diff options
Diffstat (limited to 'third_party/aom/av1/common/x86/cfl_avx2.c')
-rw-r--r-- | third_party/aom/av1/common/x86/cfl_avx2.c | 491 |
1 files changed, 0 insertions, 491 deletions
diff --git a/third_party/aom/av1/common/x86/cfl_avx2.c b/third_party/aom/av1/common/x86/cfl_avx2.c deleted file mode 100644 index a8bfdcce6..000000000 --- a/third_party/aom/av1/common/x86/cfl_avx2.c +++ /dev/null @@ -1,491 +0,0 @@ -/* - * Copyright (c) 2017, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ -#include <immintrin.h> - -#include "config/av1_rtcd.h" - -#include "av1/common/cfl.h" - -#include "av1/common/x86/cfl_simd.h" - -#define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \ - CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \ - CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \ - CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \ - cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \ - TX_SIZE tx_size) { \ - static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \ - subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \ - subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \ - subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \ - subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \ - cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \ - subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \ - subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \ - subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \ - subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \ - subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \ - subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \ - cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \ - cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \ - subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \ - subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \ - subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \ - subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \ - cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \ - cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \ - }; \ - return subfn_##sub[tx_size]; \ - } - -/** - * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more - * precise version of a box filter 4:2:0 pixel subsampling in Q3. - * - * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the - * active area is specified using width and height. - * - * Note: We don't need to worry about going over the active area, as long as we - * stay inside the CfL prediction buffer. - * - * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. - */ -static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos - const int luma_stride = input_stride << 1; - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); - - __m256i top_16x16 = _mm256_maddubs_epi16(top, twos); - __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos); - __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16); - - _mm256_storeu_si256(row, sum_16x16); - - input += luma_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd) - -/** - * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more - * precise version of a box filter 4:2:2 pixel subsampling in Q3. - * - * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the - * active area is specified using width and height. - * - * Note: We don't need to worry about going over the active area, as long as we - * stay inside the CfL prediction buffer. - */ -static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - const __m256i fours = _mm256_set1_epi8(4); // Thirty two fours - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - __m256i top_16x16 = _mm256_maddubs_epi16(top, fours); - _mm256_storeu_si256(row, top_16x16); - input += input_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd) - -/** - * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only - * performed on block of width 32. - * - * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the - * active area is specified using width and height. - * - * Note: We don't need to worry about going over the active area, as long as we - * stay inside the CfL prediction buffer. - */ -static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - const __m256i zeros = _mm256_setzero_si256(); - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0)); - - __m256i row_lo = _mm256_unpacklo_epi8(top, zeros); - row_lo = _mm256_slli_epi16(row_lo, 3); - __m256i row_hi = _mm256_unpackhi_epi8(top, zeros); - row_hi = _mm256_slli_epi16(row_hi, 3); - - _mm256_storeu_si256(row, row_lo); - _mm256_storeu_si256(row + 1, row_hi); - - input += input_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd) - -/** - * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more - * precise version of a box filter 4:2:0 pixel subsampling in Q3. - * - * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the - * active area is specified using width and height. - * - * Note: We don't need to worry about going over the active area, as long as we - * stay inside the CfL prediction buffer. - * - * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. - */ -static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - const int luma_stride = input_stride << 1; - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); - __m256i sum = _mm256_add_epi16(top, bot); - - __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); - __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); - __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); - - __m256i hsum = _mm256_hadd_epi16(sum, sum_1); - hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); - hsum = _mm256_add_epi16(hsum, hsum); - - _mm256_storeu_si256(row, hsum); - - input += luma_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd) - -/** - * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more - * precise version of a box filter 4:2:2 pixel subsampling in Q3. - * - * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the - * active area is specified using width and height. - * - * Note: We don't need to worry about going over the active area, as long as we - * stay inside the CfL prediction buffer. - * - */ -static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); - __m256i hsum = _mm256_hadd_epi16(top, top_1); - hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); - hsum = _mm256_slli_epi16(hsum, 2); - - _mm256_storeu_si256(row, hsum); - - input += input_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd) - -static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input, - int input_stride, - uint16_t *pred_buf_q3, int width, - int height) { - (void)width; // Forever 32 - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - do { - __m256i top = _mm256_loadu_si256((__m256i *)input); - __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); - _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); - _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); - input += input_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd) - -static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, - __m256i alpha_sign, __m256i dc_q0) { - __m256i ac_q3 = _mm256_loadu_si256(input); - __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); - __m256i scaled_luma_q0 = - _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); - scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); - return _mm256_add_epi16(scaled_luma_q0, dc_q0); -} - -static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3, - uint8_t *dst, int dst_stride, - int alpha_q3, int width, int height) { - (void)width; - const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); - const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); - const __m256i dc_q0 = _mm256_set1_epi16(*dst); - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - - do { - __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); - __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); - res = _mm256_packus_epi16(res, next); - res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0)); - _mm256_storeu_si256((__m256i *)dst, res); - dst += dst_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_PREDICT_X(avx2, 32, 8, lbd); -CFL_PREDICT_X(avx2, 32, 16, lbd); -CFL_PREDICT_X(avx2, 32, 32, lbd); - -cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) { - static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = { - predict_lbd_4x4_ssse3, /* 4x4 */ - predict_lbd_8x8_ssse3, /* 8x8 */ - predict_lbd_16x16_ssse3, /* 16x16 */ - predict_lbd_32x32_avx2, /* 32x32 */ - cfl_predict_lbd_null, /* 64x64 (invalid CFL size) */ - predict_lbd_4x8_ssse3, /* 4x8 */ - predict_lbd_8x4_ssse3, /* 8x4 */ - predict_lbd_8x16_ssse3, /* 8x16 */ - predict_lbd_16x8_ssse3, /* 16x8 */ - predict_lbd_16x32_ssse3, /* 16x32 */ - predict_lbd_32x16_avx2, /* 32x16 */ - cfl_predict_lbd_null, /* 32x64 (invalid CFL size) */ - cfl_predict_lbd_null, /* 64x32 (invalid CFL size) */ - predict_lbd_4x16_ssse3, /* 4x16 */ - predict_lbd_16x4_ssse3, /* 16x4 */ - predict_lbd_8x32_ssse3, /* 8x32 */ - predict_lbd_32x8_avx2, /* 32x8 */ - cfl_predict_lbd_null, /* 16x64 (invalid CFL size) */ - cfl_predict_lbd_null, /* 64x16 (invalid CFL size) */ - }; - // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the - // function pointer array out of bounds. - return pred[tx_size % TX_SIZES_ALL]; -} - -static __m256i highbd_max_epi16(int bd) { - const __m256i neg_one = _mm256_set1_epi16(-1); - // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) - return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); -} - -static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { - return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); -} - -static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3, - uint16_t *dst, int dst_stride, - int alpha_q3, int bd, int width, - int height) { - // Use SSSE3 version for smaller widths - assert(width == 16 || width == 32); - const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); - const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); - const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); - const __m256i max = highbd_max_epi16(bd); - - __m256i *row = (__m256i *)pred_buf_q3; - const __m256i *row_end = row + height * CFL_BUF_LINE_I256; - do { - const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); - _mm256_storeu_si256((__m256i *)dst, - highbd_clamp_epi16(res, _mm256_setzero_si256(), max)); - if (width == 32) { - const __m256i res_1 = - predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); - _mm256_storeu_si256( - (__m256i *)(dst + 16), - highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max)); - } - dst += dst_stride; - } while ((row += CFL_BUF_LINE_I256) < row_end); -} - -CFL_PREDICT_X(avx2, 16, 4, hbd) -CFL_PREDICT_X(avx2, 16, 8, hbd) -CFL_PREDICT_X(avx2, 16, 16, hbd) -CFL_PREDICT_X(avx2, 16, 32, hbd) -CFL_PREDICT_X(avx2, 32, 8, hbd) -CFL_PREDICT_X(avx2, 32, 16, hbd) -CFL_PREDICT_X(avx2, 32, 32, hbd) - -cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) { - static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = { - predict_hbd_4x4_ssse3, /* 4x4 */ - predict_hbd_8x8_ssse3, /* 8x8 */ - predict_hbd_16x16_avx2, /* 16x16 */ - predict_hbd_32x32_avx2, /* 32x32 */ - cfl_predict_hbd_null, /* 64x64 (invalid CFL size) */ - predict_hbd_4x8_ssse3, /* 4x8 */ - predict_hbd_8x4_ssse3, /* 8x4 */ - predict_hbd_8x16_ssse3, /* 8x16 */ - predict_hbd_16x8_avx2, /* 16x8 */ - predict_hbd_16x32_avx2, /* 16x32 */ - predict_hbd_32x16_avx2, /* 32x16 */ - cfl_predict_hbd_null, /* 32x64 (invalid CFL size) */ - cfl_predict_hbd_null, /* 64x32 (invalid CFL size) */ - predict_hbd_4x16_ssse3, /* 4x16 */ - predict_hbd_16x4_avx2, /* 16x4 */ - predict_hbd_8x32_ssse3, /* 8x32 */ - predict_hbd_32x8_avx2, /* 32x8 */ - cfl_predict_hbd_null, /* 16x64 (invalid CFL size) */ - cfl_predict_hbd_null, /* 64x16 (invalid CFL size) */ - }; - // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the - // function pointer array out of bounds. - return pred[tx_size % TX_SIZES_ALL]; -} - -// Returns a vector where all the (32-bits) elements are the sum of all the -// lanes in a. -static INLINE __m256i fill_sum_epi32(__m256i a) { - // Given that a == [A, B, C, D, E, F, G, H] - a = _mm256_hadd_epi32(a, a); - // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H - // a == [A', C', A', C', E', G', E', G'] - a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0)); - // a == [A', C', E', G', A', C', E', G'] - a = _mm256_hadd_epi32(a, a); - // Given that A'' == A' + C' and E'' == E' + G' - // a == [A'', E'', A'', E'', A'', E'', A'', E''] - return _mm256_hadd_epi32(a, a); - // Given that A''' == A'' + E'' - // a == [A''', A''', A''', A''', A''', A''', A''', A'''] -} - -static INLINE __m256i _mm256_addl_epi16(__m256i a) { - return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()), - _mm256_unpackhi_epi16(a, _mm256_setzero_si256())); -} - -static INLINE void subtract_average_avx2(const uint16_t *src_ptr, - int16_t *dst_ptr, int width, - int height, int round_offset, - int num_pel_log2) { - // Use SSE2 version for smaller widths - assert(width == 16 || width == 32); - - const __m256i *src = (__m256i *)src_ptr; - const __m256i *const end = src + height * CFL_BUF_LINE_I256; - // To maximize usage of the AVX2 registers, we sum two rows per loop - // iteration - const int step = 2 * CFL_BUF_LINE_I256; - - __m256i sum = _mm256_setzero_si256(); - // For width 32, we use a second sum accumulator to reduce accumulator - // dependencies in the loop. - __m256i sum2; - if (width == 32) sum2 = _mm256_setzero_si256(); - - do { - // Add top row to the bottom row - __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src), - _mm256_loadu_si256(src + CFL_BUF_LINE_I256)); - sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0)); - if (width == 32) { /* Don't worry, this if it gets optimized out. */ - // Add the second part of the top row to the second part of the bottom row - __m256i l1 = - _mm256_add_epi16(_mm256_loadu_si256(src + 1), - _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256)); - sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1)); - } - src += step; - } while (src < end); - // Combine both sum accumulators - if (width == 32) sum = _mm256_add_epi32(sum, sum2); - - __m256i fill = fill_sum_epi32(sum); - - __m256i avg_epi16 = _mm256_srli_epi32( - _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2); - avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16); - - // Store and subtract loop - src = (__m256i *)src_ptr; - __m256i *dst = (__m256i *)dst_ptr; - do { - _mm256_storeu_si256(dst, - _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16)); - if (width == 32) { - _mm256_storeu_si256( - dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16)); - } - src += CFL_BUF_LINE_I256; - dst += CFL_BUF_LINE_I256; - } while (src < end); -} - -// Declare wrappers for AVX2 sizes -CFL_SUB_AVG_X(avx2, 16, 4, 32, 6) -CFL_SUB_AVG_X(avx2, 16, 8, 64, 7) -CFL_SUB_AVG_X(avx2, 16, 16, 128, 8) -CFL_SUB_AVG_X(avx2, 16, 32, 256, 9) -CFL_SUB_AVG_X(avx2, 32, 8, 128, 8) -CFL_SUB_AVG_X(avx2, 32, 16, 256, 9) -CFL_SUB_AVG_X(avx2, 32, 32, 512, 10) - -// Based on the observation that for small blocks AVX2 does not outperform -// SSE2, we call the SSE2 code for block widths 4 and 8. -cfl_subtract_average_fn get_subtract_average_fn_avx2(TX_SIZE tx_size) { - static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { - subtract_average_4x4_sse2, /* 4x4 */ - subtract_average_8x8_sse2, /* 8x8 */ - subtract_average_16x16_avx2, /* 16x16 */ - subtract_average_32x32_avx2, /* 32x32 */ - cfl_subtract_average_null, /* 64x64 (invalid CFL size) */ - subtract_average_4x8_sse2, /* 4x8 */ - subtract_average_8x4_sse2, /* 8x4 */ - subtract_average_8x16_sse2, /* 8x16 */ - subtract_average_16x8_avx2, /* 16x8 */ - subtract_average_16x32_avx2, /* 16x32 */ - subtract_average_32x16_avx2, /* 32x16 */ - cfl_subtract_average_null, /* 32x64 (invalid CFL size) */ - cfl_subtract_average_null, /* 64x32 (invalid CFL size) */ - subtract_average_4x16_sse2, /* 4x16 */ - subtract_average_16x4_avx2, /* 16x4 */ - subtract_average_8x32_sse2, /* 8x32 */ - subtract_average_32x8_avx2, /* 32x8 */ - cfl_subtract_average_null, /* 16x64 (invalid CFL size) */ - cfl_subtract_average_null, /* 64x16 (invalid CFL size) */ - }; - // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to - // index the function pointer array out of bounds. - return sub_avg[tx_size % TX_SIZES_ALL]; -} |