mv = interinter_compound_motion_search(cpi, x, cur_mv, bsize, + this_mode, mi_row, mi_col); + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); + model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); + if (rd >= best_rd_cur) { + mbmi->mv[0].as_int = cur_mv[0].as_int; + mbmi->mv[1].as_int = cur_mv[1].as_int; + *out_rate_mv = rate_mv; + av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, + preds1, strides); + } + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); + best_rd_cur = rd; + + } else { + av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, + preds1, strides); + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rs2 + rate_mv + rate_sum, dist_sum); + best_rd_cur = rd; + } + return best_rd_cur; +} + +typedef struct { + // OBMC secondary prediction buffers and respective strides + uint8_t *above_pred_buf[MAX_MB_PLANE]; + int above_pred_stride[MAX_MB_PLANE]; + uint8_t *left_pred_buf[MAX_MB_PLANE]; + int left_pred_stride[MAX_MB_PLANE]; + int_mv (*single_newmv)[REF_FRAMES]; + // Pointer to array of motion vectors to use for each ref and their rates + // Should point to first of 2 arrays in 2D array + int (*single_newmv_rate)[REF_FRAMES]; + int (*single_newmv_valid)[REF_FRAMES]; + // Pointer to array of predicted rate-distortion + // Should point to first of 2 arrays in 2D array + int64_t (*modelled_rd)[MAX_REF_MV_SERCH][REF_FRAMES]; + InterpFilter single_filter[MB_MODE_COUNT][REF_FRAMES]; + int ref_frame_cost; + int single_comp_cost; + int64_t (*simple_rd)[MAX_REF_MV_SERCH][REF_FRAMES]; + int skip_motion_mode; + INTERINTRA_MODE *inter_intra_mode; +} HandleInterModeArgs; + +/* If the current mode shares the same mv with other modes with higher cost, + * skip this mode. */ +static int skip_repeated_mv(const AV1_COMMON *const cm, + const MACROBLOCK *const x, + PREDICTION_MODE this_mode, + const MV_REFERENCE_FRAME ref_frames[2], + InterModeSearchState *search_state) { + const int is_comp_pred = ref_frames[1] > INTRA_FRAME; + const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames); + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; + PREDICTION_MODE compare_mode = MB_MODE_COUNT; + if (!is_comp_pred) { + if (this_mode == NEARMV) { + if (ref_mv_count == 0) { + // NEARMV has the same motion vector as NEARESTMV + compare_mode = NEARESTMV; + } + if (ref_mv_count == 1 && + cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { + // NEARMV has the same motion vector as GLOBALMV + compare_mode = GLOBALMV; + } + } + if (this_mode == GLOBALMV) { + if (ref_mv_count == 0 && + cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { + // GLOBALMV has the same motion vector as NEARESTMV + compare_mode = NEARESTMV; + } + if (ref_mv_count == 1) { + // GLOBALMV has the same motion vector as NEARMV + compare_mode = NEARMV; + } + } + + if (compare_mode != MB_MODE_COUNT) { + // Use modelled_rd to check whether compare mode was searched + if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] != + INT64_MAX) { + const int16_t mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames); + const int compare_cost = cost_mv_ref(x, compare_mode, mode_ctx); + const int this_cost = cost_mv_ref(x, this_mode, mode_ctx); + + // Only skip if the mode cost is larger than compare mode cost + if (this_cost > compare_cost) { + search_state->modelled_rd[this_mode][0][ref_frames[0]] = + search_state->modelled_rd[compare_mode][0][ref_frames[0]]; + return 1; + } + } + } + } + return 0; +} + +static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv, + const AV1_COMMON *cm, + const MACROBLOCK *x) { + const MACROBLOCKD *const xd = &x->e_mbd; + *out_mv = in_mv; + lower_mv_precision(&out_mv->as_mv, cm->allow_high_precision_mv, + cm->cur_frame_force_integer_mv); + clamp_mv2(&out_mv->as_mv, xd); + return !mv_check_bounds(&x->mv_limits, &out_mv->as_mv); +} + +static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, + const BLOCK_SIZE bsize, int_mv *cur_mv, + const int mi_row, const int mi_col, + int *const rate_mv, + HandleInterModeArgs *const args) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + const int refs[2] = { mbmi->ref_frame[0], + mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; + const int ref_mv_idx = mbmi->ref_mv_idx; + int i; + + (void)args; + + if (is_comp_pred) { + if (this_mode == NEW_NEWMV) { + cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; + cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; + + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + joint_motion_search(cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, NULL, + 0, rate_mv, 0); + } else { + *rate_mv = 0; + for (i = 0; i < 2; ++i) { + const int_mv ref_mv = av1_get_ref_mv(x, i); + av1_set_mvcost(x, i, mbmi->ref_mv_idx); + *rate_mv += + av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + } + } + } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { + cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + compound_single_motion_search_interinter( + cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1); + } else { + av1_set_mvcost(x, 1, + mbmi->ref_mv_idx + (this_mode == NEAR_NEWMV ? 1 : 0)); + const int_mv ref_mv = av1_get_ref_mv(x, 1); + *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + } else { + assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); + cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + compound_single_motion_search_interinter( + cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0); + } else { + const int_mv ref_mv = av1_get_ref_mv(x, 0); + av1_set_mvcost(x, 0, + mbmi->ref_mv_idx + (this_mode == NEW_NEARMV ? 1 : 0)); + *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + } + } else { + single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv); + if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; + + args->single_newmv[ref_mv_idx][refs[0]] = x->best_mv; + args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv; + args->single_newmv_valid[ref_mv_idx][refs[0]] = 1; + + cur_mv[0].as_int = x->best_mv.as_int; + +#if USE_DISCOUNT_NEWMV_TEST + // Estimate the rate implications of a new mv but discount this + // under certain circumstances where we want to help initiate a weak + // motion field, where the distortion gain for a single block may not + // be enough to overcome the cost of a new mv. + if (discount_newmv_test(cpi, x, this_mode, x->best_mv)) { + *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1); + } +#endif + } + + return 0; +} + +static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2], + int num_planes) { + const BUFFER_SET *buf0 = dst_bufs[0]; + dst_bufs[0] = dst_bufs[1]; + dst_bufs[1] = buf0; + restore_dst_buf(xd, *dst_bufs[0], num_planes); +} + +static INLINE int get_switchable_rate(MACROBLOCK *const x, + const InterpFilters filters, + const int ctx[2]) { + int inter_filter_cost; + const InterpFilter filter0 = av1_extract_interp_filter(filters, 0); + const InterpFilter filter1 = av1_extract_interp_filter(filters, 1); + inter_filter_cost = x->switchable_interp_costs[ctx[0]][filter0]; + inter_filter_cost += x->switchable_interp_costs[ctx[1]][filter1]; + return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; +} + +// calculate the rdcost of given interpolation_filter +static INLINE int64_t interpolation_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], int filter_idx, + const int switchable_ctx[2], const int skip_pred, int *rate, + int64_t *dist) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int tmp_rate[2], tmp_skip_sb[2] = { 1, 1 }; + int64_t tmp_dist[2], tmp_skip_sse[2] = { 0, 0 }; + + const InterpFilters last_best = mbmi->interp_filters; + mbmi->interp_filters = filter_sets[filter_idx]; + const int tmp_rs = + get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); + + assert(skip_pred != 2); + assert((skip_pred >= 0) && (skip_pred <= cpi->default_interp_skip_flags)); + assert(rate[0] >= 0); + assert(dist[0] >= 0); + assert((skip_txfm_sb[0] == 0) || (skip_txfm_sb[0] == 1)); + assert(skip_sse_sb[0] >= 0); + assert(rate[1] >= 0); + assert(dist[1] >= 0); + assert((skip_txfm_sb[1] == 0) || (skip_txfm_sb[1] == 1)); + assert(skip_sse_sb[1] >= 0); + + if (skip_pred != cpi->default_interp_skip_flags) { + if (skip_pred != DEFAULT_LUMA_INTERP_SKIP_FLAG) { + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); +#if CONFIG_COLLECT_RD_STATS == 3 + RD_STATS rd_stats_y; + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX); + PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 3 + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], + &tmp_skip_sb[0], &tmp_skip_sse[0], NULL, NULL, NULL); + tmp_rate[1] = tmp_rate[0]; + tmp_dist[1] = tmp_dist[0]; + } else { + // only luma MC is skipped + tmp_rate[1] = rate[0]; + tmp_dist[1] = dist[0]; + } + if (num_planes > 1) { + for (int plane = 1; plane < num_planes; ++plane) { + int tmp_rate_uv, tmp_skip_sb_uv; + int64_t tmp_dist_uv, tmp_skip_sse_uv; + int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); + if (tmp_rd >= *rd) { + mbmi->interp_filters = last_best; + return 0; + } + av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, orig_dst, bsize, + plane); + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, plane, plane, mi_row, mi_col, &tmp_rate_uv, + &tmp_dist_uv, &tmp_skip_sb_uv, &tmp_skip_sse_uv, NULL, NULL, NULL); + tmp_rate[1] = + (int)AOMMIN(((int64_t)tmp_rate[1] + (int64_t)tmp_rate_uv), INT_MAX); + tmp_dist[1] += tmp_dist_uv; + tmp_skip_sb[1] &= tmp_skip_sb_uv; + tmp_skip_sse[1] += tmp_skip_sse_uv; + } + } + } else { + // both luma and chroma MC is skipped + tmp_rate[1] = rate[1]; + tmp_dist[1] = dist[1]; + } + int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); + + if (tmp_rd < *rd) { + *rd = tmp_rd; + *switchable_rate = tmp_rs; + if (skip_pred != cpi->default_interp_skip_flags) { + if (skip_pred == 0) { + // Overwrite the data as current filter is the best one + tmp_skip_sb[1] = tmp_skip_sb[0] & tmp_skip_sb[1]; + tmp_skip_sse[1] = tmp_skip_sse[0] + tmp_skip_sse[1]; + memcpy(rate, tmp_rate, sizeof(*rate) * 2); + memcpy(dist, tmp_dist, sizeof(*dist) * 2); + memcpy(skip_txfm_sb, tmp_skip_sb, sizeof(*skip_txfm_sb) * 2); + memcpy(skip_sse_sb, tmp_skip_sse, sizeof(*skip_sse_sb) * 2); + // As luma MC data is computed, no need to recompute after the search + x->recalc_luma_mc_data = 0; + } else if (skip_pred == DEFAULT_LUMA_INTERP_SKIP_FLAG) { + // As luma MC data is not computed, update of luma data can be skipped + rate[1] = tmp_rate[1]; + dist[1] = tmp_dist[1]; + skip_txfm_sb[1] = skip_txfm_sb[0] & tmp_skip_sb[1]; + skip_sse_sb[1] = skip_sse_sb[0] + tmp_skip_sse[1]; + // As luma MC data is not recomputed and current filter is the best, + // indicate the possibility of recomputing MC data + // If current buffer contains valid MC data, toggle to indicate that + // luma MC data needs to be recomputed + x->recalc_luma_mc_data ^= 1; + } + swap_dst_buf(xd, dst_bufs, num_planes); + } + return 1; + } + mbmi->interp_filters = last_best; + return 0; +} + +// Find the best rd filter in horizontal direction +static INLINE int find_best_horiz_interp_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], + const int switchable_ctx[2], const int skip_hor, int *rate, int64_t *dist, + int best_dual_mode) { + int i; + const int bw = block_size_wide[bsize]; + assert(best_dual_mode == 0); + if ((bw <= 4) && (skip_hor != cpi->default_interp_skip_flags)) { + int skip_pred = cpi->default_interp_skip_flags; + // Process the filters in reverse order to enable reusing rate and + // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP + for (i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) { + if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_pred, rate, + dist)) { + best_dual_mode = i; + } + skip_pred = skip_hor; + } + } else { + for (i = 1; i < SWITCHABLE_FILTERS; ++i) { + if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_hor, rate, + dist)) { + best_dual_mode = i; + } + } + } + return best_dual_mode; +} + +// Find the best rd filter in vertical direction +static INLINE void find_best_vert_interp_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], + const int switchable_ctx[2], const int skip_ver, int *rate, int64_t *dist, + int best_dual_mode, int filter_set_size) { + int i; + const int bh = block_size_high[bsize]; + if ((bh <= 4) && (skip_ver != cpi->default_interp_skip_flags)) { + int skip_pred = cpi->default_interp_skip_flags; + // Process the filters in reverse order to enable reusing rate and + // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP + assert(filter_set_size == DUAL_FILTER_SET_SIZE); + for (i = (filter_set_size - SWITCHABLE_FILTERS + best_dual_mode); + i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) { + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_pred, rate, + dist); + skip_pred = skip_ver; + } + } else { + for (i = best_dual_mode + SWITCHABLE_FILTERS; i < filter_set_size; + i += SWITCHABLE_FILTERS) { + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_ver, rate, + dist); + } + } +} + +// check if there is saved result match with this search +static INLINE int is_interp_filter_match(const INTERPOLATION_FILTER_STATS *st, + MB_MODE_INFO *const mi) { + for (int i = 0; i < 2; ++i) { + if ((st->ref_frames[i] != mi->ref_frame[i]) || + (st->mv[i].as_int != mi->mv[i].as_int)) { + return 0; + } + } + if (has_second_ref(mi) && st->comp_type != mi->interinter_comp.type) return 0; + return 1; +} + +static INLINE int find_interp_filter_in_stats(MACROBLOCK *x, + MB_MODE_INFO *const mbmi) { + const int comp_idx = mbmi->compound_idx; + const int offset = x->interp_filter_stats_idx[comp_idx]; + for (int j = 0; j < offset; ++j) { + const INTERPOLATION_FILTER_STATS *st = &x->interp_filter_stats[comp_idx][j]; + if (is_interp_filter_match(st, mbmi)) { + mbmi->interp_filters = st->filters; + return j; + } + } + return -1; // no match result found +} + +static INLINE void save_interp_filter_search_stat(MACROBLOCK *x, + MB_MODE_INFO *const mbmi) { + const int comp_idx = mbmi->compound_idx; + const int offset = x->interp_filter_stats_idx[comp_idx]; + if (offset < MAX_INTERP_FILTER_STATS) { + INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters, + { mbmi->mv[0], mbmi->mv[1] }, + { mbmi->ref_frame[0], + mbmi->ref_frame[1] }, + mbmi->interinter_comp.type }; + x->interp_filter_stats[comp_idx][offset] = stat; + x->interp_filter_stats_idx[comp_idx]++; + } +} + +static int64_t interpolation_filter_search( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, const BUFFER_SET *const tmp_dst, + BUFFER_SET *const orig_dst, InterpFilter (*const single_filter)[REF_FRAMES], + int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const int skip_build_pred, + HandleInterModeArgs *args, int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int need_search = + av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); + int i; + // Index 0 corresponds to luma rd data and index 1 corresponds to cummulative + // data of all planes + int tmp_rate[2] = { 0, 0 }; + int64_t tmp_dist[2] = { 0, 0 }; + int best_skip_txfm_sb[2] = { 1, 1 }; + int64_t best_skip_sse_sb[2] = { 0, 0 }; + const int ref_frame = xd->mi[0]->ref_frame[0]; + + (void)single_filter; + int match_found = -1; + const InterpFilter assign_filter = cm->interp_filter; + if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { + match_found = find_interp_filter_in_stats(x, mbmi); + } + if (!need_search || match_found == -1) { + set_default_interp_filters(mbmi, assign_filter); + } + int switchable_ctx[2]; + switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0); + switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1); + *switchable_rate = + get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); + if (!skip_build_pred) + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + +#if CONFIG_COLLECT_RD_STATS == 3 + RD_STATS rd_stats_y; + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX); + PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 3 + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], + &best_skip_txfm_sb[0], &best_skip_sse_sb[0], NULL, NULL, NULL); + if (num_planes > 1) + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 1, num_planes - 1, mi_row, mi_col, &tmp_rate[1], + &tmp_dist[1], &best_skip_txfm_sb[1], &best_skip_sse_sb[1], NULL, NULL, + NULL); + tmp_rate[1] = + (int)AOMMIN((int64_t)tmp_rate[0] + (int64_t)tmp_rate[1], INT_MAX); + assert(tmp_rate[1] >= 0); + tmp_dist[1] = tmp_dist[0] + tmp_dist[1]; + best_skip_txfm_sb[1] = best_skip_txfm_sb[0] & best_skip_txfm_sb[1]; + best_skip_sse_sb[1] = best_skip_sse_sb[0] + best_skip_sse_sb[1]; + *rd = RDCOST(x->rdmult, (*switchable_rate + tmp_rate[1]), tmp_dist[1]); + *skip_txfm_sb = best_skip_txfm_sb[1]; + *skip_sse_sb = best_skip_sse_sb[1]; + x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); + + if (assign_filter != SWITCHABLE || match_found != -1) { + return 0; + } + if (!need_search) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter(EIGHTTAP_REGULAR)); + return 0; + } + if (args->modelled_rd != NULL) { + if (has_second_ref(mbmi)) { + const int ref_mv_idx = mbmi->ref_mv_idx; + int refs[2] = { mbmi->ref_frame[0], + (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; + const int mode0 = compound_ref0_mode(mbmi->mode); + const int mode1 = compound_ref1_mode(mbmi->mode); + const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], + args->modelled_rd[mode1][ref_mv_idx][refs[1]]); + if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) { + return INT64_MAX; + } + } + } + + x->recalc_luma_mc_data = 0; + // skip_flag=xx (in binary form) + // Setting 0th flag corresonds to skipping luma MC and setting 1st bt + // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip + // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only" + // Skip_flag=2 is not a valid case + // skip_flag=3 corresponds to "Skip both luma and chroma MC" + int skip_hor = cpi->default_interp_skip_flags; + int skip_ver = cpi->default_interp_skip_flags; + const int is_compound = has_second_ref(mbmi); + assert(is_intrabc_block(mbmi) == 0); + for (int j = 0; j < 1 + is_compound; ++j) { + const RefBuffer *ref_buf = &cm->frame_refs[mbmi->ref_frame[j] - LAST_FRAME]; + const struct scale_factors *const sf = &ref_buf->sf; + // TODO(any): Refine skip flag calculation considering scaling + if (av1_is_scaled(sf)) { + skip_hor = 0; + skip_ver = 0; + break; + } + const MV mv = mbmi->mv[j].as_mv; + int skip_hor_plane = 0; + int skip_ver_plane = 0; + for (int k = 0; k < AOMMAX(1, (num_planes - 1)); ++k) { + struct macroblockd_plane *const pd = &xd->plane[k]; + const int bw = pd->width; + const int bh = pd->height; + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; + const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; + skip_hor_plane |= ((sub_x == 0) << k); + skip_ver_plane |= ((sub_y == 0) << k); + } + skip_hor = skip_hor & skip_hor_plane; + skip_ver = skip_ver & skip_ver_plane; + // It is not valid that "luma MV is sub-pel, whereas chroma MV is not" + assert(skip_hor != 2); + assert(skip_ver != 2); + } + // When compond prediction type is compound segment wedge, luma MC and chroma + // MC need to go hand in hand as mask generated during luma MC is reuired for + // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during + // vertical filter decision may be incorrect as temporary MC evaluation + // overwrites the mask. Make skip_ver as 0 for this case so that mask is + // populated during luma MC + if (is_compound && mbmi->compound_idx == 1 && + mbmi->interinter_comp.type == COMPOUND_DIFFWTD) { + assert(mbmi->comp_group_idx == 1); + if (skip_hor == 0 && skip_ver == 1) skip_ver = 0; + } + // do interp_filter search + const int filter_set_size = DUAL_FILTER_SET_SIZE; + restore_dst_buf(xd, *tmp_dst, num_planes); + const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst }; + if (cpi->sf.use_fast_interpolation_filter_search && + cm->seq_params.enable_dual_filter) { + // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR + int best_dual_mode = 0; + // Find best of {R}x{R,Sm,Sh} + // EIGHTTAP_REGULAR mode is calculated beforehand + best_dual_mode = find_best_horiz_interp_filter_rd( + x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate, + best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_hor, + tmp_rate, tmp_dist, best_dual_mode); + + // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes + find_best_vert_interp_filter_rd( + x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate, + best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_ver, + tmp_rate, tmp_dist, best_dual_mode, filter_set_size); + } else { + // EIGHTTAP_REGULAR mode is calculated beforehand + for (i = 1; i < filter_set_size; ++i) { + if (cm->seq_params.enable_dual_filter == 0) { + const int16_t filter_y = filter_sets[i] & 0xffff; + const int16_t filter_x = filter_sets[i] >> 16; + if (filter_x != filter_y) continue; + } + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, best_skip_txfm_sb, + best_skip_sse_sb, dst_bufs, i, switchable_ctx, 0, + tmp_rate, tmp_dist); + assert(x->recalc_luma_mc_data == 0); + } + } + swap_dst_buf(xd, dst_bufs, num_planes); + // Recompute final MC data if required + if (x->recalc_luma_mc_data == 1) { + // Recomputing final luma MC data is required only if the same was skipped + // in either of the directions Condition below is necessary, but not + // sufficient + assert((skip_hor == 1) || (skip_ver == 1)); + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + *skip_txfm_sb = best_skip_txfm_sb[1]; + *skip_sse_sb = best_skip_sse_sb[1]; + x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); + + // save search results + if (cpi->sf.skip_repeat_interpolation_filter_search) { + assert(match_found == -1); + save_interp_filter_search_stat(x, mbmi); + } + return 0; +} + +static int txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int mode_rate, int64_t ref_best_rd) { + /* + * This function combines y and uv planes' transform search processes + * together, when the prediction is generated. It first does subtration to + * obtain the prediction error. Then it calls + * select_tx_type_yrd/super_block_yrd and inter_block_uvrd sequentially and + * handles the early terminations happen in those functions. At the end, it + * computes the rd_stats/_y/_uv accordingly. + */ + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int skip_txfm_sb = 0; + const int num_planes = av1_num_planes(cm); + const int ref_frame_1 = mbmi->ref_frame[1]; + const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0); + const int64_t rd_thresh = + ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd; + const int skip_ctx = av1_get_skip_context(xd); + const int64_t min_header_rate = + mode_rate + AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]); + // Account for minimum skip and non_skip rd. + // Eventually either one of them will be added to mode_rate + const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0); + + if (min_header_rd_possible > ref_best_rd) { + av1_invalid_rd_stats(rd_stats_y); + av1_invalid_rd_stats(rd_stats); + return 0; + } + + av1_init_rd_stats(rd_stats); + av1_init_rd_stats(rd_stats_y); + av1_init_rd_stats(rd_stats_uv); + rd_stats->rate = mode_rate; + + if (!cpi->common.all_lossless) + check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb); + if (!skip_txfm_sb) { + int64_t non_skip_rdcosty = INT64_MAX; + int64_t skip_rdcosty = INT64_MAX; + int64_t min_rdcosty = INT64_MAX; + int is_cost_valid_uv = 0; + + // cost and distortion + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // Motion mode + select_tx_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col, rd_thresh); +#if CONFIG_COLLECT_RD_STATS == 2 + PrintPredictionUnitStats(cpi, x, rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 2 + } else { + super_block_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats_y->skip); + } + + if (rd_stats_y->rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + // TODO(angiebird): check if we need this + // restore_dst_buf(xd, *orig_dst, num_planes); + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + + av1_merge_rd_stats(rd_stats, rd_stats_y); + + non_skip_rdcosty = RDCOST( + x->rdmult, rd_stats->rate + x->skip_cost[skip_ctx][0], rd_stats->dist); + skip_rdcosty = + RDCOST(x->rdmult, mode_rate + x->skip_cost[skip_ctx][1], rd_stats->sse); + min_rdcosty = AOMMIN(non_skip_rdcosty, skip_rdcosty); + + if (min_rdcosty > ref_best_rd) { + int64_t tokenonly_rdy = + AOMMIN(RDCOST(x->rdmult, rd_stats_y->rate, rd_stats_y->dist), + RDCOST(x->rdmult, 0, rd_stats_y->sse)); + // Invalidate rd_stats_y to skip the rest of the motion modes search + if (tokenonly_rdy - (tokenonly_rdy >> cpi->sf.adaptive_txb_search_level) > + rd_thresh) + av1_invalid_rd_stats(rd_stats_y); + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + + if (num_planes > 1) { + /* clang-format off */ + is_cost_valid_uv = + inter_block_uvrd(cpi, x, rd_stats_uv, bsize, + ref_best_rd - non_skip_rdcosty, + ref_best_rd - skip_rdcosty, FTXS_NONE); + if (!is_cost_valid_uv) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + /* clang-format on */ + av1_merge_rd_stats(rd_stats, rd_stats_uv); + } else { + av1_init_rd_stats(rd_stats_uv); + } + if (rd_stats->skip) { + rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + mbmi->skip = 0; + // here mbmi->skip temporarily plays a role as what this_skip2 does + + int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (tmprd > ref_best_rd) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + } else if (!xd->lossless[mbmi->segment_id] && + (RDCOST(x->rdmult, + rd_stats_y->rate + rd_stats_uv->rate + + x->skip_cost[skip_ctx][0], + rd_stats->dist) >= + RDCOST(x->rdmult, x->skip_cost[skip_ctx][1], rd_stats->sse))) { + rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + rd_stats->dist = rd_stats->sse; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + mbmi->skip = 1; + } else { + rd_stats->rate += x->skip_cost[skip_ctx][0]; + mbmi->skip = 0; + } + } else { + x->skip = 1; + mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + // The cost of skip bit needs to be added. + mbmi->skip = 0; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + + rd_stats->dist = 0; + rd_stats->sse = 0; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + rd_stats->skip = 1; + int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (tmprd > ref_best_rd) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + } + return 1; +} + +static int handle_inter_intra_mode(const AV1_COMP *const cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, + int mi_row, int mi_col, MB_MODE_INFO *mbmi, + HandleInterModeArgs *args, + int64_t ref_best_rd, int *rate_mv, + int *tmp_rate2, BUFFER_SET *orig_dst) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + + INTERINTRA_MODE best_interintra_mode = II_DC_PRED; + int64_t rd, best_interintra_rd = INT64_MAX; + int rmode, rate_sum; + int64_t dist_sum; + int tmp_rate_mv = 0; + int tmp_skip_txfm_sb; + int bw = block_size_wide[bsize]; + int64_t tmp_skip_sse_sb; + DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]); + DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]); + uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_); + uint8_t *intrapred = get_buf_by_bd(xd, intrapred_); + const int *const interintra_mode_cost = + x->interintra_mode_cost[size_group_lookup[bsize]]; + const int_mv mv0 = mbmi->mv[0]; + const int is_wedge_used = is_interintra_wedge_used(bsize); + int rwedge = is_wedge_used ? x->wedge_interintra_cost[bsize][0] : 0; + mbmi->ref_frame[1] = NONE_FRAME; + xd->plane[0].dst.buf = tmp_buf; + xd->plane[0].dst.stride = bw; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize); + + restore_dst_buf(xd, *orig_dst, num_planes); + mbmi->ref_frame[1] = INTRA_FRAME; + mbmi->use_wedge_interintra = 0; + best_interintra_mode = args->inter_intra_mode[mbmi->ref_frame[0]]; + int j = 0; + if (cpi->sf.reuse_inter_intra_mode == 0 || + best_interintra_mode == INTERINTRA_MODES) { + for (j = 0; j < INTERINTRA_MODES; ++j) { + mbmi->interintra_mode = (INTERINTRA_MODE)j; + rmode = interintra_mode_cost[mbmi->interintra_mode]; + av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, + intrapred, bw); + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + model_rd_sb_fn[MODELRD_TYPE_INTERINTRA]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum); + if (rd < best_interintra_rd) { + best_interintra_rd = rd; + best_interintra_mode = mbmi->interintra_mode; + } + } + args->inter_intra_mode[mbmi->ref_frame[0]] = best_interintra_mode; + } + if (j == 0 || best_interintra_mode != II_SMOOTH_PRED) { + mbmi->interintra_mode = best_interintra_mode; + rmode = interintra_mode_cost[mbmi->interintra_mode]; + av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, + intrapred, bw); + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + } + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rate_mv + rmode + rate_sum + rwedge, dist_sum); + best_interintra_rd = rd; + if (ref_best_rd < INT64_MAX && (best_interintra_rd >> 1) > ref_best_rd) { + return -1; + } + if (is_wedge_used) { + int64_t best_interintra_rd_nowedge = rd; + int64_t best_interintra_rd_wedge = INT64_MAX; + int_mv tmp_mv; + // Disable wedge search if source variance is small + if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) { + mbmi->use_wedge_interintra = 1; + + rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + + x->wedge_interintra_cost[bsize][1]; + + best_interintra_rd_wedge = + pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); + + best_interintra_rd_wedge += + RDCOST(x->rdmult, rmode + *rate_mv + rwedge, 0); + rd = INT64_MAX; + // Refine motion vector. + if (have_newmv_in_inter_mode(mbmi->mode)) { + // get negative of mask + const uint8_t *mask = av1_get_contiguous_soft_mask( + mbmi->interintra_wedge_index, 1, bsize); + tmp_mv = mbmi->mv[0]; + compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row, + mi_col, intrapred, mask, bw, &tmp_rate_mv, + 0); + if (mbmi->mv[0].as_int != tmp_mv.as_int) { + mbmi->mv[0].as_int = tmp_mv.as_int; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, + bsize); + model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge, + dist_sum); + } + } + if (rd >= best_interintra_rd_wedge) { + tmp_mv.as_int = mv0.as_int; + tmp_rate_mv = *rate_mv; + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + } + // Evaluate closer to true rd + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rate_sum, + dist_sum); + best_interintra_rd_wedge = rd; + if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { + mbmi->use_wedge_interintra = 1; + mbmi->mv[0].as_int = tmp_mv.as_int; + *tmp_rate2 += tmp_rate_mv - *rate_mv; + *rate_mv = tmp_rate_mv; + } else { + mbmi->use_wedge_interintra = 0; + mbmi->mv[0].as_int = mv0.as_int; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + } else { + mbmi->use_wedge_interintra = 0; + } + } // if (is_interintra_wedge_used(bsize)) + if (num_planes > 1) { + av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + return 0; +} + +// TODO(afergs): Refactor the MBMI references in here - there's four +// TODO(afergs): Refactor optional args - add them to a struct or remove +static int64_t motion_mode_rd(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int *disable_skip, int mi_row, int mi_col, + HandleInterModeArgs *const args, + int64_t ref_best_rd, const int *refs, + int *rate_mv, BUFFER_SET *orig_dst +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + , + TileDataEnc *tile_data, int64_t *best_est_rd, + int do_tx_search, InterModesInfo *inter_modes_info +#endif +) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + const int rate2_nocoeff = rd_stats->rate; + int best_xskip, best_disable_skip = 0; + RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; + MB_MODE_INFO base_mbmi, best_mbmi; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int rate_mv0 = *rate_mv; + + int interintra_allowed = cm->seq_params.enable_interintra_compound && + is_interintra_allowed(mbmi) && mbmi->compound_idx; + int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE]; + + assert(mbmi->ref_frame[1] != INTRA_FRAME); + const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1]; + av1_invalid_rd_stats(&best_rd_stats); + aom_clear_system_state(); + mbmi->num_proj_ref = 1; // assume num_proj_ref >=1 + MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; + if (cm->switchable_motion_mode) { + last_motion_mode_allowed = motion_mode_allowed(xd->global_motion, xd, mbmi, + cm->allow_warped_motion); + } + if (last_motion_mode_allowed == WARPED_CAUSAL) { + mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0); + } + int total_samples = mbmi->num_proj_ref; + if (total_samples == 0) { + last_motion_mode_allowed = OBMC_CAUSAL; + } + base_mbmi = *mbmi; + + const int switchable_rate = + av1_is_interp_needed(xd) ? av1_get_switchable_rate(cm, x, xd) : 0; + int64_t best_rd = INT64_MAX; + int best_rate_mv = rate_mv0; + for (int mode_index = (int)SIMPLE_TRANSLATION; + mode_index <= (int)last_motion_mode_allowed + interintra_allowed; + mode_index++) { + if (args->skip_motion_mode && mode_index) continue; + int64_t tmp_rd = INT64_MAX; + int tmp_rate2 = rate2_nocoeff; + int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; + int skip_txfm_sb = 0; + int tmp_rate_mv = rate_mv0; + + *mbmi = base_mbmi; + if (is_interintra_mode) { + mbmi->motion_mode = SIMPLE_TRANSLATION; + } else { + mbmi->motion_mode = (MOTION_MODE)mode_index; + assert(mbmi->ref_frame[1] != INTRA_FRAME); + } + + if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) { + // SIMPLE_TRANSLATION mode: no need to recalculate. + // The prediction is calculated before motion_mode_rd() is called in + // handle_inter_mode() + } else if (mbmi->motion_mode == OBMC_CAUSAL) { + uint32_t cur_mv = mbmi->mv[0].as_int; + assert(!is_comp_pred); + if (have_newmv_in_inter_mode(this_mode)) { + single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv); + mbmi->mv[0].as_int = x->best_mv.as_int; +#if USE_DISCOUNT_NEWMV_TEST + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); + } +#endif + tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; + } + if (mbmi->mv[0].as_int != cur_mv) { + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + av1_build_obmc_inter_prediction( + cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride, + args->left_pred_buf, args->left_pred_stride); + } else if (mbmi->motion_mode == WARPED_CAUSAL) { + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + mbmi->motion_mode = WARPED_CAUSAL; + mbmi->wm_params.wmtype = DEFAULT_WMTYPE; + mbmi->interp_filters = av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter)); + + memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); + memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); + // Select the samples according to motion vector difference + if (mbmi->num_proj_ref > 1) { + mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, + mbmi->num_proj_ref, bsize); + } + + if (!find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, + mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, + &mbmi->wm_params, mi_row, mi_col)) { + // Refine MV for NEWMV mode + assert(!is_comp_pred); + if (have_newmv_in_inter_mode(this_mode)) { + const int_mv mv0 = mbmi->mv[0]; + const WarpedMotionParams wm_params0 = mbmi->wm_params; + int num_proj_ref0 = mbmi->num_proj_ref; + + // Refine MV in a small range. + av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0, + total_samples); + + // Keep the refined MV and WM parameters. + if (mv0.as_int != mbmi->mv[0].as_int) { + const int ref = refs[0]; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + tmp_rate_mv = + av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + + if (cpi->sf.adaptive_motion_search) + x->pred_mv[ref] = mbmi->mv[0].as_mv; + +#if USE_DISCOUNT_NEWMV_TEST + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); + } +#endif + tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; + } else { + // Restore the old MV and WM parameters. + mbmi->mv[0] = mv0; + mbmi->wm_params = wm_params0; + mbmi->num_proj_ref = num_proj_ref0; + } + } + + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + } else { + continue; + } + } else if (is_interintra_mode) { + const int ret = handle_inter_intra_mode( + cpi, x, bsize, mi_row, mi_col, mbmi, args, ref_best_rd, &tmp_rate_mv, + &tmp_rate2, orig_dst); + if (ret < 0) continue; + } + + if (!cpi->common.all_lossless) + check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb); + + x->skip = 0; + + rd_stats->dist = 0; + rd_stats->sse = 0; + rd_stats->skip = 1; + rd_stats->rate = tmp_rate2; + if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate; + if (interintra_allowed) { + rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]] + [mbmi->ref_frame[1] == INTRA_FRAME]; + if (mbmi->ref_frame[1] == INTRA_FRAME) { + rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]] + [mbmi->interintra_mode]; + if (is_interintra_wedge_used(bsize)) { + rd_stats->rate += + x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra]; + if (mbmi->use_wedge_interintra) { + rd_stats->rate += + av1_cost_literal(get_interintra_wedge_bits(bsize)); + } + } + } + } + if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && + (mbmi->ref_frame[1] != INTRA_FRAME)) { + if (last_motion_mode_allowed == WARPED_CAUSAL) { + rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode]; + } else { + rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode]; + } + } + + if (!skip_txfm_sb) { +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + int64_t est_rd = 0; + int est_skip = 0; + if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 && + cm->tile_rows == 1) { + InterModeRdModel *md = &tile_data->inter_mode_rd_models[mbmi->sb_type]; + if (md->ready) { + const int64_t curr_sse = get_sse(cpi, x); + est_rd = get_est_rd(tile_data, mbmi->sb_type, x->rdmult, curr_sse, + rd_stats->rate); + est_skip = est_rd * 0.8 > *best_est_rd; + if (est_skip) { + mbmi->ref_frame[1] = ref_frame_1; + continue; + } else { + if (est_rd < *best_est_rd) { + *best_est_rd = est_rd; + } + } + } + } +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + } + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (!do_tx_search) { + const int64_t curr_sse = get_sse(cpi, x); + int est_residue_cost = 0; + int64_t est_dist = 0; + const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse, + &est_residue_cost, &est_dist); + (void)has_est_rd; + assert(has_est_rd); + const int mode_rate = rd_stats->rate; + rd_stats->rate += est_residue_cost; + rd_stats->dist = est_dist; + rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (cm->reference_mode == SINGLE_REFERENCE) { + if (!is_comp_pred) { + inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, + rd_stats->rdcost, mbmi); + } + } else { + inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, + rd_stats->rdcost, mbmi); + } + } else { +#endif + int mode_rate = rd_stats->rate; + if (!txfm_search(cpi, x, bsize, mi_row, mi_col, rd_stats, rd_stats_y, + rd_stats_uv, mode_rate, ref_best_rd)) { + if (rd_stats_y->rate == INT_MAX && mode_index == 0) { + return INT64_MAX; + } + continue; + } + if (!skip_txfm_sb) { + const int64_t curr_rd = + RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (curr_rd < ref_best_rd) { + ref_best_rd = curr_rd; + } + *disable_skip = 0; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (cpi->sf.inter_mode_rd_model_estimation) { + const int skip_ctx = av1_get_skip_context(xd); + inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats->sse, + rd_stats->dist, + rd_stats_y->rate + rd_stats_uv->rate + + x->skip_cost[skip_ctx][mbmi->skip]); + } +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + } else { + *disable_skip = 1; + } +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + } +#endif + + if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { + if (is_nontrans_global_motion(xd, xd->mi[0])) { + mbmi->interp_filters = av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter)); + } + } + + tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (mode_index == 0) + args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd; + if ((mode_index == 0) || (tmp_rd < best_rd)) { + best_mbmi = *mbmi; + best_rd = tmp_rd; + best_rd_stats = *rd_stats; + best_rd_stats_y = *rd_stats_y; + best_rate_mv = tmp_rate_mv; + if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + best_xskip = x->skip; + best_disable_skip = *disable_skip; + if (best_xskip) break; + } + } + mbmi->ref_frame[1] = ref_frame_1; + *rate_mv = best_rate_mv; + if (best_rd == INT64_MAX) { + av1_invalid_rd_stats(rd_stats); + restore_dst_buf(xd, *orig_dst, num_planes); + return INT64_MAX; + } + *mbmi = best_mbmi; + *rd_stats = best_rd_stats; + *rd_stats_y = best_rd_stats_y; + if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + x->skip = best_xskip; + *disable_skip = best_disable_skip; + + restore_dst_buf(xd, *orig_dst, num_planes); + return 0; +} + +static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, + int mi_col, BUFFER_SET *const orig_dst) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + + int64_t total_sse = 0; + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + av1_subtract_plane(x, bsize, plane); + int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh); + sse = sse << 4; + total_sse += sse; + } + const int skip_mode_ctx = av1_get_skip_mode_context(xd); + rd_stats->dist = rd_stats->sse = total_sse; + rd_stats->rate = x->skip_mode_cost[skip_mode_ctx][1]; + rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + + restore_dst_buf(xd, *orig_dst, num_planes); + return 0; +} + +static INLINE int get_ref_mv_offset(PREDICTION_MODE single_mode, + uint8_t ref_mv_idx) { + assert(is_inter_singleref_mode(single_mode)); + int ref_mv_offset; + if (single_mode == NEARESTMV) { + ref_mv_offset = 0; + } else if (single_mode == NEARMV) { + ref_mv_offset = ref_mv_idx + 1; + } else { + ref_mv_offset = -1; + } + return ref_mv_offset; +} + +static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, + int ref_idx, int ref_mv_idx, + const MV_REFERENCE_FRAME *ref_frame, + const MB_MODE_INFO_EXT *mbmi_ext) { + const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); + const int is_comp_pred = ref_frame[1] > INTRA_FRAME; + const PREDICTION_MODE single_mode = + get_single_mode(this_mode, ref_idx, is_comp_pred); + assert(is_inter_singleref_mode(single_mode)); + if (single_mode == NEWMV) { + this_mv->as_int = INVALID_MV; + } else if (single_mode == GLOBALMV) { + *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; + } else { + assert(single_mode == NEARMV || single_mode == NEARESTMV); + const int ref_mv_offset = get_ref_mv_offset(single_mode, ref_mv_idx); + if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) { + assert(ref_mv_offset >= 0); + if (ref_idx == 0) { + *this_mv = + mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv; + } else { + *this_mv = + mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv; + } + } else { + *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; + } + } +} + +// This function update the non-new mv for the current prediction mode +static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode, + const AV1_COMMON *cm, const MACROBLOCK *x) { + const MACROBLOCKD *xd = &x->e_mbd; + const MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + int ret = 1; + for (int i = 0; i < is_comp_pred + 1; ++i) { + int_mv this_mv; + get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, mbmi->ref_frame, + x->mbmi_ext); + const PREDICTION_MODE single_mode = + get_single_mode(this_mode, i, is_comp_pred); + if (single_mode == NEWMV) { + cur_mv[i] = this_mv; + } else { + ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x); + } + } + return ret; +} + +static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi, + const MB_MODE_INFO_EXT *mbmi_ext, + int (*drl_mode_cost0)[2], + int8_t ref_frame_type) { + int cost = 0; + if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { + for (int idx = 0; idx < 2; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx]; + if (mbmi->ref_mv_idx == idx) return cost; + } + } + return cost; + } + + if (have_nearmv_in_inter_mode(mbmi->mode)) { + for (int idx = 1; idx < 3; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)]; + if (mbmi->ref_mv_idx == (idx - 1)) return cost; + } + } + return cost; + } + return cost; +} + +// Struct for buffers used by compound_type_rd() function. +// For sizes and alignment of these arrays, refer to +// alloc_compound_type_rd_buffers() function. +typedef struct { + uint8_t *pred0; + uint8_t *pred1; + int16_t *residual1; // src - pred1 + int16_t *diff10; // pred1 - pred0 + uint8_t *tmp_best_mask_buf; // backup of the best segmentation mask +} CompoundTypeRdBuffers; + +static int compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_col, int mi_row, + int_mv *cur_mv, int masked_compound_used, + BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, + CompoundTypeRdBuffers *buffers, int *rate_mv, + int64_t *rd, RD_STATS *rd_stats, + int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const PREDICTION_MODE this_mode = mbmi->mode; + const int bw = block_size_wide[bsize]; + int rate_sum, rs2; + int64_t dist_sum; + + int_mv best_mv[2]; + int best_tmp_rate_mv = *rate_mv; + int tmp_skip_txfm_sb; + int64_t tmp_skip_sse_sb; + INTERINTER_COMPOUND_DATA best_compound_data; + best_compound_data.type = COMPOUND_AVERAGE; + uint8_t *preds0[1] = { buffers->pred0 }; + uint8_t *preds1[1] = { buffers->pred1 }; + int strides[1] = { bw }; + int tmp_rate_mv; + const int num_pix = 1 << num_pels_log2_lookup[bsize]; + const int mask_len = 2 * num_pix * sizeof(uint8_t); + COMPOUND_TYPE cur_type; + int best_compmode_interinter_cost = 0; + int calc_pred_masked_compound = 1; + + best_mv[0].as_int = cur_mv[0].as_int; + best_mv[1].as_int = cur_mv[1].as_int; + *rd = INT64_MAX; + for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) { + if (cur_type != COMPOUND_AVERAGE && !masked_compound_used) break; + if (!is_interinter_compound_used(cur_type, bsize)) continue; + tmp_rate_mv = *rate_mv; + int64_t best_rd_cur = INT64_MAX; + mbmi->interinter_comp.type = cur_type; + int masked_type_cost = 0; + + const int comp_group_idx_ctx = get_comp_group_idx_context(xd); + const int comp_index_ctx = get_comp_index_context(cm, xd); + mbmi->compound_idx = 1; + if (cur_type == COMPOUND_AVERAGE) { + mbmi->comp_group_idx = 0; + if (masked_compound_used) { + masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][0]; + } + masked_type_cost += x->comp_idx_cost[comp_index_ctx][1]; + rs2 = masked_type_cost; + const int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0); + if (mode_rd < ref_best_rd) { + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + int64_t est_rd = + estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (est_rd != INT64_MAX) + best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum); + } + // use spare buffer for following compound type try + restore_dst_buf(xd, *tmp_dst, 1); + } else { + mbmi->comp_group_idx = 1; + masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][1]; + masked_type_cost += x->compound_type_cost[bsize][cur_type - 1]; + rs2 = masked_type_cost; + if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && + *rd / 3 < ref_best_rd) { + best_rd_cur = build_and_cost_compound_type( + cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst, + &tmp_rate_mv, preds0, preds1, buffers->residual1, buffers->diff10, + strides, mi_row, mi_col, rd_stats->rate, ref_best_rd, + &calc_pred_masked_compound); + } + } + if (best_rd_cur < *rd) { + *rd = best_rd_cur; + best_compound_data = mbmi->interinter_comp; + if (masked_compound_used && cur_type != COMPOUND_TYPES - 1) { + memcpy(buffers->tmp_best_mask_buf, xd->seg_mask, mask_len); + } + best_compmode_interinter_cost = rs2; + if (have_newmv_in_inter_mode(this_mode)) { + if (cur_type == COMPOUND_WEDGE) { + best_tmp_rate_mv = tmp_rate_mv; + best_mv[0].as_int = mbmi->mv[0].as_int; + best_mv[1].as_int = mbmi->mv[1].as_int; + } else { + best_mv[0].as_int = cur_mv[0].as_int; + best_mv[1].as_int = cur_mv[1].as_int; + } + } + } + // reset to original mvs for next iteration + mbmi->mv[0].as_int = cur_mv[0].as_int; + mbmi->mv[1].as_int = cur_mv[1].as_int; + } + if (mbmi->interinter_comp.type != best_compound_data.type) { + mbmi->comp_group_idx = + (best_compound_data.type == COMPOUND_AVERAGE) ? 0 : 1; + mbmi->interinter_comp = best_compound_data; + memcpy(xd->seg_mask, buffers->tmp_best_mask_buf, mask_len); + } + if (have_newmv_in_inter_mode(this_mode)) { + mbmi->mv[0].as_int = best_mv[0].as_int; + mbmi->mv[1].as_int = best_mv[1].as_int; + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + rd_stats->rate += best_tmp_rate_mv - *rate_mv; + *rate_mv = best_tmp_rate_mv; + } + } + restore_dst_buf(xd, *orig_dst, 1); + return best_compmode_interinter_cost; +} + +static INLINE int is_single_newmv_valid(HandleInterModeArgs *args, + MB_MODE_INFO *mbmi, + PREDICTION_MODE this_mode) { + for (int ref_idx = 0; ref_idx < 2; ++ref_idx) { + const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx, 1); + const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx]; + if (single_mode == NEWMV && + args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) { + return 0; + } + } + return 1; +} + +static int get_drl_refmv_count(const MACROBLOCK *const x, + const MV_REFERENCE_FRAME *ref_frame, + PREDICTION_MODE mode) { + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); + const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0; + const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; + const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV); + const int has_drl = + (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1); + const int ref_set = + has_drl ? AOMMIN(MAX_REF_MV_SERCH, ref_mv_count - has_nearmv) : 1; + + return ref_set; +} + +typedef struct { + int64_t rd; + int drl_cost; + int rate_mv; + int_mv mv; +} inter_mode_info; + +static int64_t handle_inter_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int *disable_skip, int mi_row, int mi_col, + HandleInterModeArgs *args, int64_t ref_best_rd, + uint8_t *const tmp_buf, + CompoundTypeRdBuffers *rd_buffers +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + , + TileDataEnc *tile_data, int64_t *best_est_rd, + const int do_tx_search, + InterModesInfo *inter_modes_info +#endif +) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + int i; + int refs[2] = { mbmi->ref_frame[0], + (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; + int rate_mv = 0; + int64_t rd = INT64_MAX; + + // do first prediction into the destination buffer. Do the next + // prediction into a temporary buffer. Then keep track of which one + // of these currently holds the best predictor, and use the other + // one for future predictions. In the end, copy from tmp_buf to + // dst if necessary. + struct macroblockd_plane *p = xd->plane; + BUFFER_SET orig_dst = { + { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, + { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, + }; + const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, + tmp_buf + 2 * MAX_SB_SQUARE }, + { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; + + int skip_txfm_sb = 0; + int64_t skip_sse_sb = INT64_MAX; + int16_t mode_ctx; + const int masked_compound_used = is_any_masked_compound_used(bsize) && + cm->seq_params.enable_masked_compound; + int64_t ret_val = INT64_MAX; + const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; + int64_t best_rd = INT64_MAX; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + MB_MODE_INFO best_mbmi = *mbmi; + int best_disable_skip; + int best_xskip; + int64_t newmv_ret_val = INT64_MAX; + int_mv backup_mv[2] = { { 0 } }; + int backup_rate_mv = 0; + inter_mode_info mode_info[MAX_REF_MV_SERCH]; + + int comp_idx; + const int search_jnt_comp = is_comp_pred & cm->seq_params.enable_jnt_comp & + (mbmi->mode != GLOBAL_GLOBALMV); + + // TODO(jingning): This should be deprecated shortly. + const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; + const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); + + for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { + mode_info[ref_mv_idx].mv.as_int = INVALID_MV; + mode_info[ref_mv_idx].rd = INT64_MAX; + + if (cpi->sf.reduce_inter_modes && ref_mv_idx > 0) { + if (mbmi->ref_frame[0] == LAST2_FRAME || + mbmi->ref_frame[0] == LAST3_FRAME || + mbmi->ref_frame[1] == LAST2_FRAME || + mbmi->ref_frame[1] == LAST3_FRAME) { + if (mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx + has_nearmv] + .weight < REF_CAT_LEVEL) { + continue; + } + } + } + + av1_init_rd_stats(rd_stats); + + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + mbmi->comp_group_idx = 0; + mbmi->compound_idx = 1; + if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; + + mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); + + mbmi->num_proj_ref = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->ref_mv_idx = ref_mv_idx; + + if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, this_mode))) { + continue; + } + + rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; + const int drl_cost = + get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type); + rd_stats->rate += drl_cost; + mode_info[ref_mv_idx].drl_cost = drl_cost; + + if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && + mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { + continue; + } + + int64_t best_rd2 = INT64_MAX; + + const RD_STATS backup_rd_stats = *rd_stats; + // If !search_jnt_comp, we need to force mbmi->compound_idx = 1. + for (comp_idx = 1; comp_idx >= !search_jnt_comp; --comp_idx) { + int rs = 0; + int compmode_interinter_cost = 0; + mbmi->compound_idx = comp_idx; + if (is_comp_pred && comp_idx == 0) { + *rd_stats = backup_rd_stats; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; + mbmi->num_proj_ref = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->comp_group_idx = 0; + + const int comp_group_idx_ctx = get_comp_group_idx_context(xd); + const int comp_index_ctx = get_comp_index_context(cm, xd); + if (masked_compound_used) { + compmode_interinter_cost += + x->comp_group_idx_cost[comp_group_idx_ctx][0]; + } + compmode_interinter_cost += x->comp_idx_cost[comp_index_ctx][0]; + } + + int_mv cur_mv[2]; + if (!build_cur_mv(cur_mv, this_mode, cm, x)) { + continue; + } + if (have_newmv_in_inter_mode(this_mode)) { + if (comp_idx == 0) { + cur_mv[0] = backup_mv[0]; + cur_mv[1] = backup_mv[1]; + rate_mv = backup_rate_mv; + } + + // when jnt_comp_skip_mv_search flag is on, new mv will be searched once + if (!(search_jnt_comp && cpi->sf.jnt_comp_skip_mv_search && + comp_idx == 0)) { + newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, mi_row, mi_col, + &rate_mv, args); + + // Store cur_mv and rate_mv so that they can be restored in the next + // iteration of the loop + backup_mv[0] = cur_mv[0]; + backup_mv[1] = cur_mv[1]; + backup_rate_mv = rate_mv; + } + + if (newmv_ret_val != 0) { + continue; + } else { + rd_stats->rate += rate_mv; + } + + if (cpi->sf.skip_repeated_newmv) { + if (!is_comp_pred && this_mode == NEWMV && ref_mv_idx > 0) { + int skip = 0; + int this_rate_mv = 0; + for (i = 0; i < ref_mv_idx; ++i) { + // Check if the motion search result same as previous results + if (cur_mv[0].as_int == args->single_newmv[i][refs[0]].as_int) { + // If the compared mode has no valid rd, it is unlikely this + // mode will be the best mode + if (mode_info[i].rd == INT64_MAX) { + skip = 1; + break; + } + // Compare the cost difference including drl cost and mv cost + if (mode_info[i].mv.as_int != INVALID_MV) { + const int compare_cost = + mode_info[i].rate_mv + mode_info[i].drl_cost; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + this_rate_mv = av1_mv_bit_cost(&mode_info[i].mv.as_mv, + &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + const int this_cost = this_rate_mv + drl_cost; + + if (compare_cost < this_cost) { + skip = 1; + break; + } else { + // If the cost is less than current best result, make this + // the best and update corresponding variables + if (best_mbmi.ref_mv_idx == i) { + assert(best_rd != INT64_MAX); + best_mbmi.ref_mv_idx = ref_mv_idx; + best_rd_stats.rate += this_cost - compare_cost; + best_rd = RDCOST(x->rdmult, best_rd_stats.rate, + best_rd_stats.dist); + if (best_rd < ref_best_rd) ref_best_rd = best_rd; + + skip = 1; + break; + } + } + } + } + } + if (skip) { + args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = + args->modelled_rd[this_mode][i][refs[0]]; + args->simple_rd[this_mode][ref_mv_idx][refs[0]] = + args->simple_rd[this_mode][i][refs[0]]; + mode_info[ref_mv_idx].rd = mode_info[i].rd; + mode_info[ref_mv_idx].rate_mv = this_rate_mv; + mode_info[ref_mv_idx].mv.as_int = mode_info[i].mv.as_int; + + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + } + } + for (i = 0; i < is_comp_pred + 1; ++i) { + mbmi->mv[i].as_int = cur_mv[i].as_int; + } + const int ref_mv_cost = cost_mv_ref(x, this_mode, mode_ctx); +#if USE_DISCOUNT_NEWMV_TEST + // We don't include the cost of the second reference here, because there + // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in + // other words if you present them in that order, the second one is always + // known if the first is known. + // + // Under some circumstances we discount the cost of new mv mode to + // encourage initiation of a motion field. + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + // discount_newmv_test only applies discount on NEWMV mode. + assert(this_mode == NEWMV); + rd_stats->rate += AOMMIN(cost_mv_ref(x, this_mode, mode_ctx), + cost_mv_ref(x, NEARESTMV, mode_ctx)); + } else { + rd_stats->rate += ref_mv_cost; + } +#else + rd_stats->rate += ref_mv_cost; +#endif + + if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && + mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { + continue; + } + + int skip_build_pred = 0; + if (is_comp_pred && comp_idx) { + // Find matching interp filter or set to default interp filter + const int need_search = + av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); + int match_found = -1; + const InterpFilter assign_filter = cm->interp_filter; + if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { + match_found = find_interp_filter_in_stats(x, mbmi); + } + if (!need_search || match_found == -1) { + set_default_interp_filters(mbmi, assign_filter); + } + + int64_t best_rd_compound; + compmode_interinter_cost = compound_type_rd( + cpi, x, bsize, mi_col, mi_row, cur_mv, masked_compound_used, + &orig_dst, &tmp_dst, rd_buffers, &rate_mv, &best_rd_compound, + rd_stats, ref_best_rd); + if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + // No need to call av1_build_inter_predictors_sby if + // COMPOUND_AVERAGE is selected because it is the first + // candidate in compound_type_rd, and the following + // compound types searching uses tmp_dst buffer + if (mbmi->interinter_comp.type == COMPOUND_AVERAGE) { + if (num_planes > 1) + av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, &orig_dst, + bsize); + skip_build_pred = 1; + } + } + + ret_val = interpolation_filter_search( + x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst, + args->single_filter, &rd, &rs, &skip_txfm_sb, &skip_sse_sb, + skip_build_pred, args, ref_best_rd); + if (args->modelled_rd != NULL && !is_comp_pred) { + args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd; + } + if (ret_val != 0) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } else if (cpi->sf.model_based_post_interp_filter_breakout && + ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + if ((rd >> 3) * 2 > ref_best_rd) break; + continue; + } + + if (search_jnt_comp) { + // if 1/2 model rd is larger than best_rd in jnt_comp mode, + // use jnt_comp mode, save additional search + if ((rd >> 3) * 4 > best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + + if (!is_comp_pred) + args->single_filter[this_mode][refs[0]] = + av1_extract_interp_filter(mbmi->interp_filters, 0); + + if (args->modelled_rd != NULL) { + if (is_comp_pred) { + const int mode0 = compound_ref0_mode(this_mode); + const int mode1 = compound_ref1_mode(this_mode); + const int64_t mrd = + AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], + args->modelled_rd[mode1][ref_mv_idx][refs[1]]); + if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + } + rd_stats->rate += compmode_interinter_cost; + + if (search_jnt_comp && cpi->sf.jnt_comp_fast_tx_search && comp_idx == 0) { + // TODO(chengchen): this speed feature introduces big loss. + // Need better estimation of rate distortion. + int dummy_rate; + int64_t dummy_dist; + int plane_rate[MAX_MB_PLANE] = { 0 }; + int64_t plane_sse[MAX_MB_PLANE] = { 0 }; + int64_t plane_dist[MAX_MB_PLANE] = { 0 }; + + model_rd_sb_fn[MODELRD_TYPE_JNT_COMPOUND]( + cpi, bsize, x, xd, 0, num_planes - 1, mi_row, mi_col, &dummy_rate, + &dummy_dist, &skip_txfm_sb, &skip_sse_sb, plane_rate, plane_sse, + plane_dist); + + rd_stats->rate += rs; + rd_stats->rate += plane_rate[0] + plane_rate[1] + plane_rate[2]; + rd_stats_y->rate = plane_rate[0]; + rd_stats_uv->rate = plane_rate[1] + plane_rate[2]; + rd_stats->sse = plane_sse[0] + plane_sse[1] + plane_sse[2]; + rd_stats_y->sse = plane_sse[0]; + rd_stats_uv->sse = plane_sse[1] + plane_sse[2]; + rd_stats->dist = plane_dist[0] + plane_dist[1] + plane_dist[2]; + rd_stats_y->dist = plane_dist[0]; + rd_stats_uv->dist = plane_dist[1] + plane_dist[2]; + } else { +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + ret_val = motion_mode_rd( + cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, disable_skip, + mi_row, mi_col, args, ref_best_rd, refs, &rate_mv, &orig_dst, + tile_data, best_est_rd, do_tx_search, inter_modes_info); +#else + ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y, + rd_stats_uv, disable_skip, mi_row, mi_col, + args, ref_best_rd, refs, &rate_mv, &orig_dst); +#endif + } + mode_info[ref_mv_idx].mv.as_int = mbmi->mv[0].as_int; + mode_info[ref_mv_idx].rate_mv = rate_mv; + if (ret_val != INT64_MAX) { + int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + mode_info[ref_mv_idx].rd = tmp_rd; + if (tmp_rd < best_rd) { + best_rd_stats = *rd_stats; + best_rd_stats_y = *rd_stats_y; + best_rd_stats_uv = *rd_stats_uv; + best_rd = tmp_rd; + best_mbmi = *mbmi; + best_disable_skip = *disable_skip; + best_xskip = x->skip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); + } + + if (tmp_rd < best_rd2) { + best_rd2 = tmp_rd; + } + + if (tmp_rd < ref_best_rd) { + ref_best_rd = tmp_rd; + } + } + restore_dst_buf(xd, orig_dst, num_planes); + } + } + + if (best_rd == INT64_MAX) return INT64_MAX; + + // re-instate status of the best choice + *rd_stats = best_rd_stats; + *rd_stats_y = best_rd_stats_y; + *rd_stats_uv = best_rd_stats_uv; + *mbmi = best_mbmi; + *disable_skip = best_disable_skip; + x->skip = best_xskip; + assert(IMPLIES(mbmi->comp_group_idx == 1, + mbmi->interinter_comp.type != COMPOUND_AVERAGE)); + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); + + return RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); +} + +static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + int64_t best_rd) { + const AV1_COMMON *const cm = &cpi->common; + if (!av1_allow_intrabc(cm)) return INT64_MAX; + const int num_planes = av1_num_planes(cm); + + MACROBLOCKD *const xd = &x->e_mbd; + const TileInfo *tile = &xd->tile; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE); + const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE); + const int w = block_size_wide[bsize]; + const int h = block_size_high[bsize]; + const int sb_row = mi_row >> cm->seq_params.mib_size_log2; + const int sb_col = mi_col >> cm->seq_params.mib_size_log2; + + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + MV_REFERENCE_FRAME ref_frame = INTRA_FRAME; + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + + int_mv nearestmv, nearmv; + av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv, + 0); + + if (nearestmv.as_int == INVALID_MV) { + nearestmv.as_int = 0; + } + if (nearmv.as_int == INVALID_MV) { + nearmv.as_int = 0; + } + + int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; + if (dv_ref.as_int == 0) + av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col); + // Ref DV should not have sub-pel. + assert((dv_ref.as_mv.col & 7) == 0); + assert((dv_ref.as_mv.row & 7) == 0); + mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref; + + struct buf_2d yv12_mb[MAX_MB_PLANE]; + av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL, + num_planes); + for (int i = 0; i < num_planes; ++i) { + xd->plane[i].pre[0] = yv12_mb[i]; + } + + enum IntrabcMotionDirection { + IBC_MOTION_ABOVE, + IBC_MOTION_LEFT, + IBC_MOTION_DIRECTIONS + }; + + MB_MODE_INFO best_mbmi = *mbmi; + RD_STATS best_rdcost = *rd_cost; + int best_skip = x->skip; + + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; + for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; + dir < IBC_MOTION_DIRECTIONS; ++dir) { + const MvLimits tmp_mv_limits = x->mv_limits; + switch (dir) { + case IBC_MOTION_ABOVE: + x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; + x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; + x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; + x->mv_limits.row_max = + (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h; + break; + case IBC_MOTION_LEFT: + x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; + x->mv_limits.col_max = + (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w; + // TODO(aconverse@google.com): Minimize the overlap between above and + // left areas. + x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; + int bottom_coded_mi_edge = + AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end); + x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h; + break; + default: assert(0); + } + assert(x->mv_limits.col_min >= tmp_mv_limits.col_min); + assert(x->mv_limits.col_max <= tmp_mv_limits.col_max); + assert(x->mv_limits.row_min >= tmp_mv_limits.row_min); + assert(x->mv_limits.row_max <= tmp_mv_limits.row_max); + av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv); + + if (x->mv_limits.col_max < x->mv_limits.col_min || + x->mv_limits.row_max < x->mv_limits.row_min) { + x->mv_limits = tmp_mv_limits; + continue; + } + + int step_param = cpi->mv_step_param; + MV mvp_full = dv_ref.as_mv; + mvp_full.col >>= 3; + mvp_full.row >>= 3; + int sadpb = x->sadperbit16; + int cost_list[5]; + int bestsme = av1_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, + sadpb, cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1, + (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1); + + x->mv_limits = tmp_mv_limits; + if (bestsme == INT_MAX) continue; + mvp_full = x->best_mv.as_mv; + MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 }; + if (mv_check_bounds(&x->mv_limits, &dv)) continue; + if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize, + cm->seq_params.mib_size_log2)) + continue; + + // DV should not have sub-pel. + assert((dv.col & 7) == 0); + assert((dv.row & 7) == 0); + memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->use_intrabc = 1; + mbmi->mode = DC_PRED; + mbmi->uv_mode = UV_DC_PRED; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->mv[0].as_mv = dv; + mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); + mbmi->skip = 0; + x->skip = 0; + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + + int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX], + (int *)&cpi->dv_cost[1][MV_MAX] }; + // TODO(aconverse@google.com): The full motion field defining discount + // in MV_COST_WEIGHT is too large. Explore other values. + int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost, + dvcost, MV_COST_WEIGHT_SUB); + const int rate_mode = x->intrabc_cost[1]; + RD_STATS rd_stats, rd_stats_uv; + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // Intrabc + select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX); + } else { + super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats.skip); + } + if (num_planes > 1) { + super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); + av1_merge_rd_stats(&rd_stats, &rd_stats_uv); + } +#if CONFIG_RD_DEBUG + mbmi->rd_stats = rd_stats; +#endif + + const int skip_ctx = av1_get_skip_context(xd); + + RD_STATS rdc_noskip; + av1_init_rd_stats(&rdc_noskip); + rdc_noskip.rate = + rate_mode + rate_mv + rd_stats.rate + x->skip_cost[skip_ctx][0]; + rdc_noskip.dist = rd_stats.dist; + rdc_noskip.rdcost = RDCOST(x->rdmult, rdc_noskip.rate, rdc_noskip.dist); + if (rdc_noskip.rdcost < best_rd) { + best_rd = rdc_noskip.rdcost; + best_mbmi = *mbmi; + best_skip = x->skip; + best_rdcost = rdc_noskip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + } + + if (!xd->lossless[mbmi->segment_id]) { + x->skip = 1; + mbmi->skip = 1; + RD_STATS rdc_skip; + av1_init_rd_stats(&rdc_skip); + rdc_skip.rate = rate_mode + rate_mv + x->skip_cost[skip_ctx][1]; + rdc_skip.dist = rd_stats.sse; + rdc_skip.rdcost = RDCOST(x->rdmult, rdc_skip.rate, rdc_skip.dist); + if (rdc_skip.rdcost < best_rd) { + best_rd = rdc_skip.rdcost; + best_mbmi = *mbmi; + best_skip = x->skip; + best_rdcost = rdc_skip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + } + } + } + *mbmi = best_mbmi; + *rd_cost = best_rdcost; + x->skip = best_skip; + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + return best_rd; +} + +void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; + int y_skip = 0, uv_skip = 0; + int64_t dist_y = 0, dist_uv = 0; + TX_SIZE max_uv_tx_size; + + ctx->skip = 0; + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->use_intrabc = 0; + mbmi->mv[0].as_int = 0; + + const int64_t intra_yrd = + rd_pick_intra_sby_mode(cpi, x, mi_row, mi_col, &rate_y, &rate_y_tokenonly, + &dist_y, &y_skip, bsize, best_rd, ctx); + + if (intra_yrd < best_rd) { + // Only store reconstructed luma when there's chroma RDO. When there's no + // chroma RDO, the reconstructed luma will be stored in encode_superblock(). + xd->cfl.is_chroma_reference = + is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + xd->cfl.store_y = store_cfl_required_rdo(cm, x); + if (xd->cfl.store_y) { + // Restore reconstructed luma values. + memcpy(x->blk_skip, ctx->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y, + cpi->optimize_seg_arr[mbmi->segment_id], + mi_row, mi_col); + xd->cfl.store_y = 0; + } + if (num_planes > 1) { + max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + init_sbuv_mode(mbmi); + if (!x->skip_chroma_rd) + rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, + &uv_skip, bsize, max_uv_tx_size); + } + + if (y_skip && (uv_skip || x->skip_chroma_rd)) { + rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + + x->skip_cost[av1_get_skip_context(xd)][1]; + rd_cost->dist = dist_y + dist_uv; + } else { + rd_cost->rate = + rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0]; + rd_cost->dist = dist_y + dist_uv; + } + rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); + } else { + rd_cost->rate = INT_MAX; + } + + if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd) + best_rd = rd_cost->rdcost; + if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) { + ctx->skip = x->skip; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + assert(rd_cost->rate != INT_MAX); + } + if (rd_cost->rate == INT_MAX) return; + + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; +} + +static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const BLOCK_SIZE bsize = mbmi->sb_type; + int src_stride = x->plane[1].src.stride; + const uint8_t *const src_u = x->plane[1].src.buf; + const uint8_t *const src_v = x->plane[2].src.buf; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[2 * PALETTE_MAX_SIZE]; + uint8_t *const color_map = xd->plane[1].color_index_map; + int r, c; + const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); + const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); + int plane_block_width, plane_block_height, rows, cols; + av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, + &plane_block_height, &rows, &cols); + + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + if (cpi->common.seq_params.use_highbitdepth) { + data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; + data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; + } else { + data[(r * cols + c) * 2] = src_u[r * src_stride + c]; + data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; + } + } + } + + for (r = 1; r < 3; ++r) { + for (c = 0; c < pmi->palette_size[1]; ++c) { + centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; + } + } + + av1_calc_indices(data, centroids, color_map, rows * cols, + pmi->palette_size[1], 2); + extend_palette_color_map(color_map, cols, rows, plane_block_width, + plane_block_height); +} + +static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, int mi_row, + int mi_col, const uint8_t *above, + int above_stride, const uint8_t *left, + int left_stride); + +static const int ref_frame_flag_list[REF_FRAMES] = { 0, + AOM_LAST_FLAG, + AOM_LAST2_FLAG, + AOM_LAST3_FLAG, + AOM_GOLD_FLAG, + AOM_BWD_FLAG, + AOM_ALT2_FLAG, + AOM_ALT_FLAG }; + +static void rd_pick_skip_mode(RD_STATS *rd_cost, + InterModeSearchState *search_state, + const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + x->compound_idx = 1; // COMPOUND_AVERAGE + RD_STATS skip_mode_rd_stats; + av1_invalid_rd_stats(&skip_mode_rd_stats); + + if (cm->ref_frame_idx_0 == INVALID_IDX || + cm->ref_frame_idx_1 == INVALID_IDX) { + return; + } + + const MV_REFERENCE_FRAME ref_frame = LAST_FRAME + cm->ref_frame_idx_0; + const MV_REFERENCE_FRAME second_ref_frame = LAST_FRAME + cm->ref_frame_idx_1; + const PREDICTION_MODE this_mode = NEAREST_NEARESTMV; + const int mode_index = + get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame); + + if (mode_index == -1) { + return; + } + + mbmi->mode = this_mode; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = ref_frame; + mbmi->ref_frame[1] = second_ref_frame; + const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + if (x->mbmi_ext->ref_mv_count[ref_frame_type] == UINT8_MAX) { + if (x->mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX || + x->mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) { + return; + } + MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; + av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + } + + assert(this_mode == NEAREST_NEARESTMV); + if (!build_cur_mv(mbmi->mv, this_mode, cm, x)) { + return; + } + + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); + mbmi->comp_group_idx = 0; + mbmi->compound_idx = x->compound_idx; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->ref_mv_idx = 0; + mbmi->skip_mode = mbmi->skip = 1; + + set_default_interp_filters(mbmi, cm->interp_filter); + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + BUFFER_SET orig_dst; + for (int i = 0; i < num_planes; i++) { + orig_dst.plane[i] = xd->plane[i].dst.buf; + orig_dst.stride[i] = xd->plane[i].dst.stride; + } + + // Obtain the rdcost for skip_mode. + skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, mi_row, mi_col, &orig_dst); + + // Compare the use of skip_mode with the best intra/inter mode obtained. + const int skip_mode_ctx = av1_get_skip_mode_context(xd); + const int64_t best_intra_inter_mode_cost = + (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) + ? RDCOST(x->rdmult, + rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0], + rd_cost->dist) + : INT64_MAX; + + if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost) { + assert(mode_index != -1); + search_state->best_mbmode.skip_mode = 1; + search_state->best_mbmode = *mbmi; + + search_state->best_mbmode.skip_mode = search_state->best_mbmode.skip = 1; + search_state->best_mbmode.mode = NEAREST_NEARESTMV; + search_state->best_mbmode.ref_frame[0] = mbmi->ref_frame[0]; + search_state->best_mbmode.ref_frame[1] = mbmi->ref_frame[1]; + search_state->best_mbmode.mv[0].as_int = mbmi->mv[0].as_int; + search_state->best_mbmode.mv[1].as_int = mbmi->mv[1].as_int; + search_state->best_mbmode.ref_mv_idx = 0; + + // Set up tx_size related variables for skip-specific loop filtering. + search_state->best_mbmode.tx_size = + block_signals_txsize(bsize) ? tx_size_from_tx_mode(bsize, cm->tx_mode) + : max_txsize_rect_lookup[bsize]; + memset(search_state->best_mbmode.inter_tx_size, + search_state->best_mbmode.tx_size, + sizeof(search_state->best_mbmode.inter_tx_size)); + set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->n4_w, xd->n4_h, + search_state->best_mbmode.skip && is_inter_block(mbmi), xd); + + // Set up color-related variables for skip mode. + search_state->best_mbmode.uv_mode = UV_DC_PRED; + search_state->best_mbmode.palette_mode_info.palette_size[0] = 0; + search_state->best_mbmode.palette_mode_info.palette_size[1] = 0; + + search_state->best_mbmode.comp_group_idx = 0; + search_state->best_mbmode.compound_idx = x->compound_idx; + search_state->best_mbmode.interinter_comp.type = COMPOUND_AVERAGE; + search_state->best_mbmode.motion_mode = SIMPLE_TRANSLATION; + + search_state->best_mbmode.interintra_mode = + (INTERINTRA_MODE)(II_DC_PRED - 1); + search_state->best_mbmode.filter_intra_mode_info.use_filter_intra = 0; + + set_default_interp_filters(&search_state->best_mbmode, cm->interp_filter); + + search_state->best_mode_index = mode_index; + + // Update rd_cost + rd_cost->rate = skip_mode_rd_stats.rate; + rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist; + rd_cost->rdcost = skip_mode_rd_stats.rdcost; + + search_state->best_rd = rd_cost->rdcost; + search_state->best_skip2 = 1; + search_state->best_mode_skippable = (skip_mode_rd_stats.sse == 0); + + x->skip = 1; + } +} + +// speed feature: fast intra/inter transform type search +// Used for speed >= 2 +// When this speed feature is on, in rd mode search, only DCT is used. +// After the mode is determined, this function is called, to select +// transform types and get accurate rdcost. +static void sf_refine_fast_tx_type_search( + const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int best_mode_index, MB_MODE_INFO *best_mbmode, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y, + int best_rate_uv, int *best_skip2) { + const AV1_COMMON *const cm = &cpi->common; + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + + if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && + ((sf->tx_type_search.fast_inter_tx_type_search == 1 && + is_inter_mode(best_mbmode->mode)) || + (sf->tx_type_search.fast_intra_tx_type_search == 1 && + !is_inter_mode(best_mbmode->mode)))) { + int skip_blk = 0; + RD_STATS rd_stats_y, rd_stats_uv; + + x->use_default_inter_tx_type = 0; + x->use_default_intra_tx_type = 0; + + *mbmi = *best_mbmode; + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + + // Select prediction reference frames. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + if (has_second_ref(mbmi)) + xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + if (is_inter_mode(mbmi->mode)) { + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) + av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // av1_rd_pick_inter_mode_sb + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, + INT64_MAX); + assert(rd_stats_y.rate != INT_MAX); + } else { + super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats_y.skip); + } + if (num_planes > 1) { + inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX, INT64_MAX, + FTXS_NONE); + } else { + av1_init_rd_stats(&rd_stats_uv); + } + } else { + super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); + if (num_planes > 1) { + super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); + } else { + av1_init_rd_stats(&rd_stats_uv); + } + } + + if (RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, + (rd_stats_y.dist + rd_stats_uv.dist)) > + RDCOST(x->rdmult, 0, (rd_stats_y.sse + rd_stats_uv.sse))) { + skip_blk = 1; + rd_stats_y.rate = x->skip_cost[av1_get_skip_context(xd)][1]; + rd_stats_uv.rate = 0; + rd_stats_y.dist = rd_stats_y.sse; + rd_stats_uv.dist = rd_stats_uv.sse; + } else { + skip_blk = 0; + rd_stats_y.rate += x->skip_cost[av1_get_skip_context(xd)][0]; + } + + if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) > + RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, + (rd_stats_y.dist + rd_stats_uv.dist))) { + best_mbmode->tx_size = mbmi->tx_size; + av1_copy(best_mbmode->inter_tx_size, mbmi->inter_tx_size); + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + av1_copy(best_mbmode->txk_type, mbmi->txk_type); + rd_cost->rate += + (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv); + rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; + rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); + *best_skip2 = skip_blk; + } + } +} + +// Please add/modify parameter setting in this function, making it consistent +// and easy to read and maintain. +static void set_params_rd_pick_inter_mode( + const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args, + BLOCK_SIZE bsize, int mi_row, int mi_col, uint16_t ref_frame_skip_mask[2], + uint32_t mode_skip_mask[REF_FRAMES], int skip_ref_frame_mask, + unsigned int ref_costs_single[REF_FRAMES], + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES], + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const struct segmentation *const seg = &cm->seg; + const SPEED_FEATURES *const sf = &cpi->sf; + unsigned char segment_id = mbmi->segment_id; + int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, + MAX_SB_SIZE >> 1 }; + int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, + MAX_SB_SIZE >> 1 }; + int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + + for (int i = 0; i < MB_MODE_COUNT; ++i) + for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int len = sizeof(uint16_t); + args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf); + args->above_pred_buf[1] = + CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len); + args->above_pred_buf[2] = + CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len); + args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf); + args->left_pred_buf[1] = + CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len); + args->left_pred_buf[2] = + CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len); + } else { + args->above_pred_buf[0] = x->above_pred_buf; + args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1); + args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE; + args->left_pred_buf[0] = x->left_pred_buf; + args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1); + args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE; + } + + av1_collect_neighbors_ref_counts(xd); + + estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, + ref_costs_comp); + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + x->pred_mv_sad[ref_frame] = INT_MAX; + x->mbmi_ext->mode_context[ref_frame] = 0; + x->mbmi_ext->compound_mode_context[ref_frame] = 0; + mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; + if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) { + if (mbmi->partition != PARTITION_NONE && + mbmi->partition != PARTITION_SPLIT) { + if (skip_ref_frame_mask & (1 << ref_frame)) { + int skip = 1; + for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { + if (!(skip_ref_frame_mask & (1 << r))) { + const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; + if (rf[0] == ref_frame || rf[1] == ref_frame) { + skip = 0; + break; + } + } + } + if (skip) continue; + } + } + assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); + setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, + yv12_mb); + } + } + // ref_frame = ALTREF_FRAME + for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { + x->mbmi_ext->mode_context[ref_frame] = 0; + mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; + const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES]; + if (!((cpi->ref_frame_flags & ref_frame_flag_list[rf[0]]) && + (cpi->ref_frame_flags & ref_frame_flag_list[rf[1]]))) { + continue; + } + + if (mbmi->partition != PARTITION_NONE && + mbmi->partition != PARTITION_SPLIT) { + if (skip_ref_frame_mask & (1 << ref_frame)) { + continue; + } + } + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + } + + av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); + + if (check_num_overlappable_neighbors(mbmi) && + is_motion_variation_allowed_bsize(bsize)) { + av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, + args->above_pred_buf, dst_width1, + dst_height1, args->above_pred_stride); + av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, + args->left_pred_buf, dst_width2, + dst_height2, args->left_pred_stride); + av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, + mi_col, 0, num_planes); + calc_target_weighted_pred( + cm, x, xd, mi_row, mi_col, args->above_pred_buf[0], + args->above_pred_stride[0], args->left_pred_buf[0], + args->left_pred_stride[0]); + } + + int min_pred_mv_sad = INT_MAX; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) + min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]); + + for (int i = 0; i < 2; ++i) { + ref_frame_skip_mask[i] = 0; + } + memset(mode_skip_mask, 0, REF_FRAMES * sizeof(*mode_skip_mask)); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame])) { + // Skip checking missing references in both single and compound reference + // modes. Note that a mode will be skipped iff both reference frames + // are masked out. + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } else { + // Skip fixed mv modes for poor references + if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) { + mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; + } + } + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } + } + + // Disable this drop out case if the ref frame + // segment level feature is enabled for this segment. This is to + // prevent the possibility that we end up unable to pick any mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { + // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame, + // unless ARNR filtering is enabled in which case we want + // an unfiltered alternative. We allow near/nearest as well + // because they may result in zero-zero MVs but be cheaper. + if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { + ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << LAST2_FRAME) | + (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | + (1 << ALTREF2_FRAME) | (1 << GOLDEN_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + // TODO(zoeliu): To further explore whether following needs to be done for + // BWDREF_FRAME as well. + mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; + const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME }; + int_mv near_mv, nearest_mv, global_mv; + get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + get_this_mv(&near_mv, NEARMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + + if (near_mv.as_int != global_mv.as_int) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); + if (nearest_mv.as_int != global_mv.as_int) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); + } + } + + if (cpi->rc.is_src_frame_alt_ref) { + if (sf->alt_ref_search_fp) { + assert(cpi->ref_frame_flags & ref_frame_flag_list[ALTREF_FRAME]); + mode_skip_mask[ALTREF_FRAME] = 0; + ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + } + } + + if (sf->alt_ref_search_fp) + if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) + if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) + mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; + + if (sf->adaptive_mode_search) { + if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && + cpi->rc.frames_since_golden >= 3) + if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME]) + mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; + } + + if (bsize > sf->max_intra_bsize) { + ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); + ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); + } + + mode_skip_mask[INTRA_FRAME] |= + ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); + + if (cpi->sf.tx_type_search.fast_intra_tx_type_search) + x->use_default_intra_tx_type = 1; + else + x->use_default_intra_tx_type = 0; + + if (cpi->sf.tx_type_search.fast_inter_tx_type_search) + x->use_default_inter_tx_type = 1; + else + x->use_default_inter_tx_type = 0; + if (cpi->sf.skip_repeat_interpolation_filter_search) { + x->interp_filter_stats_idx[0] = 0; + x->interp_filter_stats_idx[1] = 0; + } +} + +static void search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_STATS *rd_cost, + PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, + MB_MODE_INFO *const mbmi, + PALETTE_MODE_INFO *const pmi, + unsigned int *ref_costs_single, + InterModeSearchState *search_state) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + int rate2 = 0; + int64_t distortion2 = 0, best_rd_palette = search_state->best_rd, this_rd, + best_model_rd_palette = INT64_MAX; + int skippable = 0, rate_overhead_palette = 0; + RD_STATS rd_stats_y; + TX_SIZE uv_tx = TX_4X4; + uint8_t *const best_palette_color_map = + x->palette_buffer->best_palette_color_map; + uint8_t *const color_map = xd->plane[0].color_index_map; + MB_MODE_INFO best_mbmi_palette = *mbmi; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + + mbmi->mode = DC_PRED; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + rate_overhead_palette = rd_pick_palette_intra_sby( + cpi, x, bsize, mi_row, mi_col, intra_mode_cost[DC_PRED], + &best_mbmi_palette, best_palette_color_map, &best_rd_palette, + &best_model_rd_palette, NULL, NULL, NULL, NULL, ctx, best_blk_skip); + if (pmi->palette_size[0] == 0) return; + + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); + + memcpy(color_map, best_palette_color_map, + rows * cols * sizeof(best_palette_color_map[0])); + super_block_yrd(cpi, x, &rd_stats_y, bsize, search_state->best_rd); + if (rd_stats_y.rate == INT_MAX) return; + + skippable = rd_stats_y.skip; + distortion2 = rd_stats_y.dist; + rate2 = rd_stats_y.rate + rate_overhead_palette; + rate2 += ref_costs_single[INTRA_FRAME]; + if (num_planes > 1) { + uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); + if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { + choose_intra_uv_mode( + cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], + &search_state->rate_uv_tokenonly[uv_tx], + &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], + &search_state->mode_uv[uv_tx]); + search_state->pmi_uv[uv_tx] = *pmi; + search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; + } + mbmi->uv_mode = search_state->mode_uv[uv_tx]; + pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; + if (pmi->palette_size[1] > 0) { + memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, + search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, + 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); + } + mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; + skippable = skippable && search_state->skip_uvs[uv_tx]; + distortion2 += search_state->dist_uvs[uv_tx]; + rate2 += search_state->rate_uv_intra[uv_tx]; + } + + if (skippable) { + rate2 -= rd_stats_y.rate; + if (num_planes > 1) rate2 -= search_state->rate_uv_tokenonly[uv_tx]; + rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; + } else { + rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; + } + this_rd = RDCOST(x->rdmult, rate2, distortion2); + if (this_rd < search_state->best_rd) { + search_state->best_mode_index = 3; + mbmi->mv[0].as_int = 0; + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + search_state->best_rd = this_rd; + search_state->best_mbmode = *mbmi; + search_state->best_skip2 = 0; + search_state->best_mode_skippable = skippable; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } +} + +static void init_inter_mode_search_state(InterModeSearchState *search_state, + const AV1_COMP *cpi, + const TileDataEnc *tile_data, + const MACROBLOCK *x, BLOCK_SIZE bsize, + int64_t best_rd_so_far) { + search_state->best_rd = best_rd_so_far; + + av1_zero(search_state->best_mbmode); + + search_state->best_rate_y = INT_MAX; + + search_state->best_rate_uv = INT_MAX; + + search_state->best_mode_skippable = 0; + + search_state->best_skip2 = 0; + + search_state->best_mode_index = -1; + + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const unsigned char segment_id = mbmi->segment_id; + + search_state->skip_intra_modes = 0; + + search_state->num_available_refs = 0; + memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs)); + memset(search_state->dist_order_refs, -1, + sizeof(search_state->dist_order_refs)); + + for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i) + search_state->mode_threshold[i] = 0; + const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; + for (int i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) + search_state->mode_threshold[i] = + ((int64_t)rd_threshes[i] * tile_data->thresh_freq_fact[bsize][i]) >> 5; + + search_state->best_intra_mode = DC_PRED; + search_state->best_intra_rd = INT64_MAX; + + search_state->angle_stats_ready = 0; + + search_state->best_pred_sse = UINT_MAX; + + for (int i = 0; i < TX_SIZES_ALL; i++) + search_state->rate_uv_intra[i] = INT_MAX; + + av1_zero(search_state->pmi_uv); + + for (int i = 0; i < REFERENCE_MODES; ++i) + search_state->best_pred_rd[i] = INT64_MAX; + + av1_zero(search_state->single_newmv); + av1_zero(search_state->single_newmv_rate); + av1_zero(search_state->single_newmv_valid); + for (int i = 0; i < MB_MODE_COUNT; ++i) { + for (int j = 0; j < MAX_REF_MV_SERCH; ++j) { + for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { + search_state->modelled_rd[i][j][ref_frame] = INT64_MAX; + search_state->simple_rd[i][j][ref_frame] = INT64_MAX; + } + } + } + + for (int dir = 0; dir < 2; ++dir) { + for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { + SingleInterModeState *state; + + state = &search_state->single_state[dir][mode][ref_frame]; + state->ref_frame = NONE_FRAME; + state->rd = INT64_MAX; + + state = &search_state->single_state_modelled[dir][mode][ref_frame]; + state->ref_frame = NONE_FRAME; + state->rd = INT64_MAX; + } + } + } + for (int dir = 0; dir < 2; ++dir) { + for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { + search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME; + } + } + } + av1_zero(search_state->single_state_cnt); + av1_zero(search_state->single_state_modelled_cnt); +} + +// Case 1: return 0, means don't skip this mode +// Case 2: return 1, means skip this mode completely +// Case 3: return 2, means skip compound only, but still try single motion modes +static int inter_mode_search_order_independent_skip( + const AV1_COMP *cpi, const PICK_MODE_CONTEXT *ctx, const MACROBLOCK *x, + BLOCK_SIZE bsize, int mode_index, int mi_row, int mi_col, + uint32_t *mode_skip_mask, uint16_t *ref_frame_skip_mask, + InterModeSearchState *search_state) { + const SPEED_FEATURES *const sf = &cpi->sf; + const AV1_COMMON *const cm = &cpi->common; + const struct segmentation *const seg = &cm->seg; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const unsigned char segment_id = mbmi->segment_id; + const MV_REFERENCE_FRAME *ref_frame = av1_mode_order[mode_index].ref_frame; + const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; + int skip_motion_mode = 0; + if (mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) { + const int ref_type = av1_ref_frame_type(ref_frame); + int skip_ref = ctx->skip_ref_frame_mask & (1 << ref_type); + if (ref_type <= ALTREF_FRAME && skip_ref) { + // Since the compound ref modes depends on the motion estimation result of + // two single ref modes( best mv of single ref modes as the start point ) + // If current single ref mode is marked skip, we need to check if it will + // be used in compound ref modes. + for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { + if (!(ctx->skip_ref_frame_mask & (1 << r))) { + const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; + if (rf[0] == ref_type || rf[1] == ref_type) { + // Found a not skipped compound ref mode which contains current + // single ref. So this single ref can't be skipped completly + // Just skip it's motion mode search, still try it's simple + // transition mode. + skip_motion_mode = 1; + skip_ref = 0; + break; + } + } + } + } + if (skip_ref) return 1; + } + + if (cpi->sf.mode_pruning_based_on_two_pass_partition_search && + !x->cb_partition_scan) { + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + int found = 0; + // Search in the stats table to see if the ref frames have been used in the + // first pass of partition search. + for (int row = mi_row; row < mi_row + mi_width && !found; + row += FIRST_PARTITION_PASS_SAMPLE_REGION) { + for (int col = mi_col; col < mi_col + mi_height && !found; + col += FIRST_PARTITION_PASS_SAMPLE_REGION) { + const int index = av1_first_partition_pass_stats_index(row, col); + const FIRST_PARTITION_PASS_STATS *const stats = + &x->first_partition_pass_stats[index]; + if (stats->ref0_counts[ref_frame[0]] && + (ref_frame[1] < 0 || stats->ref1_counts[ref_frame[1]])) { + found = 1; + break; + } + } + } + if (!found) return 1; + } + + if (ref_frame[0] > INTRA_FRAME && ref_frame[1] == INTRA_FRAME) { + // Mode must by compatible + if (!is_interintra_allowed_mode(this_mode)) return 1; + if (!is_interintra_allowed_bsize(bsize)) return 1; + } + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME) + return 1; + + if (ref_frame[0] == INTRA_FRAME) { + if (this_mode != DC_PRED) { + // Disable intra modes other than DC_PRED for blocks with low variance + // Threshold for intra skipping based on source variance + // TODO(debargha): Specialize the threshold for super block sizes + const unsigned int skip_intra_var_thresh = 64; + if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && + x->source_variance < skip_intra_var_thresh) + return 1; + } + } else { + if (!is_comp_ref_allowed(bsize) && ref_frame[1] > INTRA_FRAME) return 1; + } + + const int comp_pred = ref_frame[1] > INTRA_FRAME; + if (comp_pred) { + if (!cpi->allow_comp_inter_inter) return 1; + + if (cm->reference_mode == SINGLE_REFERENCE) return 1; + + // Skip compound inter modes if ARF is not available. + if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame[1]])) return 1; + + // Do not allow compound prediction if the segment level reference frame + // feature is in use as in this case there can only be one reference. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1; + } + + if (sf->selective_ref_frame) { + if (sf->selective_ref_frame >= 2 || x->cb_partition_scan) { + if (ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[ALTREF2_FRAME - LAST_FRAME], + cm->frame_offset) < 0) + return 1; + if (ref_frame[0] == BWDREF_FRAME || ref_frame[1] == BWDREF_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[BWDREF_FRAME - LAST_FRAME], + cm->frame_offset) < 0) + return 1; + } + if (ref_frame[0] == LAST3_FRAME || ref_frame[1] == LAST3_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[LAST3_FRAME - LAST_FRAME], + cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0) + return 1; + if (ref_frame[0] == LAST2_FRAME || ref_frame[1] == LAST2_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[LAST2_FRAME - LAST_FRAME], + cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0) + return 1; + } + + // One-sided compound is used only when all reference frames are one-sided. + if (sf->selective_ref_frame && comp_pred && !cpi->all_one_sided_refs) { + unsigned int ref_offsets[2]; + for (int i = 0; i < 2; ++i) { + const int buf_idx = cm->frame_refs[ref_frame[i] - LAST_FRAME].idx; + assert(buf_idx >= 0); + ref_offsets[i] = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; + } + if ((get_relative_dist(cm, ref_offsets[0], cm->frame_offset) <= 0 && + get_relative_dist(cm, ref_offsets[1], cm->frame_offset) <= 0) || + (get_relative_dist(cm, ref_offsets[0], cm->frame_offset) > 0 && + get_relative_dist(cm, ref_offsets[1], cm->frame_offset) > 0)) + return 1; + } + + if (mode_skip_mask[ref_frame[0]] & (1 << this_mode)) { + return 1; + } + + if ((ref_frame_skip_mask[0] & (1 << ref_frame[0])) && + (ref_frame_skip_mask[1] & (1 << AOMMAX(0, ref_frame[1])))) { + return 1; + } + + if (skip_repeated_mv(cm, x, this_mode, ref_frame, search_state)) { + return 1; + } + if (skip_motion_mode) { + return 2; + } + return 0; +} + +static INLINE void init_mbmi(MB_MODE_INFO *mbmi, int mode_index, + const AV1_COMMON *cm) { + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; + mbmi->ref_mv_idx = 0; + mbmi->mode = this_mode; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = av1_mode_order[mode_index].ref_frame[0]; + mbmi->ref_frame[1] = av1_mode_order[mode_index].ref_frame[1]; + pmi->palette_size[0] = 0; + pmi->palette_size[1] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); + set_default_interp_filters(mbmi, cm->interp_filter); +} + +static int64_t handle_intra_mode(InterModeSearchState *search_state, + const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int ref_frame_cost, + const PICK_MODE_CONTEXT *ctx, int disable_skip, + RD_STATS *rd_stats, RD_STATS *rd_stats_y, + RD_STATS *rd_stats_uv) { + const AV1_COMMON *cm = &cpi->common; + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(mbmi->ref_frame[0] == INTRA_FRAME); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int try_palette = + av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); + const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; + const int intra_cost_penalty = av1_get_intra_cost_penalty( + cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth); + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + const int num_planes = av1_num_planes(cm); + const int skip_ctx = av1_get_skip_context(xd); + + int known_rate = intra_mode_cost[mbmi->mode]; + known_rate += ref_frame_cost; + if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) + known_rate += intra_cost_penalty; + known_rate += AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]); + const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); + if (known_rd > search_state->best_rd) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + + TX_SIZE uv_tx; + int is_directional_mode = av1_is_directional_mode(mbmi->mode); + if (is_directional_mode && av1_use_angle_delta(bsize)) { + int rate_dummy; + int64_t model_rd = INT64_MAX; + if (!search_state->angle_stats_ready) { + const int src_stride = x->plane[0].src.stride; + const uint8_t *src = x->plane[0].src.buf; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + highbd_angle_estimation(src, src_stride, rows, cols, bsize, + search_state->directional_mode_skip_mask); + else + angle_estimation(src, src_stride, rows, cols, bsize, + search_state->directional_mode_skip_mask); + search_state->angle_stats_ready = 1; + } + if (search_state->directional_mode_skip_mask[mbmi->mode]) return INT64_MAX; + av1_init_rd_stats(rd_stats_y); + rd_stats_y->rate = INT_MAX; + rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &rate_dummy, rd_stats_y, + bsize, intra_mode_cost[mbmi->mode], + search_state->best_rd, &model_rd); + } else { + av1_init_rd_stats(rd_stats_y); + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + super_block_yrd(cpi, x, rd_stats_y, bsize, search_state->best_rd); + } + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); + int try_filter_intra = 0; + int64_t best_rd_tmp = INT64_MAX; + if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { + if (rd_stats_y->rate != INT_MAX) { + const int tmp_rate = rd_stats_y->rate + x->filter_intra_cost[bsize][0] + + intra_mode_cost[mbmi->mode]; + best_rd_tmp = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); + try_filter_intra = !((best_rd_tmp / 2) > search_state->best_rd); + } else { + try_filter_intra = !(search_state->best_mbmode.skip); + } + } + if (try_filter_intra) { + RD_STATS rd_stats_y_fi; + int filter_intra_selected_flag = 0; + TX_SIZE best_tx_size = mbmi->tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; + + mbmi->filter_intra_mode_info.use_filter_intra = 1; + for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; + fi_mode < FILTER_INTRA_MODES; ++fi_mode) { + int64_t this_rd_tmp; + mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; + super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, search_state->best_rd); + if (rd_stats_y_fi.rate == INT_MAX) { + continue; + } + const int this_rate_tmp = + rd_stats_y_fi.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, + intra_mode_cost[mbmi->mode]); + this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); + + if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > search_state->best_rd) { + break; + } + if (this_rd_tmp < best_rd_tmp) { + best_tx_size = mbmi->tx_size; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); + best_fi_mode = fi_mode; + *rd_stats_y = rd_stats_y_fi; + filter_intra_selected_flag = 1; + best_rd_tmp = this_rd_tmp; + } + } + + mbmi->tx_size = best_tx_size; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + + if (filter_intra_selected_flag) { + mbmi->filter_intra_mode_info.use_filter_intra = 1; + mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; + } else { + mbmi->filter_intra_mode_info.use_filter_intra = 0; + } + } + if (rd_stats_y->rate == INT_MAX) return INT64_MAX; + const int mode_cost_y = + intra_mode_info_cost_y(cpi, x, mbmi, bsize, intra_mode_cost[mbmi->mode]); + av1_init_rd_stats(rd_stats); + av1_init_rd_stats(rd_stats_uv); + if (num_planes > 1) { + uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); + if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { + int rate_y = + rd_stats_y->skip ? x->skip_cost[skip_ctx][1] : rd_stats_y->rate; + const int64_t rdy = + RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist); + if (search_state->best_rd < (INT64_MAX / 2) && + rdy > (search_state->best_rd + (search_state->best_rd >> 2))) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + choose_intra_uv_mode( + cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], + &search_state->rate_uv_tokenonly[uv_tx], + &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], + &search_state->mode_uv[uv_tx]); + if (try_palette) search_state->pmi_uv[uv_tx] = *pmi; + search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; + + const int uv_rate = search_state->rate_uv_tokenonly[uv_tx]; + const int64_t uv_dist = search_state->dist_uvs[uv_tx]; + const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); + if (uv_rd > search_state->best_rd) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + } + + rd_stats_uv->rate = search_state->rate_uv_tokenonly[uv_tx]; + rd_stats_uv->dist = search_state->dist_uvs[uv_tx]; + rd_stats_uv->skip = search_state->skip_uvs[uv_tx]; + rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip; + mbmi->uv_mode = search_state->mode_uv[uv_tx]; + if (try_palette) { + pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; + memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, + search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, + 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); + } + mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; + } + rd_stats->rate = rd_stats_y->rate + mode_cost_y; + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + rd_stats_y->rate -= tx_size_cost(cm, x, bsize, mbmi->tx_size); + } + if (num_planes > 1 && !x->skip_chroma_rd) { + const int uv_mode_cost = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mbmi->uv_mode]; + rd_stats->rate += + rd_stats_uv->rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost); + } + if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) + rd_stats->rate += intra_cost_penalty; + rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist; + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + rd_stats->rate += ref_frame_cost; + if (rd_stats->skip) { + // Back out the coefficient coding costs + rd_stats->rate -= (rd_stats_y->rate + rd_stats_uv->rate); + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + // Cost the skip mb case + rd_stats->rate += x->skip_cost[skip_ctx][1]; + } else { + // Add in the cost of the no skip flag. + rd_stats->rate += x->skip_cost[skip_ctx][0]; + } + // Calculate the final RD estimate for this mode. + const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + // Keep record of best intra rd + if (this_rd < search_state->best_intra_rd) { + search_state->best_intra_rd = this_rd; + search_state->best_intra_mode = mbmi->mode; + } + + if (sf->skip_intra_in_interframe) { + if (search_state->best_rd < (INT64_MAX / 2) && + this_rd > (search_state->best_rd + (search_state->best_rd >> 1))) + search_state->skip_intra_modes = 1; + } + + if (!disable_skip) { + for (int i = 0; i < REFERENCE_MODES; ++i) + search_state->best_pred_rd[i] = + AOMMIN(search_state->best_pred_rd[i], this_rd); + } + return this_rd; +} + +static void collect_single_states(MACROBLOCK *x, + InterModeSearchState *search_state, + const MB_MODE_INFO *const mbmi) { + int i, j; + const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; + const PREDICTION_MODE this_mode = mbmi->mode; + const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1; + const int mode_offset = INTER_OFFSET(this_mode); + const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); + + // Simple rd + int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame]; + for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { + int64_t rd = search_state->simple_rd[this_mode][ref_mv_idx][ref_frame]; + if (rd < simple_rd) simple_rd = rd; + } + + // Insertion sort of single_state + SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 }; + SingleInterModeState *state_s = search_state->single_state[dir][mode_offset]; + i = search_state->single_state_cnt[dir][mode_offset]; + for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j) + state_s[j] = state_s[j - 1]; + state_s[j] = this_state_s; + search_state->single_state_cnt[dir][mode_offset]++; + + // Modelled rd + int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame]; + for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { + int64_t rd = search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame]; + if (rd < modelled_rd) modelled_rd = rd; + } + + // Insertion sort of single_state_modelled + SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 }; + SingleInterModeState *state_m = + search_state->single_state_modelled[dir][mode_offset]; + i = search_state->single_state_modelled_cnt[dir][mode_offset]; + for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j) + state_m[j] = state_m[j - 1]; + state_m[j] = this_state_m; + search_state->single_state_modelled_cnt[dir][mode_offset]++; +} + +static void analyze_single_states(const AV1_COMP *cpi, + InterModeSearchState *search_state) { + int i, j, dir, mode; + if (cpi->sf.prune_comp_search_by_single_result >= 1) { + for (dir = 0; dir < 2; ++dir) { + int64_t best_rd; + SingleInterModeState(*state)[FWD_REFS]; + + // Use the best rd of GLOBALMV or NEWMV to prune the unlikely + // reference frames for all the modes (NEARESTMV and NEARMV may not + // have same motion vectors). Always keep the best of each mode + // because it might form the best possible combination with other mode. + state = search_state->single_state[dir]; + best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, + state[INTER_OFFSET(GLOBALMV)][0].rd); + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) { + if (state[mode][i].rd != INT64_MAX && + (state[mode][i].rd >> 1) > best_rd) { + state[mode][i].valid = 0; + } + } + } + + state = search_state->single_state_modelled[dir]; + best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, + state[INTER_OFFSET(GLOBALMV)][0].rd); + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; + ++i) { + if (state[mode][i].rd != INT64_MAX && + (state[mode][i].rd >> 1) > best_rd) { + state[mode][i].valid = 0; + } + } + } + } + } + + // Ordering by simple rd first, then by modelled rd + for (dir = 0; dir < 2; ++dir) { + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + const int state_cnt_s = search_state->single_state_cnt[dir][mode]; + const int state_cnt_m = + search_state->single_state_modelled_cnt[dir][mode]; + SingleInterModeState *state_s = search_state->single_state[dir][mode]; + SingleInterModeState *state_m = + search_state->single_state_modelled[dir][mode]; + int count = 0; + const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m); + for (i = 0; i < state_cnt_s; ++i) { + if (state_s[i].rd == INT64_MAX) break; + if (state_s[i].valid) + search_state->single_rd_order[dir][mode][count++] = + state_s[i].ref_frame; + } + if (count < max_candidates) { + for (i = 0; i < state_cnt_m; ++i) { + if (state_m[i].rd == INT64_MAX) break; + if (state_m[i].valid) { + int ref_frame = state_m[i].ref_frame; + int match = 0; + // Check if existing already + for (j = 0; j < count; ++j) { + if (search_state->single_rd_order[dir][mode][j] == ref_frame) { + match = 1; + break; + } + } + if (!match) { + // Check if this ref_frame is removed in simple rd + int valid = 1; + for (j = 0; j < state_cnt_s; j++) { + if (ref_frame == state_s[j].ref_frame && !state_s[j].valid) { + valid = 0; + break; + } + } + if (valid) + search_state->single_rd_order[dir][mode][count++] = ref_frame; + } + if (count >= max_candidates) break; + } + } + } + } + } +} + +static int compound_skip_get_candidates( + const AV1_COMP *cpi, const InterModeSearchState *search_state, + const int dir, const PREDICTION_MODE mode) { + const int mode_offset = INTER_OFFSET(mode); + const SingleInterModeState *state = + search_state->single_state[dir][mode_offset]; + const SingleInterModeState *state_modelled = + search_state->single_state_modelled[dir][mode_offset]; + int max_candidates = 0; + int candidates; + + for (int i = 0; i < FWD_REFS; ++i) { + if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break; + max_candidates++; + } + + candidates = max_candidates; + if (cpi->sf.prune_comp_search_by_single_result >= 2) { + candidates = AOMMIN(2, max_candidates); + } + if (cpi->sf.prune_comp_search_by_single_result >= 3) { + if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX && + state[0].ref_frame == state_modelled[0].ref_frame) + candidates = 1; + if (mode == NEARMV || mode == GLOBALMV) candidates = 1; + } + return candidates; +} + +static int compound_skip_by_single_states( + const AV1_COMP *cpi, const InterModeSearchState *search_state, + const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame, + const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) { + const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame }; + const int mode[2] = { compound_ref0_mode(this_mode), + compound_ref1_mode(this_mode) }; + const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) }; + const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1, + refs[1] <= GOLDEN_FRAME ? 0 : 1 }; + int ref_searched[2] = { 0, 0 }; + int ref_mv_match[2] = { 1, 1 }; + int i, j; + + for (i = 0; i < 2; ++i) { + const SingleInterModeState *state = + search_state->single_state[mode_dir[i]][mode_offset[i]]; + const int state_cnt = + search_state->single_state_cnt[mode_dir[i]][mode_offset[i]]; + for (j = 0; j < state_cnt; ++j) { + if (state[j].ref_frame == refs[i]) { + ref_searched[i] = 1; + break; + } + } + } + + const int ref_set = get_drl_refmv_count(x, refs, this_mode); + for (i = 0; i < 2; ++i) { + if (mode[i] == NEARESTMV || mode[i] == NEARMV) { + const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME }; + int idential = 1; + for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) { + int_mv single_mv; + int_mv comp_mv; + get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, single_refs, + x->mbmi_ext); + get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, refs, x->mbmi_ext); + + idential &= (single_mv.as_int == comp_mv.as_int); + if (!idential) { + ref_mv_match[i] = 0; + break; + } + } + } + } + + for (i = 0; i < 2; ++i) { + if (ref_searched[i] && ref_mv_match[i]) { + const int candidates = + compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]); + const MV_REFERENCE_FRAME *ref_order = + search_state->single_rd_order[mode_dir[i]][mode_offset[i]]; + int match = 0; + for (j = 0; j < candidates; ++j) { + if (refs[i] == ref_order[j]) { + match = 1; + break; + } + } + if (!match) return 1; + } + } + + return 0; +} + +static INLINE int sf_check_is_drop_ref(const MODE_DEFINITION *mode, + InterModeSearchState *search_state) { + const MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; + const MV_REFERENCE_FRAME second_ref_frame = mode->ref_frame[1]; + if (search_state->num_available_refs > 2) { + if ((ref_frame == search_state->dist_order_refs[0] && + second_ref_frame == search_state->dist_order_refs[1]) || + (ref_frame == search_state->dist_order_refs[1] && + second_ref_frame == search_state->dist_order_refs[0])) + return 1; // drop this pair of refs + } + return 0; +} + +static INLINE void sf_drop_ref_analyze(InterModeSearchState *search_state, + const MODE_DEFINITION *mode, + int64_t distortion2) { + const PREDICTION_MODE this_mode = mode->mode; + MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; + const int idx = ref_frame - LAST_FRAME; + if (idx && distortion2 > search_state->dist_refs[idx]) { + search_state->dist_refs[idx] = distortion2; + search_state->dist_order_refs[idx] = ref_frame; + } + + // Reach the last single ref prediction mode + if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) { + // bubble sort dist_refs and the order index + for (int i = 0; i < REF_FRAMES; ++i) { + for (int k = i + 1; k < REF_FRAMES; ++k) { + if (search_state->dist_refs[i] < search_state->dist_refs[k]) { + int64_t tmp_dist = search_state->dist_refs[i]; + search_state->dist_refs[i] = search_state->dist_refs[k]; + search_state->dist_refs[k] = tmp_dist; + + int tmp_idx = search_state->dist_order_refs[i]; + search_state->dist_order_refs[i] = search_state->dist_order_refs[k]; + search_state->dist_order_refs[k] = tmp_idx; + } + } + } + for (int i = 0; i < REF_FRAMES; ++i) { + if (search_state->dist_refs[i] == -1) break; + search_state->num_available_refs = i; + } + search_state->num_available_refs++; + } +} + +static void alloc_compound_type_rd_buffers(AV1_COMMON *const cm, + CompoundTypeRdBuffers *const bufs) { + CHECK_MEM_ERROR( + cm, bufs->pred0, + (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0))); + CHECK_MEM_ERROR( + cm, bufs->pred1, + (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1))); + CHECK_MEM_ERROR( + cm, bufs->residual1, + (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1))); + CHECK_MEM_ERROR( + cm, bufs->diff10, + (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10))); + CHECK_MEM_ERROR(cm, bufs->tmp_best_mask_buf, + (uint8_t *)aom_malloc(2 * MAX_SB_SQUARE * + sizeof(*bufs->tmp_best_mask_buf))); +} + +static void release_compound_type_rd_buffers( + CompoundTypeRdBuffers *const bufs) { + aom_free(bufs->pred0); + aom_free(bufs->pred1); + aom_free(bufs->residual1); + aom_free(bufs->diff10); + aom_free(bufs->tmp_best_mask_buf); + av1_zero(*bufs); // Set all pointers to NULL for safety. +} + +void av1_rd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *x, int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int try_palette = + av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const struct segmentation *const seg = &cm->seg; + PREDICTION_MODE this_mode; + unsigned char segment_id = mbmi->segment_id; + int i; + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; + unsigned int ref_costs_single[REF_FRAMES]; + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; + int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; + int *mode_map = tile_data->mode_map[bsize]; + uint32_t mode_skip_mask[REF_FRAMES]; + uint16_t ref_frame_skip_mask[2]; + + InterModeSearchState search_state; + init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize, + best_rd_so_far); + INTERINTRA_MODE interintra_modes[REF_FRAMES] = { + INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, + INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES + }; + HandleInterModeArgs args = { + { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, + { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, + NULL, NULL, + NULL, search_state.modelled_rd, + { { 0 } }, INT_MAX, + INT_MAX, search_state.simple_rd, + 0, interintra_modes + }; + for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + + av1_invalid_rd_stats(rd_cost); + + // init params, set frame modes, speed features + set_params_rd_pick_inter_mode( + cpi, x, &args, bsize, mi_row, mi_col, ref_frame_skip_mask, mode_skip_mask, + ctx->skip_ref_frame_mask, ref_costs_single, ref_costs_comp, yv12_mb); + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + int64_t best_est_rd = INT64_MAX; + // TODO(angiebird): Turn this on when this speed feature is well tested +#if 1 + const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + const int do_tx_search = !md->ready; +#else + const int do_tx_search = 1; +#endif + InterModesInfo *inter_modes_info = &tile_data->inter_modes_info; + inter_modes_info->num = 0; +#endif + + int intra_mode_num = 0; + int intra_mode_idx_ls[MAX_MODES]; + int reach_first_comp_mode = 0; + + // Temporary buffers used by handle_inter_mode(). + // We allocate them once and reuse it in every call to that function. + // Note: Must be allocated on the heap due to large size of the arrays. + uint8_t *tmp_buf_orig; + CHECK_MEM_ERROR( + cm, tmp_buf_orig, + (uint8_t *)aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE)); + uint8_t *const tmp_buf = get_buf_by_bd(xd, tmp_buf_orig); + + CompoundTypeRdBuffers rd_buffers; + alloc_compound_type_rd_buffers(cm, &rd_buffers); + + for (int midx = 0; midx < MAX_MODES; ++midx) { + int mode_index = mode_map[midx]; + int64_t this_rd = INT64_MAX; + int disable_skip = 0; + int rate2 = 0, rate_y = 0, rate_uv = 0; + int64_t distortion2 = 0; + int skippable = 0; + int this_skip2 = 0; + const MODE_DEFINITION *mode_order = &av1_mode_order[mode_index]; + const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0]; + const MV_REFERENCE_FRAME second_ref_frame = mode_order->ref_frame[1]; + const int comp_pred = second_ref_frame > INTRA_FRAME; + this_mode = mode_order->mode; + + init_mbmi(mbmi, mode_index, cm); + + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Reach the first compound prediction mode + if (sf->prune_comp_search_by_single_result > 0 && comp_pred && + reach_first_comp_mode == 0) { + analyze_single_states(cpi, &search_state); + reach_first_comp_mode = 1; + } + const int ret = inter_mode_search_order_independent_skip( + cpi, ctx, x, bsize, mode_index, mi_row, mi_col, mode_skip_mask, + ref_frame_skip_mask, &search_state); + if (ret == 1) continue; + args.skip_motion_mode = (ret == 2); + + if (sf->drop_ref && comp_pred) { + if (sf_check_is_drop_ref(mode_order, &search_state)) { + continue; + } + } + + if (search_state.best_rd < search_state.mode_threshold[mode_index]) + continue; + + if (sf->prune_comp_search_by_single_result > 0 && comp_pred) { + if (compound_skip_by_single_states(cpi, &search_state, this_mode, + ref_frame, second_ref_frame, x)) + continue; + } + + const int ref_frame_cost = comp_pred + ? ref_costs_comp[ref_frame][second_ref_frame] + : ref_costs_single[ref_frame]; + const int compmode_cost = + is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0; + const int real_compmode_cost = + cm->reference_mode == REFERENCE_MODE_SELECT ? compmode_cost : 0; + + if (comp_pred) { + if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && + search_state.best_mode_index >= 0 && + search_state.best_mbmode.ref_frame[0] == INTRA_FRAME) + continue; + } + + if (ref_frame == INTRA_FRAME) { + if (sf->adaptive_mode_search) + if ((x->source_variance << num_pels_log2_lookup[bsize]) > + search_state.best_pred_sse) + continue; + + if (this_mode != DC_PRED) { + // Only search the oblique modes if the best so far is + // one of the neighboring directional modes + if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && + (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { + if (search_state.best_mode_index >= 0 && + search_state.best_mbmode.ref_frame[0] > INTRA_FRAME) + continue; + } + if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { + if (conditional_skipintra(this_mode, search_state.best_intra_mode)) + continue; + } + } + } + + // Select prediction reference frames. + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; + } + + if (ref_frame == INTRA_FRAME) { + intra_mode_idx_ls[intra_mode_num++] = mode_index; + continue; + } else { + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + mbmi->angle_delta[PLANE_TYPE_UV] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->ref_mv_idx = 0; + int64_t ref_best_rd = search_state.best_rd; + { + RD_STATS rd_stats, rd_stats_y, rd_stats_uv; + av1_init_rd_stats(&rd_stats); + rd_stats.rate = rate2; + + // Point to variables that are maintained between loop iterations + args.single_newmv = search_state.single_newmv; + args.single_newmv_rate = search_state.single_newmv_rate; + args.single_newmv_valid = search_state.single_newmv_valid; + args.single_comp_cost = real_compmode_cost; + args.ref_frame_cost = ref_frame_cost; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + this_rd = handle_inter_mode( + cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &disable_skip, + mi_row, mi_col, &args, ref_best_rd, tmp_buf, &rd_buffers, tile_data, + &best_est_rd, do_tx_search, inter_modes_info); +#else + this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y, + &rd_stats_uv, &disable_skip, mi_row, mi_col, + &args, ref_best_rd, tmp_buf, &rd_buffers); +#endif + rate2 = rd_stats.rate; + skippable = rd_stats.skip; + distortion2 = rd_stats.dist; + rate_y = rd_stats_y.rate; + rate_uv = rd_stats_uv.rate; + } + + if (sf->prune_comp_search_by_single_result > 0 && + is_inter_singleref_mode(this_mode)) { + collect_single_states(x, &search_state, mbmi); + } + + if (this_rd == INT64_MAX) continue; + + this_skip2 = mbmi->skip; + this_rd = RDCOST(x->rdmult, rate2, distortion2); + if (this_skip2) { + rate_y = 0; + rate_uv = 0; + } + } + + // Did this mode help.. i.e. is it the new best mode + if (this_rd < search_state.best_rd || x->skip) { + int mode_excluded = 0; + if (comp_pred) { + mode_excluded = cm->reference_mode == SINGLE_REFERENCE; + } + if (!mode_excluded) { + // Note index of best mode so far + search_state.best_mode_index = mode_index; + + if (ref_frame == INTRA_FRAME) { + /* required for left and above block mv */ + mbmi->mv[0].as_int = 0; + } else { + search_state.best_pred_sse = x->pred_sse[ref_frame]; + } + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + search_state.best_rd = this_rd; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = this_skip2; + search_state.best_mode_skippable = skippable; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (do_tx_search) { + // When do_tx_search == 0, handle_inter_mode won't provide correct + // rate_y and rate_uv because txfm_search process is replaced by + // rd estimation. + // Therfore, we should avoid updating best_rate_y and best_rate_uv + // here. These two values will be updated when txfm_search is called + search_state.best_rate_y = + rate_y + + x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; + search_state.best_rate_uv = rate_uv; + } +#else // CONFIG_COLLECT_INTER_MODE_RD_STATS + search_state.best_rate_y = + rate_y + + x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; + search_state.best_rate_uv = rate_uv; +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + /* keep record of best compound/single-only prediction */ + if (!disable_skip && ref_frame != INTRA_FRAME) { + int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + single_rate = rate2 - compmode_cost; + hybrid_rate = rate2; + } else { + single_rate = rate2; + hybrid_rate = rate2 + compmode_cost; + } + + single_rd = RDCOST(x->rdmult, single_rate, distortion2); + hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2); + + if (!comp_pred) { + if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE]) + search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd; + } else { + if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE]) + search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd; + } + if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT]) + search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; + } + if (sf->drop_ref && second_ref_frame == NONE_FRAME) { + // Collect data from single ref mode, and analyze data. + sf_drop_ref_analyze(&search_state, mode_order, distortion2); + } + + if (x->skip && !comp_pred) break; + } + + aom_free(tmp_buf_orig); + tmp_buf_orig = NULL; + release_compound_type_rd_buffers(&rd_buffers); + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (!do_tx_search) { + inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr); + search_state.best_rd = INT64_MAX; + + int64_t top_est_rd = + inter_modes_info->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]; + for (int j = 0; j < inter_modes_info->num; ++j) { + const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx; + *mbmi = inter_modes_info->mbmi_arr[data_idx]; + int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx]; + if (curr_est_rd * 0.9 > top_est_rd) { + continue; + } + const int mode_rate = inter_modes_info->mode_rate_arr[data_idx]; + + x->skip = 0; + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + + // Select prediction reference frames. + const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + RD_STATS rd_stats; + RD_STATS rd_stats_y; + RD_STATS rd_stats_uv; + + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) + av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + + if (!txfm_search(cpi, x, bsize, mi_row, mi_col, &rd_stats, &rd_stats_y, + &rd_stats_uv, mode_rate, search_state.best_rd)) { + continue; + } else { + const int skip_ctx = av1_get_skip_context(xd); + inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats.sse, + rd_stats.dist, + rd_stats_y.rate + rd_stats_uv.rate + + x->skip_cost[skip_ctx][mbmi->skip]); + } + rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); + + if (rd_stats.rdcost < search_state.best_rd) { + search_state.best_rd = rd_stats.rdcost; + // Note index of best mode so far + const int mode_index = get_prediction_mode_idx( + mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); + search_state.best_mode_index = mode_index; + *rd_cost = rd_stats; + search_state.best_rd = rd_stats.rdcost; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = mbmi->skip; + search_state.best_mode_skippable = rd_stats.skip; + search_state.best_rate_y = + rd_stats_y.rate + + x->skip_cost[av1_get_skip_context(xd)][rd_stats.skip || mbmi->skip]; + search_state.best_rate_uv = rd_stats_uv.rate; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + } +#endif + + for (int j = 0; j < intra_mode_num; ++j) { + const int mode_index = intra_mode_idx_ls[j]; + const MV_REFERENCE_FRAME ref_frame = + av1_mode_order[mode_index].ref_frame[0]; + assert(av1_mode_order[mode_index].ref_frame[1] == NONE_FRAME); + assert(ref_frame == INTRA_FRAME); + if (sf->skip_intra_in_interframe && search_state.skip_intra_modes) break; + init_mbmi(mbmi, mode_index, cm); + x->skip = 0; + set_ref_ptrs(cm, xd, INTRA_FRAME, NONE_FRAME); + + // Select prediction reference frames. + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + } + + RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv; + + const int ref_frame_cost = ref_costs_single[ref_frame]; + intra_rd_stats.rdcost = handle_intra_mode( + &search_state, cpi, x, bsize, mi_row, mi_col, ref_frame_cost, ctx, 0, + &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv); + if (intra_rd_stats.rdcost < search_state.best_rd) { + search_state.best_rd = intra_rd_stats.rdcost; + // Note index of best mode so far + search_state.best_mode_index = mode_index; + *rd_cost = intra_rd_stats; + search_state.best_rd = intra_rd_stats.rdcost; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = 0; + search_state.best_mode_skippable = intra_rd_stats.skip; + search_state.best_rate_y = + intra_rd_stats_y.rate + + x->skip_cost[av1_get_skip_context(xd)][intra_rd_stats.skip]; + search_state.best_rate_uv = intra_rd_stats_uv.rate; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + // In effect only when speed >= 2. + sf_refine_fast_tx_type_search( + cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, search_state.best_mode_index, + &search_state.best_mbmode, yv12_mb, search_state.best_rate_y, + search_state.best_rate_uv, &search_state.best_skip2); + + // Only try palette mode when the best mode so far is an intra mode. + if (try_palette && !is_inter_mode(search_state.best_mbmode.mode)) { + search_palette_mode(cpi, x, mi_row, mi_col, rd_cost, ctx, bsize, mbmi, pmi, + ref_costs_single, &search_state); + } + + search_state.best_mbmode.skip_mode = 0; + if (cm->skip_mode_flag && + !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + is_comp_ref_allowed(bsize)) { + rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col, + yv12_mb); + } + + // Make sure that the ref_mv_idx is only nonzero when we're + // using a mode which can support ref_mv_idx + if (search_state.best_mbmode.ref_mv_idx != 0 && + !(search_state.best_mbmode.mode == NEWMV || + search_state.best_mbmode.mode == NEW_NEWMV || + have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) { + search_state.best_mbmode.ref_mv_idx = 0; + } + + if (search_state.best_mode_index < 0 || + search_state.best_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert( + (cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) || + !is_inter_block(&search_state.best_mbmode)); + assert( + (cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) || + !is_inter_block(&search_state.best_mbmode)); + + if (!cpi->rc.is_src_frame_alt_ref) + av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, + sf->adaptive_rd_thresh, bsize, + search_state.best_mode_index); + + // macroblock modes + *mbmi = search_state.best_mbmode; + x->skip |= search_state.best_skip2; + + // Note: this section is needed since the mode may have been forced to + // GLOBALMV by the all-zero mode handling of ref-mv. + if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { + // Correct the interp filters for GLOBALMV + if (is_nontrans_global_motion(xd, xd->mi[0])) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter))); + } + } + + for (i = 0; i < REFERENCE_MODES; ++i) { + if (search_state.best_pred_rd[i] == INT64_MAX) + search_state.best_pred_diff[i] = INT_MIN; + else + search_state.best_pred_diff[i] = + search_state.best_rd - search_state.best_pred_rd[i]; + } + + x->skip |= search_state.best_mode_skippable; + + assert(search_state.best_mode_index >= 0); + + store_coding_context(x, ctx, search_state.best_mode_index, + search_state.best_pred_diff, + search_state.best_mode_skippable); + + if (pmi->palette_size[1] > 0) { + assert(try_palette); + restore_uv_color_map(cpi, x); + } +} + +void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, + TileDataEnc *tile_data, MACROBLOCK *x, + int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + unsigned char segment_id = mbmi->segment_id; + const int comp_pred = 0; + int i; + int64_t best_pred_diff[REFERENCE_MODES]; + unsigned int ref_costs_single[REF_FRAMES]; + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; + int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; + InterpFilter best_filter = SWITCHABLE; + int64_t this_rd = INT64_MAX; + int rate2 = 0; + const int64_t distortion2 = 0; + (void)mi_row; + (void)mi_col; + + av1_collect_neighbors_ref_counts(xd); + + estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, + ref_costs_comp); + + for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; + + rd_cost->rate = INT_MAX; + + assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); + + mbmi->palette_mode_info.palette_size[0] = 0; + mbmi->palette_mode_info.palette_size[1] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->mode = GLOBALMV; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->uv_mode = UV_DC_PRED; + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) + mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + else + mbmi->ref_frame[0] = LAST_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->mv[0].as_int = + gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], + cm->allow_high_precision_mv, bsize, mi_col, mi_row, + cm->cur_frame_force_integer_mv) + .as_int; + mbmi->tx_size = max_txsize_lookup[bsize]; + x->skip = 1; + + mbmi->ref_mv_idx = 0; + + mbmi->motion_mode = SIMPLE_TRANSLATION; + av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); + if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); + // Select the samples according to motion vector difference + if (mbmi->num_proj_ref > 1) + mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, + mbmi->num_proj_ref, bsize); + } + + set_default_interp_filters(mbmi, cm->interp_filter); + + if (cm->interp_filter != SWITCHABLE) { + best_filter = cm->interp_filter; + } else { + best_filter = EIGHTTAP_REGULAR; + if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) && + x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { + int rs; + int best_rs = INT_MAX; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + mbmi->interp_filters = av1_broadcast_interp_filter(i); + rs = av1_get_switchable_rate(cm, x, xd); + if (rs < best_rs) { + best_rs = rs; + best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0); + } + } + } + } + // Set the appropriate filter + mbmi->interp_filters = av1_broadcast_interp_filter(best_filter); + rate2 += av1_get_switchable_rate(cm, x, xd); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + rate2 += comp_inter_cost[comp_pred]; + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + rate2 += ref_costs_single[LAST_FRAME]; + this_rd = RDCOST(x->rdmult, rate2, distortion2); + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + + if (this_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert((cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(mbmi->interp_filters, 0))); + + av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, + cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV); + + av1_zero(best_pred_diff); + + store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0); +} + +struct calc_target_weighted_pred_ctxt { + const MACROBLOCK *x; + const uint8_t *tmp; + int tmp_stride; + int overlap; +}; + +static INLINE void calc_target_weighted_pred_above( + MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MB_MODE_INFO *nb_mi, + void *fun_ctxt, const int num_planes) { + (void)nb_mi; + (void)num_planes; + + struct calc_target_weighted_pred_ctxt *ctxt = + (struct calc_target_weighted_pred_ctxt *)fun_ctxt; + + const int bw = xd->n4_w << MI_SIZE_LOG2; + const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); + + int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE); + int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE); + const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + + if (!is_hbd) { + for (int row = 0; row < ctxt->overlap; ++row) { + const uint8_t m0 = mask1d[row]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { + wsrc[col] = m1 * tmp[col]; + mask[col] = m0; + } + wsrc += bw; + mask += bw; + tmp += ctxt->tmp_stride; + } + } else { + const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); + + for (int row = 0; row < ctxt->overlap; ++row) { + const uint8_t m0 = mask1d[row]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { + wsrc[col] = m1 * tmp16[col]; + mask[col] = m0; + } + wsrc += bw; + mask += bw; + tmp16 += ctxt->tmp_stride; + } + } +} + +static INLINE void calc_target_weighted_pred_left( + MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MB_MODE_INFO *nb_mi, + void *fun_ctxt, const int num_planes) { + (void)nb_mi; + (void)num_planes; + + struct calc_target_weighted_pred_ctxt *ctxt = + (struct calc_target_weighted_pred_ctxt *)fun_ctxt; + + const int bw = xd->n4_w << MI_SIZE_LOG2; + const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); + + int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw); + int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw); + const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + + if (!is_hbd) { + for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { + for (int col = 0; col < ctxt->overlap; ++col) { + const uint8_t m0 = mask1d[col]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + + (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; + mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; + } + wsrc += bw; + mask += bw; + tmp += ctxt->tmp_stride; + } + } else { + const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); + + for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { + for (int col = 0; col < ctxt->overlap; ++col) { + const uint8_t m0 = mask1d[col]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + + (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1; + mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; + } + wsrc += bw; + mask += bw; + tmp16 += ctxt->tmp_stride; + } + } +} + +// This function has a structure similar to av1_build_obmc_inter_prediction +// +// The OBMC predictor is computed as: +// +// PObmc(x,y) = +// AOM_BLEND_A64(Mh(x), +// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), +// PLeft(x, y)) +// +// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate +// rounding, this can be written as: +// +// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = +// Mh(x) * Mv(y) * P(x,y) + +// Mh(x) * Cv(y) * Pabove(x,y) + +// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) +// +// Where : +// +// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) +// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) +// +// This function computes 'wsrc' and 'mask' as: +// +// wsrc(x, y) = +// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - +// Mh(x) * Cv(y) * Pabove(x,y) + +// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) +// +// mask(x, y) = Mh(x) * Mv(y) +// +// These can then be used to efficiently approximate the error for any +// predictor P in the context of the provided neighbouring predictors by +// computing: +// +// error(x, y) = +// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) +// +static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, int mi_row, + int mi_col, const uint8_t *above, + int above_stride, const uint8_t *left, + int left_stride) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int bw = xd->n4_w << MI_SIZE_LOG2; + const int bh = xd->n4_h << MI_SIZE_LOG2; + int32_t *mask_buf = x->mask_buf; + int32_t *wsrc_buf = x->wsrc_buf; + + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; + + // plane 0 should not be subsampled + assert(xd->plane[0].subsampling_x == 0); + assert(xd->plane[0].subsampling_y == 0); + + av1_zero_array(wsrc_buf, bw * bh); + for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; + + // handle above row + if (xd->up_available) { + const int overlap = + AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; + struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride, + overlap }; + foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + calc_target_weighted_pred_above, &ctxt); + } + + for (int i = 0; i < bw * bh; ++i) { + wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; + mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; + } + + // handle left column + if (xd->left_available) { + const int overlap = + AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; + struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride, + overlap }; + foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row, + max_neighbor_obmc[mi_size_high_log2[bsize]], + calc_target_weighted_pred_left, &ctxt); + } + + if (!is_hbd) { + const uint8_t *src = x->plane[0].src.buf; + + for (int row = 0; row < bh; ++row) { + for (int col = 0; col < bw; ++col) { + wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; + } + wsrc_buf += bw; + src += x->plane[0].src.stride; + } + } else { + const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); + + for (int row = 0; row < bh; ++row) { + for (int col = 0; col < bw; ++col) { + wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; + } + wsrc_buf += bw; + src += x->plane[0].src.stride; + } + } +} |