diff options
Diffstat (limited to 'third_party/aom/av1/encoder/bitstream.c')
-rw-r--r-- | third_party/aom/av1/encoder/bitstream.c | 3999 |
1 files changed, 3999 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/bitstream.c b/third_party/aom/av1/encoder/bitstream.c new file mode 100644 index 000000000..2c4acdb02 --- /dev/null +++ b/third_party/aom/av1/encoder/bitstream.c @@ -0,0 +1,3999 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <limits.h> +#include <stdio.h> + +#include "aom/aom_encoder.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_writer.h" +#include "aom_dsp/bitwriter_buffer.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/bitops.h" +#include "aom_ports/mem_ops.h" +#include "aom_ports/system_state.h" +#if CONFIG_BITSTREAM_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG + +#include "av1/common/cdef.h" +#include "av1/common/cfl.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/seg_common.h" +#include "av1/common/tile_common.h" + +#include "av1/encoder/bitstream.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/palette.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/tokenize.h" + +#define ENC_MISMATCH_DEBUG 0 + +static INLINE void write_uniform(aom_writer *w, int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return; + if (v < m) { + aom_write_literal(w, v, l - 1); + } else { + aom_write_literal(w, m + ((v - m) >> 1), l - 1); + aom_write_literal(w, (v - m) & 1, 1); + } +} + +static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + const RestorationUnitInfo *rui, + aom_writer *const w, int plane, + FRAME_COUNTS *counts); + +static void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, + const MB_MODE_INFO *mi, + const MB_MODE_INFO *above_mi, + const MB_MODE_INFO *left_mi, + PREDICTION_MODE mode, aom_writer *w) { + assert(!is_intrabc_block(mi)); + (void)mi; + aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), + INTRA_MODES); +} + +static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, + FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { + const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; + + aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); + + if (mode != NEWMV) { + const int16_t zeromv_ctx = + (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); + + if (mode != GLOBALMV) { + int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); + } + } +} + +static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, + const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) { + uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + + assert(mbmi->ref_mv_idx < 3); + + const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; + if (new_mv) { + int idx; + for (idx = 0; idx < 2; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + + aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], + 2); + if (mbmi->ref_mv_idx == idx) return; + } + } + return; + } + + if (have_nearmv_in_inter_mode(mbmi->mode)) { + int idx; + // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. + for (idx = 1; idx < 3; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), + ec_ctx->drl_cdf[drl_ctx], 2); + if (mbmi->ref_mv_idx == (idx - 1)) return; + } + } + return; + } +} + +static void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, + PREDICTION_MODE mode, + const int16_t mode_ctx) { + assert(is_inter_compound_mode(mode)); + aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), + xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], + INTER_COMPOUND_MODES); +} + +static void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, + TX_SIZE tx_size, int depth, int blk_row, + int blk_col, aom_writer *w) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); + const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + if (depth == MAX_VARTX_DEPTH) { + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + return; + } + + const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, + mbmi->sb_type, tx_size); + const int txb_size_index = + av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col); + const int write_txfm_partition = + tx_size == mbmi->inter_tx_size[txb_size_index]; + if (write_txfm_partition) { + aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); + + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + // TODO(yuec): set correct txfm partition update for qttx + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + + aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); + + if (sub_txs == TX_4X4) { + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, sub_txs, tx_size); + return; + } + + assert(bsw > 0 && bsh > 0); + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + int offsetr = blk_row + row; + int offsetc = blk_col + col; + write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); + } + } +} + +static void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + if (block_signals_txsize(bsize)) { + const TX_SIZE tx_size = mbmi->tx_size; + const int tx_size_ctx = get_tx_size_context(xd); + const int depth = tx_size_to_depth(tx_size, bsize); + const int max_depths = bsize_to_max_depth(bsize); + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + + assert(depth >= 0 && depth <= max_depths); + assert(!is_inter_block(mbmi)); + assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); + + aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], + max_depths + 1); + } +} + +static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int skip = mi->skip; + const int ctx = av1_get_skip_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2); + return skip; + } +} + +static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, const MB_MODE_INFO *mi, + aom_writer *w) { + if (!cm->skip_mode_flag) return 0; + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 0; + } + const int skip_mode = mi->skip_mode; + if (!is_comp_ref_allowed(mi->sb_type)) { + assert(!skip_mode); + return 0; + } + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + // These features imply single-reference mode, while skip mode implies + // compound reference. Hence, the two are mutually exclusive. + // In other words, skip_mode is implicitly 0 here. + assert(!skip_mode); + return 0; + } + const int ctx = av1_get_skip_mode_context(xd); + aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); + return skip_mode; +} + +static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, aom_writer *w, const int is_inter) { + if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + assert(is_inter); + return; + } + const int ctx = av1_get_intra_inter_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); + } +} + +static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi, aom_writer *w) { + MOTION_MODE last_motion_mode_allowed = + cm->switchable_motion_mode + ? motion_mode_allowed(cm->global_motion, xd, mbmi, + cm->allow_warped_motion) + : SIMPLE_TRANSLATION; + assert(mbmi->motion_mode <= last_motion_mode_allowed); + switch (last_motion_mode_allowed) { + case SIMPLE_TRANSLATION: break; + case OBMC_CAUSAL: + aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, + xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2); + break; + default: + aom_write_symbol(w, mbmi->motion_mode, + xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], + MOTION_MODES); + } +} + +static void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex, + aom_writer *w) { + int sign = delta_qindex < 0; + int abs = sign ? -delta_qindex : delta_qindex; + int rem_bits, thr; + int smallval = abs < DELTA_Q_SMALL ? 1 : 0; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, + DELTA_Q_PROBS + 1); + + if (!smallval) { + rem_bits = get_msb(abs - 1); + thr = (1 << rem_bits) + 1; + aom_write_literal(w, rem_bits - 1, 3); + aom_write_literal(w, abs - thr, rem_bits); + } + if (abs > 0) { + aom_write_bit(w, sign); + } +} + +static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int lf_id, int delta_lflevel, aom_writer *w) { + int sign = delta_lflevel < 0; + int abs = sign ? -delta_lflevel : delta_lflevel; + int rem_bits, thr; + int smallval = abs < DELTA_LF_SMALL ? 1 : 0; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (cm->delta_lf_multi) { + assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT + : FRAME_LF_COUNT - 2)); + aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), + ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); + } else { + aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, + DELTA_LF_PROBS + 1); + } + + if (!smallval) { + rem_bits = get_msb(abs - 1); + thr = (1 << rem_bits) + 1; + aom_write_literal(w, rem_bits - 1, 3); + aom_write_literal(w, abs - thr, rem_bits); + } + if (abs > 0) { + aom_write_bit(w, sign); + } +} + +static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n, + int num) { + const TOKENEXTRA *p = *tp; + write_uniform(w, n, p->token); // The first color index. + ++p; + --num; + for (int i = 0; i < num; ++i) { + aom_write_symbol(w, p->token, p->color_map_cdf, n); + ++p; + } + *tp = p; +} + +static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, + const TOKENEXTRA **tp, + const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, + MB_MODE_INFO *mbmi, int plane, + BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, + int block, int blk_row, int blk_col, + TX_SIZE tx_size, TOKEN_STATS *token_stats) { + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + + if (tx_size == plane_tx_size || plane) { + tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); + const uint16_t eob = x->mbmi_ext->eobs[plane][block]; + TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], + x->mbmi_ext->dc_sign_ctx[plane][block] }; + av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, + eob, &txb_ctx); +#if CONFIG_RD_DEBUG + TOKEN_STATS tmp_token_stats; + init_token_stats(&tmp_token_stats); + token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; + token_stats->cost += tmp_token_stats.cost; +#endif + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsh * bsw; + + assert(bsw > 0 && bsh > 0); + + for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { + for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { + const int offsetr = blk_row + r; + const int offsetc = blk_col + c; + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, + bit_depth, block, offsetr, offsetc, sub_txs, + token_stats); + block += step; + } + } + } +} + +static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm, + uint8_t *segment_ids, + BLOCK_SIZE bsize, int mi_row, + int mi_col, int segment_id) { + const int mi_offset = mi_row * cm->mi_cols + mi_col; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); + const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); + int x, y; + + for (y = 0; y < ymis; ++y) + for (x = 0; x < xmis; ++x) + segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id; +} + +int av1_neg_interleave(int x, int ref, int max) { + assert(x < max); + const int diff = x - ref; + if (!ref) return x; + if (ref >= (max - 1)) return -x + max - 1; + if (2 * ref < max) { + if (abs(diff) <= ref) { + if (diff > 0) + return (diff << 1) - 1; + else + return ((-diff) << 1); + } + return x; + } else { + if (abs(diff) < (max - ref)) { + if (diff > 0) + return (diff << 1) - 1; + else + return ((-diff) << 1); + } + return (max - x) - 1; + } +} + +static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, + aom_writer *w, const struct segmentation *seg, + struct segmentation_probs *segp, int mi_row, + int mi_col, int skip) { + if (!seg->enabled || !seg->update_map) return; + + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + int cdf_num; + const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num); + + if (skip) { + // Still need to transmit tx size for intra blocks even if skip is + // true. Changing segment_id may make the tx size become invalid, e.g + // changing from lossless to lossy. + assert(is_inter_block(mbmi) || !cpi->has_lossless_segment); + + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, + mi_col, pred); + set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row, + mi_col, pred); + /* mbmi is read only but we need to update segment_id */ + ((MB_MODE_INFO *)mbmi)->segment_id = pred; + return; + } + + const int coded_id = + av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); + aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; + aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, + mi_col, mbmi->segment_id); +} + +#define WRITE_REF_BIT(bname, pname) \ + aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) + +// This function encodes the reference frame +static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, + aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_compound = has_second_ref(mbmi); + const int segment_id = mbmi->segment_id; + + // If segment level coding of this signal is disabled... + // or the segment allows multiple reference frame options + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + assert(!is_compound); + assert(mbmi->ref_frame[0] == + get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); + } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + assert(!is_compound); + assert(mbmi->ref_frame[0] == LAST_FRAME); + } else { + // does the feature use compound prediction or not + // (if not specified at the frame/segment level) + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + if (is_comp_ref_allowed(mbmi->sb_type)) + aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2); + } else { + assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); + } + + if (is_compound) { + const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) + ? UNIDIR_COMP_REFERENCE + : BIDIR_COMP_REFERENCE; + aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), + 2); + + if (comp_ref_type == UNIDIR_COMP_REFERENCE) { + const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; + WRITE_REF_BIT(bit, uni_comp_ref_p); + + if (!bit) { + assert(mbmi->ref_frame[0] == LAST_FRAME); + const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || + mbmi->ref_frame[1] == GOLDEN_FRAME; + WRITE_REF_BIT(bit1, uni_comp_ref_p1); + if (bit1) { + const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; + WRITE_REF_BIT(bit2, uni_comp_ref_p2); + } + } else { + assert(mbmi->ref_frame[1] == ALTREF_FRAME); + } + + return; + } + + assert(comp_ref_type == BIDIR_COMP_REFERENCE); + + const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || + mbmi->ref_frame[0] == LAST3_FRAME); + WRITE_REF_BIT(bit, comp_ref_p); + + if (!bit) { + const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; + WRITE_REF_BIT(bit1, comp_ref_p1); + } else { + const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; + WRITE_REF_BIT(bit2, comp_ref_p2); + } + + const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; + WRITE_REF_BIT(bit_bwd, comp_bwdref_p); + + if (!bit_bwd) { + WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); + } + + } else { + const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && + mbmi->ref_frame[0] >= BWDREF_FRAME); + WRITE_REF_BIT(bit0, single_ref_p1); + + if (bit0) { + const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; + WRITE_REF_BIT(bit1, single_ref_p2); + + if (!bit1) { + WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); + } + } else { + const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || + mbmi->ref_frame[0] == GOLDEN_FRAME); + WRITE_REF_BIT(bit2, single_ref_p3); + + if (!bit2) { + const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; + WRITE_REF_BIT(bit3, single_ref_p4); + } else { + const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; + WRITE_REF_BIT(bit4, single_ref_p5); + } + } + } + } +} + +static void write_filter_intra_mode_info(const AV1_COMMON *cm, + const MACROBLOCKD *xd, + const MB_MODE_INFO *const mbmi, + aom_writer *w) { + if (av1_filter_intra_allowed(cm, mbmi)) { + aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, + xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2); + if (mbmi->filter_intra_mode_info.use_filter_intra) { + const FILTER_INTRA_MODE mode = + mbmi->filter_intra_mode_info.filter_intra_mode; + aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, + FILTER_INTRA_MODES); + } + } +} + +static void write_angle_delta(aom_writer *w, int angle_delta, + aom_cdf_prob *cdf) { + aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, + 2 * MAX_ANGLE_DELTA + 1); +} + +static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd, + aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!av1_is_interp_needed(xd)) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter))); + return; + } + if (cm->interp_filter == SWITCHABLE) { + int dir; + for (dir = 0; dir < 2; ++dir) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + InterpFilter filter = + av1_extract_interp_filter(mbmi->interp_filters, dir); + aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], + SWITCHABLE_FILTERS); + ++cpi->interp_filter_selected[0][filter]; + if (cm->seq_params.enable_dual_filter == 0) return; + } + } +} + +// Transmit color values with delta encoding. Write the first value as +// literal, and the deltas between each value and the previous one. "min_val" is +// the smallest possible value of the deltas. +static void delta_encode_palette_colors(const int *colors, int num, + int bit_depth, int min_val, + aom_writer *w) { + if (num <= 0) return; + assert(colors[0] < (1 << bit_depth)); + aom_write_literal(w, colors[0], bit_depth); + if (num == 1) return; + int max_delta = 0; + int deltas[PALETTE_MAX_SIZE]; + memset(deltas, 0, sizeof(deltas)); + for (int i = 1; i < num; ++i) { + assert(colors[i] < (1 << bit_depth)); + const int delta = colors[i] - colors[i - 1]; + deltas[i - 1] = delta; + assert(delta >= min_val); + if (delta > max_delta) max_delta = delta; + } + const int min_bits = bit_depth - 3; + int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); + assert(bits <= bit_depth); + int range = (1 << bit_depth) - colors[0] - min_val; + aom_write_literal(w, bits - min_bits, 2); + for (int i = 0; i < num - 1; ++i) { + aom_write_literal(w, deltas[i] - min_val, bits); + range -= deltas[i]; + bits = AOMMIN(bits, av1_ceil_log2(range)); + } +} + +// Transmit luma palette color values. First signal if each color in the color +// cache is used. Those colors that are not in the cache are transmitted with +// delta encoding. +static void write_palette_colors_y(const MACROBLOCKD *const xd, + const PALETTE_MODE_INFO *const pmi, + int bit_depth, aom_writer *w) { + const int n = pmi->palette_size[0]; + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = + av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, + cache_color_found, out_cache_colors); + int n_in_cache = 0; + for (int i = 0; i < n_cache && n_in_cache < n; ++i) { + const int found = cache_color_found[i]; + aom_write_bit(w, found); + n_in_cache += found; + } + assert(n_in_cache + n_out_cache == n); + delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); +} + +// Write chroma palette color values. U channel is handled similarly to the luma +// channel. For v channel, either use delta encoding or transmit raw values +// directly, whichever costs less. +static void write_palette_colors_uv(const MACROBLOCKD *const xd, + const PALETTE_MODE_INFO *const pmi, + int bit_depth, aom_writer *w) { + const int n = pmi->palette_size[1]; + const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; + const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; + // U channel colors. + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = av1_index_color_cache( + color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); + int n_in_cache = 0; + for (int i = 0; i < n_cache && n_in_cache < n; ++i) { + const int found = cache_color_found[i]; + aom_write_bit(w, found); + n_in_cache += found; + } + delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); + + // V channel colors. Don't use color cache as the colors are not sorted. + const int max_val = 1 << bit_depth; + int zero_count = 0, min_bits_v = 0; + int bits_v = + av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); + const int rate_using_delta = + 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; + const int rate_using_raw = bit_depth * n; + if (rate_using_delta < rate_using_raw) { // delta encoding + assert(colors_v[0] < (1 << bit_depth)); + aom_write_bit(w, 1); + aom_write_literal(w, bits_v - min_bits_v, 2); + aom_write_literal(w, colors_v[0], bit_depth); + for (int i = 1; i < n; ++i) { + assert(colors_v[i] < (1 << bit_depth)); + if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. + aom_write_literal(w, 0, bits_v); + continue; + } + const int delta = abs((int)colors_v[i] - colors_v[i - 1]); + const int sign_bit = colors_v[i] < colors_v[i - 1]; + if (delta <= max_val - delta) { + aom_write_literal(w, delta, bits_v); + aom_write_bit(w, sign_bit); + } else { + aom_write_literal(w, max_val - delta, bits_v); + aom_write_bit(w, !sign_bit); + } + } + } else { // Transmit raw values. + aom_write_bit(w, 0); + for (int i = 0; i < n; ++i) { + assert(colors_v[i] < (1 << bit_depth)); + aom_write_literal(w, colors_v[i], bit_depth); + } + } +} + +static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, + const MB_MODE_INFO *const mbmi, int mi_row, + int mi_col, aom_writer *w) { + const int num_planes = av1_num_planes(cm); + const BLOCK_SIZE bsize = mbmi->sb_type; + assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + + if (mbmi->mode == DC_PRED) { + const int n = pmi->palette_size[0]; + const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); + aom_write_symbol( + w, n > 0, + xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); + if (n > 0) { + aom_write_symbol(w, n - PALETTE_MIN_SIZE, + xd->tile_ctx->palette_y_size_cdf[bsize_ctx], + PALETTE_SIZES); + write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); + } + } + + const int uv_dc_pred = + num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && + is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, + xd->plane[1].subsampling_y); + if (uv_dc_pred) { + const int n = pmi->palette_size[1]; + const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); + aom_write_symbol(w, n > 0, + xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); + if (n > 0) { + aom_write_symbol(w, n - PALETTE_MIN_SIZE, + xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], + PALETTE_SIZES); + write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); + } + } +} + +void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, + int blk_row, int blk_col, int plane, TX_SIZE tx_size, + aom_writer *w) { + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + // Only y plane's tx_type is transmitted + if (plane > 0) return; + PLANE_TYPE plane_type = get_plane_type(plane); + TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, + cm->reduced_tx_set_used); + + const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; + if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && + ((!cm->seg.enabled && cm->base_qindex > 0) || + (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && + !mbmi->skip && + !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); + const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); + // eset == 0 should correspond to a set with only DCT_DCT and there + // is no need to send the tx_type + assert(eset > 0); + assert(av1_ext_tx_used[tx_set_type][tx_type]); + if (is_inter) { + aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], + ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], + av1_num_ext_tx_set[tx_set_type]); + } else { + PREDICTION_MODE intra_dir; + if (mbmi->filter_intra_mode_info.use_filter_intra) + intra_dir = + fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; + else + intra_dir = mbmi->mode; + aom_write_symbol( + w, av1_ext_tx_ind[tx_set_type][tx_type], + ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], + av1_num_ext_tx_set[tx_set_type]); + } + } +} + +static void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, + PREDICTION_MODE mode, aom_writer *w) { + aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], + INTRA_MODES); +} + +static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, + UV_PREDICTION_MODE uv_mode, + PREDICTION_MODE y_mode, + CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) { + aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], + UV_INTRA_MODES - !cfl_allowed); +} + +static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx, + int joint_sign, aom_writer *w) { + aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); + // Magnitudes are only signaled for nonzero codes. + if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; + aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); + } + if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; + aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); + } +} + +static void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_writer *w, + int skip, int mi_col, int mi_row) { + if (cm->coded_lossless || cm->allow_intrabc) { + // Initialize to indicate no CDEF for safety. + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->nb_cdef_strengths = 1; + cm->cdef_uv_strengths[0] = 0; + return; + } + + const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1); + const MB_MODE_INFO *mbmi = + cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)]; + // Initialise when at top left part of the superblock + if (!(mi_row & (cm->seq_params.mib_size - 1)) && + !(mi_col & (cm->seq_params.mib_size - 1))) { // Top left? + xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] = + xd->cdef_preset[3] = -1; + } + + // Emit CDEF param at first non-skip coding block + const int mask = 1 << (6 - MI_SIZE_LOG2); + const int index = cm->seq_params.sb_size == BLOCK_128X128 + ? !!(mi_col & mask) + 2 * !!(mi_row & mask) + : 0; + if (xd->cdef_preset[index] == -1 && !skip) { + aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); + xd->cdef_preset[index] = mbmi->cdef_strength; + } +} + +static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w, + const struct segmentation *const seg, + struct segmentation_probs *const segp, + int mi_row, int mi_col, int skip, + int preskip) { + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + AV1_COMMON *const cm = &cpi->common; + + if (seg->update_map) { + if (preskip) { + if (!seg->segid_preskip) return; + } else { + if (seg->segid_preskip) return; + if (skip) { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1); + if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0; + return; + } + } + if (seg->temporal_update) { + const int pred_flag = mbmi->seg_id_predicted; + aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); + aom_write_symbol(w, pred_flag, pred_cdf, 2); + if (!pred_flag) { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + } + if (pred_flag) { + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, + mi_row, mi_col, mbmi->segment_id); + } + } else { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + } + } +} + +// If delta q is present, writes delta_q index. +// Also writes delta_q loop filter levels, if present. +static void write_delta_q_params(AV1_COMP *cpi, const int mi_row, + const int mi_col, int skip, aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + if (cm->delta_q_present_flag) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int super_block_upper_left = + ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && + ((mi_col & (cm->seq_params.mib_size - 1)) == 0); + + if ((bsize != cm->seq_params.sb_size || skip == 0) && + super_block_upper_left) { + assert(mbmi->current_qindex > 0); + const int reduced_delta_qindex = + (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; + write_delta_qindex(xd, reduced_delta_qindex, w); + xd->current_qindex = mbmi->current_qindex; + if (cm->delta_lf_present_flag) { + if (cm->delta_lf_multi) { + const int frame_lf_count = + av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { + int reduced_delta_lflevel = + (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / + cm->delta_lf_res; + write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); + xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; + } + } else { + int reduced_delta_lflevel = + (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / + cm->delta_lf_res; + write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); + xd->delta_lf_from_base = mbmi->delta_lf_from_base; + } + } + } + } +} + +static void write_intra_prediction_modes(AV1_COMP *cpi, const int mi_row, + const int mi_col, int is_keyframe, + aom_writer *w) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const PREDICTION_MODE mode = mbmi->mode; + const BLOCK_SIZE bsize = mbmi->sb_type; + + // Y mode. + if (is_keyframe) { + const MB_MODE_INFO *const above_mi = xd->above_mbmi; + const MB_MODE_INFO *const left_mi = xd->left_mbmi; + write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w); + } else { + write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); + } + + // Y angle delta. + const int use_angle_delta = av1_use_angle_delta(bsize); + if (use_angle_delta && av1_is_directional_mode(mode)) { + write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], + ec_ctx->angle_delta_cdf[mode - V_PRED]); + } + + // UV mode and UV angle delta. + if (!cm->seq_params.monochrome && + is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, + xd->plane[1].subsampling_y)) { + const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; + write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); + if (uv_mode == UV_CFL_PRED) + write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); + if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { + write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], + ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); + } + } + + // Palette. + if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { + write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w); + } + + // Filter intra. + write_filter_intra_mode_info(cm, xd, mbmi, w); +} + +static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row, + const int mi_col, aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const struct segmentation *const seg = &cm->seg; + struct segmentation_probs *const segp = &ec_ctx->seg; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const PREDICTION_MODE mode = mbmi->mode; + const int segment_id = mbmi->segment_id; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int allow_hp = cm->allow_high_precision_mv; + const int is_inter = is_inter_block(mbmi); + const int is_compound = has_second_ref(mbmi); + int ref; + + write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1); + + write_skip_mode(cm, xd, segment_id, mbmi, w); + + assert(IMPLIES(mbmi->skip_mode, mbmi->skip)); + const int skip = + mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); + + write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0); + + write_cdef(cm, xd, w, skip, mi_col, mi_row); + + write_delta_q_params(cpi, mi_row, mi_col, skip, w); + + if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); + + if (mbmi->skip_mode) return; + + if (!is_inter) { + write_intra_prediction_modes(cpi, mi_row, mi_col, 0, w); + } else { + int16_t mode_ctx; + + av1_collect_neighbors_ref_counts(xd); + + write_ref_frames(cm, xd, w); + + mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); + + // If segment skip is not enabled code the mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { + if (is_inter_compound_mode(mode)) + write_inter_compound_mode(xd, w, mode, mode_ctx); + else if (is_inter_singleref_mode(mode)) + write_inter_mode(w, mode, ec_ctx, mode_ctx); + + if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) + write_drl_idx(ec_ctx, mbmi, mbmi_ext, w); + else + assert(mbmi->ref_mv_idx == 0); + } + + if (mode == NEWMV || mode == NEW_NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, ref); + av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, + allow_hp); + } + } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, 1); + av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp); + } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp); + } + + if (cpi->common.reference_mode != COMPOUND_REFERENCE && + cpi->common.seq_params.enable_interintra_compound && + is_interintra_allowed(mbmi)) { + const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; + const int bsize_group = size_group_lookup[bsize]; + aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); + if (interintra) { + aom_write_symbol(w, mbmi->interintra_mode, + ec_ctx->interintra_mode_cdf[bsize_group], + INTERINTRA_MODES); + if (is_interintra_wedge_used(bsize)) { + aom_write_symbol(w, mbmi->use_wedge_interintra, + ec_ctx->wedge_interintra_cdf[bsize], 2); + if (mbmi->use_wedge_interintra) { + aom_write_symbol(w, mbmi->interintra_wedge_index, + ec_ctx->wedge_idx_cdf[bsize], 16); + assert(mbmi->interintra_wedge_sign == 0); + } + } + } + } + + if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w); + + // First write idx to indicate current compound inter prediction mode group + // Group A (0): jnt_comp, compound_average + // Group B (1): interintra, compound_diffwtd, wedge + if (has_second_ref(mbmi)) { + const int masked_compound_used = is_any_masked_compound_used(bsize) && + cm->seq_params.enable_masked_compound; + + if (masked_compound_used) { + const int ctx_comp_group_idx = get_comp_group_idx_context(xd); + aom_write_symbol(w, mbmi->comp_group_idx, + ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); + } else { + assert(mbmi->comp_group_idx == 0); + } + + if (mbmi->comp_group_idx == 0) { + if (mbmi->compound_idx) + assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); + + if (cm->seq_params.enable_jnt_comp) { + const int comp_index_ctx = get_comp_index_context(cm, xd); + aom_write_symbol(w, mbmi->compound_idx, + ec_ctx->compound_index_cdf[comp_index_ctx], 2); + } else { + assert(mbmi->compound_idx == 1); + } + } else { + assert(cpi->common.reference_mode != SINGLE_REFERENCE && + is_inter_compound_mode(mbmi->mode) && + mbmi->motion_mode == SIMPLE_TRANSLATION); + assert(masked_compound_used); + // compound_diffwtd, wedge + assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || + mbmi->interinter_comp.type == COMPOUND_DIFFWTD); + + if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) + aom_write_symbol(w, mbmi->interinter_comp.type - 1, + ec_ctx->compound_type_cdf[bsize], + COMPOUND_TYPES - 1); + + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); + aom_write_symbol(w, mbmi->interinter_comp.wedge_index, + ec_ctx->wedge_idx_cdf[bsize], 16); + aom_write_bit(w, mbmi->interinter_comp.wedge_sign); + } else { + assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); + aom_write_literal(w, mbmi->interinter_comp.mask_type, + MAX_DIFFWTD_MASK_BITS); + } + } + } + + write_mb_interp_filter(cpi, xd, w); + } +} + +static void write_intrabc_info(MACROBLOCKD *xd, + const MB_MODE_INFO_EXT *mbmi_ext, + aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + int use_intrabc = is_intrabc_block(mbmi); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); + if (use_intrabc) { + assert(mbmi->mode == DC_PRED); + assert(mbmi->uv_mode == UV_DC_PRED); + assert(mbmi->motion_mode == SIMPLE_TRANSLATION); + int_mv dv_ref = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv; + av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); + } +} + +static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd, + const MB_MODE_INFO_EXT *mbmi_ext, + const int mi_row, const int mi_col, + aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const struct segmentation *const seg = &cm->seg; + struct segmentation_probs *const segp = &ec_ctx->seg; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + + if (seg->segid_preskip && seg->update_map) + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + + const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); + + if (!seg->segid_preskip && seg->update_map) + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip); + + write_cdef(cm, xd, w, skip, mi_col, mi_row); + + write_delta_q_params(cpi, mi_row, mi_col, skip, w); + + if (av1_allow_intrabc(cm)) { + write_intrabc_info(xd, mbmi_ext, w); + if (is_intrabc_block(mbmi)) return; + } + + write_intra_prediction_modes(cpi, mi_row, mi_col, 1, w); +} + +#if CONFIG_RD_DEBUG +static void dump_mode_info(MODE_INFO *mi) { + printf("\nmi->mi_row == %d\n", mi->mi_row); + printf("&& mi->mi_col == %d\n", mi->mi_col); + printf("&& mi->sb_type == %d\n", mi->sb_type); + printf("&& mi->tx_size == %d\n", mi->tx_size); + printf("&& mi->mode == %d\n", mi->mode); +} +static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, + int plane) { + if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { + int r, c; + printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", + plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); + printf("rd txb_coeff_cost_map\n"); + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { + printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); + } + printf("\n"); + } + + printf("pack txb_coeff_cost_map\n"); + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { + printf("%d ", token_stats->txb_coeff_cost_map[r][c]); + } + printf("\n"); + } + return 1; + } + return 0; +} +#endif + +#if ENC_MISMATCH_DEBUG +static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + const MB_MODE_INFO *const *mbmi = xd->mi[0]; + if (is_inter_block(mbmi)) { +#define FRAME_TO_CHECK 11 + if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { + const BLOCK_SIZE bsize = mbmi->sb_type; + + int_mv mv[2]; + int is_comp_ref = has_second_ref(mbmi); + int ref; + + for (ref = 0; ref < 1 + is_comp_ref; ++ref) + mv[ref].as_mv = mbmi->mv[ref].as_mv; + + if (!is_comp_ref) { + mv[1].as_int = 0; + } + + MACROBLOCK *const x = &cpi->td.mb; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int16_t mode_ctx = + is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]] + : av1_mode_context_analyzer(mbmi_ext->mode_context, + mbmi->ref_frame); + + const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; + int16_t zeromv_ctx = -1; + int16_t refmv_ctx = -1; + + if (mbmi->mode != NEWMV) { + zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + if (mbmi->mode != GLOBALMV) + refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + } + + printf( + "=== ENCODER ===: " + "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " + "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " + "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " + "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", + cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, + bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, + mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], + mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, + zeromv_ctx, refmv_ctx, mbmi->tx_size); + } + } +} +#endif // ENC_MISMATCH_DEBUG + +static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, int mi_row, int mi_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + int bh, bw; + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + MB_MODE_INFO *m = xd->mi[0]; + + assert(m->sb_type <= cm->seq_params.sb_size || + (m->sb_type >= BLOCK_SIZES && m->sb_type < BLOCK_SIZES_ALL)); + + bh = mi_size_high[m->sb_type]; + bw = mi_size_wide[m->sb_type]; + + cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + if (frame_is_intra_only(cm)) { + write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext, mi_row, mi_col, w); + } else { + // has_subpel_mv_component needs the ref frame buffers set up to look + // up if they are scaled. has_subpel_mv_component is in turn needed by + // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. + set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); + +#if ENC_MISMATCH_DEBUG + enc_dump_logs(cpi, mi_row, mi_col); +#endif // ENC_MISMATCH_DEBUG + + pack_inter_mode_mvs(cpi, mi_row, mi_col, w); + } +} + +static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x, + MB_MODE_INFO *const mbmi, aom_writer *w, + const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, + TOKEN_STATS *token_stats, const int row, + const int col, int *block, const int plane) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const BLOCK_SIZE bsizec = + scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + const int step = + tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + const int bkw = tx_size_wide_unit[max_tx_size]; + const int bkh = tx_size_high_unit[max_tx_size]; + + const BLOCK_SIZE max_unit_bsize = + get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); + int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + int blk_row, blk_col; + + const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + + const int unit_height = + AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h); + const int unit_width = + AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w); + for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += bkh) { + for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += bkw) { + pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, + cm->seq_params.bit_depth, *block, blk_row, blk_col, + max_tx_size, token_stats); + *block += step; + } + } +} + +static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int mi_offset = mi_row * cm->mi_stride + mi_col; + MB_MODE_INFO *const mbmi = *(cm->mi_grid_visible + mi_offset); + int plane; + int bh, bw; + MACROBLOCK *const x = &cpi->td.mb; + (void)tok; + (void)tok_end; + xd->mi = cm->mi_grid_visible + mi_offset; + + assert(mbmi->sb_type <= cm->seq_params.sb_size || + (mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL)); + + bh = mi_size_high[mbmi->sb_type]; + bw = mi_size_wide[mbmi->sb_type]; + cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + if (!mbmi->skip) { + if (!is_inter_block(mbmi)) + av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type); + + if (is_inter_block(mbmi)) { + int block[MAX_MB_PLANE] = { 0 }; + const BLOCK_SIZE plane_bsize = mbmi->sb_type; + assert(plane_bsize == get_plane_block_size(mbmi->sb_type, + xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + const int num_4x4_w = + block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = + block_size_high[plane_bsize] >> tx_size_high_log2[0]; + int row, col; + TOKEN_STATS token_stats; + init_token_stats(&token_stats); + + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + assert(max_unit_bsize == + get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); + mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); + + for (row = 0; row < num_4x4_h; row += mu_blocks_high) { + for (col = 0; col < num_4x4_w; col += mu_blocks_wide) { + for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, + pd->subsampling_x, pd->subsampling_y)) { + continue; + } + write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, + row, col, &block[plane], plane); + } + } +#if CONFIG_RD_DEBUG + if (mbmi->sb_type >= BLOCK_8X8 && + rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { + dump_mode_info(m); + assert(0); + } +#endif // CONFIG_RD_DEBUG + } + } + } +} + +static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col) { + write_mbmi_b(cpi, tile, w, mi_row, mi_col); + + AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &cpi->td.mb.e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) { + const uint8_t palette_size_plane = + mbmi->palette_mode_info.palette_size[plane]; + assert(!mbmi->skip_mode || !palette_size_plane); + if (palette_size_plane > 0) { + assert(mbmi->use_intrabc == 0); + assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type)); + int rows, cols; + av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows, + &cols); + assert(*tok < tok_end); + pack_map_tokens(w, tok, palette_size_plane, rows * cols); + } + } + + BLOCK_SIZE bsize = mbmi->sb_type; + int is_inter_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); + int skip = mbmi->skip; + int segment_id = mbmi->segment_id; + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && + !(is_inter_tx && skip) && !xd->lossless[segment_id]) { + if (is_inter_tx) { // This implies skip flag is 0. + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); + const int txbh = tx_size_high_unit[max_tx_size]; + const int txbw = tx_size_wide_unit[max_tx_size]; + const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; + const int height = block_size_high[bsize] >> tx_size_high_log2[0]; + int idx, idy; + for (idy = 0; idy < height; idy += txbh) + for (idx = 0; idx < width; idx += txbw) + write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); + } else { + write_selected_tx_size(xd, w); + set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, 0, xd); + } + } else { + set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, + skip && is_inter_block(mbmi), xd); + } + + write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); +} + +static void write_partition(const AV1_COMMON *const cm, + const MACROBLOCKD *const xd, int hbs, int mi_row, + int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, + aom_writer *w) { + const int is_partition_point = bsize >= BLOCK_8X8; + + if (!is_partition_point) return; + + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!has_rows && !has_cols) { + assert(p == PARTITION_SPLIT); + return; + } + + if (has_rows && has_cols) { + aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], + partition_cdf_length(bsize)); + } else if (!has_rows && has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); + aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); + } else { + assert(has_rows && !has_cols); + assert(p == PARTITION_SPLIT || p == PARTITION_VERT); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); + aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); + } +} + +static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile, + aom_writer *const w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int hbs = mi_size_wide[bsize] / 2; + const int quarter_step = mi_size_wide[bsize] / 4; + int i; + const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); + const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + const int num_planes = av1_num_planes(cm); + for (int plane = 0; plane < num_planes; ++plane) { + int rcol0, rcol1, rrow0, rrow1; + if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, + &rcol0, &rcol1, &rrow0, &rrow1)) { + const int rstride = cm->rst_info[plane].horz_units_per_tile; + for (int rrow = rrow0; rrow < rrow1; ++rrow) { + for (int rcol = rcol0; rcol < rcol1; ++rcol) { + const int runit_idx = rcol + rrow * rstride; + const RestorationUnitInfo *rui = + &cm->rst_info[plane].unit_info[runit_idx]; + loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, + cpi->td.counts); + } + } + } + } + + write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); + switch (partition) { + case PARTITION_NONE: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + break; + case PARTITION_HORZ: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + if (mi_row + hbs < cm->mi_rows) + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + break; + case PARTITION_VERT: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + if (mi_col + hbs < cm->mi_cols) + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + break; + case PARTITION_SPLIT: + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, + subsize); + break; + case PARTITION_HORZ_A: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + break; + case PARTITION_HORZ_B: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); + break; + case PARTITION_VERT_A: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + break; + case PARTITION_VERT_B: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); + break; + case PARTITION_HORZ_4: + for (i = 0; i < 4; ++i) { + int this_mi_row = mi_row + i * quarter_step; + if (i > 0 && this_mi_row >= cm->mi_rows) break; + + write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); + } + break; + case PARTITION_VERT_4: + for (i = 0; i < 4; ++i) { + int this_mi_col = mi_col + i * quarter_step; + if (i > 0 && this_mi_col >= cm->mi_cols) break; + + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); + } + break; + default: assert(0); + } + + // update partition context + update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); +} + +static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile, + aom_writer *const w, int tile_row, int tile_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int mi_row_start = tile->mi_row_start; + const int mi_row_end = tile->mi_row_end; + const int mi_col_start = tile->mi_col_start; + const int mi_col_end = tile->mi_col_end; + int mi_row, mi_col, sb_row_in_tile; + + av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); + av1_init_above_context(cm, xd, tile->tile_row); + + if (cpi->common.delta_q_present_flag) { + xd->current_qindex = cpi->common.base_qindex; + if (cpi->common.delta_lf_present_flag) { + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + + for (mi_row = mi_row_start; mi_row < mi_row_end; + mi_row += cm->seq_params.mib_size) { + sb_row_in_tile = + (mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2; + const TOKENEXTRA *tok = + cpi->tplist[tile_row][tile_col][sb_row_in_tile].start; + const TOKENEXTRA *tok_end = + tok + cpi->tplist[tile_row][tile_col][sb_row_in_tile].count; + + av1_zero_left_context(xd); + + for (mi_col = mi_col_start; mi_col < mi_col_end; + mi_col += cm->seq_params.mib_size) { + write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col, + cm->seq_params.sb_size); + } + assert(tok == cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop); + } +} + +static void encode_restoration_mode(AV1_COMMON *cm, + struct aom_write_bit_buffer *wb) { + assert(!cm->all_lossless); + if (!cm->seq_params.enable_restoration) return; + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int all_none = 1, chroma_none = 1; + for (int p = 0; p < num_planes; ++p) { + RestorationInfo *rsi = &cm->rst_info[p]; + if (rsi->frame_restoration_type != RESTORE_NONE) { + all_none = 0; + chroma_none &= p == 0; + } + switch (rsi->frame_restoration_type) { + case RESTORE_NONE: + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, 0); + break; + case RESTORE_WIENER: + aom_wb_write_bit(wb, 1); + aom_wb_write_bit(wb, 0); + break; + case RESTORE_SGRPROJ: + aom_wb_write_bit(wb, 1); + aom_wb_write_bit(wb, 1); + break; + case RESTORE_SWITCHABLE: + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, 1); + break; + default: assert(0); + } + } + if (!all_none) { + assert(cm->seq_params.sb_size == BLOCK_64X64 || + cm->seq_params.sb_size == BLOCK_128X128); + const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; + + RestorationInfo *rsi = &cm->rst_info[0]; + + assert(rsi->restoration_unit_size >= sb_size); + assert(RESTORATION_UNITSIZE_MAX == 256); + + if (sb_size == 64) { + aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); + } + if (rsi->restoration_unit_size > 64) { + aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); + } + } + + if (num_planes > 1) { + int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); + if (s && !chroma_none) { + aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != + cm->rst_info[0].restoration_unit_size); + assert(cm->rst_info[1].restoration_unit_size == + cm->rst_info[0].restoration_unit_size || + cm->rst_info[1].restoration_unit_size == + (cm->rst_info[0].restoration_unit_size >> s)); + assert(cm->rst_info[2].restoration_unit_size == + cm->rst_info[1].restoration_unit_size); + } else if (!s) { + assert(cm->rst_info[1].restoration_unit_size == + cm->rst_info[0].restoration_unit_size); + assert(cm->rst_info[2].restoration_unit_size == + cm->rst_info[1].restoration_unit_size); + } + } +} + +static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, + WienerInfo *ref_wiener_info, aom_writer *wb) { + if (wiener_win == WIENER_WIN) + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); + else + assert(wiener_info->vfilter[0] == 0 && + wiener_info->vfilter[WIENER_WIN - 1] == 0); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); + if (wiener_win == WIENER_WIN) + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); + else + assert(wiener_info->hfilter[0] == 0 && + wiener_info->hfilter[WIENER_WIN - 1] == 0); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); + memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); +} + +static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, + SgrprojInfo *ref_sgrproj_info, + aom_writer *wb) { + aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); + const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; + + if (params->r[0] == 0) { + assert(sgrproj_info->xqd[0] == 0); + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, + sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); + } else if (params->r[1] == 0) { + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, + sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); + } else { + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, + sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, + sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); + } + + memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); +} + +static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + const RestorationUnitInfo *rui, + aom_writer *const w, int plane, + FRAME_COUNTS *counts) { + const RestorationInfo *rsi = cm->rst_info + plane; + RestorationType frame_rtype = rsi->frame_restoration_type; + if (frame_rtype == RESTORE_NONE) return; + + (void)counts; + assert(!cm->all_lossless); + + const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; + WienerInfo *wiener_info = xd->wiener_info + plane; + SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; + RestorationType unit_rtype = rui->restoration_type; + + if (frame_rtype == RESTORE_SWITCHABLE) { + aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, + RESTORE_SWITCHABLE_TYPES); +#if CONFIG_ENTROPY_STATS + ++counts->switchable_restore[unit_rtype]; +#endif + switch (unit_rtype) { + case RESTORE_WIENER: + write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); + break; + case RESTORE_SGRPROJ: + write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); + break; + default: assert(unit_rtype == RESTORE_NONE); break; + } + } else if (frame_rtype == RESTORE_WIENER) { + aom_write_symbol(w, unit_rtype != RESTORE_NONE, + xd->tile_ctx->wiener_restore_cdf, 2); +#if CONFIG_ENTROPY_STATS + ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; +#endif + if (unit_rtype != RESTORE_NONE) { + write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); + } + } else if (frame_rtype == RESTORE_SGRPROJ) { + aom_write_symbol(w, unit_rtype != RESTORE_NONE, + xd->tile_ctx->sgrproj_restore_cdf, 2); +#if CONFIG_ENTROPY_STATS + ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; +#endif + if (unit_rtype != RESTORE_NONE) { + write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); + } + } +} + +static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { + assert(!cm->coded_lossless); + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int i; + struct loopfilter *lf = &cm->lf; + + // Encode the loop filter level and type + aom_wb_write_literal(wb, lf->filter_level[0], 6); + aom_wb_write_literal(wb, lf->filter_level[1], 6); + if (num_planes > 1) { + if (lf->filter_level[0] || lf->filter_level[1]) { + aom_wb_write_literal(wb, lf->filter_level_u, 6); + aom_wb_write_literal(wb, lf->filter_level_v, 6); + } + } + aom_wb_write_literal(wb, lf->sharpness_level, 3); + + // Write out loop filter deltas applied at the MB level based on mode or + // ref frame (if they are enabled). + aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); + + if (lf->mode_ref_delta_enabled) { + aom_wb_write_bit(wb, lf->mode_ref_delta_update); + + if (lf->mode_ref_delta_update) { + const int prime_idx = cm->primary_ref_frame; + const int buf_idx = + prime_idx == PRIMARY_REF_NONE ? -1 : cm->frame_refs[prime_idx].idx; + int8_t last_ref_deltas[REF_FRAMES]; + if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { + av1_set_default_ref_deltas(last_ref_deltas); + } else { + memcpy(last_ref_deltas, cm->buffer_pool->frame_bufs[buf_idx].ref_deltas, + REF_FRAMES); + } + for (i = 0; i < REF_FRAMES; i++) { + const int delta = lf->ref_deltas[i]; + const int changed = delta != last_ref_deltas[i]; + aom_wb_write_bit(wb, changed); + if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); + } + + int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; + if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { + av1_set_default_mode_deltas(last_mode_deltas); + } else { + memcpy(last_mode_deltas, + cm->buffer_pool->frame_bufs[buf_idx].mode_deltas, + MAX_MODE_LF_DELTAS); + } + for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { + const int delta = lf->mode_deltas[i]; + const int changed = delta != last_mode_deltas[i]; + aom_wb_write_bit(wb, changed); + if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); + } + } + } +} + +static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { + assert(!cm->coded_lossless); + if (!cm->seq_params.enable_cdef) return; + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int i; + aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2); + assert(cm->cdef_pri_damping == cm->cdef_sec_damping); + aom_wb_write_literal(wb, cm->cdef_bits, 2); + for (i = 0; i < cm->nb_cdef_strengths; i++) { + aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS); + if (num_planes > 1) + aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS); + } +} + +static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { + if (delta_q != 0) { + aom_wb_write_bit(wb, 1); + aom_wb_write_inv_signed_literal(wb, delta_q, 6); + } else { + aom_wb_write_bit(wb, 0); + } +} + +static void encode_quantization(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + const int num_planes = av1_num_planes(cm); + + aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); + write_delta_q(wb, cm->y_dc_delta_q); + if (num_planes > 1) { + int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) || + (cm->u_ac_delta_q != cm->v_ac_delta_q); + if (cm->seq_params.separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); + write_delta_q(wb, cm->u_dc_delta_q); + write_delta_q(wb, cm->u_ac_delta_q); + if (diff_uv_delta) { + write_delta_q(wb, cm->v_dc_delta_q); + write_delta_q(wb, cm->v_ac_delta_q); + } + } + aom_wb_write_bit(wb, cm->using_qmatrix); + if (cm->using_qmatrix) { + aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS); + aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS); + if (!cm->seq_params.separate_uv_delta_q) + assert(cm->qm_u == cm->qm_v); + else + aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS); + } +} + +static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, + struct aom_write_bit_buffer *wb) { + int i, j; + struct segmentation *seg = &cm->seg; + + aom_wb_write_bit(wb, seg->enabled); + if (!seg->enabled) return; + + // Write update flags + if (cm->primary_ref_frame == PRIMARY_REF_NONE) { + assert(seg->update_map == 1); + seg->temporal_update = 0; + assert(seg->update_data == 1); + } else { + aom_wb_write_bit(wb, seg->update_map); + if (seg->update_map) { + // Select the coding strategy (temporal or spatial) + av1_choose_segmap_coding_method(cm, xd); + aom_wb_write_bit(wb, seg->temporal_update); + } + aom_wb_write_bit(wb, seg->update_data); + } + + // Segmentation data + if (seg->update_data) { + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < SEG_LVL_MAX; j++) { + const int active = segfeature_active(seg, i, j); + aom_wb_write_bit(wb, active); + if (active) { + const int data_max = av1_seg_feature_data_max(j); + const int data_min = -data_max; + const int ubits = get_unsigned_bits(data_max); + const int data = clamp(get_segdata(seg, i, j), data_min, data_max); + + if (av1_is_segfeature_signed(j)) { + aom_wb_write_inv_signed_literal(wb, data, ubits); + } else { + aom_wb_write_literal(wb, data, ubits); + } + } + } + } + } +} + +static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode, + struct aom_write_bit_buffer *wb) { + if (cm->coded_lossless) { + *mode = ONLY_4X4; + return; + } + aom_wb_write_bit(wb, *mode == TX_MODE_SELECT); +} + +static void write_frame_interp_filter(InterpFilter filter, + struct aom_write_bit_buffer *wb) { + aom_wb_write_bit(wb, filter == SWITCHABLE); + if (filter != SWITCHABLE) + aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); +} + +static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) { + if (cm->interp_filter == SWITCHABLE) { + // Check to see if only one of the filters is actually used + int count[SWITCHABLE_FILTERS]; + int i, j, c = 0; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + count[i] = 0; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + count[i] += counts->switchable_interp[j][i]; + c += (count[i] > 0); + } + if (c == 1) { + // Only one filter is used. So set the filter at frame level + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + if (count[i]) { + if (i == EIGHTTAP_REGULAR) cm->interp_filter = i; + break; + } + } + } + } +} + +// Same function as write_uniform but writing to uncompresses header wb +static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return; + if (v < m) { + aom_wb_write_literal(wb, v, l - 1); + } else { + aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); + aom_wb_write_literal(wb, (v - m) & 1, 1); + } +} + +static void write_tile_info_max_tile(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); + int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); + int width_sb = width_mi >> cm->seq_params.mib_size_log2; + int height_sb = height_mi >> cm->seq_params.mib_size_log2; + int size_sb, i; + + aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag); + + if (cm->uniform_tile_spacing_flag) { + // Uniform spaced tiles with power-of-two number of rows and columns + // tile columns + int ones = cm->log2_tile_cols - cm->min_log2_tile_cols; + while (ones--) { + aom_wb_write_bit(wb, 1); + } + if (cm->log2_tile_cols < cm->max_log2_tile_cols) { + aom_wb_write_bit(wb, 0); + } + + // rows + ones = cm->log2_tile_rows - cm->min_log2_tile_rows; + while (ones--) { + aom_wb_write_bit(wb, 1); + } + if (cm->log2_tile_rows < cm->max_log2_tile_rows) { + aom_wb_write_bit(wb, 0); + } + } else { + // Explicit tiles with configurable tile widths and heights + // columns + for (i = 0; i < cm->tile_cols; i++) { + size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; + wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb), + size_sb - 1); + width_sb -= size_sb; + } + assert(width_sb == 0); + + // rows + for (i = 0; i < cm->tile_rows; i++) { + size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i]; + wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb), + size_sb - 1); + height_sb -= size_sb; + } + assert(height_sb == 0); + } +} + +static void write_tile_info(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + write_tile_info_max_tile(cm, wb); + + *saved_wb = *wb; + if (cm->tile_rows * cm->tile_cols > 1) { + // tile id used for cdf update + aom_wb_write_literal(wb, 0, cm->log2_tile_cols + cm->log2_tile_rows); + // Number of bytes in tile size - 1 + aom_wb_write_literal(wb, 3, 2); + } +} + +static void write_ext_tile_info(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + // This information is stored as a separate byte. + int mod = wb->bit_offset % CHAR_BIT; + if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); + assert(aom_wb_is_byte_aligned(wb)); + + *saved_wb = *wb; + if (cm->tile_rows * cm->tile_cols > 1) { + // Note that the last item in the uncompressed header is the data + // describing tile configuration. + // Number of bytes in tile column size - 1 + aom_wb_write_literal(wb, 0, 2); + // Number of bytes in tile size - 1 + aom_wb_write_literal(wb, 0, 2); + } +} + +static int get_refresh_mask(AV1_COMP *cpi) { + if ((cpi->common.frame_type == KEY_FRAME && cpi->common.show_frame) || + frame_is_sframe(&cpi->common)) + return 0xFF; + + int refresh_mask = 0; + + // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be + // notified to get LAST3_FRAME refreshed and then the virtual indexes for all + // the 3 LAST reference frames will be updated accordingly, i.e.: + // (1) The original virtual index for LAST3_FRAME will become the new virtual + // index for LAST_FRAME; and + // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be + // shifted and become the new virtual indexes for LAST2_FRAME and + // LAST3_FRAME. + refresh_mask |= + (cpi->refresh_last_frame << cpi->ref_fb_idx[LAST_REF_FRAMES - 1]); +#if USE_SYMM_MULTI_LAYER + refresh_mask |= + (cpi->new_bwdref_update_rule == 1) + ? (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[EXTREF_FRAME - 1]) + : (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); +#else + refresh_mask |= + (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); +#endif + refresh_mask |= + (cpi->refresh_alt2_ref_frame << cpi->ref_fb_idx[ALTREF2_FRAME - 1]); + + if (av1_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term we leave it in the GF slot and, + // if we're updating the GF with the current decoded frame, we save it + // instead to the ARF slot. + // Later, in the function av1_encoder.c:av1_update_reference_frames() we + // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it + // there so that it can be done outside of the recode loop. + // Note: This is highly specific to the use of ARF as a forward reference, + // and this needs to be generalized as other uses are implemented + // (like RTC/temporal scalability). + + if (cpi->preserve_arf_as_gld) { + return refresh_mask; + } else { + return refresh_mask | + (cpi->refresh_golden_frame << cpi->ref_fb_idx[ALTREF_FRAME - 1]); + } + } else { + const int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1]; + return refresh_mask | + (cpi->refresh_golden_frame << cpi->ref_fb_idx[GOLDEN_FRAME - 1]) | + (cpi->refresh_alt_ref_frame << arf_idx); + } +} + +static INLINE int find_identical_tile( + const int tile_row, const int tile_col, + TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { + const MV32 candidate_offset[1] = { { 1, 0 } }; + const uint8_t *const cur_tile_data = + tile_buffers[tile_row][tile_col].data + 4; + const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; + + int i; + + if (tile_row == 0) return 0; + + // (TODO: yunqingwang) For now, only above tile is checked and used. + // More candidates such as left tile can be added later. + for (i = 0; i < 1; i++) { + int row_offset = candidate_offset[0].row; + int col_offset = candidate_offset[0].col; + int row = tile_row - row_offset; + int col = tile_col - col_offset; + uint8_t tile_hdr; + const uint8_t *tile_data; + TileBufferEnc *candidate; + + if (row < 0 || col < 0) continue; + + tile_hdr = *(tile_buffers[row][col].data); + + // Read out tcm bit + if ((tile_hdr >> 7) == 1) { + // The candidate is a copy tile itself + row_offset += tile_hdr & 0x7f; + row = tile_row - row_offset; + } + + candidate = &tile_buffers[row][col]; + + if (row_offset >= 128 || candidate->size != cur_tile_size) continue; + + tile_data = candidate->data + 4; + + if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; + + // Identical tile found + assert(row_offset > 0); + return row_offset; + } + + // No identical tile found + return 0; +} + +static void write_render_size(const AV1_COMMON *cm, + struct aom_write_bit_buffer *wb) { + const int scaling_active = av1_resize_scaled(cm); + aom_wb_write_bit(wb, scaling_active); + if (scaling_active) { + aom_wb_write_literal(wb, cm->render_width - 1, 16); + aom_wb_write_literal(wb, cm->render_height - 1, 16); + } +} + +static void write_superres_scale(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + const SequenceHeader *const seq_params = &cm->seq_params; + if (!seq_params->enable_superres) { + assert(cm->superres_scale_denominator == SCALE_NUMERATOR); + return; + } + + // First bit is whether to to scale or not + if (cm->superres_scale_denominator == SCALE_NUMERATOR) { + aom_wb_write_bit(wb, 0); // no scaling + } else { + aom_wb_write_bit(wb, 1); // scaling, write scale factor + assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); + assert(cm->superres_scale_denominator < + SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); + aom_wb_write_literal( + wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, + SUPERRES_SCALE_BITS); + } +} + +static void write_frame_size(const AV1_COMMON *cm, int frame_size_override, + struct aom_write_bit_buffer *wb) { + const int coded_width = cm->superres_upscaled_width - 1; + const int coded_height = cm->superres_upscaled_height - 1; + + if (frame_size_override) { + const SequenceHeader *seq_params = &cm->seq_params; + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + aom_wb_write_literal(wb, coded_width, num_bits_width); + aom_wb_write_literal(wb, coded_height, num_bits_height); + } + + write_superres_scale(cm, wb); + write_render_size(cm, wb); +} + +static void write_frame_size_with_refs(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + int found = 0; + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); + + if (cfg != NULL) { + found = cm->superres_upscaled_width == cfg->y_crop_width && + cm->superres_upscaled_height == cfg->y_crop_height; + found &= cm->render_width == cfg->render_width && + cm->render_height == cfg->render_height; + } + aom_wb_write_bit(wb, found); + if (found) { + write_superres_scale(cm, wb); + break; + } + } + + if (!found) { + int frame_size_override = 1; // Always equal to 1 in this function + write_frame_size(cm, frame_size_override, wb); + } +} + +static void write_profile(BITSTREAM_PROFILE profile, + struct aom_write_bit_buffer *wb) { + assert(profile >= PROFILE_0 && profile < MAX_PROFILES); + aom_wb_write_literal(wb, profile, PROFILE_BITS); +} + +static void write_bitdepth(const SequenceHeader *const seq_params, + struct aom_write_bit_buffer *wb) { + // Profile 0/1: [0] for 8 bit, [1] 10-bit + // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit + aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); + if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { + aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); + } +} + +static void write_color_config(const SequenceHeader *const seq_params, + struct aom_write_bit_buffer *wb) { + write_bitdepth(seq_params, wb); + const int is_monochrome = seq_params->monochrome; + // monochrome bit + if (seq_params->profile != PROFILE_1) + aom_wb_write_bit(wb, is_monochrome); + else + assert(!is_monochrome); + if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && + seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && + seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { + aom_wb_write_bit(wb, 0); // No color description present + } else { + aom_wb_write_bit(wb, 1); // Color description present + aom_wb_write_literal(wb, seq_params->color_primaries, 8); + aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); + aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); + } + if (is_monochrome) { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + aom_wb_write_bit(wb, seq_params->color_range); + return; + } + if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && + seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && + seq_params->matrix_coefficients == + AOM_CICP_MC_IDENTITY) { // it would be better to remove this + // dependency too + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + assert(seq_params->profile == PROFILE_1 || + (seq_params->profile == PROFILE_2 && + seq_params->bit_depth == AOM_BITS_12)); + } else { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + aom_wb_write_bit(wb, seq_params->color_range); + if (seq_params->profile == PROFILE_0) { + // 420 only + assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1); + } else if (seq_params->profile == PROFILE_1) { + // 444 only + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + } else if (seq_params->profile == PROFILE_2) { + if (seq_params->bit_depth == AOM_BITS_12) { + // 420, 444 or 422 + aom_wb_write_bit(wb, seq_params->subsampling_x); + if (seq_params->subsampling_x == 0) { + assert(seq_params->subsampling_y == 0 && + "4:4:0 subsampling not allowed in AV1"); + } else { + aom_wb_write_bit(wb, seq_params->subsampling_y); + } + } else { + // 422 only + assert(seq_params->subsampling_x == 1 && + seq_params->subsampling_y == 0); + } + } + if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + } + if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { + aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); + } + } + aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); +} + +static void write_timing_info_header(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_unsigned_literal(wb, cm->timing_info.num_units_in_display_tick, + 32); // Number of units in tick + aom_wb_write_unsigned_literal(wb, cm->timing_info.time_scale, + 32); // Time scale + aom_wb_write_bit( + wb, + cm->timing_info.equal_picture_interval); // Equal picture interval bit + if (cm->timing_info.equal_picture_interval) { + aom_wb_write_uvlc( + wb, + cm->timing_info.num_ticks_per_picture - 1); // ticks per picture + } +} + +static void write_decoder_model_info(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_literal( + wb, cm->buffer_model.encoder_decoder_buffer_delay_length - 1, 5); + aom_wb_write_unsigned_literal(wb, cm->buffer_model.num_units_in_decoding_tick, + 32); // Number of units in decoding tick + aom_wb_write_literal(wb, cm->buffer_model.buffer_removal_time_length - 1, 5); + aom_wb_write_literal(wb, cm->buffer_model.frame_presentation_time_length - 1, + 5); +} + +static void write_dec_model_op_parameters(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb, + int op_num) { + if (op_num > MAX_NUM_OPERATING_POINTS) + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Encoder does not support %d decoder model operating points", op_num); + + // aom_wb_write_bit(wb, cm->op_params[op_num].has_parameters); + // if (!cm->op_params[op_num].has_parameters) return; + + aom_wb_write_unsigned_literal( + wb, cm->op_params[op_num].decoder_buffer_delay, + cm->buffer_model.encoder_decoder_buffer_delay_length); + + aom_wb_write_unsigned_literal( + wb, cm->op_params[op_num].encoder_buffer_delay, + cm->buffer_model.encoder_decoder_buffer_delay_length); + + aom_wb_write_bit(wb, cm->op_params[op_num].low_delay_mode_flag); + + cm->op_frame_timing[op_num].buffer_removal_time = + 0; // reset the decoded frame counter +} + +static void write_tu_pts_info(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_unsigned_literal( + wb, cm->frame_presentation_time, + cm->buffer_model.frame_presentation_time_length); +} + +static void write_film_grain_params(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + aom_film_grain_t *pars = &cm->film_grain_params; + + cm->cur_frame->film_grain_params = *pars; + + aom_wb_write_bit(wb, pars->apply_grain); + if (!pars->apply_grain) return; + + aom_wb_write_literal(wb, pars->random_seed, 16); + + pars->random_seed += 3381; // Changing random seed for film grain + if (!pars->random_seed) // Random seed should not be zero + pars->random_seed += 7391; + if (cm->frame_type == INTER_FRAME) + aom_wb_write_bit(wb, pars->update_parameters); + else + pars->update_parameters = 1; + if (!pars->update_parameters) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int ref_frame, ref_idx, buf_idx; + for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) { + ref_idx = get_ref_frame_map_idx(cpi, ref_frame); + assert(ref_idx != INVALID_IDX); + buf_idx = cm->ref_frame_map[ref_idx]; + if (frame_bufs[buf_idx].film_grain_params_present && + memcmp(pars, &frame_bufs[buf_idx].film_grain_params, sizeof(*pars))) { + break; + } + } + assert(ref_frame < REF_FRAMES); + aom_wb_write_literal(wb, ref_idx, 3); + return; + } + + // Scaling functions parameters + aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14 + for (int i = 0; i < pars->num_y_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); + } + + if (!cm->seq_params.monochrome) + aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); + else + pars->chroma_scaling_from_luma = 0; // for monochrome override to 0 + + if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || + ((cm->seq_params.subsampling_x == 1) && + (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) { + pars->num_cb_points = 0; + pars->num_cr_points = 0; + } else { + aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10 + for (int i = 0; i < pars->num_cb_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); + } + + aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10 + for (int i = 0; i < pars->num_cr_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); + } + } + + aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value + + // AR coefficients + // Only sent if the corresponsing scaling function has + // more than 0 points + + aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); + + int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (pars->num_y_points > 0) ++num_pos_chroma; + + if (pars->num_y_points) + for (int i = 0; i < num_pos_luma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); + + if (pars->num_cb_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); + + if (pars->num_cr_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); + + aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value + + aom_wb_write_literal(wb, pars->grain_scale_shift, 2); + + if (pars->num_cb_points) { + aom_wb_write_literal(wb, pars->cb_mult, 8); + aom_wb_write_literal(wb, pars->cb_luma_mult, 8); + aom_wb_write_literal(wb, pars->cb_offset, 9); + } + + if (pars->num_cr_points) { + aom_wb_write_literal(wb, pars->cr_mult, 8); + aom_wb_write_literal(wb, pars->cr_luma_mult, 8); + aom_wb_write_literal(wb, pars->cr_offset, 9); + } + + aom_wb_write_bit(wb, pars->overlap_flag); + + aom_wb_write_bit(wb, pars->clip_to_restricted_range); +} + +static void write_sb_size(SequenceHeader *seq_params, + struct aom_write_bit_buffer *wb) { + (void)seq_params; + (void)wb; + assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); + assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); + assert(seq_params->sb_size == BLOCK_128X128 || + seq_params->sb_size == BLOCK_64X64); + aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); +} + +static void write_sequence_header(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + SequenceHeader *seq_params = &cm->seq_params; + + int max_frame_width = cpi->oxcf.forced_max_frame_width + ? cpi->oxcf.forced_max_frame_width + : cpi->oxcf.width; + int max_frame_height = cpi->oxcf.forced_max_frame_height + ? cpi->oxcf.forced_max_frame_height + : cpi->oxcf.height; + // max((int)ceil(log2(max_frame_width)), 1) + const int num_bits_width = + (max_frame_width > 1) ? get_msb(max_frame_width - 1) + 1 : 1; + // max((int)ceil(log2(max_frame_height)), 1) + const int num_bits_height = + (max_frame_height > 1) ? get_msb(max_frame_height - 1) + 1 : 1; + assert(num_bits_width <= 16); + assert(num_bits_height <= 16); + + seq_params->num_bits_width = num_bits_width; + seq_params->num_bits_height = num_bits_height; + seq_params->max_frame_width = max_frame_width; + seq_params->max_frame_height = max_frame_height; + + aom_wb_write_literal(wb, num_bits_width - 1, 4); + aom_wb_write_literal(wb, num_bits_height - 1, 4); + aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width); + aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height); + + /* Placeholder for actually writing to the bitstream */ + if (!seq_params->reduced_still_picture_hdr) { + seq_params->frame_id_numbers_present_flag = + cm->large_scale_tile ? 0 : cm->error_resilient_mode; + seq_params->frame_id_length = FRAME_ID_LENGTH; + seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; + + aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); + if (seq_params->frame_id_numbers_present_flag) { + // We must always have delta_frame_id_length < frame_id_length, + // in order for a frame to be referenced with a unique delta. + // Avoid wasting bits by using a coding that enforces this restriction. + aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); + aom_wb_write_literal( + wb, + seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, + 3); + } + } + + write_sb_size(seq_params, wb); + + aom_wb_write_bit(wb, seq_params->enable_filter_intra); + aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); + + if (!seq_params->reduced_still_picture_hdr) { + aom_wb_write_bit(wb, seq_params->enable_interintra_compound); + aom_wb_write_bit(wb, seq_params->enable_masked_compound); + aom_wb_write_bit(wb, seq_params->enable_warped_motion); + aom_wb_write_bit(wb, seq_params->enable_dual_filter); + + aom_wb_write_bit(wb, seq_params->enable_order_hint); + + if (seq_params->enable_order_hint) { + aom_wb_write_bit(wb, seq_params->enable_jnt_comp); + aom_wb_write_bit(wb, seq_params->enable_ref_frame_mvs); + } + if (seq_params->force_screen_content_tools == 2) { + aom_wb_write_bit(wb, 1); + } else { + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, seq_params->force_screen_content_tools); + } + if (seq_params->force_screen_content_tools > 0) { + if (seq_params->force_integer_mv == 2) { + aom_wb_write_bit(wb, 1); + } else { + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, seq_params->force_integer_mv); + } + } else { + assert(seq_params->force_integer_mv == 2); + } + if (seq_params->enable_order_hint) + aom_wb_write_literal(wb, seq_params->order_hint_bits_minus_1, 3); + } + + aom_wb_write_bit(wb, seq_params->enable_superres); + aom_wb_write_bit(wb, seq_params->enable_cdef); + aom_wb_write_bit(wb, seq_params->enable_restoration); +} + +static void write_global_motion_params(const WarpedMotionParams *params, + const WarpedMotionParams *ref_params, + struct aom_write_bit_buffer *wb, + int allow_hp) { + const TransformationType type = params->wmtype; + + aom_wb_write_bit(wb, type != IDENTITY); + if (type != IDENTITY) { + aom_wb_write_bit(wb, type == ROTZOOM); + if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); + } + + if (type >= ROTZOOM) { + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS), + (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), + (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); + } + + if (type >= AFFINE) { + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), + (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS), + (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + } + + if (type >= TRANSLATION) { + const int trans_bits = (type == TRANSLATION) + ? GM_ABS_TRANS_ONLY_BITS - !allow_hp + : GM_ABS_TRANS_BITS; + const int trans_prec_diff = (type == TRANSLATION) + ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp + : GM_TRANS_PREC_DIFF; + aom_wb_write_signed_primitive_refsubexpfin( + wb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[0] >> trans_prec_diff), + (params->wmmat[0] >> trans_prec_diff)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[1] >> trans_prec_diff), + (params->wmmat[1] >> trans_prec_diff)); + } +} + +static void write_global_motion(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + int frame; + for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { + const WarpedMotionParams *ref_params = + cm->prev_frame ? &cm->prev_frame->global_motion[frame] + : &default_warp_params; + write_global_motion_params(&cm->global_motion[frame], ref_params, wb, + cm->allow_high_precision_mv); + // TODO(sarahparker, debargha): The logic in the commented out code below + // does not work currently and causes mismatches when resize is on. + // Fix it before turning the optimization back on. + /* + YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame); + if (cpi->source->y_crop_width == ref_buf->y_crop_width && + cpi->source->y_crop_height == ref_buf->y_crop_height) { + write_global_motion_params(&cm->global_motion[frame], + &cm->prev_frame->global_motion[frame], wb, + cm->allow_high_precision_mv); + } else { + assert(cm->global_motion[frame].wmtype == IDENTITY && + "Invalid warp type for frames of different resolutions"); + } + */ + /* + printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", + cm->current_video_frame, cm->show_frame, frame, + cm->global_motion[frame].wmmat[0], + cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], + cm->global_motion[frame].wmmat[3]); + */ + } +} + +static void check_frame_refs_short_signaling(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + if (!cm->frame_refs_short_signaling) return; + + // Check whether all references are distinct frames. + int buf_markers[FRAME_BUFFERS] = { 0 }; + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + if (buf_idx != INVALID_IDX) { + assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); + buf_markers[buf_idx] = 1; + } + } + + int num_refs = 0; + for (int buf_idx = 0; buf_idx < FRAME_BUFFERS; ++buf_idx) { + num_refs += buf_markers[buf_idx]; + } + + // We only turn on frame_refs_short_signaling when all references are + // distinct. + if (num_refs < INTER_REFS_PER_FRAME) { + // It indicates that there exist more than one reference frame pointing to + // the same reference buffer, i.e. two or more references are duplicate. + cm->frame_refs_short_signaling = 0; + return; + } + + // Check whether the encoder side ref frame choices are aligned with that to + // be derived at the decoder side. + RefBuffer frame_refs_copy[INTER_REFS_PER_FRAME]; + + // Backup the frame refs info + memcpy(frame_refs_copy, cm->frame_refs, + INTER_REFS_PER_FRAME * sizeof(RefBuffer)); + + const int lst_map_idx = get_ref_frame_map_idx(cpi, LAST_FRAME); + const int gld_map_idx = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); + + // Set up the frame refs mapping indexes according to the + // frame_refs_short_signaling policy. + av1_set_frame_refs(cm, lst_map_idx, gld_map_idx); + + // We only turn on frame_refs_short_signaling when the encoder side decision + // on ref frames is identical to that at the decoder side. + for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) { + // Compare the buffer index between two reference frames indexed + // respectively by the encoder and the decoder side decisions. + if (cm->frame_refs[ref_idx].idx != frame_refs_copy[ref_idx].idx) { + cm->frame_refs_short_signaling = 0; + break; + } + } + +#if 0 // For debug + printf("\nFrame=%d: \n", cm->current_video_frame); + printf("***frame_refs_short_signaling=%d\n", cm->frame_refs_short_signaling); + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + printf("enc_ref(map_idx=%d, buf_idx=%d)=%d, vs. " + "dec_ref(map_idx=%d, buf_idx=%d)=%d\n", + get_ref_frame_map_idx(cpi, ref_frame), + get_ref_frame_buf_idx(cpi, ref_frame), ref_frame, + cm->frame_refs[ref_frame - LAST_FRAME].map_idx, + cm->frame_refs[ref_frame - LAST_FRAME].idx, ref_frame); + } +#endif // 0 + + // Restore the frame refs info if frame_refs_short_signaling is off. + if (!cm->frame_refs_short_signaling) + memcpy(cm->frame_refs, frame_refs_copy, + INTER_REFS_PER_FRAME * sizeof(RefBuffer)); +} + +// New function based on HLS R18 +static void write_uncompressed_header_obu(AV1_COMP *cpi, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + // NOTE: By default all coded frames to be used as a reference + cm->is_reference_frame = 1; + cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type; + + if (seq_params->still_picture) { + assert(cm->show_existing_frame == 0); + assert(cm->show_frame == 1); + assert(cm->frame_type == KEY_FRAME); + } + if (!seq_params->reduced_still_picture_hdr) { + if (encode_show_existing_frame(cm)) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; + + if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Buffer %d does not contain a reconstructed frame", + frame_to_show); + } + ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); + + aom_wb_write_bit(wb, 1); // show_existing_frame + aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); + + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) { + write_tu_pts_info(cm, wb); + } + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_len = seq_params->frame_id_length; + int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; + aom_wb_write_literal(wb, display_frame_id, frame_id_len); + } + + if (cm->reset_decoder_state && + frame_bufs[frame_to_show].frame_type != KEY_FRAME) { + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "show_existing_frame to reset state on KEY_FRAME only"); + } + + return; + } else { + aom_wb_write_bit(wb, 0); // show_existing_frame + } + + aom_wb_write_literal(wb, cm->frame_type, 2); + + aom_wb_write_bit(wb, cm->show_frame); + if (cm->show_frame) { + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) + write_tu_pts_info(cm, wb); + } else { + aom_wb_write_bit(wb, cm->showable_frame); + } + if (frame_is_sframe(cm)) { + assert(cm->error_resilient_mode); + } else if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) { + aom_wb_write_bit(wb, cm->error_resilient_mode); + } + } + aom_wb_write_bit(wb, cm->disable_cdf_update); + + if (seq_params->force_screen_content_tools == 2) { + aom_wb_write_bit(wb, cm->allow_screen_content_tools); + } else { + assert(cm->allow_screen_content_tools == + seq_params->force_screen_content_tools); + } + + if (cm->allow_screen_content_tools) { + if (seq_params->force_integer_mv == 2) { + aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); + } else { + assert(cm->cur_frame_force_integer_mv == seq_params->force_integer_mv); + } + } else { + assert(cm->cur_frame_force_integer_mv == 0); + } + + cm->invalid_delta_frame_id_minus_1 = 0; + int frame_size_override_flag = 0; + cm->frame_refs_short_signaling = 0; + + if (seq_params->reduced_still_picture_hdr) { + assert(cm->width == seq_params->max_frame_width && + cm->height == seq_params->max_frame_height); + } else { + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_len = seq_params->frame_id_length; + aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); + } + + if (cm->width > seq_params->max_frame_width || + cm->height > seq_params->max_frame_height) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Frame dimensions are larger than the maximum values"); + } + + frame_size_override_flag = + frame_is_sframe(cm) ? 1 + : (cm->width != seq_params->max_frame_width || + cm->height != seq_params->max_frame_height); + if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); + + if (seq_params->enable_order_hint) + aom_wb_write_literal(wb, cm->frame_offset, + seq_params->order_hint_bits_minus_1 + 1); + + if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { + aom_wb_write_literal(wb, cm->primary_ref_frame, PRIMARY_REF_BITS); + } + } + + if (seq_params->decoder_model_info_present_flag) { + aom_wb_write_bit(wb, cm->buffer_removal_time_present); + if (cm->buffer_removal_time_present) { + for (int op_num = 0; + op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { + if (cm->op_params[op_num].decoder_model_param_present_flag) { + if (((seq_params->operating_point_idc[op_num] >> + cm->temporal_layer_id) & + 0x1 && + (seq_params->operating_point_idc[op_num] >> + (cm->spatial_layer_id + 8)) & + 0x1) || + seq_params->operating_point_idc[op_num] == 0) { + aom_wb_write_unsigned_literal( + wb, cm->op_frame_timing[op_num].buffer_removal_time, + cm->buffer_model.buffer_removal_time_length); + cm->op_frame_timing[op_num].buffer_removal_time++; + if (cm->op_frame_timing[op_num].buffer_removal_time == 0) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "buffer_removal_time overflowed"); + } + } + } + } + } + } + cpi->refresh_frame_mask = get_refresh_mask(cpi); + if (cm->frame_type == KEY_FRAME) { + if (!cm->show_frame) { // unshown keyframe (forward keyframe) + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else { + assert(cpi->refresh_frame_mask == 0xFF); + } + } else { + if (cm->frame_type == INTRA_ONLY_FRAME) { + assert(cpi->refresh_frame_mask != 0xFF); + int updated_fb = -1; + for (int i = 0; i < REF_FRAMES; i++) { + // If more than one frame is refreshed, it doesn't matter which one + // we pick, so pick the first. + if (cpi->refresh_frame_mask & (1 << i)) { + updated_fb = i; + break; + } + } + assert(updated_fb >= 0); + cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { + if (cm->frame_type == INTER_FRAME) { + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else { + assert(frame_is_sframe(cm) && cpi->refresh_frame_mask == 0xFF); + } + int updated_fb = -1; + for (int i = 0; i < REF_FRAMES; i++) { + // If more than one frame is refreshed, it doesn't matter which one + // we pick, so pick the first. + if (cpi->refresh_frame_mask & (1 << i)) { + updated_fb = i; + break; + } + } + // large scale tile sometimes won't refresh any fbs + if (updated_fb >= 0) { + cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; + } + + if (!cpi->refresh_frame_mask) { + // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame + // will not be used as a reference + cm->is_reference_frame = 0; + } + } + } + + if (!frame_is_intra_only(cm) || cpi->refresh_frame_mask != 0xFF) { + // Write all ref frame order hints if error_resilient_mode == 1 + if (cm->error_resilient_mode && seq_params->enable_order_hint) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { + // Get buffer index + const int buf_idx = cm->ref_frame_map[ref_idx]; + assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); + + // Write order hint to bit stream + aom_wb_write_literal(wb, frame_bufs[buf_idx].cur_frame_offset, + seq_params->order_hint_bits_minus_1 + 1); + } + } + } + + if (cm->frame_type == KEY_FRAME) { + write_frame_size(cm, frame_size_override_flag, wb); + assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + aom_wb_write_bit(wb, cm->allow_intrabc); + // all eight fbs are refreshed, pick one that will live long enough + cm->fb_of_context_type[REGULAR_FRAME] = 0; + } else { + if (cm->frame_type == INTRA_ONLY_FRAME) { + write_frame_size(cm, frame_size_override_flag, wb); + assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + aom_wb_write_bit(wb, cm->allow_intrabc); + } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { + MV_REFERENCE_FRAME ref_frame; + + // NOTE: Error resilient mode turns off frame_refs_short_signaling + // automatically. +#define FRAME_REFS_SHORT_SIGNALING 0 +#if FRAME_REFS_SHORT_SIGNALING + cm->frame_refs_short_signaling = seq_params->enable_order_hint; +#endif // FRAME_REFS_SHORT_SIGNALING + + if (cm->frame_refs_short_signaling) { + // NOTE(zoeliu@google.com): + // An example solution for encoder-side implementation on frame refs + // short signaling, which is only turned on when the encoder side + // decision on ref frames is identical to that at the decoder side. + check_frame_refs_short_signaling(cpi); + } + + if (seq_params->enable_order_hint) + aom_wb_write_bit(wb, cm->frame_refs_short_signaling); + + if (cm->frame_refs_short_signaling) { + const int lst_ref = get_ref_frame_map_idx(cpi, LAST_FRAME); + aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2); + + const int gld_ref = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); + aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2); + } + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); + if (!cm->frame_refs_short_signaling) + aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), + REF_FRAMES_LOG2); + if (seq_params->frame_id_numbers_present_flag) { + int i = get_ref_frame_map_idx(cpi, ref_frame); + int frame_id_len = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int delta_frame_id_minus_1 = + ((cm->current_frame_id - cm->ref_frame_id[i] + + (1 << frame_id_len)) % + (1 << frame_id_len)) - + 1; + if (delta_frame_id_minus_1 < 0 || + delta_frame_id_minus_1 >= (1 << diff_len)) + cm->invalid_delta_frame_id_minus_1 = 1; + aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); + } + } + + if (!cm->error_resilient_mode && frame_size_override_flag) { + write_frame_size_with_refs(cpi, wb); + } else { + write_frame_size(cm, frame_size_override_flag, wb); + } + + if (cm->cur_frame_force_integer_mv) { + cm->allow_high_precision_mv = 0; + } else { + aom_wb_write_bit(wb, cm->allow_high_precision_mv); + } + fix_interp_filter(cm, cpi->td.counts); + write_frame_interp_filter(cm->interp_filter, wb); + aom_wb_write_bit(wb, cm->switchable_motion_mode); + if (frame_might_allow_ref_frame_mvs(cm)) { + aom_wb_write_bit(wb, cm->allow_ref_frame_mvs); + } else { + assert(cm->allow_ref_frame_mvs == 0); + } + } + } + + const int might_bwd_adapt = + !(seq_params->reduced_still_picture_hdr) && !(cm->disable_cdf_update); + if (cm->large_scale_tile) + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + + if (might_bwd_adapt) { + aom_wb_write_bit( + wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); + } + + write_tile_info(cm, saved_wb, wb); + encode_quantization(cm, wb); + encode_segmentation(cm, xd, wb); + + if (cm->delta_q_present_flag) assert(cm->base_qindex > 0); + if (cm->base_qindex > 0) { + aom_wb_write_bit(wb, cm->delta_q_present_flag); + if (cm->delta_q_present_flag) { + aom_wb_write_literal(wb, get_msb(cm->delta_q_res), 2); + xd->current_qindex = cm->base_qindex; + if (cm->allow_intrabc) + assert(cm->delta_lf_present_flag == 0); + else + aom_wb_write_bit(wb, cm->delta_lf_present_flag); + if (cm->delta_lf_present_flag) { + aom_wb_write_literal(wb, get_msb(cm->delta_lf_res), 2); + aom_wb_write_bit(wb, cm->delta_lf_multi); + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + } + + if (cm->all_lossless) { + assert(!av1_superres_scaled(cm)); + } else { + if (!cm->coded_lossless) { + encode_loopfilter(cm, wb); + encode_cdef(cm, wb); + } + encode_restoration_mode(cm, wb); + } + + write_tx_mode(cm, &cm->tx_mode, wb); + + if (cpi->allow_comp_inter_inter) { + const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; + + aom_wb_write_bit(wb, use_hybrid_pred); + } + + if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); + + if (frame_might_allow_warped_motion(cm)) + aom_wb_write_bit(wb, cm->allow_warped_motion); + else + assert(!cm->allow_warped_motion); + + aom_wb_write_bit(wb, cm->reduced_tx_set_used); + + if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); + + if (seq_params->film_grain_params_present && + (cm->show_frame || cm->showable_frame)) { + int flip_back_update_parameters_flag = 0; + if (cm->frame_type != INTER_FRAME && + cm->film_grain_params.update_parameters == 0) { + cm->film_grain_params.update_parameters = 1; + flip_back_update_parameters_flag = 1; + } + write_film_grain_params(cpi, wb); + + if (flip_back_update_parameters_flag) + cm->film_grain_params.update_parameters = 0; + } + + if (cm->large_scale_tile) write_ext_tile_info(cm, saved_wb, wb); +} + +static int choose_size_bytes(uint32_t size, int spare_msbs) { + // Choose the number of bytes required to represent size, without + // using the 'spare_msbs' number of most significant bits. + + // Make sure we will fit in 4 bytes to start with.. + if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; + + // Normalise to 32 bits + size <<= spare_msbs; + + if (size >> 24 != 0) + return 4; + else if (size >> 16 != 0) + return 3; + else if (size >> 8 != 0) + return 2; + else + return 1; +} + +static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { + switch (sz) { + case 1: dst[0] = (uint8_t)(val & 0xff); break; + case 2: mem_put_le16(dst, val); break; + case 3: mem_put_le24(dst, val); break; + case 4: mem_put_le32(dst, val); break; + default: assert(0 && "Invalid size"); break; + } +} + +static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, + const uint32_t data_size, const uint32_t max_tile_size, + const uint32_t max_tile_col_size, + int *const tile_size_bytes, + int *const tile_col_size_bytes) { + // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) + int tsb; + int tcsb; + + if (cm->large_scale_tile) { + // The top bit in the tile size field indicates tile copy mode, so we + // have 1 less bit to code the tile size + tsb = choose_size_bytes(max_tile_size, 1); + tcsb = choose_size_bytes(max_tile_col_size, 0); + } else { + tsb = choose_size_bytes(max_tile_size, 0); + tcsb = 4; // This is ignored + (void)max_tile_col_size; + } + + assert(tsb > 0); + assert(tcsb > 0); + + *tile_size_bytes = tsb; + *tile_col_size_bytes = tcsb; + if (tsb == 4 && tcsb == 4) return data_size; + + uint32_t wpos = 0; + uint32_t rpos = 0; + + if (cm->large_scale_tile) { + int tile_row; + int tile_col; + + for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { + // All but the last column has a column header + if (tile_col < cm->tile_cols - 1) { + uint32_t tile_col_size = mem_get_le32(dst + rpos); + rpos += 4; + + // Adjust the tile column size by the number of bytes removed + // from the tile size fields. + tile_col_size -= (4 - tsb) * cm->tile_rows; + + mem_put_varsize(dst + wpos, tcsb, tile_col_size); + wpos += tcsb; + } + + for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { + // All, including the last row has a header + uint32_t tile_header = mem_get_le32(dst + rpos); + rpos += 4; + + // If this is a copy tile, we need to shift the MSB to the + // top bit of the new width, and there is no data to copy. + if (tile_header >> 31 != 0) { + if (tsb < 4) tile_header >>= 32 - 8 * tsb; + mem_put_varsize(dst + wpos, tsb, tile_header); + wpos += tsb; + } else { + mem_put_varsize(dst + wpos, tsb, tile_header); + wpos += tsb; + + tile_header += AV1_MIN_TILE_SIZE_BYTES; + memmove(dst + wpos, dst + rpos, tile_header); + rpos += tile_header; + wpos += tile_header; + } + } + } + + assert(rpos > wpos); + assert(rpos == data_size); + + return wpos; + } + const int n_tiles = cm->tile_cols * cm->tile_rows; + int n; + + for (n = 0; n < n_tiles; n++) { + int tile_size; + + if (n == n_tiles - 1) { + tile_size = data_size - rpos; + } else { + tile_size = mem_get_le32(dst + rpos); + rpos += 4; + mem_put_varsize(dst + wpos, tsb, tile_size); + tile_size += AV1_MIN_TILE_SIZE_BYTES; + wpos += tsb; + } + + memmove(dst + wpos, dst + rpos, tile_size); + + rpos += tile_size; + wpos += tile_size; + } + + assert(rpos > wpos); + assert(rpos == data_size); + + return wpos; +} + +uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, + uint8_t *const dst) { + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + aom_wb_write_literal(&wb, 0, 1); // forbidden bit. + aom_wb_write_literal(&wb, (int)obu_type, 4); + aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); + aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field + aom_wb_write_literal(&wb, 0, 1); // reserved + + if (obu_extension) { + aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); + } + + size = aom_wb_bytes_written(&wb); + return size; +} + +int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size, + uint8_t *dest) { + const uint32_t obu_size = obu_payload_size; + const uint32_t offset = obu_header_size; + size_t coded_obu_size = 0; + + if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, + &coded_obu_size) != 0) { + return AOM_CODEC_ERROR; + } + + return AOM_CODEC_OK; +} + +static size_t obu_memmove(uint32_t obu_header_size, uint32_t obu_payload_size, + uint8_t *data) { + const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); + const uint32_t move_dst_offset = + (uint32_t)length_field_size + obu_header_size; + const uint32_t move_src_offset = obu_header_size; + const uint32_t move_size = obu_payload_size; + memmove(data + move_dst_offset, data + move_src_offset, move_size); + return length_field_size; +} + +static void add_trailing_bits(struct aom_write_bit_buffer *wb) { + if (aom_wb_is_byte_aligned(wb)) { + aom_wb_write_literal(wb, 0x80, 8); + } else { + // assumes that the other bits are already 0s + aom_wb_write_bit(wb, 1); + } +} + +static void write_bitstream_level(BitstreamLevel bl, + struct aom_write_bit_buffer *wb) { + uint8_t seq_level_idx = major_minor_to_seq_level_idx(bl); + assert(is_valid_seq_level_idx(seq_level_idx)); + aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); +} + +uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst) { + AV1_COMMON *const cm = &cpi->common; + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + write_profile(cm->seq_params.profile, &wb); + + // Still picture or not + aom_wb_write_bit(&wb, cm->seq_params.still_picture); + assert(IMPLIES(!cm->seq_params.still_picture, + !cm->seq_params.reduced_still_picture_hdr)); + // whether to use reduced still picture header + aom_wb_write_bit(&wb, cm->seq_params.reduced_still_picture_hdr); + + if (cm->seq_params.reduced_still_picture_hdr) { + assert(cm->timing_info_present == 0); + assert(cm->seq_params.decoder_model_info_present_flag == 0); + assert(cm->seq_params.display_model_info_present_flag == 0); + write_bitstream_level(cm->seq_params.level[0], &wb); + } else { + aom_wb_write_bit(&wb, cm->timing_info_present); // timing info present flag + + if (cm->timing_info_present) { + // timing_info + write_timing_info_header(cm, &wb); + aom_wb_write_bit(&wb, cm->seq_params.decoder_model_info_present_flag); + if (cm->seq_params.decoder_model_info_present_flag) { + write_decoder_model_info(cm, &wb); + } + } + aom_wb_write_bit(&wb, cm->seq_params.display_model_info_present_flag); + aom_wb_write_literal(&wb, cm->seq_params.operating_points_cnt_minus_1, + OP_POINTS_CNT_MINUS_1_BITS); + int i; + for (i = 0; i < cm->seq_params.operating_points_cnt_minus_1 + 1; i++) { + aom_wb_write_literal(&wb, cm->seq_params.operating_point_idc[i], + OP_POINTS_IDC_BITS); + write_bitstream_level(cm->seq_params.level[i], &wb); + if (cm->seq_params.level[i].major > 3) + aom_wb_write_bit(&wb, cm->seq_params.tier[i]); + if (cm->seq_params.decoder_model_info_present_flag) { + aom_wb_write_bit(&wb, + cm->op_params[i].decoder_model_param_present_flag); + if (cm->op_params[i].decoder_model_param_present_flag) + write_dec_model_op_parameters(cm, &wb, i); + } + if (cm->seq_params.display_model_info_present_flag) { + aom_wb_write_bit(&wb, + cm->op_params[i].display_model_param_present_flag); + if (cm->op_params[i].display_model_param_present_flag) { + assert(cm->op_params[i].initial_display_delay <= 10); + aom_wb_write_literal(&wb, cm->op_params[i].initial_display_delay - 1, + 4); + } + } + } + } + write_sequence_header(cpi, &wb); + + write_color_config(&cm->seq_params, &wb); + + aom_wb_write_bit(&wb, cm->seq_params.film_grain_params_present); + + add_trailing_bits(&wb); + + size = aom_wb_bytes_written(&wb); + return size; +} + +static uint32_t write_frame_header_obu(AV1_COMP *cpi, + struct aom_write_bit_buffer *saved_wb, + uint8_t *const dst, + int append_trailing_bits) { + struct aom_write_bit_buffer wb = { dst, 0 }; + write_uncompressed_header_obu(cpi, saved_wb, &wb); + if (append_trailing_bits) add_trailing_bits(&wb); + return aom_wb_bytes_written(&wb); +} + +static uint32_t write_tile_group_header(uint8_t *const dst, int startTile, + int endTile, int tiles_log2, + int tile_start_and_end_present_flag) { + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + if (!tiles_log2) return size; + + aom_wb_write_bit(&wb, tile_start_and_end_present_flag); + + if (tile_start_and_end_present_flag) { + aom_wb_write_literal(&wb, startTile, tiles_log2); + aom_wb_write_literal(&wb, endTile, tiles_log2); + } + + size = aom_wb_bytes_written(&wb); + return size; +} + +typedef struct { + uint8_t *frame_header; + size_t obu_header_byte_offset; + size_t total_length; +} FrameHeaderInfo; + +static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, + struct aom_write_bit_buffer *saved_wb, + uint8_t obu_extension_header, + const FrameHeaderInfo *fh_info) { + AV1_COMMON *const cm = &cpi->common; + aom_writer mode_bc; + int tile_row, tile_col; + TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; + uint32_t total_size = 0; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + unsigned int tile_size = 0; + unsigned int max_tile_size = 0; + unsigned int max_tile_col_size = 0; + const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; + // Fixed size tile groups for the moment + const int num_tg_hdrs = cm->num_tg; + const int tg_size = + (cm->large_scale_tile) + ? 1 + : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; + int tile_count = 0; + int curr_tg_data_size = 0; + uint8_t *data = dst; + int new_tg = 1; + const int have_tiles = tile_cols * tile_rows > 1; + int first_tg = 1; + + cm->largest_tile_id = 0; + + if (cm->large_scale_tile) { + // For large_scale_tile case, we always have only one tile group, so it can + // be written as an OBU_FRAME. + const OBU_TYPE obu_type = OBU_FRAME; + const uint32_t tg_hdr_size = write_obu_header(obu_type, 0, data); + data += tg_hdr_size; + + const uint32_t frame_header_size = + write_frame_header_obu(cpi, saved_wb, data, 0); + data += frame_header_size; + total_size += frame_header_size; + +#define EXT_TILE_DEBUG 0 +#if EXT_TILE_DEBUG + { + char fn[20] = "./fh"; + fn[4] = cm->current_video_frame / 100 + '0'; + fn[5] = (cm->current_video_frame % 100) / 10 + '0'; + fn[6] = (cm->current_video_frame % 10) + '0'; + fn[7] = '\0'; + av1_print_uncompressed_frame_header(data - frame_header_size, + frame_header_size, fn); + } +#endif // EXT_TILE_DEBUG +#undef EXT_TILE_DEBUG + + int tile_size_bytes = 0; + int tile_col_size_bytes = 0; + + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + TileInfo tile_info; + const int is_last_col = (tile_col == tile_cols - 1); + const uint32_t col_offset = total_size; + + av1_tile_set_col(&tile_info, cm, tile_col); + + // The last column does not have a column header + if (!is_last_col) total_size += 4; + + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; + const int data_offset = have_tiles ? 4 : 0; + const int tile_idx = tile_row * tile_cols + tile_col; + TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; + av1_tile_set_row(&tile_info, cm, tile_row); + + buf->data = dst + total_size + tg_hdr_size; + + // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, + // even for the last one, unless no tiling is used at all. + total_size += data_offset; + // Initialise tile context from the frame context + this_tile->tctx = *cm->fc; + cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; + mode_bc.allow_update_cdf = !cm->large_scale_tile; + mode_bc.allow_update_cdf = + mode_bc.allow_update_cdf && !cm->disable_cdf_update; + aom_start_encode(&mode_bc, buf->data + data_offset); + write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); + aom_stop_encode(&mode_bc); + tile_size = mode_bc.pos; + buf->size = tile_size; + + // Record the maximum tile size we see, so we can compact headers later. + if (tile_size > max_tile_size) { + max_tile_size = tile_size; + cm->largest_tile_id = tile_cols * tile_row + tile_col; + } + + if (have_tiles) { + // tile header: size of this tile, or copy offset + uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; + const int tile_copy_mode = + ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) + ? 1 + : 0; + + // If tile_copy_mode = 1, check if this tile is a copy tile. + // Very low chances to have copy tiles on the key frames, so don't + // search on key frames to reduce unnecessary search. + if (cm->frame_type != KEY_FRAME && tile_copy_mode) { + const int identical_tile_offset = + find_identical_tile(tile_row, tile_col, tile_buffers); + + if (identical_tile_offset > 0) { + tile_size = 0; + tile_header = identical_tile_offset | 0x80; + tile_header <<= 24; + } + } + + mem_put_le32(buf->data, tile_header); + } + + total_size += tile_size; + } + + if (!is_last_col) { + uint32_t col_size = total_size - col_offset - 4; + mem_put_le32(dst + col_offset + tg_hdr_size, col_size); + + // Record the maximum tile column size we see. + max_tile_col_size = AOMMAX(max_tile_col_size, col_size); + } + } + + if (have_tiles) { + total_size = remux_tiles(cm, data, total_size - frame_header_size, + max_tile_size, max_tile_col_size, + &tile_size_bytes, &tile_col_size_bytes); + total_size += frame_header_size; + } + + // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write + // current tile group size before tile data(include tile column header). + // Tile group size doesn't include the bytes storing tg size. + total_size += tg_hdr_size; + const uint32_t obu_payload_size = total_size - tg_hdr_size; + const size_t length_field_size = + obu_memmove(tg_hdr_size, obu_payload_size, dst); + if (write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != + AOM_CODEC_OK) { + assert(0); + } + total_size += (uint32_t)length_field_size; + saved_wb->bit_buffer += length_field_size; + + // Now fill in the gaps in the uncompressed header. + if (have_tiles) { + assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); + aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); + + assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); + aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); + } + return total_size; + } + + uint32_t obu_header_size = 0; + uint8_t *tile_data_start = dst + total_size; + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + TileInfo tile_info; + av1_tile_set_row(&tile_info, cm, tile_row); + + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + const int tile_idx = tile_row * tile_cols + tile_col; + TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; + TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; + int is_last_tile_in_tg = 0; + + if (new_tg) { + data = dst + total_size; + + // A new tile group begins at this tile. Write the obu header and + // tile group header + const OBU_TYPE obu_type = + (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; + curr_tg_data_size = + write_obu_header(obu_type, obu_extension_header, data); + obu_header_size = curr_tg_data_size; + + if (num_tg_hdrs == 1) { + curr_tg_data_size += write_frame_header_obu( + cpi, saved_wb, data + curr_tg_data_size, 0); + } + curr_tg_data_size += write_tile_group_header( + data + curr_tg_data_size, tile_idx, + AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), + n_log2_tiles, cm->num_tg > 1); + total_size += curr_tg_data_size; + tile_data_start += curr_tg_data_size; + new_tg = 0; + tile_count = 0; + } + tile_count++; + av1_tile_set_col(&tile_info, cm, tile_col); + + if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { + is_last_tile_in_tg = 1; + new_tg = 1; + } else { + is_last_tile_in_tg = 0; + } + + buf->data = dst + total_size; + + // The last tile of the tile group does not have a header. + if (!is_last_tile_in_tg) total_size += 4; + + // Initialise tile context from the frame context + this_tile->tctx = *cm->fc; + cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; + mode_bc.allow_update_cdf = 1; + mode_bc.allow_update_cdf = + mode_bc.allow_update_cdf && !cm->disable_cdf_update; + const int num_planes = av1_num_planes(cm); + av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); + + aom_start_encode(&mode_bc, dst + total_size); + write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); + aom_stop_encode(&mode_bc); + tile_size = mode_bc.pos; + assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); + + curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); + buf->size = tile_size; + if (tile_size > max_tile_size) { + cm->largest_tile_id = tile_cols * tile_row + tile_col; + max_tile_size = tile_size; + } + + if (!is_last_tile_in_tg) { + // size of this tile + mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); + } else { + // write current tile group size + const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + assert(0); + } + curr_tg_data_size += (int)length_field_size; + total_size += (uint32_t)length_field_size; + tile_data_start += length_field_size; + if (num_tg_hdrs == 1) { + // if this tg is combined with the frame header then update saved + // frame header base offset accroding to length field size + saved_wb->bit_buffer += length_field_size; + } + + if (!first_tg && cm->error_resilient_mode) { + // Make room for a duplicate Frame Header OBU. + memmove(data + fh_info->total_length, data, curr_tg_data_size); + + // Insert a copy of the Frame Header OBU. + memcpy(data, fh_info->frame_header, fh_info->total_length); + + // Force context update tile to be the first tile in error + // resiliant mode as the duplicate frame headers will have + // context_update_tile_id set to 0 + cm->largest_tile_id = 0; + + // Rewrite the OBU header to change the OBU type to Redundant Frame + // Header. + write_obu_header(OBU_REDUNDANT_FRAME_HEADER, obu_extension_header, + &data[fh_info->obu_header_byte_offset]); + + data += fh_info->total_length; + + curr_tg_data_size += (int)(fh_info->total_length); + total_size += (uint32_t)(fh_info->total_length); + } + first_tg = 0; + } + + total_size += tile_size; + } + } + + if (have_tiles) { + // Fill in context_update_tile_id indicating the tile to use for the + // cdf update. The encoder currently sets it to the largest tile + // (but is up to the encoder) + aom_wb_overwrite_literal(saved_wb, cm->largest_tile_id, + cm->log2_tile_cols + cm->log2_tile_rows); + // If more than one tile group. tile_size_bytes takes the default value 4 + // and does not need to be set. For a single tile group it is set in the + // section below. + if (num_tg_hdrs == 1) { + int tile_size_bytes = 4, unused; + const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); + const uint32_t tile_data_size = total_size - tile_data_offset; + + total_size = + remux_tiles(cm, tile_data_start, tile_data_size, max_tile_size, + max_tile_col_size, &tile_size_bytes, &unused); + total_size += tile_data_offset; + assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); + + aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); + + // Update the OBU length if remux_tiles() reduced the size. + uint64_t payload_size; + size_t length_field_size; + int res = + aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, + &payload_size, &length_field_size); + assert(res == 0); + (void)res; + + const uint64_t new_payload_size = + total_size - obu_header_size - length_field_size; + if (new_payload_size != payload_size) { + size_t new_length_field_size; + res = aom_uleb_encode(new_payload_size, length_field_size, + dst + obu_header_size, &new_length_field_size); + assert(res == 0); + if (new_length_field_size < length_field_size) { + const size_t src_offset = obu_header_size + length_field_size; + const size_t dst_offset = obu_header_size + new_length_field_size; + memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); + total_size -= (int)(length_field_size - new_length_field_size); + } + } + } + } + return total_size; +} + +int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) { + uint8_t *data = dst; + uint32_t data_size; + AV1_COMMON *const cm = &cpi->common; + uint32_t obu_header_size = 0; + uint32_t obu_payload_size = 0; + FrameHeaderInfo fh_info = { NULL, 0, 0 }; + const uint8_t obu_extension_header = + cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; + +#if CONFIG_BITSTREAM_DEBUG + bitstream_queue_reset_write(); +#endif + + // The TD is now written outside the frame encode loop + + // write sequence header obu if KEY_FRAME, preceded by 4-byte size + if (cm->frame_type == KEY_FRAME && cm->show_frame) { + obu_header_size = write_obu_header(OBU_SEQUENCE_HEADER, 0, data); + + obu_payload_size = write_sequence_header_obu(cpi, data + obu_header_size); + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + + data += obu_header_size + obu_payload_size + length_field_size; + } + + const int write_frame_header = + (cm->num_tg > 1 || encode_show_existing_frame(cm)); + struct aom_write_bit_buffer saved_wb; + if (write_frame_header) { + // Write Frame Header OBU. + fh_info.frame_header = data; + obu_header_size = + write_obu_header(OBU_FRAME_HEADER, obu_extension_header, data); + obu_payload_size = + write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1); + + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + + fh_info.obu_header_byte_offset = 0; + fh_info.total_length = + obu_header_size + obu_payload_size + length_field_size; + data += fh_info.total_length; + + // Since length_field_size is determined adaptively after frame header + // encoding, saved_wb must be adjusted accordingly. + saved_wb.bit_buffer += length_field_size; + } + + if (encode_show_existing_frame(cm)) { + data_size = 0; + } else { + // Each tile group obu will be preceded by 4-byte size of the tile group + // obu + data_size = write_tiles_in_tg_obus(cpi, data, &saved_wb, + obu_extension_header, &fh_info); + } + data += data_size; + *size = data - dst; + return AOM_CODEC_OK; +} |