summaryrefslogtreecommitdiffstats
path: root/third_party/aom/README
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/README')
-rw-r--r--third_party/aom/README172
1 files changed, 0 insertions, 172 deletions
diff --git a/third_party/aom/README b/third_party/aom/README
deleted file mode 100644
index 983a71343..000000000
--- a/third_party/aom/README
+++ /dev/null
@@ -1,172 +0,0 @@
-README - 9 March 2017
-
-***************************
-DEPRECATED -- SEE README.md
-***************************
-
-Welcome to the AV1 Codec SDK!
-
-COMPILING THE APPLICATIONS/LIBRARIES:
- The build system used is similar to autotools. Building generally consists of
- "configuring" with your desired build options, then using GNU make to build
- the application.
-
- 1. Prerequisites
-
- * All x86 targets require the Yasm[1] assembler be installed.
- * All Windows builds require that Cygwin[2] be installed.
- * Building the documentation requires Doxygen[3]. If you do not
- have this package, the install-docs option will be disabled.
- * Downloading the data for the unit tests requires curl[4] and sha1sum.
- sha1sum is provided via the GNU coreutils, installed by default on
- many *nix platforms, as well as MinGW and Cygwin. If coreutils is not
- available, a compatible version of sha1sum can be built from
- source[5]. These requirements are optional if not running the unit
- tests.
-
- [1]: http://www.tortall.net/projects/yasm
- [2]: http://www.cygwin.com
- [3]: http://www.doxygen.org
- [4]: http://curl.haxx.se
- [5]: http://www.microbrew.org/tools/md5sha1sum/
-
- 2. Out-of-tree builds
- Out of tree builds are a supported method of building the application. For
- an out of tree build, the source tree is kept separate from the object
- files produced during compilation. For instance:
-
- $ mkdir build
- $ cd build
- $ ../libaom/configure <options>
- $ make
-
- 3. Configuration options
- The 'configure' script supports a number of options. The --help option can be
- used to get a list of supported options:
- $ ../libaom/configure --help
-
- 4. Cross development
- For cross development, the most notable option is the --target option. The
- most up-to-date list of supported targets can be found at the bottom of the
- --help output of the configure script. As of this writing, the list of
- available targets is:
-
- arm64-darwin-gcc
- armv7-android-gcc
- armv7-darwin-gcc
- armv7-linux-rvct
- armv7-linux-gcc
- armv7-none-rvct
- armv7-win32-vs12
- armv7-win32-vs14
- armv7-win32-vs15
- armv7s-darwin-gcc
- mips32-linux-gcc
- mips64-linux-gcc
- sparc-solaris-gcc
- x86-android-gcc
- x86-darwin8-gcc
- x86-darwin8-icc
- x86-darwin9-gcc
- x86-darwin9-icc
- x86-darwin10-gcc
- x86-darwin11-gcc
- x86-darwin12-gcc
- x86-darwin13-gcc
- x86-darwin14-gcc
- x86-darwin15-gcc
- x86-darwin16-gcc
- x86-iphonesimulator-gcc
- x86-linux-gcc
- x86-linux-icc
- x86-os2-gcc
- x86-solaris-gcc
- x86-win32-gcc
- x86-win32-vs12
- x86-win32-vs14
- x86-win32-vs15
- x86_64-android-gcc
- x86_64-darwin9-gcc
- x86_64-darwin10-gcc
- x86_64-darwin11-gcc
- x86_64-darwin12-gcc
- x86_64-darwin13-gcc
- x86_64-darwin14-gcc
- x86_64-darwin15-gcc
- x86_64-darwin16-gcc
- x86_64-iphonesimulator-gcc
- x86_64-linux-gcc
- x86_64-linux-icc
- x86_64-solaris-gcc
- x86_64-win64-gcc
- x86_64-win64-vs12
- x86_64-win64-vs14
- x86_64-win64-vs15
- generic-gnu
-
- The generic-gnu target, in conjunction with the CROSS environment variable,
- can be used to cross compile architectures that aren't explicitly listed, if
- the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains
- will likely work as well. For instance, to build using the mipsel-linux-uclibc
- toolchain, the following command could be used (note, POSIX SH syntax, adapt
- to your shell as necessary):
-
- $ CROSS=mipsel-linux-uclibc- ../libaom/configure
-
- In addition, the executables to be invoked can be overridden by specifying the
- environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be
- passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS.
-
- 5. Configuration errors
- If the configuration step fails, the first step is to look in the error log.
- This defaults to config.log. This should give a good indication of what went
- wrong. If not, contact us for support.
-
-AV1 TEST VECTORS:
- The test vectors can be downloaded and verified using the build system after
- running configure. To specify an alternate directory the
- LIBAOM_TEST_DATA_PATH environment variable can be used.
-
- $ ./configure --enable-unit-tests
- $ LIBAOM_TEST_DATA_PATH=../-test-data make testdata
-
-UNIT TESTS:
- The unit tests (consisting mainly of the test_libaom binary) can be run using
- make. This will download the test data if necessary.
-
- $ ../libaom/configure --enable-unit-tests
- $ make test
-
- Test may be run in parallel using make -j which supports up to 10 shards by
- default.
- $ make -j10 test
-
- If you have additional cores you can scale the tests to match:
- $ shards=$(nproc); \
- make -j$shards test \
- NUM_SHARDS=$shards SHARDS="$(seq -s' ' 0 $(( shards - 1 )))" \
- && echo "success"
-
- The GTEST_FILTER environment variable (equivalent to --gtest_filter) can be
- used to control which tests are run while sharding:
- $ GTEST_FILTER='SSE2*' make -j10 test
-
-CODE STYLE:
- The coding style used by this project is enforced with clang-format using the
- configuration contained in the .clang-format file in the root of the
- repository.
-
- Before pushing changes for review you can format your code with:
- # Apply clang-format to modified .c, .h and .cc files
- $ clang-format -i --style=file \
- $(git diff --name-only --diff-filter=ACMR '*.[hc]' '*.cc')
-
- Check the .clang-format file for the version used to generate it if there is
- any difference between your local formatting and the review system.
-
- See also: http://clang.llvm.org/docs/ClangFormat.html
-
-SUPPORT
- This library is an open source project supported by its community. Please
- please email webm-discuss@webmproject.org for help.
-