diff options
Diffstat (limited to 'third_party/aom/av1/common/scale.c')
-rw-r--r-- | third_party/aom/av1/common/scale.c | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/scale.c b/third_party/aom/av1/common/scale.c new file mode 100644 index 000000000..76beaa2bd --- /dev/null +++ b/third_party/aom/av1/common/scale.c @@ -0,0 +1,164 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "./aom_dsp_rtcd.h" +#include "av1/common/filter.h" +#include "av1/common/scale.h" +#include "aom_dsp/aom_filter.h" + +static INLINE int scaled_x(int val, const struct scale_factors *sf) { + return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT); +} + +static INLINE int scaled_y(int val, const struct scale_factors *sf) { + return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT); +} + +static int unscaled_value(int val, const struct scale_factors *sf) { + (void)sf; + return val; +} + +static int get_fixed_point_scale_factor(int other_size, int this_size) { + // Calculate scaling factor once for each reference frame + // and use fixed point scaling factors in decoding and encoding routines. + // Hardware implementations can calculate scale factor in device driver + // and use multiplication and shifting on hardware instead of division. + return (other_size << REF_SCALE_SHIFT) / this_size; +} + +MV32 av1_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) { + const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK; + const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK; + const MV32 res = { scaled_y(mv->row, sf) + y_off_q4, + scaled_x(mv->col, sf) + x_off_q4 }; + return res; +} + +#if CONFIG_HIGHBITDEPTH +void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h, + int use_highbd) { +#else +void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h) { +#endif + if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { + sf->x_scale_fp = REF_INVALID_SCALE; + sf->y_scale_fp = REF_INVALID_SCALE; + return; + } + + sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); + sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); + sf->x_step_q4 = scaled_x(16, sf); + sf->y_step_q4 = scaled_y(16, sf); + + if (av1_is_scaled(sf)) { + sf->scale_value_x = scaled_x; + sf->scale_value_y = scaled_y; + } else { + sf->scale_value_x = unscaled_value; + sf->scale_value_y = unscaled_value; + } + + // TODO(agrange): Investigate the best choice of functions to use here + // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what + // to do at full-pel offsets. The current selection, where the filter is + // applied in one direction only, and not at all for 0,0, seems to give the + // best quality, but it may be worth trying an additional mode that does + // do the filtering on full-pel. + if (sf->x_step_q4 == 16) { + if (sf->y_step_q4 == 16) { + // No scaling in either direction. + sf->predict[0][0][0] = aom_convolve_copy; + sf->predict[0][0][1] = aom_convolve_avg; + sf->predict[0][1][0] = aom_convolve8_vert; + sf->predict[0][1][1] = aom_convolve8_avg_vert; + sf->predict[1][0][0] = aom_convolve8_horiz; + sf->predict[1][0][1] = aom_convolve8_avg_horiz; + } else { + // No scaling in x direction. Must always scale in the y direction. + sf->predict[0][0][0] = aom_convolve8_vert; + sf->predict[0][0][1] = aom_convolve8_avg_vert; + sf->predict[0][1][0] = aom_convolve8_vert; + sf->predict[0][1][1] = aom_convolve8_avg_vert; + sf->predict[1][0][0] = aom_convolve8; + sf->predict[1][0][1] = aom_convolve8_avg; + } + } else { + if (sf->y_step_q4 == 16) { + // No scaling in the y direction. Must always scale in the x direction. + sf->predict[0][0][0] = aom_convolve8_horiz; + sf->predict[0][0][1] = aom_convolve8_avg_horiz; + sf->predict[0][1][0] = aom_convolve8; + sf->predict[0][1][1] = aom_convolve8_avg; + sf->predict[1][0][0] = aom_convolve8_horiz; + sf->predict[1][0][1] = aom_convolve8_avg_horiz; + } else { + // Must always scale in both directions. + sf->predict[0][0][0] = aom_convolve8; + sf->predict[0][0][1] = aom_convolve8_avg; + sf->predict[0][1][0] = aom_convolve8; + sf->predict[0][1][1] = aom_convolve8_avg; + sf->predict[1][0][0] = aom_convolve8; + sf->predict[1][0][1] = aom_convolve8_avg; + } + } + // 2D subpel motion always gets filtered in both directions + sf->predict[1][1][0] = aom_convolve8; + sf->predict[1][1][1] = aom_convolve8_avg; + +#if CONFIG_HIGHBITDEPTH + if (use_highbd) { + if (sf->x_step_q4 == 16) { + if (sf->y_step_q4 == 16) { + // No scaling in either direction. + sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy; + sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg; + sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; + sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; + sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; + sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; + } else { + // No scaling in x direction. Must always scale in the y direction. + sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert; + sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert; + sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; + sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; + sf->highbd_predict[1][0][0] = aom_highbd_convolve8; + sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; + } + } else { + if (sf->y_step_q4 == 16) { + // No scaling in the y direction. Must always scale in the x direction. + sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz; + sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz; + sf->highbd_predict[0][1][0] = aom_highbd_convolve8; + sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; + sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; + sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; + } else { + // Must always scale in both directions. + sf->highbd_predict[0][0][0] = aom_highbd_convolve8; + sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg; + sf->highbd_predict[0][1][0] = aom_highbd_convolve8; + sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; + sf->highbd_predict[1][0][0] = aom_highbd_convolve8; + sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; + } + } + // 2D subpel motion always gets filtered in both directions. + sf->highbd_predict[1][1][0] = aom_highbd_convolve8; + sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg; + } +#endif // CONFIG_HIGHBITDEPTH +} |