diff options
Diffstat (limited to 'third_party/aom/av1/common/cfl.c')
-rw-r--r-- | third_party/aom/av1/common/cfl.c | 393 |
1 files changed, 267 insertions, 126 deletions
diff --git a/third_party/aom/av1/common/cfl.c b/third_party/aom/av1/common/cfl.c index 749a5354f..7c88dd0c8 100644 --- a/third_party/aom/av1/common/cfl.c +++ b/third_party/aom/av1/common/cfl.c @@ -15,21 +15,106 @@ #include "aom/internal/aom_codec_internal.h" -void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x, - int subsampling_y) { - if (!((subsampling_x == 0 && subsampling_y == 0) || - (subsampling_x == 1 && subsampling_y == 1))) { +void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) { + if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) || + (cm->subsampling_x == 1 && cm->subsampling_y == 1))) { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Only 4:4:4 and 4:2:0 are currently supported by CfL"); } memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE); - cfl->subsampling_x = subsampling_x; - cfl->subsampling_y = subsampling_y; + cfl->subsampling_x = cm->subsampling_x; + cfl->subsampling_y = cm->subsampling_y; + cfl->are_parameters_computed = 0; +} + +// Load from the CfL pixel buffer into output +static void cfl_load(CFL_CTX *cfl, int row, int col, int width, int height) { + const int sub_x = cfl->subsampling_x; + const int sub_y = cfl->subsampling_y; + const int off_log2 = tx_size_wide_log2[0]; + + // TODO(ltrudeau) convert to uint16 to add HBD support + const uint8_t *y_pix; + // TODO(ltrudeau) convert to uint16 to add HBD support + uint8_t *output = cfl->y_down_pix; + + int pred_row_offset = 0; + int output_row_offset = 0; + + // TODO(ltrudeau) should be faster to downsample when we store the values + // TODO(ltrudeau) add support for 4:2:2 + if (sub_y == 0 && sub_x == 0) { + y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << off_log2]; + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + // In 4:4:4, pixels match 1 to 1 + output[output_row_offset + i] = y_pix[pred_row_offset + i]; + } + pred_row_offset += MAX_SB_SIZE; + output_row_offset += MAX_SB_SIZE; + } + } else if (sub_y == 1 && sub_x == 1) { + y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (off_log2 + sub_y)]; + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + int top_left = (pred_row_offset + i) << sub_y; + int bot_left = top_left + MAX_SB_SIZE; + // In 4:2:0, average pixels in 2x2 grid + output[output_row_offset + i] = OD_SHR_ROUND( + y_pix[top_left] + y_pix[top_left + 1] // Top row + + y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row + , + 2); + } + pred_row_offset += MAX_SB_SIZE; + output_row_offset += MAX_SB_SIZE; + } + } else { + assert(0); // Unsupported chroma subsampling + } + // Due to frame boundary issues, it is possible that the total area of + // covered by Chroma exceeds that of Luma. When this happens, we write over + // the broken data by repeating the last columns and/or rows. + // + // Note that in order to manage the case where both rows and columns + // overrun, + // we apply rows first. This way, when the rows overrun the bottom of the + // frame, the columns will be copied over them. + const int uv_width = (col << off_log2) + width; + const int uv_height = (row << off_log2) + height; + + const int diff_width = uv_width - (cfl->y_width >> sub_x); + const int diff_height = uv_height - (cfl->y_height >> sub_y); + + if (diff_width > 0) { + int last_pixel; + output_row_offset = width - diff_width; + + for (int j = 0; j < height; j++) { + last_pixel = output_row_offset - 1; + for (int i = 0; i < diff_width; i++) { + output[output_row_offset + i] = output[last_pixel]; + } + output_row_offset += MAX_SB_SIZE; + } + } + + if (diff_height > 0) { + output_row_offset = (height - diff_height) * MAX_SB_SIZE; + const int last_row_offset = output_row_offset - MAX_SB_SIZE; + + for (int j = 0; j < diff_height; j++) { + for (int i = 0; i < width; i++) { + output[output_row_offset + i] = output[last_row_offset + i]; + } + output_row_offset += MAX_SB_SIZE; + } + } } // CfL computes its own block-level DC_PRED. This is required to compute both // alpha_cb and alpha_cr before the prediction are computed. -void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { +static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; @@ -39,15 +124,16 @@ void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { const int dst_u_stride = pd_u->dst.stride; const int dst_v_stride = pd_v->dst.stride; - const int block_width = (plane_bsize != BLOCK_INVALID) - ? block_size_wide[plane_bsize] - : tx_size_wide[tx_size]; - const int block_height = (plane_bsize != BLOCK_INVALID) - ? block_size_high[plane_bsize] - : tx_size_high[tx_size]; + CFL_CTX *const cfl = xd->cfl; + // Compute DC_PRED until block boundary. We can't assume the neighbor will use + // the same transform size. + const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U) + << tx_size_wide_log2[0]; + const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U) + << tx_size_high_log2[0]; // Number of pixel on the top and left borders. - const double num_pel = block_width + block_height; + const int num_pel = width + height; int sum_u = 0; int sum_v = 0; @@ -68,13 +154,13 @@ void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { if (xd->up_available && xd->mb_to_right_edge >= 0) { #endif // TODO(ltrudeau) replace this with DC_PRED assembly - for (int i = 0; i < block_width; i++) { + for (int i = 0; i < width; i++) { sum_u += dst_u[-dst_u_stride + i]; sum_v += dst_v[-dst_v_stride + i]; } } else { - sum_u = block_width * 127; - sum_v = block_width * 127; + sum_u = width * 127; + sum_v = width * 127; } #if CONFIG_CHROMA_SUB8X8 @@ -82,56 +168,158 @@ void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { #else if (xd->left_available && xd->mb_to_bottom_edge >= 0) { #endif - for (int i = 0; i < block_height; i++) { + for (int i = 0; i < height; i++) { sum_u += dst_u[i * dst_u_stride - 1]; sum_v += dst_v[i * dst_v_stride - 1]; } } else { - sum_u += block_height * 129; - sum_v += block_height * 129; + sum_u += height * 129; + sum_v += height * 129; } - xd->cfl->dc_pred[CFL_PRED_U] = sum_u / num_pel; - xd->cfl->dc_pred[CFL_PRED_V] = sum_v / num_pel; + // TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will + // not be a power of two. So these divisions will have to use a lookup table. + cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel; + cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel; +} + +static void cfl_compute_averages(CFL_CTX *cfl, TX_SIZE tx_size) { + const int width = cfl->uv_width; + const int height = cfl->uv_height; + const int tx_height = tx_size_high[tx_size]; + const int tx_width = tx_size_wide[tx_size]; + const int stride = width >> tx_size_wide_log2[tx_size]; + const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size]; + const int num_pel_log2 = + (tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]); + + // TODO(ltrudeau) Convert to uint16 for HBD support + const uint8_t *y_pix = cfl->y_down_pix; + // TODO(ltrudeau) Convert to uint16 for HBD support + const uint8_t *t_y_pix; + int *averages_q3 = cfl->y_averages_q3; + + cfl_load(cfl, 0, 0, width, height); + + int a = 0; + for (int b_j = 0; b_j < height; b_j += tx_height) { + for (int b_i = 0; b_i < width; b_i += tx_width) { + int sum = 0; + t_y_pix = y_pix; + for (int t_j = 0; t_j < tx_height; t_j++) { + for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { + sum += t_y_pix[t_i]; + } + t_y_pix += MAX_SB_SIZE; + } + averages_q3[a++] = + ((sum << 3) + (1 << (num_pel_log2 - 1))) >> num_pel_log2; + + // Loss is never more than 1/2 (in Q3) + assert(fabs((double)averages_q3[a - 1] - + (sum / ((double)(1 << num_pel_log2))) * (1 << 3)) <= 0.5); + } + assert(a % stride == 0); + y_pix += block_row_stride; + } + + cfl->y_averages_stride = stride; + assert(a <= MAX_NUM_TXB); +} + +static INLINE int cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign, + CFL_PRED_TYPE pred_type) { + const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type]; + const int abs_alpha_q3 = cfl_alpha_mags_q3[mag_idx]; + if (alpha_sign == CFL_SIGN_POS) { + return abs_alpha_q3; + } else { + assert(abs_alpha_q3 != 0); + assert(cfl_alpha_mags_q3[mag_idx + 1] == -abs_alpha_q3); + return -abs_alpha_q3; + } } // Predict the current transform block using CfL. -void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride, - int row, int col, TX_SIZE tx_size, double dc_pred, - double alpha) { +void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, + int row, int col, TX_SIZE tx_size, int plane) { + CFL_CTX *const cfl = xd->cfl; + MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; + + // CfL parameters must be computed before prediction can be done. + assert(cfl->are_parameters_computed == 1); + const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; + // TODO(ltrudeau) Convert to uint16 to support HBD + const uint8_t *y_pix = cfl->y_down_pix; + + const int dc_pred = cfl->dc_pred[plane - 1]; + const int alpha_q3 = cfl_idx_to_alpha( + mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs[plane - 1], plane - 1); - const double y_avg = cfl_load(cfl, dst, dst_stride, row, col, width, height); + const int avg_row = + (row << tx_size_wide_log2[0]) >> tx_size_wide_log2[tx_size]; + const int avg_col = + (col << tx_size_high_log2[0]) >> tx_size_high_log2[tx_size]; + const int avg_q3 = + cfl->y_averages_q3[cfl->y_averages_stride * avg_row + avg_col]; + cfl_load(cfl, row, col, width, height); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { - dst[i] = (uint8_t)(alpha * (dst[i] - y_avg) + dc_pred + 0.5); + // TODO(ltrudeau) add support for HBD. + dst[i] = + clip_pixel(get_scaled_luma_q0(alpha_q3, y_pix[i], avg_q3) + dc_pred); } dst += dst_stride; + y_pix += MAX_SB_SIZE; } } void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, - int col, TX_SIZE tx_size) { + int col, TX_SIZE tx_size, BLOCK_SIZE bsize) { const int tx_width = tx_size_wide[tx_size]; const int tx_height = tx_size_high[tx_size]; const int tx_off_log2 = tx_size_wide_log2[0]; - // Store the input into the CfL pixel buffer - uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; +#if CONFIG_CHROMA_SUB8X8 + if (bsize < BLOCK_8X8) { + // Transform cannot be smaller than + assert(tx_width >= 4); + assert(tx_height >= 4); - // Check that we remain inside the pixel buffer. - assert(MAX_SB_SIZE * (row + tx_height - 1) + col + tx_width - 1 < - MAX_SB_SQUARE); + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; - for (int j = 0; j < tx_height; j++) { - for (int i = 0; i < tx_width; i++) { - y_pix[i] = input[i]; + // For chroma_sub8x8, the CfL prediction for prediction blocks smaller than + // 8X8 uses non chroma reference reconstructed luma pixels. To do so, we + // combine the 4X4 non chroma reference into the CfL pixel buffers based on + // their row and column index. + + // The following code is adapted from the is_chroma_reference() function. + if ((cfl->mi_row & + 0x01) // Increment the row index for odd indexed 4X4 blocks + && (bh == 4) // But not for 4X8 blocks + && cfl->subsampling_y) { // And only when chroma is subsampled + assert(row == 0); + row++; + } + + if ((cfl->mi_col & + 0x01) // Increment the col index for odd indexed 4X4 blocks + && (bw == 4) // But not for 8X4 blocks + && cfl->subsampling_x) { // And only when chroma is subsampled + assert(col == 0); + col++; } - y_pix += MAX_SB_SIZE; - input += input_stride; } +#else + (void)bsize; +#endif + + // Invalidate current parameters + cfl->are_parameters_computed = 0; // Store the surface of the pixel buffer that was written to, this way we // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the @@ -143,101 +331,54 @@ void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width); cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height); } -} -// Load from the CfL pixel buffer into output -double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row, - int col, int width, int height) { - const int sub_x = cfl->subsampling_x; - const int sub_y = cfl->subsampling_y; - const int tx_off_log2 = tx_size_wide_log2[0]; - - const uint8_t *y_pix; + // Check that we will remain inside the pixel buffer. + assert((row << tx_off_log2) + tx_height <= MAX_SB_SIZE); + assert((col << tx_off_log2) + tx_width <= MAX_SB_SIZE); - int diff_width = 0; - int diff_height = 0; - - int pred_row_offset = 0; - int output_row_offset = 0; - int top_left, bot_left; + // Store the input into the CfL pixel buffer + uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; - // TODO(ltrudeau) add support for 4:2:2 - if (sub_y == 0 && sub_x == 0) { - y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; - int uv_width = (col << tx_off_log2) + width; - diff_width = uv_width - cfl->y_width; - int uv_height = (row << tx_off_log2) + height; - diff_height = uv_height - cfl->y_height; - for (int j = 0; j < height; j++) { - for (int i = 0; i < width; i++) { - // In 4:4:4, pixels match 1 to 1 - output[output_row_offset + i] = y_pix[pred_row_offset + i]; - } - pred_row_offset += MAX_SB_SIZE; - output_row_offset += output_stride; - } - } else if (sub_y == 1 && sub_x == 1) { - y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (tx_off_log2 + sub_y)]; - int uv_width = ((col << tx_off_log2) + width) << sub_x; - diff_width = (uv_width - cfl->y_width) >> sub_x; - int uv_height = ((row << tx_off_log2) + height) << sub_y; - diff_height = (uv_height - cfl->y_height) >> sub_y; - for (int j = 0; j < height; j++) { - for (int i = 0; i < width; i++) { - top_left = (pred_row_offset + i) << sub_y; - bot_left = top_left + MAX_SB_SIZE; - // In 4:2:0, average pixels in 2x2 grid - output[output_row_offset + i] = OD_SHR_ROUND( - y_pix[top_left] + y_pix[top_left + 1] // Top row - + y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row - , - 2); - } - pred_row_offset += MAX_SB_SIZE; - output_row_offset += output_stride; + // TODO(ltrudeau) Speedup possible by moving the downsampling to cfl_store + for (int j = 0; j < tx_height; j++) { + for (int i = 0; i < tx_width; i++) { + y_pix[i] = input[i]; } - } else { - assert(0); // Unsupported chroma subsampling + y_pix += MAX_SB_SIZE; + input += input_stride; } - // Due to frame boundary issues, it is possible that the total area of - // covered by Chroma exceeds that of Luma. When this happens, we write over - // the broken data by repeating the last columns and/or rows. - // - // Note that in order to manage the case where both rows and columns - // overrun, - // we apply rows first. This way, when the rows overrun the bottom of the - // frame, the columns will be copied over them. - if (diff_width > 0) { - int last_pixel; - output_row_offset = width - diff_width; +} - for (int j = 0; j < height; j++) { - last_pixel = output_row_offset - 1; - for (int i = 0; i < diff_width; i++) { - output[output_row_offset + i] = output[last_pixel]; - } - output_row_offset += output_stride; - } - } +void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { + CFL_CTX *const cfl = xd->cfl; + MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; - if (diff_height > 0) { - output_row_offset = diff_height * output_stride; - const int last_row_offset = output_row_offset - output_stride; - for (int j = 0; j < diff_height; j++) { - for (int i = 0; i < width; i++) { - output[output_row_offset + i] = output[last_row_offset + i]; - } - output_row_offset += output_stride; - } - } + // Do not call cfl_compute_parameters multiple time on the same values. + assert(cfl->are_parameters_computed == 0); - int avg = 0; - output_row_offset = 0; - for (int j = 0; j < height; j++) { - for (int i = 0; i < width; i++) { - avg += output[output_row_offset + i]; - } - output_row_offset += output_stride; +#if CONFIG_CHROMA_SUB8X8 + const BLOCK_SIZE plane_bsize = AOMMAX( + BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U])); +#else + const BLOCK_SIZE plane_bsize = + get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]); +#endif + // AOM_PLANE_U is used, but both planes will have the same sizes. + cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size); + cfl->uv_height = + max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size); + +#if CONFIG_DEBUG + if (mbmi->sb_type >= BLOCK_8X8) { + assert(cfl->y_width <= cfl->uv_width << cfl->subsampling_x); + assert(cfl->y_height <= cfl->uv_height << cfl->subsampling_y); } - return avg / (double)(width * height); +#endif + + // Compute block-level DC_PRED for both chromatic planes. + // DC_PRED replaces beta in the linear model. + cfl_dc_pred(xd, plane_bsize); + // Compute transform-level average on reconstructed luma input. + cfl_compute_averages(cfl, tx_size); + cfl->are_parameters_computed = 1; } |