summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/pred_common.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/pred_common.c')
-rw-r--r--third_party/aom/av1/common/pred_common.c501
1 files changed, 501 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/pred_common.c b/third_party/aom/av1/common/pred_common.c
new file mode 100644
index 000000000..5952441d1
--- /dev/null
+++ b/third_party/aom/av1/common/pred_common.c
@@ -0,0 +1,501 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "av1/common/common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/seg_common.h"
+
+// Returns a context number for the given MB prediction signal
+static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
+ const MACROBLOCKD *xd, int dir,
+ MV_REFERENCE_FRAME ref_frame) {
+ (void)xd;
+
+ return ((ref_mbmi->ref_frame[0] == ref_frame ||
+ ref_mbmi->ref_frame[1] == ref_frame)
+ ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
+ : SWITCHABLE_FILTERS);
+}
+
+int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int ctx_offset =
+ (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
+ assert(dir == 0 || dir == 1);
+ const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
+ // Note:
+ // The mode info data structure has a one element border above and to the
+ // left of the entries corresponding to real macroblocks.
+ // The prediction flags in these dummy entries are initialized to 0.
+ int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
+ int left_type = SWITCHABLE_FILTERS;
+ int above_type = SWITCHABLE_FILTERS;
+
+ if (xd->left_available)
+ left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
+
+ if (xd->up_available)
+ above_type =
+ get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
+
+ if (left_type == above_type) {
+ filter_type_ctx += left_type;
+ } else if (left_type == SWITCHABLE_FILTERS) {
+ assert(above_type != SWITCHABLE_FILTERS);
+ filter_type_ctx += above_type;
+ } else if (above_type == SWITCHABLE_FILTERS) {
+ assert(left_type != SWITCHABLE_FILTERS);
+ filter_type_ctx += left_type;
+ } else {
+ filter_type_ctx += SWITCHABLE_FILTERS;
+ }
+
+ return filter_type_ctx;
+}
+
+static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
+ // Do not add an already existing value
+ if (*n > 0 && val == cache[*n - 1]) return;
+
+ cache[(*n)++] = val;
+}
+
+int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
+ uint16_t *cache) {
+ const int row = -xd->mb_to_top_edge >> 3;
+ // Do not refer to above SB row when on SB boundary.
+ const MB_MODE_INFO *const above_mi =
+ (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
+ const MB_MODE_INFO *const left_mi = xd->left_mbmi;
+ int above_n = 0, left_n = 0;
+ if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
+ if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
+ if (above_n == 0 && left_n == 0) return 0;
+ int above_idx = plane * PALETTE_MAX_SIZE;
+ int left_idx = plane * PALETTE_MAX_SIZE;
+ int n = 0;
+ const uint16_t *above_colors =
+ above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
+ const uint16_t *left_colors =
+ left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
+ // Merge the sorted lists of base colors from above and left to get
+ // combined sorted color cache.
+ while (above_n > 0 && left_n > 0) {
+ uint16_t v_above = above_colors[above_idx];
+ uint16_t v_left = left_colors[left_idx];
+ if (v_left < v_above) {
+ palette_add_to_cache(cache, &n, v_left);
+ ++left_idx, --left_n;
+ } else {
+ palette_add_to_cache(cache, &n, v_above);
+ ++above_idx, --above_n;
+ if (v_left == v_above) ++left_idx, --left_n;
+ }
+ }
+ while (above_n-- > 0) {
+ uint16_t val = above_colors[above_idx++];
+ palette_add_to_cache(cache, &n, val);
+ }
+ while (left_n-- > 0) {
+ uint16_t val = left_colors[left_idx++];
+ palette_add_to_cache(cache, &n, val);
+ }
+ assert(n <= 2 * PALETTE_MAX_SIZE);
+ return n;
+}
+
+// The mode info data structure has a one element border above and to the
+// left of the entries corresponding to real macroblocks.
+// The prediction flags in these dummy entries are initialized to 0.
+// 0 - inter/inter, inter/--, --/inter, --/--
+// 1 - intra/inter, inter/intra
+// 2 - intra/--, --/intra
+// 3 - intra/intra
+int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
+ const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
+ const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
+ const int has_above = xd->up_available;
+ const int has_left = xd->left_available;
+
+ if (has_above && has_left) { // both edges available
+ const int above_intra = !is_inter_block(above_mbmi);
+ const int left_intra = !is_inter_block(left_mbmi);
+ return left_intra && above_intra ? 3 : left_intra || above_intra;
+ } else if (has_above || has_left) { // one edge available
+ return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
+ } else {
+ return 0;
+ }
+}
+
+#define CHECK_BACKWARD_REFS(ref_frame) \
+ (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
+#define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
+
+int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
+ int ctx;
+ const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
+ const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
+ const int has_above = xd->up_available;
+ const int has_left = xd->left_available;
+
+ // Note:
+ // The mode info data structure has a one element border above and to the
+ // left of the entries corresponding to real macroblocks.
+ // The prediction flags in these dummy entries are initialized to 0.
+ if (has_above && has_left) { // both edges available
+ if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
+ // neither edge uses comp pred (0/1)
+ ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
+ IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
+ else if (!has_second_ref(above_mbmi))
+ // one of two edges uses comp pred (2/3)
+ ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
+ !is_inter_block(above_mbmi));
+ else if (!has_second_ref(left_mbmi))
+ // one of two edges uses comp pred (2/3)
+ ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
+ !is_inter_block(left_mbmi));
+ else // both edges use comp pred (4)
+ ctx = 4;
+ } else if (has_above || has_left) { // one edge available
+ const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
+
+ if (!has_second_ref(edge_mbmi))
+ // edge does not use comp pred (0/1)
+ ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
+ else
+ // edge uses comp pred (3)
+ ctx = 3;
+ } else { // no edges available (1)
+ ctx = 1;
+ }
+ assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
+ return ctx;
+}
+
+int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
+ int pred_context;
+ const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
+ const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
+ const int above_in_image = xd->up_available;
+ const int left_in_image = xd->left_available;
+
+ if (above_in_image && left_in_image) { // both edges available
+ const int above_intra = !is_inter_block(above_mbmi);
+ const int left_intra = !is_inter_block(left_mbmi);
+
+ if (above_intra && left_intra) { // intra/intra
+ pred_context = 2;
+ } else if (above_intra || left_intra) { // intra/inter
+ const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
+
+ if (!has_second_ref(inter_mbmi)) // single pred
+ pred_context = 2;
+ else // comp pred
+ pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
+ } else { // inter/inter
+ const int a_sg = !has_second_ref(above_mbmi);
+ const int l_sg = !has_second_ref(left_mbmi);
+ const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
+ const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
+
+ if (a_sg && l_sg) { // single/single
+ pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
+ IS_BACKWARD_REF_FRAME(frfl)));
+ } else if (l_sg || a_sg) { // single/comp
+ const int uni_rfc =
+ a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
+
+ if (!uni_rfc) // comp bidir
+ pred_context = 1;
+ else // comp unidir
+ pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
+ IS_BACKWARD_REF_FRAME(frfl)));
+ } else { // comp/comp
+ const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
+ const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
+
+ if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir
+ pred_context = 0;
+ else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir
+ pred_context = 2;
+ else // unidir/unidir
+ pred_context =
+ 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
+ }
+ }
+ } else if (above_in_image || left_in_image) { // one edge available
+ const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
+
+ if (!is_inter_block(edge_mbmi)) { // intra
+ pred_context = 2;
+ } else { // inter
+ if (!has_second_ref(edge_mbmi)) // single pred
+ pred_context = 2;
+ else // comp pred
+ pred_context = 4 * has_uni_comp_refs(edge_mbmi);
+ }
+ } else { // no edges available
+ pred_context = 2;
+ }
+
+ assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
+ return pred_context;
+}
+
+// Returns a context number for the given MB prediction signal
+//
+// Signal the uni-directional compound reference frame pair as either
+// (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
+// conditioning on the pair is known as uni-directional.
+//
+// 3 contexts: Voting is used to compare the count of forward references with
+// that of backward references from the spatial neighbors.
+int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of forward references (L, L2, L3, or G)
+ const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
+ ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
+ // Count of backward references (B or A)
+ const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
+ ref_counts[ALTREF_FRAME];
+
+ const int pred_context =
+ (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
+ return pred_context;
+}
+
+// Returns a context number for the given MB prediction signal
+//
+// Signal the uni-directional compound reference frame pair as
+// either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
+// conditioning on the pair is known as one of the above three.
+//
+// 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
+// total count of LAST3/GOLDEN from the spatial neighbors.
+int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of LAST2
+ const int last2_count = ref_counts[LAST2_FRAME];
+ // Count of LAST3 or GOLDEN
+ const int last3_or_gld_count =
+ ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
+
+ const int pred_context = (last2_count == last3_or_gld_count)
+ ? 1
+ : ((last2_count < last3_or_gld_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
+ return pred_context;
+}
+
+// Returns a context number for the given MB prediction signal
+//
+// Signal the uni-directional compound reference frame pair as
+// either (LAST, LAST3) or (LAST, GOLDEN),
+// conditioning on the pair is known as one of the above two.
+//
+// 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
+// total count of GOLDEN_FRAME from the spatial neighbors.
+int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of LAST3
+ const int last3_count = ref_counts[LAST3_FRAME];
+ // Count of GOLDEN
+ const int gld_count = ref_counts[GOLDEN_FRAME];
+
+ const int pred_context =
+ (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
+ return pred_context;
+}
+
+// == Common context functions for both comp and single ref ==
+//
+// Obtain contexts to signal a reference frame to be either LAST/LAST2 or
+// LAST3/GOLDEN.
+static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of LAST + LAST2
+ const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
+ // Count of LAST3 + GOLDEN
+ const int last3_gld_count =
+ ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
+
+ const int pred_context = (last_last2_count == last3_gld_count)
+ ? 1
+ : ((last_last2_count < last3_gld_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// Obtain contexts to signal a reference frame to be either LAST or LAST2.
+static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of LAST
+ const int last_count = ref_counts[LAST_FRAME];
+ // Count of LAST2
+ const int last2_count = ref_counts[LAST2_FRAME];
+
+ const int pred_context =
+ (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
+static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of LAST3
+ const int last3_count = ref_counts[LAST3_FRAME];
+ // Count of GOLDEN
+ const int gld_count = ref_counts[GOLDEN_FRAME];
+
+ const int pred_context =
+ (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
+// ALTREF.
+static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
+ const int brfarf2_count =
+ ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
+ const int arf_count = ref_counts[ALTREF_FRAME];
+
+ const int pred_context =
+ (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
+static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of BWDREF frames (B)
+ const int brf_count = ref_counts[BWDREF_FRAME];
+ // Count of ALTREF2 frames (A2)
+ const int arf2_count = ref_counts[ALTREF2_FRAME];
+
+ const int pred_context =
+ (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// == Context functions for comp ref ==
+//
+// Returns a context number for the given MB prediction signal
+// Signal the first reference frame for a compound mode be either
+// GOLDEN/LAST3, or LAST/LAST2.
+int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
+ return get_pred_context_ll2_or_l3gld(xd);
+}
+
+// Returns a context number for the given MB prediction signal
+// Signal the first reference frame for a compound mode be LAST,
+// conditioning on that it is known either LAST/LAST2.
+int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
+ return get_pred_context_last_or_last2(xd);
+}
+
+// Returns a context number for the given MB prediction signal
+// Signal the first reference frame for a compound mode be GOLDEN,
+// conditioning on that it is known either GOLDEN or LAST3.
+int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
+ return get_pred_context_last3_or_gld(xd);
+}
+
+// Signal the 2nd reference frame for a compound mode be either
+// ALTREF, or ALTREF2/BWDREF.
+int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
+ return get_pred_context_brfarf2_or_arf(xd);
+}
+
+// Signal the 2nd reference frame for a compound mode be either
+// ALTREF2 or BWDREF.
+int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
+ return get_pred_context_brf_or_arf2(xd);
+}
+
+// == Context functions for single ref ==
+//
+// For the bit to signal whether the single reference is a forward reference
+// frame or a backward reference frame.
+int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
+ const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
+
+ // Count of forward reference frames
+ const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
+ ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
+ // Count of backward reference frames
+ const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
+ ref_counts[ALTREF_FRAME];
+
+ const int pred_context =
+ (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);
+
+ assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
+ return pred_context;
+}
+
+// For the bit to signal whether the single reference is ALTREF_FRAME or
+// non-ALTREF backward reference frame, knowing that it shall be either of
+// these 2 choices.
+int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
+ return get_pred_context_brfarf2_or_arf(xd);
+}
+
+// For the bit to signal whether the single reference is LAST3/GOLDEN or
+// LAST2/LAST, knowing that it shall be either of these 2 choices.
+int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
+ return get_pred_context_ll2_or_l3gld(xd);
+}
+
+// For the bit to signal whether the single reference is LAST2_FRAME or
+// LAST_FRAME, knowing that it shall be either of these 2 choices.
+int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
+ return get_pred_context_last_or_last2(xd);
+}
+
+// For the bit to signal whether the single reference is GOLDEN_FRAME or
+// LAST3_FRAME, knowing that it shall be either of these 2 choices.
+int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
+ return get_pred_context_last3_or_gld(xd);
+}
+
+// For the bit to signal whether the single reference is ALTREF2_FRAME or
+// BWDREF_FRAME, knowing that it shall be either of these 2 choices.
+int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
+ return get_pred_context_brf_or_arf2(xd);
+}