summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/ecl
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/ecl')
-rw-r--r--security/nss/lib/freebl/ecl/README267
-rw-r--r--security/nss/lib/freebl/ecl/curve25519_32.c390
-rw-r--r--security/nss/lib/freebl/ecl/curve25519_64.c514
-rw-r--r--security/nss/lib/freebl/ecl/ec_naf.c68
-rw-r--r--security/nss/lib/freebl/ecl/ecl-curve.h123
-rw-r--r--security/nss/lib/freebl/ecl/ecl-exp.h167
-rw-r--r--security/nss/lib/freebl/ecl/ecl-priv.h257
-rw-r--r--security/nss/lib/freebl/ecl/ecl.c301
-rw-r--r--security/nss/lib/freebl/ecl/ecl.h60
-rw-r--r--security/nss/lib/freebl/ecl/ecl_curve.c93
-rw-r--r--security/nss/lib/freebl/ecl/ecl_gf.c958
-rw-r--r--security/nss/lib/freebl/ecl/ecl_mult.c305
-rw-r--r--security/nss/lib/freebl/ecl/ecp.h106
-rw-r--r--security/nss/lib/freebl/ecl/ecp_25519.c120
-rw-r--r--security/nss/lib/freebl/ecl/ecp_256.c401
-rw-r--r--security/nss/lib/freebl/ecl/ecp_256_32.c1535
-rw-r--r--security/nss/lib/freebl/ecl/ecp_384.c258
-rw-r--r--security/nss/lib/freebl/ecl/ecp_521.c137
-rw-r--r--security/nss/lib/freebl/ecl/ecp_aff.c308
-rw-r--r--security/nss/lib/freebl/ecl/ecp_jac.c513
-rw-r--r--security/nss/lib/freebl/ecl/ecp_jm.c283
-rw-r--r--security/nss/lib/freebl/ecl/ecp_mont.c154
-rw-r--r--security/nss/lib/freebl/ecl/tests/ec_naft.c121
-rw-r--r--security/nss/lib/freebl/ecl/tests/ecp_test.c409
-rw-r--r--security/nss/lib/freebl/ecl/uint128.c87
-rw-r--r--security/nss/lib/freebl/ecl/uint128.h35
26 files changed, 7970 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/README b/security/nss/lib/freebl/ecl/README
new file mode 100644
index 000000000..04a8b3b01
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/README
@@ -0,0 +1,267 @@
+This Source Code Form is subject to the terms of the Mozilla Public
+License, v. 2.0. If a copy of the MPL was not distributed with this
+file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+The ECL exposes routines for constructing and converting curve
+parameters for internal use.
+
+
+HEADER FILES
+============
+
+ecl-exp.h - Exports data structures and curve names. For use by code
+that does not have access to mp_ints.
+
+ecl-curve.h - Provides hex encodings (in the form of ECCurveParams
+structs) of standardizes elliptic curve domain parameters and mappings
+from ECCurveName to ECCurveParams. For use by code that does not have
+access to mp_ints.
+
+ecl.h - Interface to constructors for curve parameters and group object,
+and point multiplication operations. Used by higher level algorithms
+(like ECDH and ECDSA) to actually perform elliptic curve cryptography.
+
+ecl-priv.h - Data structures and functions for internal use within the
+library.
+
+ecp.h - Internal header file that contains all functions for point
+arithmetic over prime fields.
+
+DATA STRUCTURES AND TYPES
+=========================
+
+ECCurveName (from ecl-exp.h) - Opaque name for standardized elliptic
+curve domain parameters.
+
+ECCurveParams (from ecl-exp.h) - Provides hexadecimal encoding
+of elliptic curve domain parameters. Can be generated by a user
+and passed to ECGroup_fromHex or can be generated from a name by
+EC_GetNamedCurveParams. ecl-curve.h contains ECCurveParams structs for
+the standardized curves defined by ECCurveName.
+
+ECGroup (from ecl.h and ecl-priv.h) - Opaque data structure that
+represents a group of elliptic curve points for a particular set of
+elliptic curve domain parameters. Contains all domain parameters (curve
+a and b, field, base point) as well as pointers to the functions that
+should be used for point arithmetic and the underlying field GFMethod.
+Generated by either ECGroup_fromHex or ECGroup_fromName.
+
+GFMethod (from ecl-priv.h) - Represents a field underlying a set of
+elliptic curve domain parameters. Contains the irreducible that defines
+the field (either the prime or the binary polynomial) as well as
+pointers to the functions that should be used for field arithmetic.
+
+ARITHMETIC FUNCTIONS
+====================
+
+Higher-level algorithms (like ECDH and ECDSA) should call ECPoint_mul
+or ECPoints_mul (from ecl.h) to do point arithmetic. These functions
+will choose which underlying algorithms to use, based on the ECGroup
+structure.
+
+Point Multiplication
+--------------------
+
+ecl_mult.c provides the ECPoints_mul and ECPoint_mul wrappers.
+It also provides two implementations for the pts_mul operation -
+ec_pts_mul_basic (which computes kP, lQ, and then adds kP + lQ) and
+ec_pts_mul_simul_w2 (which does a simultaneous point multiplication
+using a table with window size 2*2).
+
+ec_naf.c provides an implementation of an algorithm to calculate a
+non-adjacent form of a scalar, minimizing the number of point
+additions that need to be done in a point multiplication.
+
+Point Arithmetic over Prime Fields
+----------------------------------
+
+ecp_aff.c provides point arithmetic using affine coordinates.
+
+ecp_jac.c provides point arithmetic using Jacobian projective
+coordinates and mixed Jacobian-affine coordinates. (Jacobian projective
+coordinates represent a point (x, y) as (X, Y, Z), where x=X/Z^2,
+y=Y/Z^3).
+
+ecp_jm.c provides point arithmetic using Modified Jacobian
+coordinates and mixed Modified_Jacobian-affine coordinates.
+(Modified Jacobian coordinates represent a point (x, y)
+as (X, Y, Z, a*Z^4), where x=X/Z^2, y=Y/Z^3, and a is
+the linear coefficient in the curve defining equation).
+
+ecp_192.c and ecp_224.c provide optimized field arithmetic.
+
+Point Arithmetic over Binary Polynomial Fields
+----------------------------------------------
+
+ec2_aff.c provides point arithmetic using affine coordinates.
+
+ec2_proj.c provides point arithmetic using projective coordinates.
+(Projective coordinates represent a point (x, y) as (X, Y, Z), where
+x=X/Z, y=Y/Z^2).
+
+ec2_mont.c provides point multiplication using Montgomery projective
+coordinates.
+
+ec2_163.c, ec2_193.c, and ec2_233.c provide optimized field arithmetic.
+
+Field Arithmetic
+----------------
+
+ecl_gf.c provides constructors for field objects (GFMethod) with the
+functions GFMethod_cons*. It also provides wrappers around the basic
+field operations.
+
+Prime Field Arithmetic
+----------------------
+
+The mpi library provides the basic prime field arithmetic.
+
+ecp_mont.c provides wrappers around the Montgomery multiplication
+functions from the mpi library and adds encoding and decoding functions.
+It also provides the function to construct a GFMethod object using
+Montgomery multiplication.
+
+ecp_192.c and ecp_224.c provide optimized modular reduction for the
+fields defined by nistp192 and nistp224 primes.
+
+ecl_gf.c provides wrappers around the basic field operations.
+
+Binary Polynomial Field Arithmetic
+----------------------------------
+
+../mpi/mp_gf2m.c provides basic binary polynomial field arithmetic,
+including addition, multiplication, squaring, mod, and division, as well
+as conversion ob polynomial representations between bitstring and int[].
+
+ec2_163.c, ec2_193.c, and ec2_233.c provide optimized field mod, mul,
+and sqr operations.
+
+ecl_gf.c provides wrappers around the basic field operations.
+
+Field Encoding
+--------------
+
+By default, field elements are encoded in their basic form. It is
+possible to use an alternative encoding, however. For example, it is
+possible to Montgomery representation of prime field elements and
+take advantage of the fast modular multiplication that Montgomery
+representation provides. The process of converting from basic form to
+Montgomery representation is called field encoding, and the opposite
+process would be field decoding. All internal point operations assume
+that the operands are field encoded as appropriate. By rewiring the
+underlying field arithmetic to perform operations on these encoded
+values, the same overlying point arithmetic operations can be used
+regardless of field representation.
+
+ALGORITHM WIRING
+================
+
+The EC library allows point and field arithmetic algorithms to be
+substituted ("wired-in") on a fine-grained basis. This allows for
+generic algorithms and algorithms that are optimized for a particular
+curve, field, or architecture, to coexist and to be automatically
+selected at runtime.
+
+Wiring Mechanism
+----------------
+
+The ECGroup and GFMethod structure contain pointers to the point and
+field arithmetic functions, respectively, that are to be used in
+operations.
+
+The selection of algorithms to use is handled in the function
+ecgroup_fromNameAndHex in ecl.c.
+
+Default Wiring
+--------------
+
+Curves over prime fields by default use montgomery field arithmetic,
+point multiplication using 5-bit window non-adjacent-form with
+Modified Jacobian coordinates, and 2*2-bit simultaneous point
+multiplication using Jacobian coordinates.
+(Wiring in function ECGroup_consGFp_mont in ecl.c.)
+
+Curves over prime fields that have optimized modular reduction (i.e.,
+secp160r1, nistp192, and nistp224) do not use Montgomery field
+arithmetic. Instead, they use basic field arithmetic with their
+optimized reduction (as in ecp_192.c and ecp_224.c). They
+use the same point multiplication and simultaneous point multiplication
+algorithms as other curves over prime fields.
+
+Curves over binary polynomial fields by default use generic field
+arithmetic with montgomery point multiplication and basic kP + lQ
+computation (multiply, multiply, and add). (Wiring in function
+ECGroup_cons_GF2m in ecl.c.)
+
+Curves over binary polynomial fields that have optimized field
+arithmetic (i.e., any 163-, 193, or 233-bit field) use their optimized
+field arithmetic. They use the same point multiplication and
+simultaneous point multiplication algorithms as other curves over binary
+fields.
+
+Example
+-------
+
+We provide an example for plugging in an optimized implementation for
+the Koblitz curve nistk163.
+
+Suppose the file ec2_k163.c contains the optimized implementation. In
+particular it contains a point multiplication function:
+
+ mp_err ec_GF2m_nistk163_pt_mul(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group);
+
+Since only a pt_mul function is provided, the generic pt_add function
+will be used.
+
+There are two options for handling the optimized field arithmetic used
+by the ..._pt_mul function. Say the optimized field arithmetic includes
+the following functions:
+
+ mp_err ec_GF2m_nistk163_add(const mp_int *a, const mp_int *b,
+ mp_int *r, const GFMethod *meth);
+ mp_err ec_GF2m_nistk163_mul(const mp_int *a, const mp_int *b,
+ mp_int *r, const GFMethod *meth);
+ mp_err ec_GF2m_nistk163_sqr(const mp_int *a, const mp_int *b,
+ mp_int *r, const GFMethod *meth);
+ mp_err ec_GF2m_nistk163_div(const mp_int *a, const mp_int *b,
+ mp_int *r, const GFMethod *meth);
+
+First, the optimized field arithmetic could simply be called directly
+by the ..._pt_mul function. This would be accomplished by changing
+the ecgroup_fromNameAndHex function in ecl.c to include the following
+statements:
+
+ if (name == ECCurve_NIST_K163) {
+ group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx,
+ &geny, &order, params->cofactor);
+ if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
+ MP_CHECKOK( ec_group_set_nistk163(group) );
+ }
+
+and including in ec2_k163.c the following function:
+
+ mp_err ec_group_set_nistk163(ECGroup *group) {
+ group->point_mul = &ec_GF2m_nistk163_pt_mul;
+ return MP_OKAY;
+ }
+
+As a result, ec_GF2m_pt_add and similar functions would use the
+basic binary polynomial field arithmetic ec_GF2m_add, ec_GF2m_mul,
+ec_GF2m_sqr, and ec_GF2m_div.
+
+Alternatively, the optimized field arithmetic could be wired into the
+group's GFMethod. This would be accomplished by putting the following
+function in ec2_k163.c:
+
+ mp_err ec_group_set_nistk163(ECGroup *group) {
+ group->meth->field_add = &ec_GF2m_nistk163_add;
+ group->meth->field_mul = &ec_GF2m_nistk163_mul;
+ group->meth->field_sqr = &ec_GF2m_nistk163_sqr;
+ group->meth->field_div = &ec_GF2m_nistk163_div;
+ group->point_mul = &ec_GF2m_nistk163_pt_mul;
+ return MP_OKAY;
+ }
+
+For an example of functions that use special field encodings, take a
+look at ecp_mont.c.
diff --git a/security/nss/lib/freebl/ecl/curve25519_32.c b/security/nss/lib/freebl/ecl/curve25519_32.c
new file mode 100644
index 000000000..0122961e6
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/curve25519_32.c
@@ -0,0 +1,390 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * Derived from public domain code by Matthew Dempsky and D. J. Bernstein.
+ */
+
+#include "ecl-priv.h"
+#include "mpi.h"
+
+#include <stdint.h>
+#include <stdio.h>
+
+typedef uint32_t elem[32];
+
+/*
+ * Add two field elements.
+ * out = a + b
+ */
+static void
+add(elem out, const elem a, const elem b)
+{
+ uint32_t j;
+ uint32_t u = 0;
+ for (j = 0; j < 31; ++j) {
+ u += a[j] + b[j];
+ out[j] = u & 0xFF;
+ u >>= 8;
+ }
+ u += a[31] + b[31];
+ out[31] = u;
+}
+
+/*
+ * Subtract two field elements.
+ * out = a - b
+ */
+static void
+sub(elem out, const elem a, const elem b)
+{
+ uint32_t j;
+ uint32_t u;
+ u = 218;
+ for (j = 0; j < 31; ++j) {
+ u += a[j] + 0xFF00 - b[j];
+ out[j] = u & 0xFF;
+ u >>= 8;
+ }
+ u += a[31] - b[31];
+ out[31] = u;
+}
+
+/*
+ * "Squeeze" an element after multiplication (and square).
+ */
+static void
+squeeze(elem a)
+{
+ uint32_t j;
+ uint32_t u;
+ u = 0;
+ for (j = 0; j < 31; ++j) {
+ u += a[j];
+ a[j] = u & 0xFF;
+ u >>= 8;
+ }
+ u += a[31];
+ a[31] = u & 0x7F;
+ u = 19 * (u >> 7);
+ for (j = 0; j < 31; ++j) {
+ u += a[j];
+ a[j] = u & 0xFF;
+ u >>= 8;
+ }
+ a[31] += u;
+}
+
+static const elem minusp = { 19, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 128 };
+
+/*
+ * Reduce point a by 2^255-19
+ */
+static void
+reduce(elem a)
+{
+ elem aorig;
+ uint32_t j;
+ uint32_t negative;
+
+ for (j = 0; j < 32; ++j) {
+ aorig[j] = a[j];
+ }
+ add(a, a, minusp);
+ negative = 1 + ~((a[31] >> 7) & 1);
+ for (j = 0; j < 32; ++j) {
+ a[j] ^= negative & (aorig[j] ^ a[j]);
+ }
+}
+
+/*
+ * Multiplication and squeeze
+ * out = a * b
+ */
+static void
+mult(elem out, const elem a, const elem b)
+{
+ uint32_t i;
+ uint32_t j;
+ uint32_t u;
+
+ for (i = 0; i < 32; ++i) {
+ u = 0;
+ for (j = 0; j <= i; ++j) {
+ u += a[j] * b[i - j];
+ }
+ for (j = i + 1; j < 32; ++j) {
+ u += 38 * a[j] * b[i + 32 - j];
+ }
+ out[i] = u;
+ }
+ squeeze(out);
+}
+
+/*
+ * Multiplication
+ * out = 121665 * a
+ */
+static void
+mult121665(elem out, const elem a)
+{
+ uint32_t j;
+ uint32_t u;
+
+ u = 0;
+ for (j = 0; j < 31; ++j) {
+ u += 121665 * a[j];
+ out[j] = u & 0xFF;
+ u >>= 8;
+ }
+ u += 121665 * a[31];
+ out[31] = u & 0x7F;
+ u = 19 * (u >> 7);
+ for (j = 0; j < 31; ++j) {
+ u += out[j];
+ out[j] = u & 0xFF;
+ u >>= 8;
+ }
+ u += out[j];
+ out[j] = u;
+}
+
+/*
+ * Square a and squeeze the result.
+ * out = a * a
+ */
+static void
+square(elem out, const elem a)
+{
+ uint32_t i;
+ uint32_t j;
+ uint32_t u;
+
+ for (i = 0; i < 32; ++i) {
+ u = 0;
+ for (j = 0; j < i - j; ++j) {
+ u += a[j] * a[i - j];
+ }
+ for (j = i + 1; j < i + 32 - j; ++j) {
+ u += 38 * a[j] * a[i + 32 - j];
+ }
+ u *= 2;
+ if ((i & 1) == 0) {
+ u += a[i / 2] * a[i / 2];
+ u += 38 * a[i / 2 + 16] * a[i / 2 + 16];
+ }
+ out[i] = u;
+ }
+ squeeze(out);
+}
+
+/*
+ * Constant time swap between r and s depending on b
+ */
+static void
+cswap(uint32_t p[64], uint32_t q[64], uint32_t b)
+{
+ uint32_t j;
+ uint32_t swap = 1 + ~b;
+
+ for (j = 0; j < 64; ++j) {
+ const uint32_t t = swap & (p[j] ^ q[j]);
+ p[j] ^= t;
+ q[j] ^= t;
+ }
+}
+
+/*
+ * Montgomery ladder
+ */
+static void
+monty(elem x_2_out, elem z_2_out,
+ const elem point, const elem scalar)
+{
+ uint32_t x_3[64] = { 0 };
+ uint32_t x_2[64] = { 0 };
+ uint32_t a0[64];
+ uint32_t a1[64];
+ uint32_t b0[64];
+ uint32_t b1[64];
+ uint32_t c1[64];
+ uint32_t r[32];
+ uint32_t s[32];
+ uint32_t t[32];
+ uint32_t u[32];
+ uint32_t swap = 0;
+ uint32_t k_t = 0;
+ int j;
+
+ for (j = 0; j < 32; ++j) {
+ x_3[j] = point[j];
+ }
+ x_3[32] = 1;
+ x_2[0] = 1;
+
+ for (j = 254; j >= 0; --j) {
+ k_t = (scalar[j >> 3] >> (j & 7)) & 1;
+ swap ^= k_t;
+ cswap(x_2, x_3, swap);
+ swap = k_t;
+ add(a0, x_2, x_2 + 32);
+ sub(a0 + 32, x_2, x_2 + 32);
+ add(a1, x_3, x_3 + 32);
+ sub(a1 + 32, x_3, x_3 + 32);
+ square(b0, a0);
+ square(b0 + 32, a0 + 32);
+ mult(b1, a1, a0 + 32);
+ mult(b1 + 32, a1 + 32, a0);
+ add(c1, b1, b1 + 32);
+ sub(c1 + 32, b1, b1 + 32);
+ square(r, c1 + 32);
+ sub(s, b0, b0 + 32);
+ mult121665(t, s);
+ add(u, t, b0);
+ mult(x_2, b0, b0 + 32);
+ mult(x_2 + 32, s, u);
+ square(x_3, c1);
+ mult(x_3 + 32, r, point);
+ }
+
+ cswap(x_2, x_3, swap);
+ for (j = 0; j < 32; ++j) {
+ x_2_out[j] = x_2[j];
+ }
+ for (j = 0; j < 32; ++j) {
+ z_2_out[j] = x_2[j + 32];
+ }
+}
+
+static void
+recip(elem out, const elem z)
+{
+ elem z2;
+ elem z9;
+ elem z11;
+ elem z2_5_0;
+ elem z2_10_0;
+ elem z2_20_0;
+ elem z2_50_0;
+ elem z2_100_0;
+ elem t0;
+ elem t1;
+ int i;
+
+ /* 2 */ square(z2, z);
+ /* 4 */ square(t1, z2);
+ /* 8 */ square(t0, t1);
+ /* 9 */ mult(z9, t0, z);
+ /* 11 */ mult(z11, z9, z2);
+ /* 22 */ square(t0, z11);
+ /* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9);
+
+ /* 2^6 - 2^1 */ square(t0, z2_5_0);
+ /* 2^7 - 2^2 */ square(t1, t0);
+ /* 2^8 - 2^3 */ square(t0, t1);
+ /* 2^9 - 2^4 */ square(t1, t0);
+ /* 2^10 - 2^5 */ square(t0, t1);
+ /* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0);
+
+ /* 2^11 - 2^1 */ square(t0, z2_10_0);
+ /* 2^12 - 2^2 */ square(t1, t0);
+ /* 2^20 - 2^10 */
+ for (i = 2; i < 10; i += 2) {
+ square(t0, t1);
+ square(t1, t0);
+ }
+ /* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0);
+
+ /* 2^21 - 2^1 */ square(t0, z2_20_0);
+ /* 2^22 - 2^2 */ square(t1, t0);
+ /* 2^40 - 2^20 */
+ for (i = 2; i < 20; i += 2) {
+ square(t0, t1);
+ square(t1, t0);
+ }
+ /* 2^40 - 2^0 */ mult(t0, t1, z2_20_0);
+
+ /* 2^41 - 2^1 */ square(t1, t0);
+ /* 2^42 - 2^2 */ square(t0, t1);
+ /* 2^50 - 2^10 */
+ for (i = 2; i < 10; i += 2) {
+ square(t1, t0);
+ square(t0, t1);
+ }
+ /* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0);
+
+ /* 2^51 - 2^1 */ square(t0, z2_50_0);
+ /* 2^52 - 2^2 */ square(t1, t0);
+ /* 2^100 - 2^50 */
+ for (i = 2; i < 50; i += 2) {
+ square(t0, t1);
+ square(t1, t0);
+ }
+ /* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0);
+
+ /* 2^101 - 2^1 */ square(t1, z2_100_0);
+ /* 2^102 - 2^2 */ square(t0, t1);
+ /* 2^200 - 2^100 */
+ for (i = 2; i < 100; i += 2) {
+ square(t1, t0);
+ square(t0, t1);
+ }
+ /* 2^200 - 2^0 */ mult(t1, t0, z2_100_0);
+
+ /* 2^201 - 2^1 */ square(t0, t1);
+ /* 2^202 - 2^2 */ square(t1, t0);
+ /* 2^250 - 2^50 */
+ for (i = 2; i < 50; i += 2) {
+ square(t0, t1);
+ square(t1, t0);
+ }
+ /* 2^250 - 2^0 */ mult(t0, t1, z2_50_0);
+
+ /* 2^251 - 2^1 */ square(t1, t0);
+ /* 2^252 - 2^2 */ square(t0, t1);
+ /* 2^253 - 2^3 */ square(t1, t0);
+ /* 2^254 - 2^4 */ square(t0, t1);
+ /* 2^255 - 2^5 */ square(t1, t0);
+ /* 2^255 - 21 */ mult(out, t1, z11);
+}
+
+/*
+ * Computes q = Curve25519(p, s)
+ */
+SECStatus
+ec_Curve25519_mul(PRUint8 *q, const PRUint8 *s, const PRUint8 *p)
+{
+ elem point = { 0 };
+ elem x_2 = { 0 };
+ elem z_2 = { 0 };
+ elem X = { 0 };
+ elem scalar = { 0 };
+ uint32_t i;
+
+ /* read and mask scalar */
+ for (i = 0; i < 32; ++i) {
+ scalar[i] = s[i];
+ }
+ scalar[0] &= 0xF8;
+ scalar[31] &= 0x7F;
+ scalar[31] |= 64;
+
+ /* read and mask point */
+ for (i = 0; i < 32; ++i) {
+ point[i] = p[i];
+ }
+ point[31] &= 0x7F;
+
+ monty(x_2, z_2, point, scalar);
+ recip(z_2, z_2);
+ mult(X, x_2, z_2);
+ reduce(X);
+ for (i = 0; i < 32; ++i) {
+ q[i] = X[i];
+ }
+ return 0;
+}
diff --git a/security/nss/lib/freebl/ecl/curve25519_64.c b/security/nss/lib/freebl/ecl/curve25519_64.c
new file mode 100644
index 000000000..89327ad1c
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/curve25519_64.c
@@ -0,0 +1,514 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * Derived from public domain C code by Adan Langley and Daniel J. Bernstein
+ */
+
+#include "uint128.h"
+
+#include "ecl-priv.h"
+#include "mpi.h"
+
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+
+typedef uint8_t u8;
+typedef uint64_t felem;
+
+/* Sum two numbers: output += in */
+static void
+fsum(felem *output, const felem *in)
+{
+ unsigned i;
+ for (i = 0; i < 5; ++i) {
+ output[i] += in[i];
+ }
+}
+
+/* Find the difference of two numbers: output = in - output
+ * (note the order of the arguments!)
+ */
+static void
+fdifference_backwards(felem *ioutput, const felem *iin)
+{
+ static const int64_t twotothe51 = ((int64_t)1l << 51);
+ const int64_t *in = (const int64_t *)iin;
+ int64_t *out = (int64_t *)ioutput;
+
+ out[0] = in[0] - out[0];
+ out[1] = in[1] - out[1];
+ out[2] = in[2] - out[2];
+ out[3] = in[3] - out[3];
+ out[4] = in[4] - out[4];
+
+ // An arithmetic shift right of 63 places turns a positive number to 0 and a
+ // negative number to all 1's. This gives us a bitmask that lets us avoid
+ // side-channel prone branches.
+ int64_t t;
+
+#define NEGCHAIN(a, b) \
+ t = out[a] >> 63; \
+ out[a] += twotothe51 & t; \
+ out[b] -= 1 & t;
+
+#define NEGCHAIN19(a, b) \
+ t = out[a] >> 63; \
+ out[a] += twotothe51 & t; \
+ out[b] -= 19 & t;
+
+ NEGCHAIN(0, 1);
+ NEGCHAIN(1, 2);
+ NEGCHAIN(2, 3);
+ NEGCHAIN(3, 4);
+ NEGCHAIN19(4, 0);
+ NEGCHAIN(0, 1);
+ NEGCHAIN(1, 2);
+ NEGCHAIN(2, 3);
+ NEGCHAIN(3, 4);
+}
+
+/* Multiply a number by a scalar: output = in * scalar */
+static void
+fscalar_product(felem *output, const felem *in,
+ const felem scalar)
+{
+ uint128_t tmp, tmp2;
+
+ tmp = mul6464(in[0], scalar);
+ output[0] = mask51(tmp);
+
+ tmp2 = mul6464(in[1], scalar);
+ tmp = add128(tmp2, rshift128(tmp, 51));
+ output[1] = mask51(tmp);
+
+ tmp2 = mul6464(in[2], scalar);
+ tmp = add128(tmp2, rshift128(tmp, 51));
+ output[2] = mask51(tmp);
+
+ tmp2 = mul6464(in[3], scalar);
+ tmp = add128(tmp2, rshift128(tmp, 51));
+ output[3] = mask51(tmp);
+
+ tmp2 = mul6464(in[4], scalar);
+ tmp = add128(tmp2, rshift128(tmp, 51));
+ output[4] = mask51(tmp);
+
+ output[0] += mask_lower(rshift128(tmp, 51)) * 19;
+}
+
+/* Multiply two numbers: output = in2 * in
+ *
+ * output must be distinct to both inputs. The inputs are reduced coefficient
+ * form, the output is not.
+ */
+static void
+fmul(felem *output, const felem *in2, const felem *in)
+{
+ uint128_t t0, t1, t2, t3, t4, t5, t6, t7, t8;
+
+ t0 = mul6464(in[0], in2[0]);
+ t1 = add128(mul6464(in[1], in2[0]), mul6464(in[0], in2[1]));
+ t2 = add128(add128(mul6464(in[0], in2[2]),
+ mul6464(in[2], in2[0])),
+ mul6464(in[1], in2[1]));
+ t3 = add128(add128(add128(mul6464(in[0], in2[3]),
+ mul6464(in[3], in2[0])),
+ mul6464(in[1], in2[2])),
+ mul6464(in[2], in2[1]));
+ t4 = add128(add128(add128(add128(mul6464(in[0], in2[4]),
+ mul6464(in[4], in2[0])),
+ mul6464(in[3], in2[1])),
+ mul6464(in[1], in2[3])),
+ mul6464(in[2], in2[2]));
+ t5 = add128(add128(add128(mul6464(in[4], in2[1]),
+ mul6464(in[1], in2[4])),
+ mul6464(in[2], in2[3])),
+ mul6464(in[3], in2[2]));
+ t6 = add128(add128(mul6464(in[4], in2[2]),
+ mul6464(in[2], in2[4])),
+ mul6464(in[3], in2[3]));
+ t7 = add128(mul6464(in[3], in2[4]), mul6464(in[4], in2[3]));
+ t8 = mul6464(in[4], in2[4]);
+
+ t0 = add128(t0, mul12819(t5));
+ t1 = add128(t1, mul12819(t6));
+ t2 = add128(t2, mul12819(t7));
+ t3 = add128(t3, mul12819(t8));
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t4 = add128(t4, rshift128(t3, 51));
+ t0 = add128(t0, mul12819(rshift128(t4, 51)));
+ t1 = add128(t1, rshift128(t0, 51));
+ t2 = mask51full(t2);
+ t2 = add128(t2, rshift128(t1, 51));
+
+ output[0] = mask51(t0);
+ output[1] = mask51(t1);
+ output[2] = mask_lower(t2);
+ output[3] = mask51(t3);
+ output[4] = mask51(t4);
+}
+
+static void
+fsquare(felem *output, const felem *in)
+{
+ uint128_t t0, t1, t2, t3, t4, t5, t6, t7, t8;
+
+ t0 = mul6464(in[0], in[0]);
+ t1 = lshift128(mul6464(in[0], in[1]), 1);
+ t2 = add128(lshift128(mul6464(in[0], in[2]), 1),
+ mul6464(in[1], in[1]));
+ t3 = add128(lshift128(mul6464(in[0], in[3]), 1),
+ lshift128(mul6464(in[1], in[2]), 1));
+ t4 = add128(add128(lshift128(mul6464(in[0], in[4]), 1),
+ lshift128(mul6464(in[3], in[1]), 1)),
+ mul6464(in[2], in[2]));
+ t5 = add128(lshift128(mul6464(in[4], in[1]), 1),
+ lshift128(mul6464(in[2], in[3]), 1));
+ t6 = add128(lshift128(mul6464(in[4], in[2]), 1),
+ mul6464(in[3], in[3]));
+ t7 = lshift128(mul6464(in[3], in[4]), 1);
+ t8 = mul6464(in[4], in[4]);
+
+ t0 = add128(t0, mul12819(t5));
+ t1 = add128(t1, mul12819(t6));
+ t2 = add128(t2, mul12819(t7));
+ t3 = add128(t3, mul12819(t8));
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t4 = add128(t4, rshift128(t3, 51));
+ t0 = add128(t0, mul12819(rshift128(t4, 51)));
+ t1 = add128(t1, rshift128(t0, 51));
+
+ output[0] = mask51(t0);
+ output[1] = mask_lower(t1);
+ output[2] = mask51(t2);
+ output[3] = mask51(t3);
+ output[4] = mask51(t4);
+}
+
+/* Take a 32-byte number and expand it into polynomial form */
+static void NO_SANITIZE_ALIGNMENT
+fexpand(felem *output, const u8 *in)
+{
+ output[0] = *((const uint64_t *)(in)) & MASK51;
+ output[1] = (*((const uint64_t *)(in + 6)) >> 3) & MASK51;
+ output[2] = (*((const uint64_t *)(in + 12)) >> 6) & MASK51;
+ output[3] = (*((const uint64_t *)(in + 19)) >> 1) & MASK51;
+ output[4] = (*((const uint64_t *)(in + 25)) >> 4) & MASK51;
+}
+
+/* Take a fully reduced polynomial form number and contract it into a
+ * 32-byte array
+ */
+static void
+fcontract(u8 *output, const felem *input)
+{
+ uint128_t t0 = init128x(input[0]);
+ uint128_t t1 = init128x(input[1]);
+ uint128_t t2 = init128x(input[2]);
+ uint128_t t3 = init128x(input[3]);
+ uint128_t t4 = init128x(input[4]);
+ uint128_t tmp = init128x(19);
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t2 = mask51full(t2);
+ t4 = add128(t4, rshift128(t3, 51));
+ t3 = mask51full(t3);
+ t0 = add128(t0, mul12819(rshift128(t4, 51)));
+ t4 = mask51full(t4);
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t2 = mask51full(t2);
+ t4 = add128(t4, rshift128(t3, 51));
+ t3 = mask51full(t3);
+ t0 = add128(t0, mul12819(rshift128(t4, 51)));
+ t4 = mask51full(t4);
+
+ /* now t is between 0 and 2^255-1, properly carried. */
+ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
+
+ t0 = add128(t0, tmp);
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t2 = mask51full(t2);
+ t4 = add128(t4, rshift128(t3, 51));
+ t3 = mask51full(t3);
+ t0 = add128(t0, mul12819(rshift128(t4, 51)));
+ t4 = mask51full(t4);
+
+ /* now between 19 and 2^255-1 in both cases, and offset by 19. */
+
+ t0 = add128(t0, init128x(0x8000000000000 - 19));
+ tmp = init128x(0x8000000000000 - 1);
+ t1 = add128(t1, tmp);
+ t2 = add128(t2, tmp);
+ t3 = add128(t3, tmp);
+ t4 = add128(t4, tmp);
+
+ /* now between 2^255 and 2^256-20, and offset by 2^255. */
+
+ t1 = add128(t1, rshift128(t0, 51));
+ t0 = mask51full(t0);
+ t2 = add128(t2, rshift128(t1, 51));
+ t1 = mask51full(t1);
+ t3 = add128(t3, rshift128(t2, 51));
+ t2 = mask51full(t2);
+ t4 = add128(t4, rshift128(t3, 51));
+ t3 = mask51full(t3);
+ t4 = mask51full(t4);
+
+ *((uint64_t *)(output)) = mask_lower(t0) | mask_lower(t1) << 51;
+ *((uint64_t *)(output + 8)) = (mask_lower(t1) >> 13) | (mask_lower(t2) << 38);
+ *((uint64_t *)(output + 16)) = (mask_lower(t2) >> 26) | (mask_lower(t3) << 25);
+ *((uint64_t *)(output + 24)) = (mask_lower(t3) >> 39) | (mask_lower(t4) << 12);
+}
+
+/* Input: Q, Q', Q-Q'
+ * Output: 2Q, Q+Q'
+ *
+ * x2 z3: long form
+ * x3 z3: long form
+ * x z: short form, destroyed
+ * xprime zprime: short form, destroyed
+ * qmqp: short form, preserved
+ */
+static void
+fmonty(felem *x2, felem *z2, /* output 2Q */
+ felem *x3, felem *z3, /* output Q + Q' */
+ felem *x, felem *z, /* input Q */
+ felem *xprime, felem *zprime, /* input Q' */
+ const felem *qmqp /* input Q - Q' */)
+{
+ felem origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5], zzprime[5],
+ zzzprime[5];
+
+ memcpy(origx, x, 5 * sizeof(felem));
+ fsum(x, z);
+ fdifference_backwards(z, origx); // does x - z
+
+ memcpy(origxprime, xprime, sizeof(felem) * 5);
+ fsum(xprime, zprime);
+ fdifference_backwards(zprime, origxprime);
+ fmul(xxprime, xprime, z);
+ fmul(zzprime, x, zprime);
+ memcpy(origxprime, xxprime, sizeof(felem) * 5);
+ fsum(xxprime, zzprime);
+ fdifference_backwards(zzprime, origxprime);
+ fsquare(x3, xxprime);
+ fsquare(zzzprime, zzprime);
+ fmul(z3, zzzprime, qmqp);
+
+ fsquare(xx, x);
+ fsquare(zz, z);
+ fmul(x2, xx, zz);
+ fdifference_backwards(zz, xx); // does zz = xx - zz
+ fscalar_product(zzz, zz, 121665);
+ fsum(zzz, xx);
+ fmul(z2, zz, zzz);
+}
+
+// -----------------------------------------------------------------------------
+// Maybe swap the contents of two felem arrays (@a and @b), each @len elements
+// long. Perform the swap iff @swap is non-zero.
+//
+// This function performs the swap without leaking any side-channel
+// information.
+// -----------------------------------------------------------------------------
+static void
+swap_conditional(felem *a, felem *b, unsigned len, felem iswap)
+{
+ unsigned i;
+ const felem swap = 1 + ~iswap;
+
+ for (i = 0; i < len; ++i) {
+ const felem x = swap & (a[i] ^ b[i]);
+ a[i] ^= x;
+ b[i] ^= x;
+ }
+}
+
+/* Calculates nQ where Q is the x-coordinate of a point on the curve
+ *
+ * resultx/resultz: the x coordinate of the resulting curve point (short form)
+ * n: a 32-byte number
+ * q: a point of the curve (short form)
+ */
+static void
+cmult(felem *resultx, felem *resultz, const u8 *n, const felem *q)
+{
+ felem a[5] = { 0 }, b[5] = { 1 }, c[5] = { 1 }, d[5] = { 0 };
+ felem *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
+ felem e[5] = { 0 }, f[5] = { 1 }, g[5] = { 0 }, h[5] = { 1 };
+ felem *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
+
+ unsigned i, j;
+
+ memcpy(nqpqx, q, sizeof(felem) * 5);
+
+ for (i = 0; i < 32; ++i) {
+ u8 byte = n[31 - i];
+ for (j = 0; j < 8; ++j) {
+ const felem bit = byte >> 7;
+
+ swap_conditional(nqx, nqpqx, 5, bit);
+ swap_conditional(nqz, nqpqz, 5, bit);
+ fmonty(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q);
+ swap_conditional(nqx2, nqpqx2, 5, bit);
+ swap_conditional(nqz2, nqpqz2, 5, bit);
+
+ t = nqx;
+ nqx = nqx2;
+ nqx2 = t;
+ t = nqz;
+ nqz = nqz2;
+ nqz2 = t;
+ t = nqpqx;
+ nqpqx = nqpqx2;
+ nqpqx2 = t;
+ t = nqpqz;
+ nqpqz = nqpqz2;
+ nqpqz2 = t;
+
+ byte <<= 1;
+ }
+ }
+
+ memcpy(resultx, nqx, sizeof(felem) * 5);
+ memcpy(resultz, nqz, sizeof(felem) * 5);
+}
+
+// -----------------------------------------------------------------------------
+// Shamelessly copied from djb's code
+// -----------------------------------------------------------------------------
+static void
+crecip(felem *out, const felem *z)
+{
+ felem z2[5];
+ felem z9[5];
+ felem z11[5];
+ felem z2_5_0[5];
+ felem z2_10_0[5];
+ felem z2_20_0[5];
+ felem z2_50_0[5];
+ felem z2_100_0[5];
+ felem t0[5];
+ felem t1[5];
+ int i;
+
+ /* 2 */ fsquare(z2, z);
+ /* 4 */ fsquare(t1, z2);
+ /* 8 */ fsquare(t0, t1);
+ /* 9 */ fmul(z9, t0, z);
+ /* 11 */ fmul(z11, z9, z2);
+ /* 22 */ fsquare(t0, z11);
+ /* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9);
+
+ /* 2^6 - 2^1 */ fsquare(t0, z2_5_0);
+ /* 2^7 - 2^2 */ fsquare(t1, t0);
+ /* 2^8 - 2^3 */ fsquare(t0, t1);
+ /* 2^9 - 2^4 */ fsquare(t1, t0);
+ /* 2^10 - 2^5 */ fsquare(t0, t1);
+ /* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0);
+
+ /* 2^11 - 2^1 */ fsquare(t0, z2_10_0);
+ /* 2^12 - 2^2 */ fsquare(t1, t0);
+ /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) {
+ fsquare(t0, t1);
+ fsquare(t1, t0);
+ }
+ /* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0);
+
+ /* 2^21 - 2^1 */ fsquare(t0, z2_20_0);
+ /* 2^22 - 2^2 */ fsquare(t1, t0);
+ /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) {
+ fsquare(t0, t1);
+ fsquare(t1, t0);
+ }
+ /* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0);
+
+ /* 2^41 - 2^1 */ fsquare(t1, t0);
+ /* 2^42 - 2^2 */ fsquare(t0, t1);
+ /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) {
+ fsquare(t1, t0);
+ fsquare(t0, t1);
+ }
+ /* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0);
+
+ /* 2^51 - 2^1 */ fsquare(t0, z2_50_0);
+ /* 2^52 - 2^2 */ fsquare(t1, t0);
+ /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) {
+ fsquare(t0, t1);
+ fsquare(t1, t0);
+ }
+ /* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0);
+
+ /* 2^101 - 2^1 */ fsquare(t1, z2_100_0);
+ /* 2^102 - 2^2 */ fsquare(t0, t1);
+ /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) {
+ fsquare(t1, t0);
+ fsquare(t0, t1);
+ }
+ /* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0);
+
+ /* 2^201 - 2^1 */ fsquare(t0, t1);
+ /* 2^202 - 2^2 */ fsquare(t1, t0);
+ /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) {
+ fsquare(t0, t1);
+ fsquare(t1, t0);
+ }
+ /* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0);
+
+ /* 2^251 - 2^1 */ fsquare(t1, t0);
+ /* 2^252 - 2^2 */ fsquare(t0, t1);
+ /* 2^253 - 2^3 */ fsquare(t1, t0);
+ /* 2^254 - 2^4 */ fsquare(t0, t1);
+ /* 2^255 - 2^5 */ fsquare(t1, t0);
+ /* 2^255 - 21 */ fmul(out, t1, z11);
+}
+
+SECStatus
+ec_Curve25519_mul(uint8_t *mypublic, const uint8_t *secret,
+ const uint8_t *basepoint)
+{
+ felem bp[5], x[5], z[5], zmone[5];
+ uint8_t e[32];
+ int i;
+
+ for (i = 0; i < 32; ++i) {
+ e[i] = secret[i];
+ }
+ e[0] &= 248;
+ e[31] &= 127;
+ e[31] |= 64;
+ fexpand(bp, basepoint);
+ cmult(x, z, e, bp);
+ crecip(zmone, z);
+ fmul(z, x, zmone);
+ fcontract(mypublic, z);
+
+ return 0;
+}
diff --git a/security/nss/lib/freebl/ecl/ec_naf.c b/security/nss/lib/freebl/ecl/ec_naf.c
new file mode 100644
index 000000000..cad08cb27
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ec_naf.c
@@ -0,0 +1,68 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecl-priv.h"
+
+/* Returns 2^e as an integer. This is meant to be used for small powers of
+ * two. */
+int
+ec_twoTo(int e)
+{
+ int a = 1;
+ int i;
+
+ for (i = 0; i < e; i++) {
+ a *= 2;
+ }
+ return a;
+}
+
+/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
+ * be an array of signed char's to output to, bitsize should be the number
+ * of bits of out, in is the original scalar, and w is the window size.
+ * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
+ * Menezes, "Software implementation of elliptic curve cryptography over
+ * binary fields", Proc. CHES 2000. */
+mp_err
+ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, int w)
+{
+ mp_int k;
+ mp_err res = MP_OKAY;
+ int i, twowm1, mask;
+
+ twowm1 = ec_twoTo(w - 1);
+ mask = 2 * twowm1 - 1;
+
+ MP_DIGITS(&k) = 0;
+ MP_CHECKOK(mp_init_copy(&k, in));
+
+ i = 0;
+ /* Compute wNAF form */
+ while (mp_cmp_z(&k) > 0) {
+ if (mp_isodd(&k)) {
+ out[i] = MP_DIGIT(&k, 0) & mask;
+ if (out[i] >= twowm1)
+ out[i] -= 2 * twowm1;
+
+ /* Subtract off out[i]. Note mp_sub_d only works with
+ * unsigned digits */
+ if (out[i] >= 0) {
+ MP_CHECKOK(mp_sub_d(&k, out[i], &k));
+ } else {
+ MP_CHECKOK(mp_add_d(&k, -(out[i]), &k));
+ }
+ } else {
+ out[i] = 0;
+ }
+ MP_CHECKOK(mp_div_2(&k, &k));
+ i++;
+ }
+ /* Zero out the remaining elements of the out array. */
+ for (; i < bitsize + 1; i++) {
+ out[i] = 0;
+ }
+CLEANUP:
+ mp_clear(&k);
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/ecl-curve.h b/security/nss/lib/freebl/ecl/ecl-curve.h
new file mode 100644
index 000000000..df061396c
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl-curve.h
@@ -0,0 +1,123 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecl-exp.h"
+#include <stdlib.h>
+
+#ifndef __ecl_curve_h_
+#define __ecl_curve_h_
+
+/* copied from certt.h */
+#define KU_DIGITAL_SIGNATURE (0x80) /* bit 0 */
+#define KU_KEY_AGREEMENT (0x08) /* bit 4 */
+
+static const ECCurveParams ecCurve_NIST_P256 = {
+ "NIST-P256", ECField_GFp, 256,
+ "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
+ "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
+ "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
+ "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
+ "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
+ "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551",
+ 1, 128, 65, KU_DIGITAL_SIGNATURE | KU_KEY_AGREEMENT
+};
+
+static const ECCurveParams ecCurve_NIST_P384 = {
+ "NIST-P384", ECField_GFp, 384,
+ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF",
+ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC",
+ "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF",
+ "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7",
+ "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F",
+ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973",
+ 1, 192, 97, KU_DIGITAL_SIGNATURE | KU_KEY_AGREEMENT
+};
+
+static const ECCurveParams ecCurve_NIST_P521 = {
+ "NIST-P521", ECField_GFp, 521,
+ "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
+ "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC",
+ "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00",
+ "00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66",
+ "011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650",
+ "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409",
+ 1, 256, 133, KU_DIGITAL_SIGNATURE | KU_KEY_AGREEMENT
+};
+
+static const ECCurveParams ecCurve25519 = {
+ "Curve25519", ECField_GFp, 255,
+ "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
+ "076D06",
+ "00",
+ "0900000000000000000000000000000000000000000000000000000000000000",
+ "20AE19A1B8A086B4E01EDD2C7748D14C923D4D7E6D7C61B229E9C5A27ECED3D9",
+ "1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed",
+ 8, 128, 32, KU_KEY_AGREEMENT
+};
+
+/* mapping between ECCurveName enum and pointers to ECCurveParams */
+static const ECCurveParams *ecCurve_map[] = {
+ NULL, /* ECCurve_noName */
+ NULL, /* ECCurve_NIST_P192 */
+ NULL, /* ECCurve_NIST_P224 */
+ &ecCurve_NIST_P256, /* ECCurve_NIST_P256 */
+ &ecCurve_NIST_P384, /* ECCurve_NIST_P384 */
+ &ecCurve_NIST_P521, /* ECCurve_NIST_P521 */
+ NULL, /* ECCurve_NIST_K163 */
+ NULL, /* ECCurve_NIST_B163 */
+ NULL, /* ECCurve_NIST_K233 */
+ NULL, /* ECCurve_NIST_B233 */
+ NULL, /* ECCurve_NIST_K283 */
+ NULL, /* ECCurve_NIST_B283 */
+ NULL, /* ECCurve_NIST_K409 */
+ NULL, /* ECCurve_NIST_B409 */
+ NULL, /* ECCurve_NIST_K571 */
+ NULL, /* ECCurve_NIST_B571 */
+ NULL, /* ECCurve_X9_62_PRIME_192V2 */
+ NULL, /* ECCurve_X9_62_PRIME_192V3 */
+ NULL, /* ECCurve_X9_62_PRIME_239V1 */
+ NULL, /* ECCurve_X9_62_PRIME_239V2 */
+ NULL, /* ECCurve_X9_62_PRIME_239V3 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB163V1 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB163V2 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB163V3 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB176V1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB191V1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB191V2 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB191V3 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB208W1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB239V1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB239V2 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB239V3 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB272W1 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB304W1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB359V1 */
+ NULL, /* ECCurve_X9_62_CHAR2_PNB368W1 */
+ NULL, /* ECCurve_X9_62_CHAR2_TNB431R1 */
+ NULL, /* ECCurve_SECG_PRIME_112R1 */
+ NULL, /* ECCurve_SECG_PRIME_112R2 */
+ NULL, /* ECCurve_SECG_PRIME_128R1 */
+ NULL, /* ECCurve_SECG_PRIME_128R2 */
+ NULL, /* ECCurve_SECG_PRIME_160K1 */
+ NULL, /* ECCurve_SECG_PRIME_160R1 */
+ NULL, /* ECCurve_SECG_PRIME_160R2 */
+ NULL, /* ECCurve_SECG_PRIME_192K1 */
+ NULL, /* ECCurve_SECG_PRIME_224K1 */
+ NULL, /* ECCurve_SECG_PRIME_256K1 */
+ NULL, /* ECCurve_SECG_CHAR2_113R1 */
+ NULL, /* ECCurve_SECG_CHAR2_113R2 */
+ NULL, /* ECCurve_SECG_CHAR2_131R1 */
+ NULL, /* ECCurve_SECG_CHAR2_131R2 */
+ NULL, /* ECCurve_SECG_CHAR2_163R1 */
+ NULL, /* ECCurve_SECG_CHAR2_193R1 */
+ NULL, /* ECCurve_SECG_CHAR2_193R2 */
+ NULL, /* ECCurve_SECG_CHAR2_239K1 */
+ NULL, /* ECCurve_WTLS_1 */
+ NULL, /* ECCurve_WTLS_8 */
+ NULL, /* ECCurve_WTLS_9 */
+ &ecCurve25519, /* ECCurve25519 */
+ NULL /* ECCurve_pastLastCurve */
+};
+
+#endif
diff --git a/security/nss/lib/freebl/ecl/ecl-exp.h b/security/nss/lib/freebl/ecl/ecl-exp.h
new file mode 100644
index 000000000..44adb8a1c
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl-exp.h
@@ -0,0 +1,167 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef __ecl_exp_h_
+#define __ecl_exp_h_
+
+/* Curve field type */
+typedef enum {
+ ECField_GFp,
+ ECField_GF2m
+} ECField;
+
+/* Hexadecimal encoding of curve parameters */
+struct ECCurveParamsStr {
+ char *text;
+ ECField field;
+ unsigned int size;
+ char *irr;
+ char *curvea;
+ char *curveb;
+ char *genx;
+ char *geny;
+ char *order;
+ int cofactor;
+ int security;
+ int pointSize;
+ unsigned int usage;
+};
+typedef struct ECCurveParamsStr ECCurveParams;
+
+/* Named curve parameters */
+typedef enum {
+
+ ECCurve_noName = 0,
+
+ /* NIST prime curves */
+ ECCurve_NIST_P192, /* not supported */
+ ECCurve_NIST_P224, /* not supported */
+ ECCurve_NIST_P256,
+ ECCurve_NIST_P384,
+ ECCurve_NIST_P521,
+
+ /* NIST binary curves */
+ ECCurve_NIST_K163, /* not supported */
+ ECCurve_NIST_B163, /* not supported */
+ ECCurve_NIST_K233, /* not supported */
+ ECCurve_NIST_B233, /* not supported */
+ ECCurve_NIST_K283, /* not supported */
+ ECCurve_NIST_B283, /* not supported */
+ ECCurve_NIST_K409, /* not supported */
+ ECCurve_NIST_B409, /* not supported */
+ ECCurve_NIST_K571, /* not supported */
+ ECCurve_NIST_B571, /* not supported */
+
+ /* ANSI X9.62 prime curves */
+ /* ECCurve_X9_62_PRIME_192V1 == ECCurve_NIST_P192 */
+ ECCurve_X9_62_PRIME_192V2, /* not supported */
+ ECCurve_X9_62_PRIME_192V3, /* not supported */
+ ECCurve_X9_62_PRIME_239V1, /* not supported */
+ ECCurve_X9_62_PRIME_239V2, /* not supported */
+ ECCurve_X9_62_PRIME_239V3, /* not supported */
+ /* ECCurve_X9_62_PRIME_256V1 == ECCurve_NIST_P256 */
+
+ /* ANSI X9.62 binary curves */
+ ECCurve_X9_62_CHAR2_PNB163V1, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB163V2, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB163V3, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB176V1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB191V1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB191V2, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB191V3, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB208W1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB239V1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB239V2, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB239V3, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB272W1, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB304W1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB359V1, /* not supported */
+ ECCurve_X9_62_CHAR2_PNB368W1, /* not supported */
+ ECCurve_X9_62_CHAR2_TNB431R1, /* not supported */
+
+ /* SEC2 prime curves */
+ ECCurve_SECG_PRIME_112R1, /* not supported */
+ ECCurve_SECG_PRIME_112R2, /* not supported */
+ ECCurve_SECG_PRIME_128R1, /* not supported */
+ ECCurve_SECG_PRIME_128R2, /* not supported */
+ ECCurve_SECG_PRIME_160K1, /* not supported */
+ ECCurve_SECG_PRIME_160R1, /* not supported */
+ ECCurve_SECG_PRIME_160R2, /* not supported */
+ ECCurve_SECG_PRIME_192K1, /* not supported */
+ /* ECCurve_SECG_PRIME_192R1 == ECCurve_NIST_P192 */
+ ECCurve_SECG_PRIME_224K1, /* not supported */
+ /* ECCurve_SECG_PRIME_224R1 == ECCurve_NIST_P224 */
+ ECCurve_SECG_PRIME_256K1, /* not supported */
+ /* ECCurve_SECG_PRIME_256R1 == ECCurve_NIST_P256 */
+ /* ECCurve_SECG_PRIME_384R1 == ECCurve_NIST_P384 */
+ /* ECCurve_SECG_PRIME_521R1 == ECCurve_NIST_P521 */
+
+ /* SEC2 binary curves */
+ ECCurve_SECG_CHAR2_113R1, /* not supported */
+ ECCurve_SECG_CHAR2_113R2, /* not supported */
+ ECCurve_SECG_CHAR2_131R1, /* not supported */
+ ECCurve_SECG_CHAR2_131R2, /* not supported */
+ /* ECCurve_SECG_CHAR2_163K1 == ECCurve_NIST_K163 */
+ ECCurve_SECG_CHAR2_163R1, /* not supported */
+ /* ECCurve_SECG_CHAR2_163R2 == ECCurve_NIST_B163 */
+ ECCurve_SECG_CHAR2_193R1, /* not supported */
+ ECCurve_SECG_CHAR2_193R2, /* not supported */
+ /* ECCurve_SECG_CHAR2_233K1 == ECCurve_NIST_K233 */
+ /* ECCurve_SECG_CHAR2_233R1 == ECCurve_NIST_B233 */
+ ECCurve_SECG_CHAR2_239K1, /* not supported */
+ /* ECCurve_SECG_CHAR2_283K1 == ECCurve_NIST_K283 */
+ /* ECCurve_SECG_CHAR2_283R1 == ECCurve_NIST_B283 */
+ /* ECCurve_SECG_CHAR2_409K1 == ECCurve_NIST_K409 */
+ /* ECCurve_SECG_CHAR2_409R1 == ECCurve_NIST_B409 */
+ /* ECCurve_SECG_CHAR2_571K1 == ECCurve_NIST_K571 */
+ /* ECCurve_SECG_CHAR2_571R1 == ECCurve_NIST_B571 */
+
+ /* WTLS curves */
+ ECCurve_WTLS_1, /* not supported */
+ /* there is no WTLS 2 curve */
+ /* ECCurve_WTLS_3 == ECCurve_NIST_K163 */
+ /* ECCurve_WTLS_4 == ECCurve_SECG_CHAR2_113R1 */
+ /* ECCurve_WTLS_5 == ECCurve_X9_62_CHAR2_PNB163V1 */
+ /* ECCurve_WTLS_6 == ECCurve_SECG_PRIME_112R1 */
+ /* ECCurve_WTLS_7 == ECCurve_SECG_PRIME_160R1 */
+ ECCurve_WTLS_8, /* not supported */
+ ECCurve_WTLS_9, /* not supported */
+ /* ECCurve_WTLS_10 == ECCurve_NIST_K233 */
+ /* ECCurve_WTLS_11 == ECCurve_NIST_B233 */
+ /* ECCurve_WTLS_12 == ECCurve_NIST_P224 */
+
+ ECCurve25519,
+
+ ECCurve_pastLastCurve
+} ECCurveName;
+
+/* Aliased named curves */
+
+#define ECCurve_X9_62_PRIME_192V1 ECCurve_NIST_P192 /* not supported */
+#define ECCurve_X9_62_PRIME_256V1 ECCurve_NIST_P256
+#define ECCurve_SECG_PRIME_192R1 ECCurve_NIST_P192 /* not supported */
+#define ECCurve_SECG_PRIME_224R1 ECCurve_NIST_P224 /* not supported */
+#define ECCurve_SECG_PRIME_256R1 ECCurve_NIST_P256
+#define ECCurve_SECG_PRIME_384R1 ECCurve_NIST_P384
+#define ECCurve_SECG_PRIME_521R1 ECCurve_NIST_P521
+#define ECCurve_SECG_CHAR2_163K1 ECCurve_NIST_K163 /* not supported */
+#define ECCurve_SECG_CHAR2_163R2 ECCurve_NIST_B163 /* not supported */
+#define ECCurve_SECG_CHAR2_233K1 ECCurve_NIST_K233 /* not supported */
+#define ECCurve_SECG_CHAR2_233R1 ECCurve_NIST_B233 /* not supported */
+#define ECCurve_SECG_CHAR2_283K1 ECCurve_NIST_K283 /* not supported */
+#define ECCurve_SECG_CHAR2_283R1 ECCurve_NIST_B283 /* not supported */
+#define ECCurve_SECG_CHAR2_409K1 ECCurve_NIST_K409 /* not supported */
+#define ECCurve_SECG_CHAR2_409R1 ECCurve_NIST_B409 /* not supported */
+#define ECCurve_SECG_CHAR2_571K1 ECCurve_NIST_K571 /* not supported */
+#define ECCurve_SECG_CHAR2_571R1 ECCurve_NIST_B571 /* not supported */
+#define ECCurve_WTLS_3 ECCurve_NIST_K163 /* not supported */
+#define ECCurve_WTLS_4 ECCurve_SECG_CHAR2_113R1 /* not supported */
+#define ECCurve_WTLS_5 ECCurve_X9_62_CHAR2_PNB163V1 /* not supported */
+#define ECCurve_WTLS_6 ECCurve_SECG_PRIME_112R1 /* not supported */
+#define ECCurve_WTLS_7 ECCurve_SECG_PRIME_160R1 /* not supported */
+#define ECCurve_WTLS_10 ECCurve_NIST_K233 /* not supported */
+#define ECCurve_WTLS_11 ECCurve_NIST_B233 /* not supported */
+#define ECCurve_WTLS_12 ECCurve_NIST_P224 /* not supported */
+
+#endif /* __ecl_exp_h_ */
diff --git a/security/nss/lib/freebl/ecl/ecl-priv.h b/security/nss/lib/freebl/ecl/ecl-priv.h
new file mode 100644
index 000000000..f43f19327
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl-priv.h
@@ -0,0 +1,257 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef __ecl_priv_h_
+#define __ecl_priv_h_
+
+#include "ecl.h"
+#include "mpi.h"
+#include "mplogic.h"
+#include "../blapii.h"
+
+/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
+/* the following needs to go away... */
+#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
+#define ECL_SIXTY_FOUR_BIT
+#else
+#define ECL_THIRTY_TWO_BIT
+#endif
+
+#define ECL_CURVE_DIGITS(curve_size_in_bits) \
+ (((curve_size_in_bits) + (sizeof(mp_digit) * 8 - 1)) / (sizeof(mp_digit) * 8))
+#define ECL_BITS (sizeof(mp_digit) * 8)
+#define ECL_MAX_FIELD_SIZE_DIGITS (80 / sizeof(mp_digit))
+
+/* Gets the i'th bit in the binary representation of a. If i >= length(a),
+ * then return 0. (The above behaviour differs from mpl_get_bit, which
+ * causes an error if i >= length(a).) */
+#define MP_GET_BIT(a, i) \
+ ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
+
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+#define MP_ADD_CARRY(a1, a2, s, carry) \
+ { \
+ mp_word w; \
+ w = ((mp_word)carry) + (a1) + (a2); \
+ s = ACCUM(w); \
+ carry = CARRYOUT(w); \
+ }
+
+#define MP_SUB_BORROW(a1, a2, s, borrow) \
+ { \
+ mp_word w; \
+ w = ((mp_word)(a1)) - (a2)-borrow; \
+ s = ACCUM(w); \
+ borrow = (w >> MP_DIGIT_BIT) & 1; \
+ }
+
+#else
+/* NOTE,
+ * carry and borrow are both read and written.
+ * a1 or a2 and s could be the same variable.
+ * don't trash those outputs until their respective inputs have
+ * been read. */
+#define MP_ADD_CARRY(a1, a2, s, carry) \
+ { \
+ mp_digit tmp, sum; \
+ tmp = (a1); \
+ sum = tmp + (a2); \
+ tmp = (sum < tmp); /* detect overflow */ \
+ s = sum += carry; \
+ carry = tmp + (sum < carry); \
+ }
+
+#define MP_SUB_BORROW(a1, a2, s, borrow) \
+ { \
+ mp_digit tmp; \
+ tmp = (a1); \
+ s = tmp - (a2); \
+ tmp = (s > tmp); /* detect borrow */ \
+ if (borrow && !s--) \
+ tmp++; \
+ borrow = tmp; \
+ }
+#endif
+
+struct GFMethodStr;
+typedef struct GFMethodStr GFMethod;
+struct GFMethodStr {
+ /* Indicates whether the structure was constructed from dynamic memory
+ * or statically created. */
+ int constructed;
+ /* Irreducible that defines the field. For prime fields, this is the
+ * prime p. For binary polynomial fields, this is the bitstring
+ * representation of the irreducible polynomial. */
+ mp_int irr;
+ /* For prime fields, the value irr_arr[0] is the number of bits in the
+ * field. For binary polynomial fields, the irreducible polynomial
+ * f(t) is represented as an array of unsigned int[], where f(t) is
+ * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
+ * > p[1] > ... > p[4] = 0. */
+ unsigned int irr_arr[5];
+ /* Field arithmetic methods. All methods (except field_enc and
+ * field_dec) are assumed to take field-encoded parameters and return
+ * field-encoded values. All methods (except field_enc and field_dec)
+ * are required to be implemented. */
+ mp_err (*field_add)(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+ mp_err (*field_neg)(const mp_int *a, mp_int *r, const GFMethod *meth);
+ mp_err (*field_sub)(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+ mp_err (*field_mod)(const mp_int *a, mp_int *r, const GFMethod *meth);
+ mp_err (*field_mul)(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+ mp_err (*field_sqr)(const mp_int *a, mp_int *r, const GFMethod *meth);
+ mp_err (*field_div)(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+ mp_err (*field_enc)(const mp_int *a, mp_int *r, const GFMethod *meth);
+ mp_err (*field_dec)(const mp_int *a, mp_int *r, const GFMethod *meth);
+ /* Extra storage for implementation-specific data. Any memory
+ * allocated to these extra fields will be cleared by extra_free. */
+ void *extra1;
+ void *extra2;
+ void (*extra_free)(GFMethod *meth);
+};
+
+/* Construct generic GFMethods. */
+GFMethod *GFMethod_consGFp(const mp_int *irr);
+GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
+
+/* Free the memory allocated (if any) to a GFMethod object. */
+void GFMethod_free(GFMethod *meth);
+
+struct ECGroupStr {
+ /* Indicates whether the structure was constructed from dynamic memory
+ * or statically created. */
+ int constructed;
+ /* Field definition and arithmetic. */
+ GFMethod *meth;
+ /* Textual representation of curve name, if any. */
+ char *text;
+ /* Curve parameters, field-encoded. */
+ mp_int curvea, curveb;
+ /* x and y coordinates of the base point, field-encoded. */
+ mp_int genx, geny;
+ /* Order and cofactor of the base point. */
+ mp_int order;
+ int cofactor;
+ /* Point arithmetic methods. All methods are assumed to take
+ * field-encoded parameters and return field-encoded values. All
+ * methods (except base_point_mul and points_mul) are required to be
+ * implemented. */
+ mp_err (*point_add)(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+ mp_err (*point_sub)(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+ mp_err (*point_dbl)(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+ mp_err (*point_mul)(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+ mp_err (*base_point_mul)(const mp_int *n, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+ mp_err (*points_mul)(const mp_int *k1, const mp_int *k2,
+ const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+ mp_err (*validate_point)(const mp_int *px, const mp_int *py, const ECGroup *group);
+ /* Extra storage for implementation-specific data. Any memory
+ * allocated to these extra fields will be cleared by extra_free. */
+ void *extra1;
+ void *extra2;
+ void (*extra_free)(ECGroup *group);
+};
+
+/* Wrapper functions for generic prime field arithmetic. */
+mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+
+/* fixed length in-line adds. Count is in words */
+mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+
+mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+/* Wrapper functions for generic binary polynomial field arithmetic. */
+mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+
+/* Montgomery prime field arithmetic. */
+mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth);
+mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
+mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
+void ec_GFp_extra_free_mont(GFMethod *meth);
+
+/* point multiplication */
+mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
+ const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
+ const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
+ * be an array of signed char's to output to, bitsize should be the number
+ * of bits of out, in is the original scalar, and w is the window size.
+ * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
+ * Menezes, "Software implementation of elliptic curve cryptography over
+ * binary fields", Proc. CHES 2000. */
+mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
+ int w);
+
+/* Optimized field arithmetic */
+mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
+mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
+mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
+mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
+mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
+mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
+mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
+mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
+
+/* Optimized point multiplication */
+mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name);
+
+/* Optimized floating-point arithmetic */
+#ifdef ECL_USE_FP
+mp_err ec_group_set_secp160r1_fp(ECGroup *group);
+mp_err ec_group_set_nistp192_fp(ECGroup *group);
+mp_err ec_group_set_nistp224_fp(ECGroup *group);
+#endif
+
+SECStatus ec_Curve25519_mul(PRUint8 *q, const PRUint8 *s, const PRUint8 *p);
+#endif /* __ecl_priv_h_ */
diff --git a/security/nss/lib/freebl/ecl/ecl.c b/security/nss/lib/freebl/ecl/ecl.c
new file mode 100644
index 000000000..3540af781
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl.c
@@ -0,0 +1,301 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "ecl.h"
+#include "ecl-priv.h"
+#include "ecp.h"
+#include <stdlib.h>
+#include <string.h>
+
+/* Allocate memory for a new ECGroup object. */
+ECGroup *
+ECGroup_new()
+{
+ mp_err res = MP_OKAY;
+ ECGroup *group;
+ group = (ECGroup *)malloc(sizeof(ECGroup));
+ if (group == NULL)
+ return NULL;
+ group->constructed = MP_YES;
+ group->meth = NULL;
+ group->text = NULL;
+ MP_DIGITS(&group->curvea) = 0;
+ MP_DIGITS(&group->curveb) = 0;
+ MP_DIGITS(&group->genx) = 0;
+ MP_DIGITS(&group->geny) = 0;
+ MP_DIGITS(&group->order) = 0;
+ group->base_point_mul = NULL;
+ group->points_mul = NULL;
+ group->validate_point = NULL;
+ group->extra1 = NULL;
+ group->extra2 = NULL;
+ group->extra_free = NULL;
+ MP_CHECKOK(mp_init(&group->curvea));
+ MP_CHECKOK(mp_init(&group->curveb));
+ MP_CHECKOK(mp_init(&group->genx));
+ MP_CHECKOK(mp_init(&group->geny));
+ MP_CHECKOK(mp_init(&group->order));
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ ECGroup_free(group);
+ return NULL;
+ }
+ return group;
+}
+
+/* Construct a generic ECGroup for elliptic curves over prime fields. */
+ECGroup *
+ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
+ const mp_int *curveb, const mp_int *genx,
+ const mp_int *geny, const mp_int *order, int cofactor)
+{
+ mp_err res = MP_OKAY;
+ ECGroup *group = NULL;
+
+ group = ECGroup_new();
+ if (group == NULL)
+ return NULL;
+
+ group->meth = GFMethod_consGFp(irr);
+ if (group->meth == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+ MP_CHECKOK(mp_copy(curvea, &group->curvea));
+ MP_CHECKOK(mp_copy(curveb, &group->curveb));
+ MP_CHECKOK(mp_copy(genx, &group->genx));
+ MP_CHECKOK(mp_copy(geny, &group->geny));
+ MP_CHECKOK(mp_copy(order, &group->order));
+ group->cofactor = cofactor;
+ group->point_add = &ec_GFp_pt_add_aff;
+ group->point_sub = &ec_GFp_pt_sub_aff;
+ group->point_dbl = &ec_GFp_pt_dbl_aff;
+ group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
+ group->base_point_mul = NULL;
+ group->points_mul = &ec_GFp_pts_mul_jac;
+ group->validate_point = &ec_GFp_validate_point;
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ ECGroup_free(group);
+ return NULL;
+ }
+ return group;
+}
+
+/* Construct a generic ECGroup for elliptic curves over prime fields with
+ * field arithmetic implemented in Montgomery coordinates. */
+ECGroup *
+ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
+ const mp_int *curveb, const mp_int *genx,
+ const mp_int *geny, const mp_int *order, int cofactor)
+{
+ mp_err res = MP_OKAY;
+ ECGroup *group = NULL;
+
+ group = ECGroup_new();
+ if (group == NULL)
+ return NULL;
+
+ group->meth = GFMethod_consGFp_mont(irr);
+ if (group->meth == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+ MP_CHECKOK(group->meth->field_enc(curvea, &group->curvea, group->meth));
+ MP_CHECKOK(group->meth->field_enc(curveb, &group->curveb, group->meth));
+ MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
+ MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
+ MP_CHECKOK(mp_copy(order, &group->order));
+ group->cofactor = cofactor;
+ group->point_add = &ec_GFp_pt_add_aff;
+ group->point_sub = &ec_GFp_pt_sub_aff;
+ group->point_dbl = &ec_GFp_pt_dbl_aff;
+ group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
+ group->base_point_mul = NULL;
+ group->points_mul = &ec_GFp_pts_mul_jac;
+ group->validate_point = &ec_GFp_validate_point;
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ ECGroup_free(group);
+ return NULL;
+ }
+ return group;
+}
+
+/* Construct ECGroup from hex parameters and name, if any. Called by
+ * ECGroup_fromHex and ECGroup_fromName. */
+ECGroup *
+ecgroup_fromNameAndHex(const ECCurveName name,
+ const ECCurveParams *params)
+{
+ mp_int irr, curvea, curveb, genx, geny, order;
+ int bits;
+ ECGroup *group = NULL;
+ mp_err res = MP_OKAY;
+
+ /* initialize values */
+ MP_DIGITS(&irr) = 0;
+ MP_DIGITS(&curvea) = 0;
+ MP_DIGITS(&curveb) = 0;
+ MP_DIGITS(&genx) = 0;
+ MP_DIGITS(&geny) = 0;
+ MP_DIGITS(&order) = 0;
+ MP_CHECKOK(mp_init(&irr));
+ MP_CHECKOK(mp_init(&curvea));
+ MP_CHECKOK(mp_init(&curveb));
+ MP_CHECKOK(mp_init(&genx));
+ MP_CHECKOK(mp_init(&geny));
+ MP_CHECKOK(mp_init(&order));
+ MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
+ MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
+ MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
+ MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
+ MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
+ MP_CHECKOK(mp_read_radix(&order, params->order, 16));
+
+ /* determine number of bits */
+ bits = mpl_significant_bits(&irr) - 1;
+ if (bits < MP_OKAY) {
+ res = bits;
+ goto CLEANUP;
+ }
+
+ /* determine which optimizations (if any) to use */
+ if (params->field == ECField_GFp) {
+ switch (name) {
+ case ECCurve_SECG_PRIME_256R1:
+ group =
+ ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
+ &order, params->cofactor);
+ if (group == NULL) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+ MP_CHECKOK(ec_group_set_gfp256(group, name));
+ MP_CHECKOK(ec_group_set_gfp256_32(group, name));
+ break;
+ case ECCurve_SECG_PRIME_521R1:
+ group =
+ ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
+ &order, params->cofactor);
+ if (group == NULL) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+ MP_CHECKOK(ec_group_set_gfp521(group, name));
+ break;
+ default:
+ /* use generic arithmetic */
+ group =
+ ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
+ &order, params->cofactor);
+ if (group == NULL) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+ }
+ } else {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+
+ /* set name, if any */
+ if ((group != NULL) && (params->text != NULL)) {
+ group->text = strdup(params->text);
+ if (group->text == NULL) {
+ res = MP_MEM;
+ }
+ }
+
+CLEANUP:
+ mp_clear(&irr);
+ mp_clear(&curvea);
+ mp_clear(&curveb);
+ mp_clear(&genx);
+ mp_clear(&geny);
+ mp_clear(&order);
+ if (res != MP_OKAY) {
+ ECGroup_free(group);
+ return NULL;
+ }
+ return group;
+}
+
+/* Construct ECGroup from hexadecimal representations of parameters. */
+ECGroup *
+ECGroup_fromHex(const ECCurveParams *params)
+{
+ return ecgroup_fromNameAndHex(ECCurve_noName, params);
+}
+
+/* Construct ECGroup from named parameters. */
+ECGroup *
+ECGroup_fromName(const ECCurveName name)
+{
+ ECGroup *group = NULL;
+ ECCurveParams *params = NULL;
+ mp_err res = MP_OKAY;
+
+ params = EC_GetNamedCurveParams(name);
+ if (params == NULL) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+
+ /* construct actual group */
+ group = ecgroup_fromNameAndHex(name, params);
+ if (group == NULL) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+
+CLEANUP:
+ EC_FreeCurveParams(params);
+ if (res != MP_OKAY) {
+ ECGroup_free(group);
+ return NULL;
+ }
+ return group;
+}
+
+/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
+mp_err
+ECPoint_validate(const ECGroup *group, const mp_int *px, const mp_int *py)
+{
+ /* 1: Verify that publicValue is not the point at infinity */
+ /* 2: Verify that the coordinates of publicValue are elements
+ * of the field.
+ */
+ /* 3: Verify that publicValue is on the curve. */
+ /* 4: Verify that the order of the curve times the publicValue
+ * is the point at infinity.
+ */
+ return group->validate_point(px, py, group);
+}
+
+/* Free the memory allocated (if any) to an ECGroup object. */
+void
+ECGroup_free(ECGroup *group)
+{
+ if (group == NULL)
+ return;
+ GFMethod_free(group->meth);
+ if (group->constructed == MP_NO)
+ return;
+ mp_clear(&group->curvea);
+ mp_clear(&group->curveb);
+ mp_clear(&group->genx);
+ mp_clear(&group->geny);
+ mp_clear(&group->order);
+ if (group->text != NULL)
+ free(group->text);
+ if (group->extra_free != NULL)
+ group->extra_free(group);
+ free(group);
+}
diff --git a/security/nss/lib/freebl/ecl/ecl.h b/security/nss/lib/freebl/ecl/ecl.h
new file mode 100644
index 000000000..ddcbb1f3a
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl.h
@@ -0,0 +1,60 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* Although this is not an exported header file, code which uses elliptic
+ * curve point operations will need to include it. */
+
+#ifndef __ecl_h_
+#define __ecl_h_
+
+#include "blapi.h"
+#include "ecl-exp.h"
+#include "mpi.h"
+
+struct ECGroupStr;
+typedef struct ECGroupStr ECGroup;
+
+/* Construct ECGroup from hexadecimal representations of parameters. */
+ECGroup *ECGroup_fromHex(const ECCurveParams *params);
+
+/* Construct ECGroup from named parameters. */
+ECGroup *ECGroup_fromName(const ECCurveName name);
+
+/* Free an allocated ECGroup. */
+void ECGroup_free(ECGroup *group);
+
+/* Construct ECCurveParams from an ECCurveName */
+ECCurveParams *EC_GetNamedCurveParams(const ECCurveName name);
+
+/* Duplicates an ECCurveParams */
+ECCurveParams *ECCurveParams_dup(const ECCurveParams *params);
+
+/* Free an allocated ECCurveParams */
+void EC_FreeCurveParams(ECCurveParams *params);
+
+/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x,
+ * y). If x, y = NULL, then P is assumed to be the generator (base point)
+ * of the group of points on the elliptic curve. Input and output values
+ * are assumed to be NOT field-encoded. */
+mp_err ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
+ const mp_int *py, mp_int *qx, mp_int *qy);
+
+/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Input and output values are assumed to
+ * be NOT field-encoded. */
+mp_err ECPoints_mul(const ECGroup *group, const mp_int *k1,
+ const mp_int *k2, const mp_int *px, const mp_int *py,
+ mp_int *qx, mp_int *qy);
+
+/* Validates an EC public key as described in Section 5.2.2 of X9.62.
+ * Returns MP_YES if the public key is valid, MP_NO if the public key
+ * is invalid, or an error code if the validation could not be
+ * performed. */
+mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const mp_int *py);
+
+SECStatus ec_Curve25519_pt_mul(SECItem *X, SECItem *k, SECItem *P);
+SECStatus ec_Curve25519_pt_validate(const SECItem *px);
+
+#endif /* __ecl_h_ */
diff --git a/security/nss/lib/freebl/ecl/ecl_curve.c b/security/nss/lib/freebl/ecl/ecl_curve.c
new file mode 100644
index 000000000..cf090cfc3
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl_curve.c
@@ -0,0 +1,93 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecl.h"
+#include "ecl-curve.h"
+#include "ecl-priv.h"
+#include <stdlib.h>
+#include <string.h>
+
+#define CHECK(func) \
+ if ((func) == NULL) { \
+ res = 0; \
+ goto CLEANUP; \
+ }
+
+/* Duplicates an ECCurveParams */
+ECCurveParams *
+ECCurveParams_dup(const ECCurveParams *params)
+{
+ int res = 1;
+ ECCurveParams *ret = NULL;
+
+ CHECK(ret = (ECCurveParams *)calloc(1, sizeof(ECCurveParams)));
+ if (params->text != NULL) {
+ CHECK(ret->text = strdup(params->text));
+ }
+ ret->field = params->field;
+ ret->size = params->size;
+ if (params->irr != NULL) {
+ CHECK(ret->irr = strdup(params->irr));
+ }
+ if (params->curvea != NULL) {
+ CHECK(ret->curvea = strdup(params->curvea));
+ }
+ if (params->curveb != NULL) {
+ CHECK(ret->curveb = strdup(params->curveb));
+ }
+ if (params->genx != NULL) {
+ CHECK(ret->genx = strdup(params->genx));
+ }
+ if (params->geny != NULL) {
+ CHECK(ret->geny = strdup(params->geny));
+ }
+ if (params->order != NULL) {
+ CHECK(ret->order = strdup(params->order));
+ }
+ ret->cofactor = params->cofactor;
+
+CLEANUP:
+ if (res != 1) {
+ EC_FreeCurveParams(ret);
+ return NULL;
+ }
+ return ret;
+}
+
+#undef CHECK
+
+/* Construct ECCurveParams from an ECCurveName */
+ECCurveParams *
+EC_GetNamedCurveParams(const ECCurveName name)
+{
+ if ((name <= ECCurve_noName) || (ECCurve_pastLastCurve <= name) ||
+ (ecCurve_map[name] == NULL)) {
+ return NULL;
+ } else {
+ return ECCurveParams_dup(ecCurve_map[name]);
+ }
+}
+
+/* Free the memory allocated (if any) to an ECCurveParams object. */
+void
+EC_FreeCurveParams(ECCurveParams *params)
+{
+ if (params == NULL)
+ return;
+ if (params->text != NULL)
+ free(params->text);
+ if (params->irr != NULL)
+ free(params->irr);
+ if (params->curvea != NULL)
+ free(params->curvea);
+ if (params->curveb != NULL)
+ free(params->curveb);
+ if (params->genx != NULL)
+ free(params->genx);
+ if (params->geny != NULL)
+ free(params->geny);
+ if (params->order != NULL)
+ free(params->order);
+ free(params);
+}
diff --git a/security/nss/lib/freebl/ecl/ecl_gf.c b/security/nss/lib/freebl/ecl/ecl_gf.c
new file mode 100644
index 000000000..81b007705
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl_gf.c
@@ -0,0 +1,958 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mp_gf2m.h"
+#include "ecl-priv.h"
+#include "mpi-priv.h"
+#include <stdlib.h>
+
+/* Allocate memory for a new GFMethod object. */
+GFMethod *
+GFMethod_new()
+{
+ mp_err res = MP_OKAY;
+ GFMethod *meth;
+ meth = (GFMethod *)malloc(sizeof(GFMethod));
+ if (meth == NULL)
+ return NULL;
+ meth->constructed = MP_YES;
+ MP_DIGITS(&meth->irr) = 0;
+ meth->extra_free = NULL;
+ MP_CHECKOK(mp_init(&meth->irr));
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ GFMethod_free(meth);
+ return NULL;
+ }
+ return meth;
+}
+
+/* Construct a generic GFMethod for arithmetic over prime fields with
+ * irreducible irr. */
+GFMethod *
+GFMethod_consGFp(const mp_int *irr)
+{
+ mp_err res = MP_OKAY;
+ GFMethod *meth = NULL;
+
+ meth = GFMethod_new();
+ if (meth == NULL)
+ return NULL;
+
+ MP_CHECKOK(mp_copy(irr, &meth->irr));
+ meth->irr_arr[0] = mpl_significant_bits(irr);
+ meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] =
+ meth->irr_arr[4] = 0;
+ switch (MP_USED(&meth->irr)) {
+ /* maybe we need 1 and 2 words here as well?*/
+ case 3:
+ meth->field_add = &ec_GFp_add_3;
+ meth->field_sub = &ec_GFp_sub_3;
+ break;
+ case 4:
+ meth->field_add = &ec_GFp_add_4;
+ meth->field_sub = &ec_GFp_sub_4;
+ break;
+ case 5:
+ meth->field_add = &ec_GFp_add_5;
+ meth->field_sub = &ec_GFp_sub_5;
+ break;
+ case 6:
+ meth->field_add = &ec_GFp_add_6;
+ meth->field_sub = &ec_GFp_sub_6;
+ break;
+ default:
+ meth->field_add = &ec_GFp_add;
+ meth->field_sub = &ec_GFp_sub;
+ }
+ meth->field_neg = &ec_GFp_neg;
+ meth->field_mod = &ec_GFp_mod;
+ meth->field_mul = &ec_GFp_mul;
+ meth->field_sqr = &ec_GFp_sqr;
+ meth->field_div = &ec_GFp_div;
+ meth->field_enc = NULL;
+ meth->field_dec = NULL;
+ meth->extra1 = NULL;
+ meth->extra2 = NULL;
+ meth->extra_free = NULL;
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ GFMethod_free(meth);
+ return NULL;
+ }
+ return meth;
+}
+
+/* Free the memory allocated (if any) to a GFMethod object. */
+void
+GFMethod_free(GFMethod *meth)
+{
+ if (meth == NULL)
+ return;
+ if (meth->constructed == MP_NO)
+ return;
+ mp_clear(&meth->irr);
+ if (meth->extra_free != NULL)
+ meth->extra_free(meth);
+ free(meth);
+}
+
+/* Wrapper functions for generic prime field arithmetic. */
+
+/* Add two field elements. Assumes that 0 <= a, b < meth->irr */
+mp_err
+ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */
+ mp_err res;
+
+ if ((res = mp_add(a, b, r)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_cmp(r, &meth->irr) >= 0) {
+ return mp_sub(r, &meth->irr, r);
+ }
+ return res;
+}
+
+/* Negates a field element. Assumes that 0 <= a < meth->irr */
+mp_err
+ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ /* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */
+
+ if (mp_cmp_z(a) == 0) {
+ mp_zero(r);
+ return MP_OKAY;
+ }
+ return mp_sub(&meth->irr, a, r);
+}
+
+/* Subtracts two field elements. Assumes that 0 <= a, b < meth->irr */
+mp_err
+ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */
+ res = mp_sub(a, b, r);
+ if (res == MP_RANGE) {
+ MP_CHECKOK(mp_sub(b, a, r));
+ if (mp_cmp_z(r) < 0) {
+ MP_CHECKOK(mp_add(r, &meth->irr, r));
+ }
+ MP_CHECKOK(ec_GFp_neg(r, r, meth));
+ }
+ if (mp_cmp_z(r) < 0) {
+ MP_CHECKOK(mp_add(r, &meth->irr, r));
+ }
+CLEANUP:
+ return res;
+}
+/*
+ * Inline adds for small curve lengths.
+ */
+/* 3 words */
+mp_err
+ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a0 = 0, a1 = 0, a2 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0;
+ mp_digit carry;
+
+ switch (MP_USED(a)) {
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ case 1:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 3:
+ r2 = MP_DIGIT(b, 2);
+ case 2:
+ r1 = MP_DIGIT(b, 1);
+ case 1:
+ r0 = MP_DIGIT(b, 0);
+ }
+
+#ifndef MPI_AMD64_ADD
+ carry = 0;
+ MP_ADD_CARRY(a0, r0, r0, carry);
+ MP_ADD_CARRY(a1, r1, r1, carry);
+ MP_ADD_CARRY(a2, r2, r2, carry);
+#else
+ __asm__(
+ "xorq %3,%3 \n\t"
+ "addq %4,%0 \n\t"
+ "adcq %5,%1 \n\t"
+ "adcq %6,%2 \n\t"
+ "adcq $0,%3 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
+ : "r"(a0), "r"(a1), "r"(a2),
+ "0"(r0), "1"(r1), "2"(r2)
+ : "%cc");
+#endif
+
+ MP_CHECKOK(s_mp_pad(r, 3));
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 3;
+
+ /* Do quick 'subract' if we've gone over
+ * (add the 2's complement of the curve field) */
+ a2 = MP_DIGIT(&meth->irr, 2);
+ if (carry || r2 > a2 ||
+ ((r2 == a2) && mp_cmp(r, &meth->irr) != MP_LT)) {
+ a1 = MP_DIGIT(&meth->irr, 1);
+ a0 = MP_DIGIT(&meth->irr, 0);
+#ifndef MPI_AMD64_ADD
+ carry = 0;
+ MP_SUB_BORROW(r0, a0, r0, carry);
+ MP_SUB_BORROW(r1, a1, r1, carry);
+ MP_SUB_BORROW(r2, a2, r2, carry);
+#else
+ __asm__(
+ "subq %3,%0 \n\t"
+ "sbbq %4,%1 \n\t"
+ "sbbq %5,%2 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2)
+ : "r"(a0), "r"(a1), "r"(a2),
+ "0"(r0), "1"(r1), "2"(r2)
+ : "%cc");
+#endif
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ }
+
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 4 words */
+mp_err
+ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
+ mp_digit carry;
+
+ switch (MP_USED(a)) {
+ case 4:
+ a3 = MP_DIGIT(a, 3);
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ case 1:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 4:
+ r3 = MP_DIGIT(b, 3);
+ case 3:
+ r2 = MP_DIGIT(b, 2);
+ case 2:
+ r1 = MP_DIGIT(b, 1);
+ case 1:
+ r0 = MP_DIGIT(b, 0);
+ }
+
+#ifndef MPI_AMD64_ADD
+ carry = 0;
+ MP_ADD_CARRY(a0, r0, r0, carry);
+ MP_ADD_CARRY(a1, r1, r1, carry);
+ MP_ADD_CARRY(a2, r2, r2, carry);
+ MP_ADD_CARRY(a3, r3, r3, carry);
+#else
+ __asm__(
+ "xorq %4,%4 \n\t"
+ "addq %5,%0 \n\t"
+ "adcq %6,%1 \n\t"
+ "adcq %7,%2 \n\t"
+ "adcq %8,%3 \n\t"
+ "adcq $0,%4 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(carry)
+ : "r"(a0), "r"(a1), "r"(a2), "r"(a3),
+ "0"(r0), "1"(r1), "2"(r2), "3"(r3)
+ : "%cc");
+#endif
+
+ MP_CHECKOK(s_mp_pad(r, 4));
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 4;
+
+ /* Do quick 'subract' if we've gone over
+ * (add the 2's complement of the curve field) */
+ a3 = MP_DIGIT(&meth->irr, 3);
+ if (carry || r3 > a3 ||
+ ((r3 == a3) && mp_cmp(r, &meth->irr) != MP_LT)) {
+ a2 = MP_DIGIT(&meth->irr, 2);
+ a1 = MP_DIGIT(&meth->irr, 1);
+ a0 = MP_DIGIT(&meth->irr, 0);
+#ifndef MPI_AMD64_ADD
+ carry = 0;
+ MP_SUB_BORROW(r0, a0, r0, carry);
+ MP_SUB_BORROW(r1, a1, r1, carry);
+ MP_SUB_BORROW(r2, a2, r2, carry);
+ MP_SUB_BORROW(r3, a3, r3, carry);
+#else
+ __asm__(
+ "subq %4,%0 \n\t"
+ "sbbq %5,%1 \n\t"
+ "sbbq %6,%2 \n\t"
+ "sbbq %7,%3 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
+ : "r"(a0), "r"(a1), "r"(a2), "r"(a3),
+ "0"(r0), "1"(r1), "2"(r2), "3"(r3)
+ : "%cc");
+#endif
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ }
+
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 5 words */
+mp_err
+ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
+ mp_digit carry;
+
+ switch (MP_USED(a)) {
+ case 5:
+ a4 = MP_DIGIT(a, 4);
+ case 4:
+ a3 = MP_DIGIT(a, 3);
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ case 1:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 5:
+ r4 = MP_DIGIT(b, 4);
+ case 4:
+ r3 = MP_DIGIT(b, 3);
+ case 3:
+ r2 = MP_DIGIT(b, 2);
+ case 2:
+ r1 = MP_DIGIT(b, 1);
+ case 1:
+ r0 = MP_DIGIT(b, 0);
+ }
+
+ carry = 0;
+ MP_ADD_CARRY(a0, r0, r0, carry);
+ MP_ADD_CARRY(a1, r1, r1, carry);
+ MP_ADD_CARRY(a2, r2, r2, carry);
+ MP_ADD_CARRY(a3, r3, r3, carry);
+ MP_ADD_CARRY(a4, r4, r4, carry);
+
+ MP_CHECKOK(s_mp_pad(r, 5));
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 5;
+
+ /* Do quick 'subract' if we've gone over
+ * (add the 2's complement of the curve field) */
+ a4 = MP_DIGIT(&meth->irr, 4);
+ if (carry || r4 > a4 ||
+ ((r4 == a4) && mp_cmp(r, &meth->irr) != MP_LT)) {
+ a3 = MP_DIGIT(&meth->irr, 3);
+ a2 = MP_DIGIT(&meth->irr, 2);
+ a1 = MP_DIGIT(&meth->irr, 1);
+ a0 = MP_DIGIT(&meth->irr, 0);
+ carry = 0;
+ MP_SUB_BORROW(r0, a0, r0, carry);
+ MP_SUB_BORROW(r1, a1, r1, carry);
+ MP_SUB_BORROW(r2, a2, r2, carry);
+ MP_SUB_BORROW(r3, a3, r3, carry);
+ MP_SUB_BORROW(r4, a4, r4, carry);
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ }
+
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 6 words */
+mp_err
+ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
+ mp_digit carry;
+
+ switch (MP_USED(a)) {
+ case 6:
+ a5 = MP_DIGIT(a, 5);
+ case 5:
+ a4 = MP_DIGIT(a, 4);
+ case 4:
+ a3 = MP_DIGIT(a, 3);
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ case 1:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 6:
+ r5 = MP_DIGIT(b, 5);
+ case 5:
+ r4 = MP_DIGIT(b, 4);
+ case 4:
+ r3 = MP_DIGIT(b, 3);
+ case 3:
+ r2 = MP_DIGIT(b, 2);
+ case 2:
+ r1 = MP_DIGIT(b, 1);
+ case 1:
+ r0 = MP_DIGIT(b, 0);
+ }
+
+ carry = 0;
+ MP_ADD_CARRY(a0, r0, r0, carry);
+ MP_ADD_CARRY(a1, r1, r1, carry);
+ MP_ADD_CARRY(a2, r2, r2, carry);
+ MP_ADD_CARRY(a3, r3, r3, carry);
+ MP_ADD_CARRY(a4, r4, r4, carry);
+ MP_ADD_CARRY(a5, r5, r5, carry);
+
+ MP_CHECKOK(s_mp_pad(r, 6));
+ MP_DIGIT(r, 5) = r5;
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 6;
+
+ /* Do quick 'subract' if we've gone over
+ * (add the 2's complement of the curve field) */
+ a5 = MP_DIGIT(&meth->irr, 5);
+ if (carry || r5 > a5 ||
+ ((r5 == a5) && mp_cmp(r, &meth->irr) != MP_LT)) {
+ a4 = MP_DIGIT(&meth->irr, 4);
+ a3 = MP_DIGIT(&meth->irr, 3);
+ a2 = MP_DIGIT(&meth->irr, 2);
+ a1 = MP_DIGIT(&meth->irr, 1);
+ a0 = MP_DIGIT(&meth->irr, 0);
+ carry = 0;
+ MP_SUB_BORROW(r0, a0, r0, carry);
+ MP_SUB_BORROW(r1, a1, r1, carry);
+ MP_SUB_BORROW(r2, a2, r2, carry);
+ MP_SUB_BORROW(r3, a3, r3, carry);
+ MP_SUB_BORROW(r4, a4, r4, carry);
+ MP_SUB_BORROW(r5, a5, r5, carry);
+ MP_DIGIT(r, 5) = r5;
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ }
+
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/*
+ * The following subraction functions do in-line subractions based
+ * on our curve size.
+ *
+ * ... 3 words
+ */
+mp_err
+ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit b0 = 0, b1 = 0, b2 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0;
+ mp_digit borrow;
+
+ switch (MP_USED(a)) {
+ case 3:
+ r2 = MP_DIGIT(a, 2);
+ case 2:
+ r1 = MP_DIGIT(a, 1);
+ case 1:
+ r0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ case 1:
+ b0 = MP_DIGIT(b, 0);
+ }
+
+#ifndef MPI_AMD64_ADD
+ borrow = 0;
+ MP_SUB_BORROW(r0, b0, r0, borrow);
+ MP_SUB_BORROW(r1, b1, r1, borrow);
+ MP_SUB_BORROW(r2, b2, r2, borrow);
+#else
+ __asm__(
+ "xorq %3,%3 \n\t"
+ "subq %4,%0 \n\t"
+ "sbbq %5,%1 \n\t"
+ "sbbq %6,%2 \n\t"
+ "adcq $0,%3 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow)
+ : "r"(b0), "r"(b1), "r"(b2),
+ "0"(r0), "1"(r1), "2"(r2)
+ : "%cc");
+#endif
+
+ /* Do quick 'add' if we've gone under 0
+ * (subtract the 2's complement of the curve field) */
+ if (borrow) {
+ b2 = MP_DIGIT(&meth->irr, 2);
+ b1 = MP_DIGIT(&meth->irr, 1);
+ b0 = MP_DIGIT(&meth->irr, 0);
+#ifndef MPI_AMD64_ADD
+ borrow = 0;
+ MP_ADD_CARRY(b0, r0, r0, borrow);
+ MP_ADD_CARRY(b1, r1, r1, borrow);
+ MP_ADD_CARRY(b2, r2, r2, borrow);
+#else
+ __asm__(
+ "addq %3,%0 \n\t"
+ "adcq %4,%1 \n\t"
+ "adcq %5,%2 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2)
+ : "r"(b0), "r"(b1), "r"(b2),
+ "0"(r0), "1"(r1), "2"(r2)
+ : "%cc");
+#endif
+ }
+
+#ifdef MPI_AMD64_ADD
+ /* compiler fakeout? */
+ if ((r2 == b0) && (r1 == b0) && (r0 == b0)) {
+ MP_CHECKOK(s_mp_pad(r, 4));
+ }
+#endif
+ MP_CHECKOK(s_mp_pad(r, 3));
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 3;
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 4 words */
+mp_err
+ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
+ mp_digit borrow;
+
+ switch (MP_USED(a)) {
+ case 4:
+ r3 = MP_DIGIT(a, 3);
+ case 3:
+ r2 = MP_DIGIT(a, 2);
+ case 2:
+ r1 = MP_DIGIT(a, 1);
+ case 1:
+ r0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 4:
+ b3 = MP_DIGIT(b, 3);
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ case 1:
+ b0 = MP_DIGIT(b, 0);
+ }
+
+#ifndef MPI_AMD64_ADD
+ borrow = 0;
+ MP_SUB_BORROW(r0, b0, r0, borrow);
+ MP_SUB_BORROW(r1, b1, r1, borrow);
+ MP_SUB_BORROW(r2, b2, r2, borrow);
+ MP_SUB_BORROW(r3, b3, r3, borrow);
+#else
+ __asm__(
+ "xorq %4,%4 \n\t"
+ "subq %5,%0 \n\t"
+ "sbbq %6,%1 \n\t"
+ "sbbq %7,%2 \n\t"
+ "sbbq %8,%3 \n\t"
+ "adcq $0,%4 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(borrow)
+ : "r"(b0), "r"(b1), "r"(b2), "r"(b3),
+ "0"(r0), "1"(r1), "2"(r2), "3"(r3)
+ : "%cc");
+#endif
+
+ /* Do quick 'add' if we've gone under 0
+ * (subtract the 2's complement of the curve field) */
+ if (borrow) {
+ b3 = MP_DIGIT(&meth->irr, 3);
+ b2 = MP_DIGIT(&meth->irr, 2);
+ b1 = MP_DIGIT(&meth->irr, 1);
+ b0 = MP_DIGIT(&meth->irr, 0);
+#ifndef MPI_AMD64_ADD
+ borrow = 0;
+ MP_ADD_CARRY(b0, r0, r0, borrow);
+ MP_ADD_CARRY(b1, r1, r1, borrow);
+ MP_ADD_CARRY(b2, r2, r2, borrow);
+ MP_ADD_CARRY(b3, r3, r3, borrow);
+#else
+ __asm__(
+ "addq %4,%0 \n\t"
+ "adcq %5,%1 \n\t"
+ "adcq %6,%2 \n\t"
+ "adcq %7,%3 \n\t"
+ : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
+ : "r"(b0), "r"(b1), "r"(b2), "r"(b3),
+ "0"(r0), "1"(r1), "2"(r2), "3"(r3)
+ : "%cc");
+#endif
+ }
+#ifdef MPI_AMD64_ADD
+ /* compiler fakeout? */
+ if ((r3 == b0) && (r1 == b0) && (r0 == b0)) {
+ MP_CHECKOK(s_mp_pad(r, 4));
+ }
+#endif
+ MP_CHECKOK(s_mp_pad(r, 4));
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 4;
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 5 words */
+mp_err
+ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
+ mp_digit borrow;
+
+ switch (MP_USED(a)) {
+ case 5:
+ r4 = MP_DIGIT(a, 4);
+ case 4:
+ r3 = MP_DIGIT(a, 3);
+ case 3:
+ r2 = MP_DIGIT(a, 2);
+ case 2:
+ r1 = MP_DIGIT(a, 1);
+ case 1:
+ r0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 5:
+ b4 = MP_DIGIT(b, 4);
+ case 4:
+ b3 = MP_DIGIT(b, 3);
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ case 1:
+ b0 = MP_DIGIT(b, 0);
+ }
+
+ borrow = 0;
+ MP_SUB_BORROW(r0, b0, r0, borrow);
+ MP_SUB_BORROW(r1, b1, r1, borrow);
+ MP_SUB_BORROW(r2, b2, r2, borrow);
+ MP_SUB_BORROW(r3, b3, r3, borrow);
+ MP_SUB_BORROW(r4, b4, r4, borrow);
+
+ /* Do quick 'add' if we've gone under 0
+ * (subtract the 2's complement of the curve field) */
+ if (borrow) {
+ b4 = MP_DIGIT(&meth->irr, 4);
+ b3 = MP_DIGIT(&meth->irr, 3);
+ b2 = MP_DIGIT(&meth->irr, 2);
+ b1 = MP_DIGIT(&meth->irr, 1);
+ b0 = MP_DIGIT(&meth->irr, 0);
+ borrow = 0;
+ MP_ADD_CARRY(b0, r0, r0, borrow);
+ MP_ADD_CARRY(b1, r1, r1, borrow);
+ MP_ADD_CARRY(b2, r2, r2, borrow);
+ MP_ADD_CARRY(b3, r3, r3, borrow);
+ MP_ADD_CARRY(b4, r4, r4, borrow);
+ }
+ MP_CHECKOK(s_mp_pad(r, 5));
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 5;
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* 6 words */
+mp_err
+ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0;
+ mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
+ mp_digit borrow;
+
+ switch (MP_USED(a)) {
+ case 6:
+ r5 = MP_DIGIT(a, 5);
+ case 5:
+ r4 = MP_DIGIT(a, 4);
+ case 4:
+ r3 = MP_DIGIT(a, 3);
+ case 3:
+ r2 = MP_DIGIT(a, 2);
+ case 2:
+ r1 = MP_DIGIT(a, 1);
+ case 1:
+ r0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+ case 6:
+ b5 = MP_DIGIT(b, 5);
+ case 5:
+ b4 = MP_DIGIT(b, 4);
+ case 4:
+ b3 = MP_DIGIT(b, 3);
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ case 1:
+ b0 = MP_DIGIT(b, 0);
+ }
+
+ borrow = 0;
+ MP_SUB_BORROW(r0, b0, r0, borrow);
+ MP_SUB_BORROW(r1, b1, r1, borrow);
+ MP_SUB_BORROW(r2, b2, r2, borrow);
+ MP_SUB_BORROW(r3, b3, r3, borrow);
+ MP_SUB_BORROW(r4, b4, r4, borrow);
+ MP_SUB_BORROW(r5, b5, r5, borrow);
+
+ /* Do quick 'add' if we've gone under 0
+ * (subtract the 2's complement of the curve field) */
+ if (borrow) {
+ b5 = MP_DIGIT(&meth->irr, 5);
+ b4 = MP_DIGIT(&meth->irr, 4);
+ b3 = MP_DIGIT(&meth->irr, 3);
+ b2 = MP_DIGIT(&meth->irr, 2);
+ b1 = MP_DIGIT(&meth->irr, 1);
+ b0 = MP_DIGIT(&meth->irr, 0);
+ borrow = 0;
+ MP_ADD_CARRY(b0, r0, r0, borrow);
+ MP_ADD_CARRY(b1, r1, r1, borrow);
+ MP_ADD_CARRY(b2, r2, r2, borrow);
+ MP_ADD_CARRY(b3, r3, r3, borrow);
+ MP_ADD_CARRY(b4, r4, r4, borrow);
+ MP_ADD_CARRY(b5, r5, r5, borrow);
+ }
+
+ MP_CHECKOK(s_mp_pad(r, 6));
+ MP_DIGIT(r, 5) = r5;
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 6;
+ s_mp_clamp(r);
+
+CLEANUP:
+ return res;
+}
+
+/* Reduces an integer to a field element. */
+mp_err
+ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return mp_mod(a, &meth->irr, r);
+}
+
+/* Multiplies two field elements. */
+mp_err
+ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ return mp_mulmod(a, b, &meth->irr, r);
+}
+
+/* Squares a field element. */
+mp_err
+ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return mp_sqrmod(a, &meth->irr, r);
+}
+
+/* Divides two field elements. If a is NULL, then returns the inverse of
+ * b. */
+mp_err
+ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_int t;
+
+ /* If a is NULL, then return the inverse of b, otherwise return a/b. */
+ if (a == NULL) {
+ return mp_invmod(b, &meth->irr, r);
+ } else {
+ /* MPI doesn't support divmod, so we implement it using invmod and
+ * mulmod. */
+ MP_CHECKOK(mp_init(&t));
+ MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
+ MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r));
+ CLEANUP:
+ mp_clear(&t);
+ return res;
+ }
+}
+
+/* Wrapper functions for generic binary polynomial field arithmetic. */
+
+/* Adds two field elements. */
+mp_err
+ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ return mp_badd(a, b, r);
+}
+
+/* Negates a field element. Note that for binary polynomial fields, the
+ * negation of a field element is the field element itself. */
+mp_err
+ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ if (a == r) {
+ return MP_OKAY;
+ } else {
+ return mp_copy(a, r);
+ }
+}
+
+/* Reduces a binary polynomial to a field element. */
+mp_err
+ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return mp_bmod(a, meth->irr_arr, r);
+}
+
+/* Multiplies two field elements. */
+mp_err
+ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ return mp_bmulmod(a, b, meth->irr_arr, r);
+}
+
+/* Squares a field element. */
+mp_err
+ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return mp_bsqrmod(a, meth->irr_arr, r);
+}
+
+/* Divides two field elements. If a is NULL, then returns the inverse of
+ * b. */
+mp_err
+ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_int t;
+
+ /* If a is NULL, then return the inverse of b, otherwise return a/b. */
+ if (a == NULL) {
+ /* The GF(2^m) portion of MPI doesn't support invmod, so we
+ * compute 1/b. */
+ MP_CHECKOK(mp_init(&t));
+ MP_CHECKOK(mp_set_int(&t, 1));
+ MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r));
+ CLEANUP:
+ mp_clear(&t);
+ return res;
+ } else {
+ return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r);
+ }
+}
diff --git a/security/nss/lib/freebl/ecl/ecl_mult.c b/security/nss/lib/freebl/ecl/ecl_mult.c
new file mode 100644
index 000000000..ffbcbf1d9
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecl_mult.c
@@ -0,0 +1,305 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "ecl.h"
+#include "ecl-priv.h"
+#include <stdlib.h>
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
+ * y). If x, y = NULL, then P is assumed to be the generator (base point)
+ * of the group of points on the elliptic curve. Input and output values
+ * are assumed to be NOT field-encoded. */
+mp_err
+ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry)
+{
+ mp_err res = MP_OKAY;
+ mp_int kt;
+
+ ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
+ MP_DIGITS(&kt) = 0;
+
+ /* want scalar to be less than or equal to group order */
+ if (mp_cmp(k, &group->order) > 0) {
+ MP_CHECKOK(mp_init(&kt));
+ MP_CHECKOK(mp_mod(k, &group->order, &kt));
+ } else {
+ MP_SIGN(&kt) = MP_ZPOS;
+ MP_USED(&kt) = MP_USED(k);
+ MP_ALLOC(&kt) = MP_ALLOC(k);
+ MP_DIGITS(&kt) = MP_DIGITS(k);
+ }
+
+ if ((px == NULL) || (py == NULL)) {
+ if (group->base_point_mul) {
+ MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
+ } else {
+ MP_CHECKOK(group->point_mul(&kt, &group->genx, &group->geny, rx, ry,
+ group));
+ }
+ } else {
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
+ MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
+ } else {
+ MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
+ }
+ }
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+ }
+
+CLEANUP:
+ if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
+ mp_clear(&kt);
+ }
+ return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. */
+mp_err
+ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int sx, sy;
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK(!((k1 == NULL) && ((k2 == NULL) || (px == NULL) || (py == NULL))), MP_BADARG);
+
+ /* if some arguments are not defined used ECPoint_mul */
+ if (k1 == NULL) {
+ return ECPoint_mul(group, k2, px, py, rx, ry);
+ } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+ return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+ }
+
+ MP_DIGITS(&sx) = 0;
+ MP_DIGITS(&sy) = 0;
+ MP_CHECKOK(mp_init(&sx));
+ MP_CHECKOK(mp_init(&sy));
+
+ MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
+ MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
+
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
+ MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
+ MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
+ }
+
+ MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
+
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+ }
+
+CLEANUP:
+ mp_clear(&sx);
+ mp_clear(&sy);
+ return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. Uses
+ * algorithm 15 (simultaneous multiple point multiplication) from Brown,
+ * Hankerson, Lopez, Menezes. Software Implementation of the NIST
+ * Elliptic Curves over Prime Fields. */
+mp_err
+ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[4][4][2];
+ const mp_int *a, *b;
+ unsigned int i, j;
+ int ai, bi, d;
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK(!((k1 == NULL) && ((k2 == NULL) || (px == NULL) || (py == NULL))), MP_BADARG);
+
+ /* if some arguments are not defined used ECPoint_mul */
+ if (k1 == NULL) {
+ return ECPoint_mul(group, k2, px, py, rx, ry);
+ } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+ return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+ }
+
+ /* initialize precomputation table */
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_DIGITS(&precomp[i][j][0]) = 0;
+ MP_DIGITS(&precomp[i][j][1]) = 0;
+ }
+ }
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_CHECKOK(mp_init_size(&precomp[i][j][0],
+ ECL_MAX_FIELD_SIZE_DIGITS));
+ MP_CHECKOK(mp_init_size(&precomp[i][j][1],
+ ECL_MAX_FIELD_SIZE_DIGITS));
+ }
+ }
+
+ /* fill precomputation table */
+ /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
+ if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
+ a = k2;
+ b = k1;
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[1][0][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[1][0][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
+ }
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
+ } else {
+ a = k1;
+ b = k2;
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[0][1][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[0][1][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
+ }
+ }
+ /* precompute [*][0][*] */
+ mp_zero(&precomp[0][0][0]);
+ mp_zero(&precomp[0][0][1]);
+ MP_CHECKOK(group->point_dbl(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1], group));
+ MP_CHECKOK(group->point_add(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1],
+ &precomp[3][0][0], &precomp[3][0][1], group));
+ /* precompute [*][1][*] */
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][1][0], &precomp[i][1][1], group));
+ }
+ /* precompute [*][2][*] */
+ MP_CHECKOK(group->point_dbl(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][2][0], &precomp[0][2][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][2][0], &precomp[i][2][1], group));
+ }
+ /* precompute [*][3][*] */
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1],
+ &precomp[0][3][0], &precomp[0][3][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][3][0], &precomp[0][3][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][3][0], &precomp[i][3][1], group));
+ }
+
+ d = (mpl_significant_bits(a) + 1) / 2;
+
+ /* R = inf */
+ mp_zero(rx);
+ mp_zero(ry);
+
+ for (i = d; i-- > 0;) {
+ ai = MP_GET_BIT(a, 2 * i + 1);
+ ai <<= 1;
+ ai |= MP_GET_BIT(a, 2 * i);
+ bi = MP_GET_BIT(b, 2 * i + 1);
+ bi <<= 1;
+ bi |= MP_GET_BIT(b, 2 * i);
+ /* R = 2^2 * R */
+ MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
+ MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
+ /* R = R + (ai * A + bi * B) */
+ MP_CHECKOK(group->point_add(rx, ry, &precomp[ai][bi][0],
+ &precomp[ai][bi][1], rx, ry, group));
+ }
+
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+ }
+
+CLEANUP:
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ mp_clear(&precomp[i][j][0]);
+ mp_clear(&precomp[i][j][1]);
+ }
+ }
+ return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. */
+mp_err
+ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
+ const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
+{
+ mp_err res = MP_OKAY;
+ mp_int k1t, k2t;
+ const mp_int *k1p, *k2p;
+
+ MP_DIGITS(&k1t) = 0;
+ MP_DIGITS(&k2t) = 0;
+
+ ARGCHK(group != NULL, MP_BADARG);
+
+ /* want scalar to be less than or equal to group order */
+ if (k1 != NULL) {
+ if (mp_cmp(k1, &group->order) >= 0) {
+ MP_CHECKOK(mp_init(&k1t));
+ MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
+ k1p = &k1t;
+ } else {
+ k1p = k1;
+ }
+ } else {
+ k1p = k1;
+ }
+ if (k2 != NULL) {
+ if (mp_cmp(k2, &group->order) >= 0) {
+ MP_CHECKOK(mp_init(&k2t));
+ MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
+ k2p = &k2t;
+ } else {
+ k2p = k2;
+ }
+ } else {
+ k2p = k2;
+ }
+
+ /* if points_mul is defined, then use it */
+ if (group->points_mul) {
+ res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
+ } else {
+ res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
+ }
+
+CLEANUP:
+ mp_clear(&k1t);
+ mp_clear(&k2t);
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp.h b/security/nss/lib/freebl/ecl/ecp.h
new file mode 100644
index 000000000..7e54e4e07
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp.h
@@ -0,0 +1,106 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef __ecp_h_
+#define __ecp_h_
+
+#include "ecl-priv.h"
+
+/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
+mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
+
+/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
+mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
+
+/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
+ * qy). Uses affine coordinates. */
+mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = P - Q. Uses affine coordinates. */
+mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = 2P. Uses affine coordinates. */
+mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Validates a point on a GFp curve. */
+mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Uses affine coordinates. */
+mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+/* Converts a point P(px, py) from affine coordinates to Jacobian
+ * projective coordinates R(rx, ry, rz). */
+mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group);
+
+/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
+ * affine coordinates R(rx, ry). */
+mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
+ * coordinates. */
+mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
+ const mp_int *pz);
+
+/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
+ * coordinates. */
+mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, qz). Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
+ const mp_int *pz, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+/* Computes R = 2P. Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
+ * (base point) of the group of points on the elliptic curve. Allows k1 =
+ * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
+ * coordinates. Input and output values are assumed to be NOT
+ * field-encoded and are in affine form. */
+mp_err
+ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
+ * curve points P and R can be identical. Uses mixed Modified-Jacobian
+ * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
+ * additions. Assumes input is already field-encoded using field_enc, and
+ * returns output that is still field-encoded. Uses 5-bit window NAF
+ * method (algorithm 11) for scalar-point multiplication from Brown,
+ * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
+ * Curves Over Prime Fields. */
+mp_err
+ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group);
+
+#endif /* __ecp_h_ */
diff --git a/security/nss/lib/freebl/ecl/ecp_25519.c b/security/nss/lib/freebl/ecl/ecp_25519.c
new file mode 100644
index 000000000..a8d41520e
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_25519.c
@@ -0,0 +1,120 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* curve 25519 https://www.rfc-editor.org/rfc/rfc7748.txt */
+
+#ifdef FREEBL_NO_DEPEND
+#include "../stubs.h"
+#endif
+
+#include "ecl-priv.h"
+#include "ecp.h"
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+#include "secmpi.h"
+#include "secitem.h"
+#include "secport.h"
+#include <stdlib.h>
+#include <stdio.h>
+
+/*
+ * point validation is not necessary in general. But this checks a point (px)
+ * against some known bad values.
+ */
+SECStatus
+ec_Curve25519_pt_validate(const SECItem *px)
+{
+ PRUint8 *p;
+ int i;
+ PRUint8 forbiddenValues[12][32] = {
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
+ 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
+ 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
+ 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 },
+ { 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
+ 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
+ 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
+ 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 },
+ { 0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
+ { 0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
+ { 0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f },
+ { 0xcd, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
+ 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
+ 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
+ 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x80 },
+ { 0x4c, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
+ 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
+ 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
+ 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0xd7 },
+ { 0xd9, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
+ { 0xda, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
+ { 0xdb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
+ };
+
+ /* The point must not be longer than 32 (it can be smaller). */
+ if (px->len <= 32) {
+ p = px->data;
+ } else {
+ return SECFailure;
+ }
+
+ for (i = 0; i < PR_ARRAY_SIZE(forbiddenValues); ++i) {
+ if (NSS_SecureMemcmp(p, forbiddenValues[i], px->len) == 0) {
+ return SECFailure;
+ }
+ }
+
+ return SECSuccess;
+}
+
+/*
+ * Scalar multiplication for Curve25519.
+ * If P == NULL, the base point is used.
+ * Returns X = k*P
+ */
+SECStatus
+ec_Curve25519_pt_mul(SECItem *X, SECItem *k, SECItem *P)
+{
+ PRUint8 *px;
+ PRUint8 basePoint[32] = { 9 };
+
+ if (!P) {
+ px = basePoint;
+ } else {
+ PORT_Assert(P->len == 32);
+ if (P->len != 32) {
+ return SECFailure;
+ }
+ px = P->data;
+ }
+
+ return ec_Curve25519_mul(X->data, k->data, px);
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_256.c b/security/nss/lib/freebl/ecl/ecp_256.c
new file mode 100644
index 000000000..ad4e630c1
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_256.c
@@ -0,0 +1,401 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+
+/* Fast modular reduction for p256 = 2^256 - 2^224 + 2^192+ 2^96 - 1. a can be r.
+ * Uses algorithm 2.29 from Hankerson, Menezes, Vanstone. Guide to
+ * Elliptic Curve Cryptography. */
+static mp_err
+ec_GFp_nistp256_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_size a_used = MP_USED(a);
+ int a_bits = mpl_significant_bits(a);
+ mp_digit carry;
+
+#ifdef ECL_THIRTY_TWO_BIT
+ mp_digit a8 = 0, a9 = 0, a10 = 0, a11 = 0, a12 = 0, a13 = 0, a14 = 0, a15 = 0;
+ mp_digit r0, r1, r2, r3, r4, r5, r6, r7;
+ int r8; /* must be a signed value ! */
+#else
+ mp_digit a4 = 0, a5 = 0, a6 = 0, a7 = 0;
+ mp_digit a4h, a4l, a5h, a5l, a6h, a6l, a7h, a7l;
+ mp_digit r0, r1, r2, r3;
+ int r4; /* must be a signed value ! */
+#endif
+ /* for polynomials larger than twice the field size
+ * use regular reduction */
+ if (a_bits < 256) {
+ if (a == r)
+ return MP_OKAY;
+ return mp_copy(a, r);
+ }
+ if (a_bits > 512) {
+ MP_CHECKOK(mp_mod(a, &meth->irr, r));
+ } else {
+
+#ifdef ECL_THIRTY_TWO_BIT
+ switch (a_used) {
+ case 16:
+ a15 = MP_DIGIT(a, 15);
+ case 15:
+ a14 = MP_DIGIT(a, 14);
+ case 14:
+ a13 = MP_DIGIT(a, 13);
+ case 13:
+ a12 = MP_DIGIT(a, 12);
+ case 12:
+ a11 = MP_DIGIT(a, 11);
+ case 11:
+ a10 = MP_DIGIT(a, 10);
+ case 10:
+ a9 = MP_DIGIT(a, 9);
+ case 9:
+ a8 = MP_DIGIT(a, 8);
+ }
+
+ r0 = MP_DIGIT(a, 0);
+ r1 = MP_DIGIT(a, 1);
+ r2 = MP_DIGIT(a, 2);
+ r3 = MP_DIGIT(a, 3);
+ r4 = MP_DIGIT(a, 4);
+ r5 = MP_DIGIT(a, 5);
+ r6 = MP_DIGIT(a, 6);
+ r7 = MP_DIGIT(a, 7);
+
+ /* sum 1 */
+ carry = 0;
+ MP_ADD_CARRY(r3, a11, r3, carry);
+ MP_ADD_CARRY(r4, a12, r4, carry);
+ MP_ADD_CARRY(r5, a13, r5, carry);
+ MP_ADD_CARRY(r6, a14, r6, carry);
+ MP_ADD_CARRY(r7, a15, r7, carry);
+ r8 = carry;
+ carry = 0;
+ MP_ADD_CARRY(r3, a11, r3, carry);
+ MP_ADD_CARRY(r4, a12, r4, carry);
+ MP_ADD_CARRY(r5, a13, r5, carry);
+ MP_ADD_CARRY(r6, a14, r6, carry);
+ MP_ADD_CARRY(r7, a15, r7, carry);
+ r8 += carry;
+ carry = 0;
+ /* sum 2 */
+ MP_ADD_CARRY(r3, a12, r3, carry);
+ MP_ADD_CARRY(r4, a13, r4, carry);
+ MP_ADD_CARRY(r5, a14, r5, carry);
+ MP_ADD_CARRY(r6, a15, r6, carry);
+ MP_ADD_CARRY(r7, 0, r7, carry);
+ r8 += carry;
+ carry = 0;
+ /* combine last bottom of sum 3 with second sum 2 */
+ MP_ADD_CARRY(r0, a8, r0, carry);
+ MP_ADD_CARRY(r1, a9, r1, carry);
+ MP_ADD_CARRY(r2, a10, r2, carry);
+ MP_ADD_CARRY(r3, a12, r3, carry);
+ MP_ADD_CARRY(r4, a13, r4, carry);
+ MP_ADD_CARRY(r5, a14, r5, carry);
+ MP_ADD_CARRY(r6, a15, r6, carry);
+ MP_ADD_CARRY(r7, a15, r7, carry); /* from sum 3 */
+ r8 += carry;
+ carry = 0;
+ /* sum 3 (rest of it)*/
+ MP_ADD_CARRY(r6, a14, r6, carry);
+ MP_ADD_CARRY(r7, 0, r7, carry);
+ r8 += carry;
+ carry = 0;
+ /* sum 4 (rest of it)*/
+ MP_ADD_CARRY(r0, a9, r0, carry);
+ MP_ADD_CARRY(r1, a10, r1, carry);
+ MP_ADD_CARRY(r2, a11, r2, carry);
+ MP_ADD_CARRY(r3, a13, r3, carry);
+ MP_ADD_CARRY(r4, a14, r4, carry);
+ MP_ADD_CARRY(r5, a15, r5, carry);
+ MP_ADD_CARRY(r6, a13, r6, carry);
+ MP_ADD_CARRY(r7, a8, r7, carry);
+ r8 += carry;
+ carry = 0;
+ /* diff 5 */
+ MP_SUB_BORROW(r0, a11, r0, carry);
+ MP_SUB_BORROW(r1, a12, r1, carry);
+ MP_SUB_BORROW(r2, a13, r2, carry);
+ MP_SUB_BORROW(r3, 0, r3, carry);
+ MP_SUB_BORROW(r4, 0, r4, carry);
+ MP_SUB_BORROW(r5, 0, r5, carry);
+ MP_SUB_BORROW(r6, a8, r6, carry);
+ MP_SUB_BORROW(r7, a10, r7, carry);
+ r8 -= carry;
+ carry = 0;
+ /* diff 6 */
+ MP_SUB_BORROW(r0, a12, r0, carry);
+ MP_SUB_BORROW(r1, a13, r1, carry);
+ MP_SUB_BORROW(r2, a14, r2, carry);
+ MP_SUB_BORROW(r3, a15, r3, carry);
+ MP_SUB_BORROW(r4, 0, r4, carry);
+ MP_SUB_BORROW(r5, 0, r5, carry);
+ MP_SUB_BORROW(r6, a9, r6, carry);
+ MP_SUB_BORROW(r7, a11, r7, carry);
+ r8 -= carry;
+ carry = 0;
+ /* diff 7 */
+ MP_SUB_BORROW(r0, a13, r0, carry);
+ MP_SUB_BORROW(r1, a14, r1, carry);
+ MP_SUB_BORROW(r2, a15, r2, carry);
+ MP_SUB_BORROW(r3, a8, r3, carry);
+ MP_SUB_BORROW(r4, a9, r4, carry);
+ MP_SUB_BORROW(r5, a10, r5, carry);
+ MP_SUB_BORROW(r6, 0, r6, carry);
+ MP_SUB_BORROW(r7, a12, r7, carry);
+ r8 -= carry;
+ carry = 0;
+ /* diff 8 */
+ MP_SUB_BORROW(r0, a14, r0, carry);
+ MP_SUB_BORROW(r1, a15, r1, carry);
+ MP_SUB_BORROW(r2, 0, r2, carry);
+ MP_SUB_BORROW(r3, a9, r3, carry);
+ MP_SUB_BORROW(r4, a10, r4, carry);
+ MP_SUB_BORROW(r5, a11, r5, carry);
+ MP_SUB_BORROW(r6, 0, r6, carry);
+ MP_SUB_BORROW(r7, a13, r7, carry);
+ r8 -= carry;
+
+ /* reduce the overflows */
+ while (r8 > 0) {
+ mp_digit r8_d = r8;
+ carry = 0;
+ MP_ADD_CARRY(r0, r8_d, r0, carry);
+ MP_ADD_CARRY(r1, 0, r1, carry);
+ MP_ADD_CARRY(r2, 0, r2, carry);
+ MP_ADD_CARRY(r3, 0 - r8_d, r3, carry);
+ MP_ADD_CARRY(r4, MP_DIGIT_MAX, r4, carry);
+ MP_ADD_CARRY(r5, MP_DIGIT_MAX, r5, carry);
+ MP_ADD_CARRY(r6, 0 - (r8_d + 1), r6, carry);
+ MP_ADD_CARRY(r7, (r8_d - 1), r7, carry);
+ r8 = carry;
+ }
+
+ /* reduce the underflows */
+ while (r8 < 0) {
+ mp_digit r8_d = -r8;
+ carry = 0;
+ MP_SUB_BORROW(r0, r8_d, r0, carry);
+ MP_SUB_BORROW(r1, 0, r1, carry);
+ MP_SUB_BORROW(r2, 0, r2, carry);
+ MP_SUB_BORROW(r3, 0 - r8_d, r3, carry);
+ MP_SUB_BORROW(r4, MP_DIGIT_MAX, r4, carry);
+ MP_SUB_BORROW(r5, MP_DIGIT_MAX, r5, carry);
+ MP_SUB_BORROW(r6, 0 - (r8_d + 1), r6, carry);
+ MP_SUB_BORROW(r7, (r8_d - 1), r7, carry);
+ r8 = 0 - carry;
+ }
+ if (a != r) {
+ MP_CHECKOK(s_mp_pad(r, 8));
+ }
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 8;
+
+ MP_DIGIT(r, 7) = r7;
+ MP_DIGIT(r, 6) = r6;
+ MP_DIGIT(r, 5) = r5;
+ MP_DIGIT(r, 4) = r4;
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+
+ /* final reduction if necessary */
+ if ((r7 == MP_DIGIT_MAX) &&
+ ((r6 > 1) || ((r6 == 1) &&
+ (r5 || r4 || r3 ||
+ ((r2 == MP_DIGIT_MAX) && (r1 == MP_DIGIT_MAX) && (r0 == MP_DIGIT_MAX)))))) {
+ MP_CHECKOK(mp_sub(r, &meth->irr, r));
+ }
+
+ s_mp_clamp(r);
+#else
+ switch (a_used) {
+ case 8:
+ a7 = MP_DIGIT(a, 7);
+ case 7:
+ a6 = MP_DIGIT(a, 6);
+ case 6:
+ a5 = MP_DIGIT(a, 5);
+ case 5:
+ a4 = MP_DIGIT(a, 4);
+ }
+ a7l = a7 << 32;
+ a7h = a7 >> 32;
+ a6l = a6 << 32;
+ a6h = a6 >> 32;
+ a5l = a5 << 32;
+ a5h = a5 >> 32;
+ a4l = a4 << 32;
+ a4h = a4 >> 32;
+ r3 = MP_DIGIT(a, 3);
+ r2 = MP_DIGIT(a, 2);
+ r1 = MP_DIGIT(a, 1);
+ r0 = MP_DIGIT(a, 0);
+
+ /* sum 1 */
+ carry = 0;
+ MP_ADD_CARRY(r1, a5h << 32, r1, carry);
+ MP_ADD_CARRY(r2, a6, r2, carry);
+ MP_ADD_CARRY(r3, a7, r3, carry);
+ r4 = carry;
+ carry = 0;
+ MP_ADD_CARRY(r1, a5h << 32, r1, carry);
+ MP_ADD_CARRY(r2, a6, r2, carry);
+ MP_ADD_CARRY(r3, a7, r3, carry);
+ r4 += carry;
+ /* sum 2 */
+ carry = 0;
+ MP_ADD_CARRY(r1, a6l, r1, carry);
+ MP_ADD_CARRY(r2, a6h | a7l, r2, carry);
+ MP_ADD_CARRY(r3, a7h, r3, carry);
+ r4 += carry;
+ carry = 0;
+ MP_ADD_CARRY(r1, a6l, r1, carry);
+ MP_ADD_CARRY(r2, a6h | a7l, r2, carry);
+ MP_ADD_CARRY(r3, a7h, r3, carry);
+ r4 += carry;
+
+ /* sum 3 */
+ carry = 0;
+ MP_ADD_CARRY(r0, a4, r0, carry);
+ MP_ADD_CARRY(r1, a5l >> 32, r1, carry);
+ MP_ADD_CARRY(r2, 0, r2, carry);
+ MP_ADD_CARRY(r3, a7, r3, carry);
+ r4 += carry;
+ /* sum 4 */
+ carry = 0;
+ MP_ADD_CARRY(r0, a4h | a5l, r0, carry);
+ MP_ADD_CARRY(r1, a5h | (a6h << 32), r1, carry);
+ MP_ADD_CARRY(r2, a7, r2, carry);
+ MP_ADD_CARRY(r3, a6h | a4l, r3, carry);
+ r4 += carry;
+ /* diff 5 */
+ carry = 0;
+ MP_SUB_BORROW(r0, a5h | a6l, r0, carry);
+ MP_SUB_BORROW(r1, a6h, r1, carry);
+ MP_SUB_BORROW(r2, 0, r2, carry);
+ MP_SUB_BORROW(r3, (a4l >> 32) | a5l, r3, carry);
+ r4 -= carry;
+ /* diff 6 */
+ carry = 0;
+ MP_SUB_BORROW(r0, a6, r0, carry);
+ MP_SUB_BORROW(r1, a7, r1, carry);
+ MP_SUB_BORROW(r2, 0, r2, carry);
+ MP_SUB_BORROW(r3, a4h | (a5h << 32), r3, carry);
+ r4 -= carry;
+ /* diff 7 */
+ carry = 0;
+ MP_SUB_BORROW(r0, a6h | a7l, r0, carry);
+ MP_SUB_BORROW(r1, a7h | a4l, r1, carry);
+ MP_SUB_BORROW(r2, a4h | a5l, r2, carry);
+ MP_SUB_BORROW(r3, a6l, r3, carry);
+ r4 -= carry;
+ /* diff 8 */
+ carry = 0;
+ MP_SUB_BORROW(r0, a7, r0, carry);
+ MP_SUB_BORROW(r1, a4h << 32, r1, carry);
+ MP_SUB_BORROW(r2, a5, r2, carry);
+ MP_SUB_BORROW(r3, a6h << 32, r3, carry);
+ r4 -= carry;
+
+ /* reduce the overflows */
+ while (r4 > 0) {
+ mp_digit r4_long = r4;
+ mp_digit r4l = (r4_long << 32);
+ carry = 0;
+ MP_ADD_CARRY(r0, r4_long, r0, carry);
+ MP_ADD_CARRY(r1, 0 - r4l, r1, carry);
+ MP_ADD_CARRY(r2, MP_DIGIT_MAX, r2, carry);
+ MP_ADD_CARRY(r3, r4l - r4_long - 1, r3, carry);
+ r4 = carry;
+ }
+
+ /* reduce the underflows */
+ while (r4 < 0) {
+ mp_digit r4_long = -r4;
+ mp_digit r4l = (r4_long << 32);
+ carry = 0;
+ MP_SUB_BORROW(r0, r4_long, r0, carry);
+ MP_SUB_BORROW(r1, 0 - r4l, r1, carry);
+ MP_SUB_BORROW(r2, MP_DIGIT_MAX, r2, carry);
+ MP_SUB_BORROW(r3, r4l - r4_long - 1, r3, carry);
+ r4 = 0 - carry;
+ }
+
+ if (a != r) {
+ MP_CHECKOK(s_mp_pad(r, 4));
+ }
+ MP_SIGN(r) = MP_ZPOS;
+ MP_USED(r) = 4;
+
+ MP_DIGIT(r, 3) = r3;
+ MP_DIGIT(r, 2) = r2;
+ MP_DIGIT(r, 1) = r1;
+ MP_DIGIT(r, 0) = r0;
+
+ /* final reduction if necessary */
+ if ((r3 > 0xFFFFFFFF00000001ULL) ||
+ ((r3 == 0xFFFFFFFF00000001ULL) &&
+ (r2 || (r1 >> 32) ||
+ (r1 == 0xFFFFFFFFULL && r0 == MP_DIGIT_MAX)))) {
+ /* very rare, just use mp_sub */
+ MP_CHECKOK(mp_sub(r, &meth->irr, r));
+ }
+
+ s_mp_clamp(r);
+#endif
+ }
+
+CLEANUP:
+ return res;
+}
+
+/* Compute the square of polynomial a, reduce modulo p256. Store the
+ * result in r. r could be a. Uses optimized modular reduction for p256.
+ */
+static mp_err
+ec_GFp_nistp256_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_sqr(a, r));
+ MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Compute the product of two polynomials a and b, reduce modulo p256.
+ * Store the result in r. r could be a or b; a could be b. Uses
+ * optimized modular reduction for p256. */
+static mp_err
+ec_GFp_nistp256_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_mul(a, b, r));
+ MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Wire in fast field arithmetic and precomputation of base point for
+ * named curves. */
+mp_err
+ec_group_set_gfp256(ECGroup *group, ECCurveName name)
+{
+ if (name == ECCurve_NIST_P256) {
+ group->meth->field_mod = &ec_GFp_nistp256_mod;
+ group->meth->field_mul = &ec_GFp_nistp256_mul;
+ group->meth->field_sqr = &ec_GFp_nistp256_sqr;
+ }
+ return MP_OKAY;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_256_32.c b/security/nss/lib/freebl/ecl/ecp_256_32.c
new file mode 100644
index 000000000..515f6f731
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_256_32.c
@@ -0,0 +1,1535 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* A 32-bit implementation of the NIST P-256 elliptic curve. */
+
+#include <string.h>
+
+#include "prtypes.h"
+#include "mpi.h"
+#include "mpi-priv.h"
+#include "ecp.h"
+
+typedef PRUint8 u8;
+typedef PRUint32 u32;
+typedef PRUint64 u64;
+
+/* Our field elements are represented as nine, unsigned 32-bit words. Freebl's
+ * MPI library calls them digits, but here they are called limbs, which is
+ * GMP's terminology.
+ *
+ * The value of an felem (field element) is:
+ * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
+ *
+ * That is, each limb is alternately 29 or 28-bits wide in little-endian
+ * order.
+ *
+ * This means that an felem hits 2**257, rather than 2**256 as we would like. A
+ * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
+ * when multiplying as terms end up one bit short of a limb which would require
+ * much bit-shifting to correct.
+ *
+ * Finally, the values stored in an felem are in Montgomery form. So the value
+ * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
+ */
+typedef u32 limb;
+#define NLIMBS 9
+typedef limb felem[NLIMBS];
+
+static const limb kBottom28Bits = 0xfffffff;
+static const limb kBottom29Bits = 0x1fffffff;
+
+/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
+ * 28-bit words.
+ */
+static const felem kOne = {
+ 2, 0, 0, 0xffff800,
+ 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
+ 0
+};
+static const felem kZero = { 0 };
+static const felem kP = {
+ 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
+ 0, 0, 0x200000, 0xf000000,
+ 0xfffffff
+};
+static const felem k2P = {
+ 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
+ 0, 0, 0x400000, 0xe000000,
+ 0x1fffffff
+};
+
+/* kPrecomputed contains precomputed values to aid the calculation of scalar
+ * multiples of the base point, G. It's actually two, equal length, tables
+ * concatenated.
+ *
+ * The first table contains (x,y) felem pairs for 16 multiples of the base
+ * point, G.
+ *
+ * Index | Index (binary) | Value
+ * 0 | 0000 | 0G (all zeros, omitted)
+ * 1 | 0001 | G
+ * 2 | 0010 | 2**64G
+ * 3 | 0011 | 2**64G + G
+ * 4 | 0100 | 2**128G
+ * 5 | 0101 | 2**128G + G
+ * 6 | 0110 | 2**128G + 2**64G
+ * 7 | 0111 | 2**128G + 2**64G + G
+ * 8 | 1000 | 2**192G
+ * 9 | 1001 | 2**192G + G
+ * 10 | 1010 | 2**192G + 2**64G
+ * 11 | 1011 | 2**192G + 2**64G + G
+ * 12 | 1100 | 2**192G + 2**128G
+ * 13 | 1101 | 2**192G + 2**128G + G
+ * 14 | 1110 | 2**192G + 2**128G + 2**64G
+ * 15 | 1111 | 2**192G + 2**128G + 2**64G + G
+ *
+ * The second table follows the same style, but the terms are 2**32G,
+ * 2**96G, 2**160G, 2**224G.
+ *
+ * This is ~2KB of data.
+ */
+static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
+ 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
+ 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
+ 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
+ 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
+ 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
+ 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
+ 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
+ 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
+ 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
+ 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
+ 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
+ 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
+ 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
+ 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
+ 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
+ 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
+ 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
+ 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
+ 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
+ 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
+ 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
+ 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
+ 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
+ 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
+ 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
+ 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
+ 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
+ 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
+ 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
+ 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
+ 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
+ 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
+ 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
+ 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
+ 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
+ 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
+ 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
+ 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
+ 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
+ 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
+ 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
+ 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
+ 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
+ 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
+ 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
+ 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
+ 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
+ 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
+ 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
+ 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
+ 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
+ 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
+ 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
+ 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
+ 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
+ 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
+ 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
+ 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
+ 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
+ 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
+};
+
+/* Field element operations:
+ */
+
+/* NON_ZERO_TO_ALL_ONES returns:
+ * 0xffffffff for 0 < x <= 2**31
+ * 0 for x == 0 or x > 2**31.
+ *
+ * x must be a u32 or an equivalent type such as limb.
+ */
+#define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x)-1) >> 31) - 1)
+
+/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
+ * which is a term at 2**257.
+ *
+ * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
+ * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
+ */
+static void
+felem_reduce_carry(felem inout, limb carry)
+{
+ const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
+
+ inout[0] += carry << 1;
+ inout[3] += 0x10000000 & carry_mask;
+ /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
+ * previous line therefore this doesn't underflow.
+ */
+ inout[3] -= carry << 11;
+ inout[4] += (0x20000000 - 1) & carry_mask;
+ inout[5] += (0x10000000 - 1) & carry_mask;
+ inout[6] += (0x20000000 - 1) & carry_mask;
+ inout[6] -= carry << 22;
+ /* This may underflow if carry is non-zero but, if so, we'll fix it in the
+ * next line.
+ */
+ inout[7] -= 1 & carry_mask;
+ inout[7] += carry << 25;
+}
+
+/* felem_sum sets out = in+in2.
+ *
+ * On entry, in[i]+in2[i] must not overflow a 32-bit word.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
+ */
+static void
+felem_sum(felem out, const felem in, const felem in2)
+{
+ limb carry = 0;
+ unsigned int i;
+ for (i = 0;; i++) {
+ out[i] = in[i] + in2[i];
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] = in[i] + in2[i];
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
+#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
+#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
+#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
+#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
+#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
+
+/* zero31 is 0 mod p.
+ */
+static const felem zero31 = {
+ two31m3, two30m2, two31m2, two30p13m2,
+ two31m2, two30m2, two31p24m2, two30m27m2,
+ two31m2
+};
+
+/* felem_diff sets out = in-in2.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+ * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_diff(felem out, const felem in, const felem in2)
+{
+ limb carry = 0;
+ unsigned int i;
+
+ for (i = 0;; i++) {
+ out[i] = in[i] - in2[i];
+ out[i] += zero31[i];
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] = in[i] - in2[i];
+ out[i] += zero31[i];
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
+ * with the same 29,28,... bit positions as an felem.
+ *
+ * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
+ * Since we just multiplied two Montgomery values together, the result is
+ * x*y*R*R mod p. We wish to divide by R in order for the result also to be
+ * in Montgomery form.
+ *
+ * On entry: tmp[i] < 2**64
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
+ */
+static void
+felem_reduce_degree(felem out, u64 tmp[17])
+{
+ /* The following table may be helpful when reading this code:
+ *
+ * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
+ * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
+ * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
+ * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
+ */
+ limb tmp2[18], carry, x, xMask;
+ unsigned int i;
+
+ /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
+ * felem. So the top of an element of tmp might overlap with another
+ * element two positions down. The following loop eliminates this
+ * overlap.
+ */
+ tmp2[0] = tmp[0] & kBottom29Bits;
+
+ /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
+ * and hint to the compiler that it can do a single-word shift by selecting
+ * the right register rather than doing a double-word shift and truncating
+ * afterwards.
+ */
+ tmp2[1] = ((limb)tmp[0]) >> 29;
+ tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits;
+ tmp2[1] += ((limb)tmp[1]) & kBottom28Bits;
+ carry = tmp2[1] >> 28;
+ tmp2[1] &= kBottom28Bits;
+
+ for (i = 2; i < 17; i++) {
+ tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
+ tmp2[i] += ((limb)(tmp[i - 1])) >> 28;
+ tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
+ tmp2[i] += ((limb)tmp[i]) & kBottom29Bits;
+ tmp2[i] += carry;
+ carry = tmp2[i] >> 29;
+ tmp2[i] &= kBottom29Bits;
+
+ i++;
+ if (i == 17)
+ break;
+ tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
+ tmp2[i] += ((limb)(tmp[i - 1])) >> 29;
+ tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
+ tmp2[i] += ((limb)tmp[i]) & kBottom28Bits;
+ tmp2[i] += carry;
+ carry = tmp2[i] >> 28;
+ tmp2[i] &= kBottom28Bits;
+ }
+
+ tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25;
+ tmp2[17] += ((limb)(tmp[16])) >> 29;
+ tmp2[17] += (((limb)(tmp[16] >> 32)) << 3);
+ tmp2[17] += carry;
+
+ /* Montgomery elimination of terms:
+ *
+ * Since R is 2**257, we can divide by R with a bitwise shift if we can
+ * ensure that the right-most 257 bits are all zero. We can make that true
+ * by adding multiplies of p without affecting the value.
+ *
+ * So we eliminate limbs from right to left. Since the bottom 29 bits of p
+ * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
+ * We can do that for 8 further limbs and then right shift to eliminate the
+ * extra factor of R.
+ */
+ for (i = 0;; i += 2) {
+ tmp2[i + 1] += tmp2[i] >> 29;
+ x = tmp2[i] & kBottom29Bits;
+ xMask = NON_ZERO_TO_ALL_ONES(x);
+ tmp2[i] = 0;
+
+ /* The bounds calculations for this loop are tricky. Each iteration of
+ * the loop eliminates two words by adding values to words to their
+ * right.
+ *
+ * The following table contains the amounts added to each word (as an
+ * offset from the value of i at the top of the loop). The amounts are
+ * accounted for from the first and second half of the loop separately
+ * and are written as, for example, 28 to mean a value <2**28.
+ *
+ * Word: 3 4 5 6 7 8 9 10
+ * Added in top half: 28 11 29 21 29 28
+ * 28 29
+ * 29
+ * Added in bottom half: 29 10 28 21 28 28
+ * 29
+ *
+ * The value that is currently offset 7 will be offset 5 for the next
+ * iteration and then offset 3 for the iteration after that. Therefore
+ * the total value added will be the values added at 7, 5 and 3.
+ *
+ * The following table accumulates these values. The sums at the bottom
+ * are written as, for example, 29+28, to mean a value < 2**29+2**28.
+ *
+ * Word: 3 4 5 6 7 8 9 10 11 12 13
+ * 28 11 10 29 21 29 28 28 28 28 28
+ * 29 28 11 28 29 28 29 28 29 28
+ * 29 28 21 21 29 21 29 21
+ * 10 29 28 21 28 21 28
+ * 28 29 28 29 28 29 28
+ * 11 10 29 10 29 10
+ * 29 28 11 28 11
+ * 29 29
+ * --------------------------------------------
+ * 30+ 31+ 30+ 31+ 30+
+ * 28+ 29+ 28+ 29+ 21+
+ * 21+ 28+ 21+ 28+ 10
+ * 10 21+ 10 21+
+ * 11 11
+ *
+ * So the greatest amount is added to tmp2[10] and tmp2[12]. If
+ * tmp2[10/12] has an initial value of <2**29, then the maximum value
+ * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
+ * as required.
+ */
+ tmp2[i + 3] += (x << 10) & kBottom28Bits;
+ tmp2[i + 4] += (x >> 18);
+
+ tmp2[i + 6] += (x << 21) & kBottom29Bits;
+ tmp2[i + 7] += x >> 8;
+
+ /* At position 200, which is the starting bit position for word 7, we
+ * have a factor of 0xf000000 = 2**28 - 2**24.
+ */
+ tmp2[i + 7] += 0x10000000 & xMask;
+ /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
+ tmp2[i + 8] += (x - 1) & xMask;
+ tmp2[i + 7] -= (x << 24) & kBottom28Bits;
+ tmp2[i + 8] -= x >> 4;
+
+ tmp2[i + 8] += 0x20000000 & xMask;
+ tmp2[i + 8] -= x;
+ tmp2[i + 8] += (x << 28) & kBottom29Bits;
+ tmp2[i + 9] += ((x >> 1) - 1) & xMask;
+
+ if (i + 1 == NLIMBS)
+ break;
+ tmp2[i + 2] += tmp2[i + 1] >> 28;
+ x = tmp2[i + 1] & kBottom28Bits;
+ xMask = NON_ZERO_TO_ALL_ONES(x);
+ tmp2[i + 1] = 0;
+
+ tmp2[i + 4] += (x << 11) & kBottom29Bits;
+ tmp2[i + 5] += (x >> 18);
+
+ tmp2[i + 7] += (x << 21) & kBottom28Bits;
+ tmp2[i + 8] += x >> 7;
+
+ /* At position 199, which is the starting bit of the 8th word when
+ * dealing with a context starting on an odd word, we have a factor of
+ * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
+ * word from i+1 is i+8.
+ */
+ tmp2[i + 8] += 0x20000000 & xMask;
+ tmp2[i + 9] += (x - 1) & xMask;
+ tmp2[i + 8] -= (x << 25) & kBottom29Bits;
+ tmp2[i + 9] -= x >> 4;
+
+ tmp2[i + 9] += 0x10000000 & xMask;
+ tmp2[i + 9] -= x;
+ tmp2[i + 10] += (x - 1) & xMask;
+ }
+
+ /* We merge the right shift with a carry chain. The words above 2**257 have
+ * widths of 28,29,... which we need to correct when copying them down.
+ */
+ carry = 0;
+ for (i = 0; i < 8; i++) {
+ /* The maximum value of tmp2[i + 9] occurs on the first iteration and
+ * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
+ * therefore safe.
+ */
+ out[i] = tmp2[i + 9];
+ out[i] += carry;
+ out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ out[i] = tmp2[i + 9] >> 1;
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ out[8] = tmp2[17];
+ out[8] += carry;
+ carry = out[8] >> 29;
+ out[8] &= kBottom29Bits;
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_square sets out=in*in.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_square(felem out, const felem in)
+{
+ u64 tmp[17];
+
+ tmp[0] = ((u64)in[0]) * in[0];
+ tmp[1] = ((u64)in[0]) * (in[1] << 1);
+ tmp[2] = ((u64)in[0]) * (in[2] << 1) +
+ ((u64)in[1]) * (in[1] << 1);
+ tmp[3] = ((u64)in[0]) * (in[3] << 1) +
+ ((u64)in[1]) * (in[2] << 1);
+ tmp[4] = ((u64)in[0]) * (in[4] << 1) +
+ ((u64)in[1]) * (in[3] << 2) +
+ ((u64)in[2]) * in[2];
+ tmp[5] = ((u64)in[0]) * (in[5] << 1) +
+ ((u64)in[1]) * (in[4] << 1) +
+ ((u64)in[2]) * (in[3] << 1);
+ tmp[6] = ((u64)in[0]) * (in[6] << 1) +
+ ((u64)in[1]) * (in[5] << 2) +
+ ((u64)in[2]) * (in[4] << 1) +
+ ((u64)in[3]) * (in[3] << 1);
+ tmp[7] = ((u64)in[0]) * (in[7] << 1) +
+ ((u64)in[1]) * (in[6] << 1) +
+ ((u64)in[2]) * (in[5] << 1) +
+ ((u64)in[3]) * (in[4] << 1);
+ /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
+ * which is < 2**64 as required.
+ */
+ tmp[8] = ((u64)in[0]) * (in[8] << 1) +
+ ((u64)in[1]) * (in[7] << 2) +
+ ((u64)in[2]) * (in[6] << 1) +
+ ((u64)in[3]) * (in[5] << 2) +
+ ((u64)in[4]) * in[4];
+ tmp[9] = ((u64)in[1]) * (in[8] << 1) +
+ ((u64)in[2]) * (in[7] << 1) +
+ ((u64)in[3]) * (in[6] << 1) +
+ ((u64)in[4]) * (in[5] << 1);
+ tmp[10] = ((u64)in[2]) * (in[8] << 1) +
+ ((u64)in[3]) * (in[7] << 2) +
+ ((u64)in[4]) * (in[6] << 1) +
+ ((u64)in[5]) * (in[5] << 1);
+ tmp[11] = ((u64)in[3]) * (in[8] << 1) +
+ ((u64)in[4]) * (in[7] << 1) +
+ ((u64)in[5]) * (in[6] << 1);
+ tmp[12] = ((u64)in[4]) * (in[8] << 1) +
+ ((u64)in[5]) * (in[7] << 2) +
+ ((u64)in[6]) * in[6];
+ tmp[13] = ((u64)in[5]) * (in[8] << 1) +
+ ((u64)in[6]) * (in[7] << 1);
+ tmp[14] = ((u64)in[6]) * (in[8] << 1) +
+ ((u64)in[7]) * (in[7] << 1);
+ tmp[15] = ((u64)in[7]) * (in[8] << 1);
+ tmp[16] = ((u64)in[8]) * in[8];
+
+ felem_reduce_degree(out, tmp);
+}
+
+/* felem_mul sets out=in*in2.
+ *
+ * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+ * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_mul(felem out, const felem in, const felem in2)
+{
+ u64 tmp[17];
+
+ tmp[0] = ((u64)in[0]) * in2[0];
+ tmp[1] = ((u64)in[0]) * (in2[1] << 0) +
+ ((u64)in[1]) * (in2[0] << 0);
+ tmp[2] = ((u64)in[0]) * (in2[2] << 0) +
+ ((u64)in[1]) * (in2[1] << 1) +
+ ((u64)in[2]) * (in2[0] << 0);
+ tmp[3] = ((u64)in[0]) * (in2[3] << 0) +
+ ((u64)in[1]) * (in2[2] << 0) +
+ ((u64)in[2]) * (in2[1] << 0) +
+ ((u64)in[3]) * (in2[0] << 0);
+ tmp[4] = ((u64)in[0]) * (in2[4] << 0) +
+ ((u64)in[1]) * (in2[3] << 1) +
+ ((u64)in[2]) * (in2[2] << 0) +
+ ((u64)in[3]) * (in2[1] << 1) +
+ ((u64)in[4]) * (in2[0] << 0);
+ tmp[5] = ((u64)in[0]) * (in2[5] << 0) +
+ ((u64)in[1]) * (in2[4] << 0) +
+ ((u64)in[2]) * (in2[3] << 0) +
+ ((u64)in[3]) * (in2[2] << 0) +
+ ((u64)in[4]) * (in2[1] << 0) +
+ ((u64)in[5]) * (in2[0] << 0);
+ tmp[6] = ((u64)in[0]) * (in2[6] << 0) +
+ ((u64)in[1]) * (in2[5] << 1) +
+ ((u64)in[2]) * (in2[4] << 0) +
+ ((u64)in[3]) * (in2[3] << 1) +
+ ((u64)in[4]) * (in2[2] << 0) +
+ ((u64)in[5]) * (in2[1] << 1) +
+ ((u64)in[6]) * (in2[0] << 0);
+ tmp[7] = ((u64)in[0]) * (in2[7] << 0) +
+ ((u64)in[1]) * (in2[6] << 0) +
+ ((u64)in[2]) * (in2[5] << 0) +
+ ((u64)in[3]) * (in2[4] << 0) +
+ ((u64)in[4]) * (in2[3] << 0) +
+ ((u64)in[5]) * (in2[2] << 0) +
+ ((u64)in[6]) * (in2[1] << 0) +
+ ((u64)in[7]) * (in2[0] << 0);
+ /* tmp[8] has the greatest value but doesn't overflow. See logic in
+ * felem_square.
+ */
+ tmp[8] = ((u64)in[0]) * (in2[8] << 0) +
+ ((u64)in[1]) * (in2[7] << 1) +
+ ((u64)in[2]) * (in2[6] << 0) +
+ ((u64)in[3]) * (in2[5] << 1) +
+ ((u64)in[4]) * (in2[4] << 0) +
+ ((u64)in[5]) * (in2[3] << 1) +
+ ((u64)in[6]) * (in2[2] << 0) +
+ ((u64)in[7]) * (in2[1] << 1) +
+ ((u64)in[8]) * (in2[0] << 0);
+ tmp[9] = ((u64)in[1]) * (in2[8] << 0) +
+ ((u64)in[2]) * (in2[7] << 0) +
+ ((u64)in[3]) * (in2[6] << 0) +
+ ((u64)in[4]) * (in2[5] << 0) +
+ ((u64)in[5]) * (in2[4] << 0) +
+ ((u64)in[6]) * (in2[3] << 0) +
+ ((u64)in[7]) * (in2[2] << 0) +
+ ((u64)in[8]) * (in2[1] << 0);
+ tmp[10] = ((u64)in[2]) * (in2[8] << 0) +
+ ((u64)in[3]) * (in2[7] << 1) +
+ ((u64)in[4]) * (in2[6] << 0) +
+ ((u64)in[5]) * (in2[5] << 1) +
+ ((u64)in[6]) * (in2[4] << 0) +
+ ((u64)in[7]) * (in2[3] << 1) +
+ ((u64)in[8]) * (in2[2] << 0);
+ tmp[11] = ((u64)in[3]) * (in2[8] << 0) +
+ ((u64)in[4]) * (in2[7] << 0) +
+ ((u64)in[5]) * (in2[6] << 0) +
+ ((u64)in[6]) * (in2[5] << 0) +
+ ((u64)in[7]) * (in2[4] << 0) +
+ ((u64)in[8]) * (in2[3] << 0);
+ tmp[12] = ((u64)in[4]) * (in2[8] << 0) +
+ ((u64)in[5]) * (in2[7] << 1) +
+ ((u64)in[6]) * (in2[6] << 0) +
+ ((u64)in[7]) * (in2[5] << 1) +
+ ((u64)in[8]) * (in2[4] << 0);
+ tmp[13] = ((u64)in[5]) * (in2[8] << 0) +
+ ((u64)in[6]) * (in2[7] << 0) +
+ ((u64)in[7]) * (in2[6] << 0) +
+ ((u64)in[8]) * (in2[5] << 0);
+ tmp[14] = ((u64)in[6]) * (in2[8] << 0) +
+ ((u64)in[7]) * (in2[7] << 1) +
+ ((u64)in[8]) * (in2[6] << 0);
+ tmp[15] = ((u64)in[7]) * (in2[8] << 0) +
+ ((u64)in[8]) * (in2[7] << 0);
+ tmp[16] = ((u64)in[8]) * (in2[8] << 0);
+
+ felem_reduce_degree(out, tmp);
+}
+
+static void
+felem_assign(felem out, const felem in)
+{
+ memcpy(out, in, sizeof(felem));
+}
+
+/* felem_inv calculates |out| = |in|^{-1}
+ *
+ * Based on Fermat's Little Theorem:
+ * a^p = a (mod p)
+ * a^{p-1} = 1 (mod p)
+ * a^{p-2} = a^{-1} (mod p)
+ */
+static void
+felem_inv(felem out, const felem in)
+{
+ felem ftmp, ftmp2;
+ /* each e_I will hold |in|^{2^I - 1} */
+ felem e2, e4, e8, e16, e32, e64;
+ unsigned int i;
+
+ felem_square(ftmp, in); /* 2^1 */
+ felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
+ felem_assign(e2, ftmp);
+ felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
+ felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
+ felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
+ felem_assign(e4, ftmp);
+ felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
+ felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
+ felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
+ felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
+ felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
+ felem_assign(e8, ftmp);
+ for (i = 0; i < 8; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^16 - 2^8 */
+ felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
+ felem_assign(e16, ftmp);
+ for (i = 0; i < 16; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^32 - 2^16 */
+ felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
+ felem_assign(e32, ftmp);
+ for (i = 0; i < 32; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^64 - 2^32 */
+ felem_assign(e64, ftmp);
+ felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
+ for (i = 0; i < 192; i++) {
+ felem_square(ftmp, ftmp);
+ } /* 2^256 - 2^224 + 2^192 */
+
+ felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
+ for (i = 0; i < 16; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^80 - 2^16 */
+ felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
+ for (i = 0; i < 8; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^88 - 2^8 */
+ felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
+ for (i = 0; i < 4; i++) {
+ felem_square(ftmp2, ftmp2);
+ } /* 2^92 - 2^4 */
+ felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
+ felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
+ felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
+ felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
+ felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
+ felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
+ felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
+
+ felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
+}
+
+/* felem_scalar_3 sets out=3*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_scalar_3(felem out)
+{
+ limb carry = 0;
+ unsigned int i;
+
+ for (i = 0;; i++) {
+ out[i] *= 3;
+ out[i] += carry;
+ carry = out[i] >> 29;
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ out[i] *= 3;
+ out[i] += carry;
+ carry = out[i] >> 28;
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_scalar_4 sets out=4*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_scalar_4(felem out)
+{
+ limb carry = 0, next_carry;
+ unsigned int i;
+
+ for (i = 0;; i++) {
+ next_carry = out[i] >> 27;
+ out[i] <<= 2;
+ out[i] &= kBottom29Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 29);
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+ next_carry = out[i] >> 26;
+ out[i] <<= 2;
+ out[i] &= kBottom28Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 28);
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_scalar_8 sets out=8*out.
+ *
+ * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+ */
+static void
+felem_scalar_8(felem out)
+{
+ limb carry = 0, next_carry;
+ unsigned int i;
+
+ for (i = 0;; i++) {
+ next_carry = out[i] >> 26;
+ out[i] <<= 3;
+ out[i] &= kBottom29Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 29);
+ out[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+ next_carry = out[i] >> 25;
+ out[i] <<= 3;
+ out[i] &= kBottom28Bits;
+ out[i] += carry;
+ carry = next_carry + (out[i] >> 28);
+ out[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(out, carry);
+}
+
+/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
+ * time depending on the value of |in|.
+ */
+static char
+felem_is_zero_vartime(const felem in)
+{
+ limb carry;
+ int i;
+ limb tmp[NLIMBS];
+ felem_assign(tmp, in);
+
+ /* First, reduce tmp to a minimal form.
+ */
+ do {
+ carry = 0;
+ for (i = 0;; i++) {
+ tmp[i] += carry;
+ carry = tmp[i] >> 29;
+ tmp[i] &= kBottom29Bits;
+
+ i++;
+ if (i == NLIMBS)
+ break;
+
+ tmp[i] += carry;
+ carry = tmp[i] >> 28;
+ tmp[i] &= kBottom28Bits;
+ }
+
+ felem_reduce_carry(tmp, carry);
+ } while (carry);
+
+ /* tmp < 2**257, so the only possible zero values are 0, p and 2p.
+ */
+ return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
+ memcmp(tmp, kP, sizeof(tmp)) == 0 ||
+ memcmp(tmp, k2P, sizeof(tmp)) == 0;
+}
+
+/* Group operations:
+ *
+ * Elements of the elliptic curve group are represented in Jacobian
+ * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
+ * Jacobian form.
+ */
+
+/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
+ */
+static void
+point_double(felem x_out, felem y_out, felem z_out,
+ const felem x, const felem y, const felem z)
+{
+ felem delta, gamma, alpha, beta, tmp, tmp2;
+
+ felem_square(delta, z);
+ felem_square(gamma, y);
+ felem_mul(beta, x, gamma);
+
+ felem_sum(tmp, x, delta);
+ felem_diff(tmp2, x, delta);
+ felem_mul(alpha, tmp, tmp2);
+ felem_scalar_3(alpha);
+
+ felem_sum(tmp, y, z);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, gamma);
+ felem_diff(z_out, tmp, delta);
+
+ felem_scalar_4(beta);
+ felem_square(x_out, alpha);
+ felem_diff(x_out, x_out, beta);
+ felem_diff(x_out, x_out, beta);
+
+ felem_diff(tmp, beta, x_out);
+ felem_mul(tmp, alpha, tmp);
+ felem_square(tmp2, gamma);
+ felem_scalar_8(tmp2);
+ felem_diff(y_out, tmp, tmp2);
+}
+
+/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
+ * (i.e. the second point is affine.)
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * Note that this function does not handle P+P, infinity+P nor P+infinity
+ * correctly.
+ */
+static void
+point_add_mixed(felem x_out, felem y_out, felem z_out,
+ const felem x1, const felem y1, const felem z1,
+ const felem x2, const felem y2)
+{
+ felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
+
+ felem_square(z1z1, z1);
+ felem_sum(tmp, z1, z1);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, x1);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, y1);
+ felem_sum(r, r, r);
+ felem_mul(v, x1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, y1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * Note that this function does not handle P+P, infinity+P nor P+infinity
+ * correctly.
+ */
+static void
+point_add(felem x_out, felem y_out, felem z_out,
+ const felem x1, const felem y1, const felem z1,
+ const felem x2, const felem y2, const felem z2)
+{
+ felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
+
+ felem_square(z1z1, z1);
+ felem_square(z2z2, z2);
+ felem_mul(u1, x1, z2z2);
+
+ felem_sum(tmp, z1, z2);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, z1z1);
+ felem_diff(tmp, tmp, z2z2);
+
+ felem_mul(z2z2z2, z2, z2z2);
+ felem_mul(s1, y1, z2z2z2);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, u1);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, s1);
+ felem_sum(r, r, r);
+ felem_mul(v, u1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, s1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
+ * {x2,y2,z2}.
+ *
+ * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ *
+ * This function handles the case where {x1,y1,z1}={x2,y2,z2}.
+ */
+static void
+point_add_or_double_vartime(
+ felem x_out, felem y_out, felem z_out,
+ const felem x1, const felem y1, const felem z1,
+ const felem x2, const felem y2, const felem z2)
+{
+ felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
+ char x_equal, y_equal;
+
+ felem_square(z1z1, z1);
+ felem_square(z2z2, z2);
+ felem_mul(u1, x1, z2z2);
+
+ felem_sum(tmp, z1, z2);
+ felem_square(tmp, tmp);
+ felem_diff(tmp, tmp, z1z1);
+ felem_diff(tmp, tmp, z2z2);
+
+ felem_mul(z2z2z2, z2, z2z2);
+ felem_mul(s1, y1, z2z2z2);
+
+ felem_mul(u2, x2, z1z1);
+ felem_mul(z1z1z1, z1, z1z1);
+ felem_mul(s2, y2, z1z1z1);
+ felem_diff(h, u2, u1);
+ x_equal = felem_is_zero_vartime(h);
+ felem_sum(i, h, h);
+ felem_square(i, i);
+ felem_mul(j, h, i);
+ felem_diff(r, s2, s1);
+ y_equal = felem_is_zero_vartime(r);
+ if (x_equal && y_equal) {
+ point_double(x_out, y_out, z_out, x1, y1, z1);
+ return;
+ }
+ felem_sum(r, r, r);
+ felem_mul(v, u1, i);
+
+ felem_mul(z_out, tmp, h);
+ felem_square(rr, r);
+ felem_diff(x_out, rr, j);
+ felem_diff(x_out, x_out, v);
+ felem_diff(x_out, x_out, v);
+
+ felem_diff(tmp, v, x_out);
+ felem_mul(y_out, tmp, r);
+ felem_mul(tmp, s1, j);
+ felem_diff(y_out, y_out, tmp);
+ felem_diff(y_out, y_out, tmp);
+}
+
+/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
+ *
+ * On entry: mask is either 0 or 0xffffffff.
+ */
+static void
+copy_conditional(felem out, const felem in, limb mask)
+{
+ int i;
+
+ for (i = 0; i < NLIMBS; i++) {
+ const limb tmp = mask & (in[i] ^ out[i]);
+ out[i] ^= tmp;
+ }
+}
+
+/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
+ * On entry: index < 16, table[0] must be zero.
+ */
+static void
+select_affine_point(felem out_x, felem out_y,
+ const limb *table, limb index)
+{
+ limb i, j;
+
+ memset(out_x, 0, sizeof(felem));
+ memset(out_y, 0, sizeof(felem));
+
+ for (i = 1; i < 16; i++) {
+ limb mask = i ^ index;
+ mask |= mask >> 2;
+ mask |= mask >> 1;
+ mask &= 1;
+ mask--;
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_x[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_y[j] |= *table & mask;
+ }
+ }
+}
+
+/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
+ * table. On entry: index < 16, table[0] must be zero.
+ */
+static void
+select_jacobian_point(felem out_x, felem out_y, felem out_z,
+ const limb *table, limb index)
+{
+ limb i, j;
+
+ memset(out_x, 0, sizeof(felem));
+ memset(out_y, 0, sizeof(felem));
+ memset(out_z, 0, sizeof(felem));
+
+ /* The implicit value at index 0 is all zero. We don't need to perform that
+ * iteration of the loop because we already set out_* to zero.
+ */
+ table += 3 * NLIMBS;
+
+ for (i = 1; i < 16; i++) {
+ limb mask = i ^ index;
+ mask |= mask >> 2;
+ mask |= mask >> 1;
+ mask &= 1;
+ mask--;
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_x[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_y[j] |= *table & mask;
+ }
+ for (j = 0; j < NLIMBS; j++, table++) {
+ out_z[j] |= *table & mask;
+ }
+ }
+}
+
+/* get_bit returns the bit'th bit of scalar. */
+static char
+get_bit(const u8 scalar[32], int bit)
+{
+ return ((scalar[bit >> 3]) >> (bit & 7)) & 1;
+}
+
+/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
+ * number. Note that the value of scalar must be less than the order of the
+ * group.
+ */
+static void
+scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32])
+{
+ int i, j;
+ limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
+ u32 table_offset;
+
+ felem px, py;
+ felem tx, ty, tz;
+
+ memset(nx, 0, sizeof(felem));
+ memset(ny, 0, sizeof(felem));
+ memset(nz, 0, sizeof(felem));
+
+ /* The loop adds bits at positions 0, 64, 128 and 192, followed by
+ * positions 32,96,160 and 224 and does this 32 times.
+ */
+ for (i = 0; i < 32; i++) {
+ if (i) {
+ point_double(nx, ny, nz, nx, ny, nz);
+ }
+ table_offset = 0;
+ for (j = 0; j <= 32; j += 32) {
+ char bit0 = get_bit(scalar, 31 - i + j);
+ char bit1 = get_bit(scalar, 95 - i + j);
+ char bit2 = get_bit(scalar, 159 - i + j);
+ char bit3 = get_bit(scalar, 223 - i + j);
+ limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
+
+ select_affine_point(px, py, kPrecomputed + table_offset, index);
+ table_offset += 30 * NLIMBS;
+
+ /* Since scalar is less than the order of the group, we know that
+ * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
+ * below.
+ */
+ point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
+ /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
+ * (a.k.a. the point at infinity). We handle that situation by
+ * copying the point from the table.
+ */
+ copy_conditional(nx, px, n_is_infinity_mask);
+ copy_conditional(ny, py, n_is_infinity_mask);
+ copy_conditional(nz, kOne, n_is_infinity_mask);
+
+ /* Equally, the result is also wrong if the point from the table is
+ * zero, which happens when the index is zero. We handle that by
+ * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0.
+ */
+ p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
+ mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
+ copy_conditional(nx, tx, mask);
+ copy_conditional(ny, ty, mask);
+ copy_conditional(nz, tz, mask);
+ /* If p was not zero, then n is now non-zero. */
+ n_is_infinity_mask &= ~p_is_noninfinite_mask;
+ }
+ }
+}
+
+/* point_to_affine converts a Jacobian point to an affine point. If the input
+ * is the point at infinity then it returns (0, 0) in constant time.
+ */
+static void
+point_to_affine(felem x_out, felem y_out,
+ const felem nx, const felem ny, const felem nz)
+{
+ felem z_inv, z_inv_sq;
+ felem_inv(z_inv, nz);
+ felem_square(z_inv_sq, z_inv);
+ felem_mul(x_out, nx, z_inv_sq);
+ felem_mul(z_inv, z_inv, z_inv_sq);
+ felem_mul(y_out, ny, z_inv);
+}
+
+/* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */
+static void
+scalar_mult(felem nx, felem ny, felem nz,
+ const felem x, const felem y, const u8 scalar[32])
+{
+ int i;
+ felem px, py, pz, tx, ty, tz;
+ felem precomp[16][3];
+ limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
+
+ /* We precompute 0,1,2,... times {x,y}. */
+ memset(precomp, 0, sizeof(felem) * 3);
+ memcpy(&precomp[1][0], x, sizeof(felem));
+ memcpy(&precomp[1][1], y, sizeof(felem));
+ memcpy(&precomp[1][2], kOne, sizeof(felem));
+
+ for (i = 2; i < 16; i += 2) {
+ point_double(precomp[i][0], precomp[i][1], precomp[i][2],
+ precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
+
+ point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
+ precomp[i][0], precomp[i][1], precomp[i][2], x, y);
+ }
+
+ memset(nx, 0, sizeof(felem));
+ memset(ny, 0, sizeof(felem));
+ memset(nz, 0, sizeof(felem));
+ n_is_infinity_mask = -1;
+
+ /* We add in a window of four bits each iteration and do this 64 times. */
+ for (i = 0; i < 64; i++) {
+ if (i) {
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ point_double(nx, ny, nz, nx, ny, nz);
+ }
+
+ index = scalar[31 - i / 2];
+ if ((i & 1) == 1) {
+ index &= 15;
+ } else {
+ index >>= 4;
+ }
+
+ /* See the comments in scalar_base_mult about handling infinities. */
+ select_jacobian_point(px, py, pz, precomp[0][0], index);
+ point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
+ copy_conditional(nx, px, n_is_infinity_mask);
+ copy_conditional(ny, py, n_is_infinity_mask);
+ copy_conditional(nz, pz, n_is_infinity_mask);
+
+ p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
+ mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
+ copy_conditional(nx, tx, mask);
+ copy_conditional(ny, ty, mask);
+ copy_conditional(nz, tz, mask);
+ n_is_infinity_mask &= ~p_is_noninfinite_mask;
+ }
+}
+
+/* Interface with Freebl: */
+
+/* BYTESWAP_MP_DIGIT_TO_LE swaps the bytes of a mp_digit to
+ * little-endian order.
+ */
+#ifdef IS_BIG_ENDIAN
+#ifdef __APPLE__
+#include <libkern/OSByteOrder.h>
+#define BYTESWAP32(x) OSSwapInt32(x)
+#define BYTESWAP64(x) OSSwapInt64(x)
+#else
+#define BYTESWAP32(x) \
+ (((x) >> 24) | (((x) >> 8) & 0xff00) | (((x)&0xff00) << 8) | ((x) << 24))
+#define BYTESWAP64(x) \
+ (((x) >> 56) | (((x) >> 40) & 0xff00) | \
+ (((x) >> 24) & 0xff0000) | (((x) >> 8) & 0xff000000) | \
+ (((x)&0xff000000) << 8) | (((x)&0xff0000) << 24) | \
+ (((x)&0xff00) << 40) | ((x) << 56))
+#endif
+
+#ifdef MP_USE_UINT_DIGIT
+#define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP32(x)
+#else
+#define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP64(x)
+#endif
+#endif /* IS_BIG_ENDIAN */
+
+#ifdef MP_USE_UINT_DIGIT
+static const mp_digit kRInvDigits[8] = {
+ 0x80000000, 1, 0xffffffff, 0,
+ 0x80000001, 0xfffffffe, 1, 0x7fffffff
+};
+#else
+static const mp_digit kRInvDigits[4] = {
+ PR_UINT64(0x180000000), 0xffffffff,
+ PR_UINT64(0xfffffffe80000001), PR_UINT64(0x7fffffff00000001)
+};
+#endif
+#define MP_DIGITS_IN_256_BITS (32 / sizeof(mp_digit))
+static const mp_int kRInv = {
+ MP_ZPOS,
+ MP_DIGITS_IN_256_BITS,
+ MP_DIGITS_IN_256_BITS,
+ (mp_digit *)kRInvDigits
+};
+
+static const limb kTwo28 = 0x10000000;
+static const limb kTwo29 = 0x20000000;
+
+/* to_montgomery sets out = R*in. */
+static mp_err
+to_montgomery(felem out, const mp_int *in, const ECGroup *group)
+{
+ /* There are no MPI functions for bitshift operations and we wish to shift
+ * in 257 bits left so we move the digits 256-bits left and then multiply
+ * by two.
+ */
+ mp_int in_shifted;
+ int i;
+ mp_err res;
+
+ MP_CHECKOK(mp_init(&in_shifted));
+ MP_CHECKOK(s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS));
+ memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS),
+ MP_DIGITS(in),
+ MP_USED(in) * sizeof(mp_digit));
+ MP_CHECKOK(mp_mul_2(&in_shifted, &in_shifted));
+ MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth));
+
+ for (i = 0;; i++) {
+ out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits;
+ MP_CHECKOK(mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL));
+
+ i++;
+ if (i == NLIMBS)
+ break;
+ out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits;
+ MP_CHECKOK(mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL));
+ }
+
+CLEANUP:
+ mp_clear(&in_shifted);
+ return res;
+}
+
+/* from_montgomery sets out=in/R. */
+static mp_err
+from_montgomery(mp_int *out, const felem in,
+ const ECGroup *group)
+{
+ mp_int result, tmp;
+ mp_err res;
+ int i;
+
+ MP_CHECKOK(mp_init(&result));
+ MP_CHECKOK(mp_init(&tmp));
+
+ MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS - 1], &result));
+ for (i = NLIMBS - 2; i >= 0; i--) {
+ if ((i & 1) == 0) {
+ MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp));
+ } else {
+ MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp));
+ }
+ MP_CHECKOK(mp_add_d(&tmp, in[i], &result));
+ }
+
+ MP_CHECKOK(mp_mul(&result, &kRInv, out));
+ MP_CHECKOK(group->meth->field_mod(out, out, group->meth));
+
+CLEANUP:
+ mp_clear(&result);
+ mp_clear(&tmp);
+ return res;
+}
+
+/* scalar_from_mp_int sets out_scalar=n, where n < the group order. */
+static void
+scalar_from_mp_int(u8 out_scalar[32], const mp_int *n)
+{
+ /* We require that |n| is less than the order of the group and therefore it
+ * will fit into |out_scalar|. However, these is a timing side-channel here
+ * that we cannot avoid: if |n| is sufficiently small it may be one or more
+ * words too short and we'll copy less data.
+ */
+ memset(out_scalar, 0, 32);
+#ifdef IS_LITTLE_ENDIAN
+ memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit));
+#else
+ {
+ mp_size i;
+ mp_digit swapped[MP_DIGITS_IN_256_BITS];
+ for (i = 0; i < MP_USED(n); i++) {
+ swapped[i] = BYTESWAP_MP_DIGIT_TO_LE(MP_DIGIT(n, i));
+ }
+ memcpy(out_scalar, swapped, MP_USED(n) * sizeof(mp_digit));
+ }
+#endif
+}
+
+/* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the
+ * order of the group.
+ */
+static mp_err
+ec_GFp_nistp256_base_point_mul(const mp_int *n,
+ mp_int *out_x, mp_int *out_y,
+ const ECGroup *group)
+{
+ u8 scalar[32];
+ felem x, y, z, x_affine, y_affine;
+ mp_err res;
+
+ /* FIXME(agl): test that n < order. */
+
+ scalar_from_mp_int(scalar, n);
+ scalar_base_mult(x, y, z, scalar);
+ point_to_affine(x_affine, y_affine, x, y, z);
+ MP_CHECKOK(from_montgomery(out_x, x_affine, group));
+ MP_CHECKOK(from_montgomery(out_y, y_affine, group));
+
+CLEANUP:
+ return res;
+}
+
+/* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is <
+ * the order of the group.
+ */
+static mp_err
+ec_GFp_nistp256_point_mul(const mp_int *n,
+ const mp_int *in_x, const mp_int *in_y,
+ mp_int *out_x, mp_int *out_y,
+ const ECGroup *group)
+{
+ u8 scalar[32];
+ felem x, y, z, x_affine, y_affine, px, py;
+ mp_err res;
+
+ scalar_from_mp_int(scalar, n);
+
+ MP_CHECKOK(to_montgomery(px, in_x, group));
+ MP_CHECKOK(to_montgomery(py, in_y, group));
+
+ scalar_mult(x, y, z, px, py, scalar);
+ point_to_affine(x_affine, y_affine, x, y, z);
+ MP_CHECKOK(from_montgomery(out_x, x_affine, group));
+ MP_CHECKOK(from_montgomery(out_y, y_affine, group));
+
+CLEANUP:
+ return res;
+}
+
+/* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G +
+ * n2*{in_x,in_y}, where n1 and n2 are < the order of the group.
+ *
+ * As indicated by the name, this function operates in variable time. This
+ * is safe because it's used for signature validation which doesn't deal
+ * with secrets.
+ */
+static mp_err
+ec_GFp_nistp256_points_mul_vartime(
+ const mp_int *n1, const mp_int *n2,
+ const mp_int *in_x, const mp_int *in_y,
+ mp_int *out_x, mp_int *out_y,
+ const ECGroup *group)
+{
+ u8 scalar1[32], scalar2[32];
+ felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py;
+ mp_err res = MP_OKAY;
+
+ /* If n2 == NULL, this is just a base-point multiplication. */
+ if (n2 == NULL) {
+ return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group);
+ }
+
+ /* If n1 == nULL, this is just an arbitary-point multiplication. */
+ if (n1 == NULL) {
+ return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group);
+ }
+
+ /* If both scalars are zero, then the result is the point at infinity. */
+ if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) {
+ mp_zero(out_x);
+ mp_zero(out_y);
+ return res;
+ }
+
+ scalar_from_mp_int(scalar1, n1);
+ scalar_from_mp_int(scalar2, n2);
+
+ MP_CHECKOK(to_montgomery(px, in_x, group));
+ MP_CHECKOK(to_montgomery(py, in_y, group));
+ scalar_base_mult(x1, y1, z1, scalar1);
+ scalar_mult(x2, y2, z2, px, py, scalar2);
+
+ if (mp_cmp_z(n2) == 0) {
+ /* If n2 == 0, then {x2,y2,z2} is zero and the result is just
+ * {x1,y1,z1}. */
+ } else if (mp_cmp_z(n1) == 0) {
+ /* If n1 == 0, then {x1,y1,z1} is zero and the result is just
+ * {x2,y2,z2}. */
+ memcpy(x1, x2, sizeof(x2));
+ memcpy(y1, y2, sizeof(y2));
+ memcpy(z1, z2, sizeof(z2));
+ } else {
+ /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
+ point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
+ }
+
+ point_to_affine(x_affine, y_affine, x1, y1, z1);
+ MP_CHECKOK(from_montgomery(out_x, x_affine, group));
+ MP_CHECKOK(from_montgomery(out_y, y_affine, group));
+
+CLEANUP:
+ return res;
+}
+
+/* Wire in fast point multiplication for named curves. */
+mp_err
+ec_group_set_gfp256_32(ECGroup *group, ECCurveName name)
+{
+ if (name == ECCurve_NIST_P256) {
+ group->base_point_mul = &ec_GFp_nistp256_base_point_mul;
+ group->point_mul = &ec_GFp_nistp256_point_mul;
+ group->points_mul = &ec_GFp_nistp256_points_mul_vartime;
+ }
+ return MP_OKAY;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_384.c b/security/nss/lib/freebl/ecl/ecp_384.c
new file mode 100644
index 000000000..702fd976e
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_384.c
@@ -0,0 +1,258 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+
+/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r.
+ * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
+ * Elliptic Curve Cryptography. */
+static mp_err
+ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ int a_bits = mpl_significant_bits(a);
+ int i;
+
+ /* m1, m2 are statically-allocated mp_int of exactly the size we need */
+ mp_int m[10];
+
+#ifdef ECL_THIRTY_TWO_BIT
+ mp_digit s[10][12];
+ for (i = 0; i < 10; i++) {
+ MP_SIGN(&m[i]) = MP_ZPOS;
+ MP_ALLOC(&m[i]) = 12;
+ MP_USED(&m[i]) = 12;
+ MP_DIGITS(&m[i]) = s[i];
+ }
+#else
+ mp_digit s[10][6];
+ for (i = 0; i < 10; i++) {
+ MP_SIGN(&m[i]) = MP_ZPOS;
+ MP_ALLOC(&m[i]) = 6;
+ MP_USED(&m[i]) = 6;
+ MP_DIGITS(&m[i]) = s[i];
+ }
+#endif
+
+#ifdef ECL_THIRTY_TWO_BIT
+ /* for polynomials larger than twice the field size or polynomials
+ * not using all words, use regular reduction */
+ if ((a_bits > 768) || (a_bits <= 736)) {
+ MP_CHECKOK(mp_mod(a, &meth->irr, r));
+ } else {
+ for (i = 0; i < 12; i++) {
+ s[0][i] = MP_DIGIT(a, i);
+ }
+ s[1][0] = 0;
+ s[1][1] = 0;
+ s[1][2] = 0;
+ s[1][3] = 0;
+ s[1][4] = MP_DIGIT(a, 21);
+ s[1][5] = MP_DIGIT(a, 22);
+ s[1][6] = MP_DIGIT(a, 23);
+ s[1][7] = 0;
+ s[1][8] = 0;
+ s[1][9] = 0;
+ s[1][10] = 0;
+ s[1][11] = 0;
+ for (i = 0; i < 12; i++) {
+ s[2][i] = MP_DIGIT(a, i + 12);
+ }
+ s[3][0] = MP_DIGIT(a, 21);
+ s[3][1] = MP_DIGIT(a, 22);
+ s[3][2] = MP_DIGIT(a, 23);
+ for (i = 3; i < 12; i++) {
+ s[3][i] = MP_DIGIT(a, i + 9);
+ }
+ s[4][0] = 0;
+ s[4][1] = MP_DIGIT(a, 23);
+ s[4][2] = 0;
+ s[4][3] = MP_DIGIT(a, 20);
+ for (i = 4; i < 12; i++) {
+ s[4][i] = MP_DIGIT(a, i + 8);
+ }
+ s[5][0] = 0;
+ s[5][1] = 0;
+ s[5][2] = 0;
+ s[5][3] = 0;
+ s[5][4] = MP_DIGIT(a, 20);
+ s[5][5] = MP_DIGIT(a, 21);
+ s[5][6] = MP_DIGIT(a, 22);
+ s[5][7] = MP_DIGIT(a, 23);
+ s[5][8] = 0;
+ s[5][9] = 0;
+ s[5][10] = 0;
+ s[5][11] = 0;
+ s[6][0] = MP_DIGIT(a, 20);
+ s[6][1] = 0;
+ s[6][2] = 0;
+ s[6][3] = MP_DIGIT(a, 21);
+ s[6][4] = MP_DIGIT(a, 22);
+ s[6][5] = MP_DIGIT(a, 23);
+ s[6][6] = 0;
+ s[6][7] = 0;
+ s[6][8] = 0;
+ s[6][9] = 0;
+ s[6][10] = 0;
+ s[6][11] = 0;
+ s[7][0] = MP_DIGIT(a, 23);
+ for (i = 1; i < 12; i++) {
+ s[7][i] = MP_DIGIT(a, i + 11);
+ }
+ s[8][0] = 0;
+ s[8][1] = MP_DIGIT(a, 20);
+ s[8][2] = MP_DIGIT(a, 21);
+ s[8][3] = MP_DIGIT(a, 22);
+ s[8][4] = MP_DIGIT(a, 23);
+ s[8][5] = 0;
+ s[8][6] = 0;
+ s[8][7] = 0;
+ s[8][8] = 0;
+ s[8][9] = 0;
+ s[8][10] = 0;
+ s[8][11] = 0;
+ s[9][0] = 0;
+ s[9][1] = 0;
+ s[9][2] = 0;
+ s[9][3] = MP_DIGIT(a, 23);
+ s[9][4] = MP_DIGIT(a, 23);
+ s[9][5] = 0;
+ s[9][6] = 0;
+ s[9][7] = 0;
+ s[9][8] = 0;
+ s[9][9] = 0;
+ s[9][10] = 0;
+ s[9][11] = 0;
+
+ MP_CHECKOK(mp_add(&m[0], &m[1], r));
+ MP_CHECKOK(mp_add(r, &m[1], r));
+ MP_CHECKOK(mp_add(r, &m[2], r));
+ MP_CHECKOK(mp_add(r, &m[3], r));
+ MP_CHECKOK(mp_add(r, &m[4], r));
+ MP_CHECKOK(mp_add(r, &m[5], r));
+ MP_CHECKOK(mp_add(r, &m[6], r));
+ MP_CHECKOK(mp_sub(r, &m[7], r));
+ MP_CHECKOK(mp_sub(r, &m[8], r));
+ MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
+ s_mp_clamp(r);
+ }
+#else
+ /* for polynomials larger than twice the field size or polynomials
+ * not using all words, use regular reduction */
+ if ((a_bits > 768) || (a_bits <= 736)) {
+ MP_CHECKOK(mp_mod(a, &meth->irr, r));
+ } else {
+ for (i = 0; i < 6; i++) {
+ s[0][i] = MP_DIGIT(a, i);
+ }
+ s[1][0] = 0;
+ s[1][1] = 0;
+ s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
+ s[1][3] = MP_DIGIT(a, 11) >> 32;
+ s[1][4] = 0;
+ s[1][5] = 0;
+ for (i = 0; i < 6; i++) {
+ s[2][i] = MP_DIGIT(a, i + 6);
+ }
+ s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
+ s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
+ for (i = 2; i < 6; i++) {
+ s[3][i] = (MP_DIGIT(a, i + 4) >> 32) | (MP_DIGIT(a, i + 5) << 32);
+ }
+ s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
+ s[4][1] = MP_DIGIT(a, 10) << 32;
+ for (i = 2; i < 6; i++) {
+ s[4][i] = MP_DIGIT(a, i + 4);
+ }
+ s[5][0] = 0;
+ s[5][1] = 0;
+ s[5][2] = MP_DIGIT(a, 10);
+ s[5][3] = MP_DIGIT(a, 11);
+ s[5][4] = 0;
+ s[5][5] = 0;
+ s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
+ s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
+ s[6][2] = MP_DIGIT(a, 11);
+ s[6][3] = 0;
+ s[6][4] = 0;
+ s[6][5] = 0;
+ s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
+ for (i = 1; i < 6; i++) {
+ s[7][i] = (MP_DIGIT(a, i + 5) >> 32) | (MP_DIGIT(a, i + 6) << 32);
+ }
+ s[8][0] = MP_DIGIT(a, 10) << 32;
+ s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
+ s[8][2] = MP_DIGIT(a, 11) >> 32;
+ s[8][3] = 0;
+ s[8][4] = 0;
+ s[8][5] = 0;
+ s[9][0] = 0;
+ s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
+ s[9][2] = MP_DIGIT(a, 11) >> 32;
+ s[9][3] = 0;
+ s[9][4] = 0;
+ s[9][5] = 0;
+
+ MP_CHECKOK(mp_add(&m[0], &m[1], r));
+ MP_CHECKOK(mp_add(r, &m[1], r));
+ MP_CHECKOK(mp_add(r, &m[2], r));
+ MP_CHECKOK(mp_add(r, &m[3], r));
+ MP_CHECKOK(mp_add(r, &m[4], r));
+ MP_CHECKOK(mp_add(r, &m[5], r));
+ MP_CHECKOK(mp_add(r, &m[6], r));
+ MP_CHECKOK(mp_sub(r, &m[7], r));
+ MP_CHECKOK(mp_sub(r, &m[8], r));
+ MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
+ s_mp_clamp(r);
+ }
+#endif
+
+CLEANUP:
+ return res;
+}
+
+/* Compute the square of polynomial a, reduce modulo p384. Store the
+ * result in r. r could be a. Uses optimized modular reduction for p384.
+ */
+static mp_err
+ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_sqr(a, r));
+ MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Compute the product of two polynomials a and b, reduce modulo p384.
+ * Store the result in r. r could be a or b; a could be b. Uses
+ * optimized modular reduction for p384. */
+static mp_err
+ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_mul(a, b, r));
+ MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Wire in fast field arithmetic and precomputation of base point for
+ * named curves. */
+mp_err
+ec_group_set_gfp384(ECGroup *group, ECCurveName name)
+{
+ if (name == ECCurve_NIST_P384) {
+ group->meth->field_mod = &ec_GFp_nistp384_mod;
+ group->meth->field_mul = &ec_GFp_nistp384_mul;
+ group->meth->field_sqr = &ec_GFp_nistp384_sqr;
+ }
+ return MP_OKAY;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_521.c b/security/nss/lib/freebl/ecl/ecp_521.c
new file mode 100644
index 000000000..6ca0dbb11
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_521.c
@@ -0,0 +1,137 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+
+#define ECP521_DIGITS ECL_CURVE_DIGITS(521)
+
+/* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
+ * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
+ * Elliptic Curve Cryptography. */
+static mp_err
+ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ int a_bits = mpl_significant_bits(a);
+ unsigned int i;
+
+ /* m1, m2 are statically-allocated mp_int of exactly the size we need */
+ mp_int m1;
+
+ mp_digit s1[ECP521_DIGITS] = { 0 };
+
+ MP_SIGN(&m1) = MP_ZPOS;
+ MP_ALLOC(&m1) = ECP521_DIGITS;
+ MP_USED(&m1) = ECP521_DIGITS;
+ MP_DIGITS(&m1) = s1;
+
+ if (a_bits < 521) {
+ if (a == r)
+ return MP_OKAY;
+ return mp_copy(a, r);
+ }
+ /* for polynomials larger than twice the field size or polynomials
+ * not using all words, use regular reduction */
+ if (a_bits > (521 * 2)) {
+ MP_CHECKOK(mp_mod(a, &meth->irr, r));
+ } else {
+#define FIRST_DIGIT (ECP521_DIGITS - 1)
+ for (i = FIRST_DIGIT; i < MP_USED(a) - 1; i++) {
+ s1[i - FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) | (MP_DIGIT(a, 1 + i) << (MP_DIGIT_BIT - 9));
+ }
+ s1[i - FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
+
+ if (a != r) {
+ MP_CHECKOK(s_mp_pad(r, ECP521_DIGITS));
+ for (i = 0; i < ECP521_DIGITS; i++) {
+ MP_DIGIT(r, i) = MP_DIGIT(a, i);
+ }
+ }
+ MP_USED(r) = ECP521_DIGITS;
+ MP_DIGIT(r, FIRST_DIGIT) &= 0x1FF;
+
+ MP_CHECKOK(s_mp_add(r, &m1));
+ if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
+ MP_CHECKOK(s_mp_add_d(r, 1));
+ MP_DIGIT(r, FIRST_DIGIT) &= 0x1FF;
+ } else if (s_mp_cmp(r, &meth->irr) == 0) {
+ mp_zero(r);
+ }
+ s_mp_clamp(r);
+ }
+
+CLEANUP:
+ return res;
+}
+
+/* Compute the square of polynomial a, reduce modulo p521. Store the
+ * result in r. r could be a. Uses optimized modular reduction for p521.
+ */
+static mp_err
+ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_sqr(a, r));
+ MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Compute the product of two polynomials a and b, reduce modulo p521.
+ * Store the result in r. r could be a or b; a could be b. Uses
+ * optimized modular reduction for p521. */
+static mp_err
+ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ MP_CHECKOK(mp_mul(a, b, r));
+ MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
+CLEANUP:
+ return res;
+}
+
+/* Divides two field elements. If a is NULL, then returns the inverse of
+ * b. */
+static mp_err
+ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_int t;
+
+ /* If a is NULL, then return the inverse of b, otherwise return a/b. */
+ if (a == NULL) {
+ return mp_invmod(b, &meth->irr, r);
+ } else {
+ /* MPI doesn't support divmod, so we implement it using invmod and
+ * mulmod. */
+ MP_CHECKOK(mp_init(&t));
+ MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
+ MP_CHECKOK(mp_mul(a, &t, r));
+ MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
+ CLEANUP:
+ mp_clear(&t);
+ return res;
+ }
+}
+
+/* Wire in fast field arithmetic and precomputation of base point for
+ * named curves. */
+mp_err
+ec_group_set_gfp521(ECGroup *group, ECCurveName name)
+{
+ if (name == ECCurve_NIST_P521) {
+ group->meth->field_mod = &ec_GFp_nistp521_mod;
+ group->meth->field_mul = &ec_GFp_nistp521_mul;
+ group->meth->field_sqr = &ec_GFp_nistp521_sqr;
+ group->meth->field_div = &ec_GFp_nistp521_div;
+ }
+ return MP_OKAY;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_aff.c b/security/nss/lib/freebl/ecl/ecp_aff.c
new file mode 100644
index 000000000..47fb27326
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_aff.c
@@ -0,0 +1,308 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mplogic.h"
+#include <stdlib.h>
+
+/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
+mp_err
+ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
+{
+
+ if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
+ return MP_YES;
+ } else {
+ return MP_NO;
+ }
+}
+
+/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
+mp_err
+ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
+{
+ mp_zero(px);
+ mp_zero(py);
+ return MP_OKAY;
+}
+
+/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
+ * Q, and R can all be identical. Uses affine coordinates. Assumes input
+ * is already field-encoded using field_enc, and returns output that is
+ * still field-encoded. */
+mp_err
+ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int lambda, temp, tempx, tempy;
+
+ MP_DIGITS(&lambda) = 0;
+ MP_DIGITS(&temp) = 0;
+ MP_DIGITS(&tempx) = 0;
+ MP_DIGITS(&tempy) = 0;
+ MP_CHECKOK(mp_init(&lambda));
+ MP_CHECKOK(mp_init(&temp));
+ MP_CHECKOK(mp_init(&tempx));
+ MP_CHECKOK(mp_init(&tempy));
+ /* if P = inf, then R = Q */
+ if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
+ MP_CHECKOK(mp_copy(qx, rx));
+ MP_CHECKOK(mp_copy(qy, ry));
+ res = MP_OKAY;
+ goto CLEANUP;
+ }
+ /* if Q = inf, then R = P */
+ if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ res = MP_OKAY;
+ goto CLEANUP;
+ }
+ /* if px != qx, then lambda = (py-qy) / (px-qx) */
+ if (mp_cmp(px, qx) != 0) {
+ MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
+ MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
+ MP_CHECKOK(group->meth->field_div(&tempy, &tempx, &lambda, group->meth));
+ } else {
+ /* if py != qy or qy = 0, then R = inf */
+ if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
+ mp_zero(rx);
+ mp_zero(ry);
+ res = MP_OKAY;
+ goto CLEANUP;
+ }
+ /* lambda = (3qx^2+a) / (2qy) */
+ MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
+ MP_CHECKOK(mp_set_int(&temp, 3));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
+ }
+ MP_CHECKOK(group->meth->field_mul(&tempx, &temp, &tempx, group->meth));
+ MP_CHECKOK(group->meth->field_add(&tempx, &group->curvea, &tempx, group->meth));
+ MP_CHECKOK(mp_set_int(&temp, 2));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
+ }
+ MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
+ MP_CHECKOK(group->meth->field_div(&tempx, &tempy, &lambda, group->meth));
+ }
+ /* rx = lambda^2 - px - qx */
+ MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
+ /* ry = (x1-x2) * lambda - y1 */
+ MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&tempy, &lambda, &tempy, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
+ MP_CHECKOK(mp_copy(&tempx, rx));
+ MP_CHECKOK(mp_copy(&tempy, ry));
+
+CLEANUP:
+ mp_clear(&lambda);
+ mp_clear(&temp);
+ mp_clear(&tempx);
+ mp_clear(&tempy);
+ return res;
+}
+
+/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
+ * identical. Uses affine coordinates. Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+mp_err
+ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int nqy;
+
+ MP_DIGITS(&nqy) = 0;
+ MP_CHECKOK(mp_init(&nqy));
+ /* nqy = -qy */
+ MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
+ res = group->point_add(px, py, qx, &nqy, rx, ry, group);
+CLEANUP:
+ mp_clear(&nqy);
+ return res;
+}
+
+/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
+ * affine coordinates. Assumes input is already field-encoded using
+ * field_enc, and returns output that is still field-encoded. */
+mp_err
+ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group)
+{
+ return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
+}
+
+/* by default, this routine is unused and thus doesn't need to be compiled */
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
+ * R can be identical. Uses affine coordinates. Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+mp_err
+ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int k, k3, qx, qy, sx, sy;
+ int b1, b3, i, l;
+
+ MP_DIGITS(&k) = 0;
+ MP_DIGITS(&k3) = 0;
+ MP_DIGITS(&qx) = 0;
+ MP_DIGITS(&qy) = 0;
+ MP_DIGITS(&sx) = 0;
+ MP_DIGITS(&sy) = 0;
+ MP_CHECKOK(mp_init(&k));
+ MP_CHECKOK(mp_init(&k3));
+ MP_CHECKOK(mp_init(&qx));
+ MP_CHECKOK(mp_init(&qy));
+ MP_CHECKOK(mp_init(&sx));
+ MP_CHECKOK(mp_init(&sy));
+
+ /* if n = 0 then r = inf */
+ if (mp_cmp_z(n) == 0) {
+ mp_zero(rx);
+ mp_zero(ry);
+ res = MP_OKAY;
+ goto CLEANUP;
+ }
+ /* Q = P, k = n */
+ MP_CHECKOK(mp_copy(px, &qx));
+ MP_CHECKOK(mp_copy(py, &qy));
+ MP_CHECKOK(mp_copy(n, &k));
+ /* if n < 0 then Q = -Q, k = -k */
+ if (mp_cmp_z(n) < 0) {
+ MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
+ MP_CHECKOK(mp_neg(&k, &k));
+ }
+#ifdef ECL_DEBUG /* basic double and add method */
+ l = mpl_significant_bits(&k) - 1;
+ MP_CHECKOK(mp_copy(&qx, &sx));
+ MP_CHECKOK(mp_copy(&qy, &sy));
+ for (i = l - 1; i >= 0; i--) {
+ /* S = 2S */
+ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
+ /* if k_i = 1, then S = S + Q */
+ if (mpl_get_bit(&k, i) != 0) {
+ MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
+ }
+ }
+#else /* double and add/subtract method from \
+ * standard */
+ /* k3 = 3 * k */
+ MP_CHECKOK(mp_set_int(&k3, 3));
+ MP_CHECKOK(mp_mul(&k, &k3, &k3));
+ /* S = Q */
+ MP_CHECKOK(mp_copy(&qx, &sx));
+ MP_CHECKOK(mp_copy(&qy, &sy));
+ /* l = index of high order bit in binary representation of 3*k */
+ l = mpl_significant_bits(&k3) - 1;
+ /* for i = l-1 downto 1 */
+ for (i = l - 1; i >= 1; i--) {
+ /* S = 2S */
+ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
+ b3 = MP_GET_BIT(&k3, i);
+ b1 = MP_GET_BIT(&k, i);
+ /* if k3_i = 1 and k_i = 0, then S = S + Q */
+ if ((b3 == 1) && (b1 == 0)) {
+ MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
+ /* if k3_i = 0 and k_i = 1, then S = S - Q */
+ } else if ((b3 == 0) && (b1 == 1)) {
+ MP_CHECKOK(group->point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
+ }
+ }
+#endif
+ /* output S */
+ MP_CHECKOK(mp_copy(&sx, rx));
+ MP_CHECKOK(mp_copy(&sy, ry));
+
+CLEANUP:
+ mp_clear(&k);
+ mp_clear(&k3);
+ mp_clear(&qx);
+ mp_clear(&qy);
+ mp_clear(&sx);
+ mp_clear(&sy);
+ return res;
+}
+#endif
+
+/* Validates a point on a GFp curve. */
+mp_err
+ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
+{
+ mp_err res = MP_NO;
+ mp_int accl, accr, tmp, pxt, pyt;
+
+ MP_DIGITS(&accl) = 0;
+ MP_DIGITS(&accr) = 0;
+ MP_DIGITS(&tmp) = 0;
+ MP_DIGITS(&pxt) = 0;
+ MP_DIGITS(&pyt) = 0;
+ MP_CHECKOK(mp_init(&accl));
+ MP_CHECKOK(mp_init(&accr));
+ MP_CHECKOK(mp_init(&tmp));
+ MP_CHECKOK(mp_init(&pxt));
+ MP_CHECKOK(mp_init(&pyt));
+
+ /* 1: Verify that publicValue is not the point at infinity */
+ if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
+ res = MP_NO;
+ goto CLEANUP;
+ }
+ /* 2: Verify that the coordinates of publicValue are elements
+ * of the field.
+ */
+ if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
+ (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
+ res = MP_NO;
+ goto CLEANUP;
+ }
+ /* 3: Verify that publicValue is on the curve. */
+ if (group->meth->field_enc) {
+ group->meth->field_enc(px, &pxt, group->meth);
+ group->meth->field_enc(py, &pyt, group->meth);
+ } else {
+ MP_CHECKOK(mp_copy(px, &pxt));
+ MP_CHECKOK(mp_copy(py, &pyt));
+ }
+ /* left-hand side: y^2 */
+ MP_CHECKOK(group->meth->field_sqr(&pyt, &accl, group->meth));
+ /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */
+ MP_CHECKOK(group->meth->field_sqr(&pxt, &tmp, group->meth));
+ MP_CHECKOK(group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&tmp, &pxt, &accr, group->meth));
+ MP_CHECKOK(group->meth->field_add(&accr, &group->curveb, &accr, group->meth));
+ /* check LHS - RHS == 0 */
+ MP_CHECKOK(group->meth->field_sub(&accl, &accr, &accr, group->meth));
+ if (mp_cmp_z(&accr) != 0) {
+ res = MP_NO;
+ goto CLEANUP;
+ }
+ /* 4: Verify that the order of the curve times the publicValue
+ * is the point at infinity.
+ */
+ MP_CHECKOK(ECPoint_mul(group, &group->order, px, py, &pxt, &pyt));
+ if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ res = MP_YES;
+
+CLEANUP:
+ mp_clear(&accl);
+ mp_clear(&accr);
+ mp_clear(&tmp);
+ mp_clear(&pxt);
+ mp_clear(&pyt);
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_jac.c b/security/nss/lib/freebl/ecl/ecp_jac.c
new file mode 100644
index 000000000..535e75903
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_jac.c
@@ -0,0 +1,513 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mplogic.h"
+#include <stdlib.h>
+#ifdef ECL_DEBUG
+#include <assert.h>
+#endif
+
+/* Converts a point P(px, py) from affine coordinates to Jacobian
+ * projective coordinates R(rx, ry, rz). Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+mp_err
+ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+
+ if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ } else {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ MP_CHECKOK(mp_set_int(rz, 1));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
+ }
+ }
+CLEANUP:
+ return res;
+}
+
+/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
+ * affine coordinates R(rx, ry). P and R can share x and y coordinates.
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded. */
+mp_err
+ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int z1, z2, z3;
+
+ MP_DIGITS(&z1) = 0;
+ MP_DIGITS(&z2) = 0;
+ MP_DIGITS(&z3) = 0;
+ MP_CHECKOK(mp_init(&z1));
+ MP_CHECKOK(mp_init(&z2));
+ MP_CHECKOK(mp_init(&z3));
+
+ /* if point at infinity, then set point at infinity and exit */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
+ goto CLEANUP;
+ }
+
+ /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
+ if (mp_cmp_d(pz, 1) == 0) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ } else {
+ MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
+ MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
+ MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
+ }
+
+CLEANUP:
+ mp_clear(&z1);
+ mp_clear(&z2);
+ mp_clear(&z3);
+ return res;
+}
+
+/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
+{
+ return mp_cmp_z(pz);
+}
+
+/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
+{
+ mp_zero(pz);
+ return MP_OKAY;
+}
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
+ * Uses mixed Jacobian-affine coordinates. Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
+ * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
+ * Fields. */
+mp_err
+ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int A, B, C, D, C2, C3;
+
+ MP_DIGITS(&A) = 0;
+ MP_DIGITS(&B) = 0;
+ MP_DIGITS(&C) = 0;
+ MP_DIGITS(&D) = 0;
+ MP_DIGITS(&C2) = 0;
+ MP_DIGITS(&C3) = 0;
+ MP_CHECKOK(mp_init(&A));
+ MP_CHECKOK(mp_init(&B));
+ MP_CHECKOK(mp_init(&C));
+ MP_CHECKOK(mp_init(&D));
+ MP_CHECKOK(mp_init(&C2));
+ MP_CHECKOK(mp_init(&C3));
+
+ /* If either P or Q is the point at infinity, then return the other
+ * point */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
+ goto CLEANUP;
+ }
+ if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ MP_CHECKOK(mp_copy(pz, rz));
+ goto CLEANUP;
+ }
+
+ /* A = qx * pz^2, B = qy * pz^3 */
+ MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
+
+ /* C = A - px, D = B - py */
+ MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
+
+ if (mp_cmp_z(&C) == 0) {
+ /* P == Q or P == -Q */
+ if (mp_cmp_z(&D) == 0) {
+ /* P == Q */
+ /* It is cheaper to double (qx, qy, 1) than (px, py, pz). */
+ MP_DIGIT(&D, 0) = 1; /* Set D to 1. */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(qx, qy, &D, rx, ry, rz, group));
+ } else {
+ /* P == -Q */
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ }
+ goto CLEANUP;
+ }
+
+ /* C2 = C^2, C3 = C^3 */
+ MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
+
+ /* rz = pz * C */
+ MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
+
+ /* C = px * C^2 */
+ MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
+ /* A = D^2 */
+ MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
+
+ /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
+ MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
+ MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
+
+ /* C3 = py * C^3 */
+ MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
+
+ /* ry = D * (px * C^2 - rx) - py * C^3 */
+ MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
+ MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
+
+CLEANUP:
+ mp_clear(&A);
+ mp_clear(&B);
+ mp_clear(&C);
+ mp_clear(&D);
+ mp_clear(&C2);
+ mp_clear(&C3);
+ return res;
+}
+
+/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
+ * Jacobian coordinates.
+ *
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded.
+ *
+ * This routine implements Point Doubling in the Jacobian Projective
+ * space as described in the paper "Efficient elliptic curve exponentiation
+ * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
+ */
+mp_err
+ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
+ mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int t0, t1, M, S;
+
+ MP_DIGITS(&t0) = 0;
+ MP_DIGITS(&t1) = 0;
+ MP_DIGITS(&M) = 0;
+ MP_DIGITS(&S) = 0;
+ MP_CHECKOK(mp_init(&t0));
+ MP_CHECKOK(mp_init(&t1));
+ MP_CHECKOK(mp_init(&M));
+ MP_CHECKOK(mp_init(&S));
+
+ /* P == inf or P == -P */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES || mp_cmp_z(py) == 0) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ goto CLEANUP;
+ }
+
+ if (mp_cmp_d(pz, 1) == 0) {
+ /* M = 3 * px^2 + a */
+ MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &group->curvea, &M, group->meth));
+ } else if (MP_SIGN(&group->curvea) == MP_NEG &&
+ MP_USED(&group->curvea) == 1 &&
+ MP_DIGIT(&group->curvea, 0) == 3) {
+ /* M = 3 * (px + pz^2) * (px - pz^2) */
+ MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
+ } else {
+ /* M = 3 * (px^2) + a * (pz^4) */
+ MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&M, &group->curvea, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
+ }
+
+ /* rz = 2 * py * pz */
+ /* t0 = 4 * py^2 */
+ if (mp_cmp_d(pz, 1) == 0) {
+ MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
+ } else {
+ MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
+ }
+
+ /* S = 4 * px * py^2 = px * (2 * py)^2 */
+ MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
+
+ /* rx = M^2 - 2 * S */
+ MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
+
+ /* ry = M * (S - rx) - 8 * py^4 */
+ MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
+ if (mp_isodd(&t1)) {
+ MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
+ }
+ MP_CHECKOK(mp_div_2(&t1, &t1));
+ MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
+
+CLEANUP:
+ mp_clear(&t0);
+ mp_clear(&t1);
+ mp_clear(&M);
+ mp_clear(&S);
+ return res;
+}
+
+/* by default, this routine is unused and thus doesn't need to be compiled */
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Elliptic curve points P and R can be
+ * identical. Uses mixed Jacobian-affine coordinates. Assumes input is
+ * already field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses 4-bit window method. */
+mp_err
+ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[16][2], rz;
+ int i, ni, d;
+
+ MP_DIGITS(&rz) = 0;
+ for (i = 0; i < 16; i++) {
+ MP_DIGITS(&precomp[i][0]) = 0;
+ MP_DIGITS(&precomp[i][1]) = 0;
+ }
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
+
+ /* initialize precomputation table */
+ for (i = 0; i < 16; i++) {
+ MP_CHECKOK(mp_init(&precomp[i][0]));
+ MP_CHECKOK(mp_init(&precomp[i][1]));
+ }
+
+ /* fill precomputation table */
+ mp_zero(&precomp[0][0]);
+ mp_zero(&precomp[0][1]);
+ MP_CHECKOK(mp_copy(px, &precomp[1][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[1][1]));
+ for (i = 2; i < 16; i++) {
+ MP_CHECKOK(group->point_add(&precomp[1][0], &precomp[1][1],
+ &precomp[i - 1][0], &precomp[i - 1][1],
+ &precomp[i][0], &precomp[i][1], group));
+ }
+
+ d = (mpl_significant_bits(n) + 3) / 4;
+
+ /* R = inf */
+ MP_CHECKOK(mp_init(&rz));
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+ for (i = d - 1; i >= 0; i--) {
+ /* compute window ni */
+ ni = MP_GET_BIT(n, 4 * i + 3);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i + 2);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i + 1);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i);
+ /* R = 2^4 * R */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ /* R = R + (ni * P) */
+ MP_CHECKOK(ec_GFp_pt_add_jac_aff(rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
+ &rz, group));
+ }
+
+ /* convert result S to affine coordinates */
+ MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+CLEANUP:
+ mp_clear(&rz);
+ for (i = 0; i < 16; i++) {
+ mp_clear(&precomp[i][0]);
+ mp_clear(&precomp[i][1]);
+ }
+ return res;
+}
+#endif
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Uses mixed Jacobian-affine coordinates. Input and output values are
+ * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
+ * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
+ * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
+mp_err
+ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[4][4][2];
+ mp_int rz;
+ const mp_int *a, *b;
+ unsigned int i, j;
+ int ai, bi, d;
+
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_DIGITS(&precomp[i][j][0]) = 0;
+ MP_DIGITS(&precomp[i][j][1]) = 0;
+ }
+ }
+ MP_DIGITS(&rz) = 0;
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK(!((k1 == NULL) && ((k2 == NULL) || (px == NULL) || (py == NULL))), MP_BADARG);
+
+ /* if some arguments are not defined used ECPoint_mul */
+ if (k1 == NULL) {
+ return ECPoint_mul(group, k2, px, py, rx, ry);
+ } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+ return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+ }
+
+ /* initialize precomputation table */
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_CHECKOK(mp_init(&precomp[i][j][0]));
+ MP_CHECKOK(mp_init(&precomp[i][j][1]));
+ }
+ }
+
+ /* fill precomputation table */
+ /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
+ if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
+ a = k2;
+ b = k1;
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[1][0][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[1][0][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
+ }
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
+ } else {
+ a = k1;
+ b = k2;
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[0][1][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[0][1][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
+ }
+ }
+ /* precompute [*][0][*] */
+ mp_zero(&precomp[0][0][0]);
+ mp_zero(&precomp[0][0][1]);
+ MP_CHECKOK(group->point_dbl(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1], group));
+ MP_CHECKOK(group->point_add(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1],
+ &precomp[3][0][0], &precomp[3][0][1], group));
+ /* precompute [*][1][*] */
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][1][0], &precomp[i][1][1], group));
+ }
+ /* precompute [*][2][*] */
+ MP_CHECKOK(group->point_dbl(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][2][0], &precomp[0][2][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][2][0], &precomp[i][2][1], group));
+ }
+ /* precompute [*][3][*] */
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1],
+ &precomp[0][3][0], &precomp[0][3][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][3][0], &precomp[0][3][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][3][0], &precomp[i][3][1], group));
+ }
+
+ d = (mpl_significant_bits(a) + 1) / 2;
+
+ /* R = inf */
+ MP_CHECKOK(mp_init(&rz));
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+ for (i = d; i-- > 0;) {
+ ai = MP_GET_BIT(a, 2 * i + 1);
+ ai <<= 1;
+ ai |= MP_GET_BIT(a, 2 * i);
+ bi = MP_GET_BIT(b, 2 * i + 1);
+ bi <<= 1;
+ bi |= MP_GET_BIT(b, 2 * i);
+ /* R = 2^2 * R */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ /* R = R + (ai * A + bi * B) */
+ MP_CHECKOK(ec_GFp_pt_add_jac_aff(rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
+ rx, ry, &rz, group));
+ }
+
+ MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+ }
+
+CLEANUP:
+ mp_clear(&rz);
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ mp_clear(&precomp[i][j][0]);
+ mp_clear(&precomp[i][j][1]);
+ }
+ }
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_jm.c b/security/nss/lib/freebl/ecl/ecp_jm.c
new file mode 100644
index 000000000..a1106cea8
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_jm.c
@@ -0,0 +1,283 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "ecl-priv.h"
+#include "mplogic.h"
+#include <stdlib.h>
+
+#define MAX_SCRATCH 6
+
+/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
+ * Modified Jacobian coordinates.
+ *
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded.
+ *
+ */
+static mp_err
+ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
+ const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
+ mp_int *raz4, mp_int scratch[], const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int *t0, *t1, *M, *S;
+
+ t0 = &scratch[0];
+ t1 = &scratch[1];
+ M = &scratch[2];
+ S = &scratch[3];
+
+#if MAX_SCRATCH < 4
+#error "Scratch array defined too small "
+#endif
+
+ /* Check for point at infinity */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ /* Set r = pt at infinity by setting rz = 0 */
+
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ goto CLEANUP;
+ }
+
+ /* M = 3 (px^2) + a*(pz^4) */
+ MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
+ MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
+
+ /* rz = 2 * py * pz */
+ MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
+ MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
+
+ /* t0 = 2y^2 , t1 = 8y^4 */
+ MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
+ MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
+
+ /* S = 4 * px * py^2 = 2 * px * t0 */
+ MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
+ MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
+
+ /* rx = M^2 - 2S */
+ MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
+
+ /* ry = M * (S - rx) - t1 */
+ MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
+ MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
+ MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
+
+ /* ra*z^4 = 2*t1*(apz4) */
+ MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
+ MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
+
+CLEANUP:
+ return res;
+}
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
+ * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
+ * already field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+static mp_err
+ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+ const mp_int *paz4, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
+ mp_int *raz4, mp_int scratch[], const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int *A, *B, *C, *D, *C2, *C3;
+
+ A = &scratch[0];
+ B = &scratch[1];
+ C = &scratch[2];
+ D = &scratch[3];
+ C2 = &scratch[4];
+ C3 = &scratch[5];
+
+#if MAX_SCRATCH < 6
+#error "Scratch array defined too small "
+#endif
+
+ /* If either P or Q is the point at infinity, then return the other
+ * point */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
+ MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
+ MP_CHECKOK(group->meth->field_mul(raz4, &group->curvea, raz4, group->meth));
+ goto CLEANUP;
+ }
+ if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ MP_CHECKOK(mp_copy(pz, rz));
+ MP_CHECKOK(mp_copy(paz4, raz4));
+ goto CLEANUP;
+ }
+
+ /* A = qx * pz^2, B = qy * pz^3 */
+ MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
+ MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
+
+ /* C = A - px, D = B - py */
+ MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
+ MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
+
+ /* C2 = C^2, C3 = C^3 */
+ MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
+ MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
+
+ /* rz = pz * C */
+ MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
+
+ /* C = px * C^2 */
+ MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
+ /* A = D^2 */
+ MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
+
+ /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
+ MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
+ MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
+
+ /* C3 = py * C^3 */
+ MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
+
+ /* ry = D * (px * C^2 - rx) - py * C^3 */
+ MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
+ MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
+ MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
+
+ /* raz4 = a * rz^4 */
+ MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
+ MP_CHECKOK(group->meth->field_mul(raz4, &group->curvea, raz4, group->meth));
+CLEANUP:
+ return res;
+}
+
+/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
+ * curve points P and R can be identical. Uses mixed Modified-Jacobian
+ * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
+ * additions. Assumes input is already field-encoded using field_enc, and
+ * returns output that is still field-encoded. Uses 5-bit window NAF
+ * method (algorithm 11) for scalar-point multiplication from Brown,
+ * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
+ * Curves Over Prime Fields. */
+mp_err
+ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[16][2], rz, tpx, tpy;
+ mp_int raz4;
+ mp_int scratch[MAX_SCRATCH];
+ signed char *naf = NULL;
+ int i, orderBitSize;
+
+ MP_DIGITS(&rz) = 0;
+ MP_DIGITS(&raz4) = 0;
+ MP_DIGITS(&tpx) = 0;
+ MP_DIGITS(&tpy) = 0;
+ for (i = 0; i < 16; i++) {
+ MP_DIGITS(&precomp[i][0]) = 0;
+ MP_DIGITS(&precomp[i][1]) = 0;
+ }
+ for (i = 0; i < MAX_SCRATCH; i++) {
+ MP_DIGITS(&scratch[i]) = 0;
+ }
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
+
+ /* initialize precomputation table */
+ MP_CHECKOK(mp_init(&tpx));
+ MP_CHECKOK(mp_init(&tpy));
+ ;
+ MP_CHECKOK(mp_init(&rz));
+ MP_CHECKOK(mp_init(&raz4));
+
+ for (i = 0; i < 16; i++) {
+ MP_CHECKOK(mp_init(&precomp[i][0]));
+ MP_CHECKOK(mp_init(&precomp[i][1]));
+ }
+ for (i = 0; i < MAX_SCRATCH; i++) {
+ MP_CHECKOK(mp_init(&scratch[i]));
+ }
+
+ /* Set out[8] = P */
+ MP_CHECKOK(mp_copy(px, &precomp[8][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[8][1]));
+
+ /* Set (tpx, tpy) = 2P */
+ MP_CHECKOK(group->point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
+ group));
+
+ /* Set 3P, 5P, ..., 15P */
+ for (i = 8; i < 15; i++) {
+ MP_CHECKOK(group->point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
+ &precomp[i + 1][0], &precomp[i + 1][1],
+ group));
+ }
+
+ /* Set -15P, -13P, ..., -P */
+ for (i = 0; i < 8; i++) {
+ MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
+ MP_CHECKOK(group->meth->field_neg(&precomp[15 - i][1], &precomp[i][1],
+ group->meth));
+ }
+
+ /* R = inf */
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+ orderBitSize = mpl_significant_bits(&group->order);
+
+ /* Allocate memory for NAF */
+ naf = (signed char *)malloc(sizeof(signed char) * (orderBitSize + 1));
+ if (naf == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+
+ /* Compute 5NAF */
+ ec_compute_wNAF(naf, orderBitSize, n, 5);
+
+ /* wNAF method */
+ for (i = orderBitSize; i >= 0; i--) {
+ /* R = 2R */
+ ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
+ &raz4, scratch, group);
+ if (naf[i] != 0) {
+ ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
+ &precomp[(naf[i] + 15) / 2][0],
+ &precomp[(naf[i] + 15) / 2][1], rx, ry,
+ &rz, &raz4, scratch, group);
+ }
+ }
+
+ /* convert result S to affine coordinates */
+ MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+CLEANUP:
+ for (i = 0; i < MAX_SCRATCH; i++) {
+ mp_clear(&scratch[i]);
+ }
+ for (i = 0; i < 16; i++) {
+ mp_clear(&precomp[i][0]);
+ mp_clear(&precomp[i][1]);
+ }
+ mp_clear(&tpx);
+ mp_clear(&tpy);
+ mp_clear(&rz);
+ mp_clear(&raz4);
+ free(naf);
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/ecp_mont.c b/security/nss/lib/freebl/ecl/ecp_mont.c
new file mode 100644
index 000000000..779685b4d
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_mont.c
@@ -0,0 +1,154 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
+ * code implementation. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+#include "ecl-priv.h"
+#include "ecp.h"
+#include <stdlib.h>
+#include <stdio.h>
+
+/* Construct a generic GFMethod for arithmetic over prime fields with
+ * irreducible irr. */
+GFMethod *
+GFMethod_consGFp_mont(const mp_int *irr)
+{
+ mp_err res = MP_OKAY;
+ GFMethod *meth = NULL;
+ mp_mont_modulus *mmm;
+
+ meth = GFMethod_consGFp(irr);
+ if (meth == NULL)
+ return NULL;
+
+ mmm = (mp_mont_modulus *)malloc(sizeof(mp_mont_modulus));
+ if (mmm == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+
+ meth->field_mul = &ec_GFp_mul_mont;
+ meth->field_sqr = &ec_GFp_sqr_mont;
+ meth->field_div = &ec_GFp_div_mont;
+ meth->field_enc = &ec_GFp_enc_mont;
+ meth->field_dec = &ec_GFp_dec_mont;
+ meth->extra1 = mmm;
+ meth->extra2 = NULL;
+ meth->extra_free = &ec_GFp_extra_free_mont;
+
+ mmm->N = meth->irr;
+ mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
+
+CLEANUP:
+ if (res != MP_OKAY) {
+ GFMethod_free(meth);
+ return NULL;
+ }
+ return meth;
+}
+
+/* Wrapper functions for generic prime field arithmetic. */
+
+/* Field multiplication using Montgomery reduction. */
+mp_err
+ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+#ifdef MP_MONT_USE_MP_MUL
+ /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
+ * is not implemented and we have to use mp_mul and s_mp_redc directly
+ */
+ MP_CHECKOK(mp_mul(a, b, r));
+ MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *)meth->extra1));
+#else
+ mp_int s;
+
+ MP_DIGITS(&s) = 0;
+ /* s_mp_mul_mont doesn't allow source and destination to be the same */
+ if ((a == r) || (b == r)) {
+ MP_CHECKOK(mp_init(&s));
+ MP_CHECKOK(s_mp_mul_mont(a, b, &s, (mp_mont_modulus *)meth->extra1));
+ MP_CHECKOK(mp_copy(&s, r));
+ mp_clear(&s);
+ } else {
+ return s_mp_mul_mont(a, b, r, (mp_mont_modulus *)meth->extra1);
+ }
+#endif
+CLEANUP:
+ return res;
+}
+
+/* Field squaring using Montgomery reduction. */
+mp_err
+ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return ec_GFp_mul_mont(a, a, r, meth);
+}
+
+/* Field division using Montgomery reduction. */
+mp_err
+ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ /* if A=aZ represents a encoded in montgomery coordinates with Z and #
+ * and \ respectively represent multiplication and division in
+ * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
+ * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
+ MP_CHECKOK(ec_GFp_div(a, b, r, meth));
+ MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
+ if (a == NULL) {
+ MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
+ }
+CLEANUP:
+ return res;
+}
+
+/* Encode a field element in Montgomery form. See s_mp_to_mont in
+ * mpi/mpmontg.c */
+mp_err
+ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_mont_modulus *mmm;
+ mp_err res = MP_OKAY;
+
+ mmm = (mp_mont_modulus *)meth->extra1;
+ MP_CHECKOK(mp_copy(a, r));
+ MP_CHECKOK(s_mp_lshd(r, MP_USED(&mmm->N)));
+ MP_CHECKOK(mp_mod(r, &mmm->N, r));
+CLEANUP:
+ return res;
+}
+
+/* Decode a field element from Montgomery form. */
+mp_err
+ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ if (a != r) {
+ MP_CHECKOK(mp_copy(a, r));
+ }
+ MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *)meth->extra1));
+CLEANUP:
+ return res;
+}
+
+/* Free the memory allocated to the extra fields of Montgomery GFMethod
+ * object. */
+void
+ec_GFp_extra_free_mont(GFMethod *meth)
+{
+ if (meth->extra1 != NULL) {
+ free(meth->extra1);
+ meth->extra1 = NULL;
+ }
+}
diff --git a/security/nss/lib/freebl/ecl/tests/ec_naft.c b/security/nss/lib/freebl/ecl/tests/ec_naft.c
new file mode 100644
index 000000000..61ef15c36
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/tests/ec_naft.c
@@ -0,0 +1,121 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "ecl.h"
+#include "ecp.h"
+#include "ecl-priv.h"
+
+#include <sys/types.h>
+#include <stdio.h>
+#include <time.h>
+#include <sys/time.h>
+#include <sys/resource.h>
+
+/* Returns 2^e as an integer. This is meant to be used for small powers of
+ * two. */
+int ec_twoTo(int e);
+
+/* Number of bits of scalar to test */
+#define BITSIZE 160
+
+/* Time k repetitions of operation op. */
+#define M_TimeOperation(op, k) \
+ { \
+ double dStart, dNow, dUserTime; \
+ struct rusage ru; \
+ int i; \
+ getrusage(RUSAGE_SELF, &ru); \
+ dStart = (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec * 0.000001; \
+ for (i = 0; i < k; i++) { \
+ { \
+ op; \
+ } \
+ }; \
+ getrusage(RUSAGE_SELF, &ru); \
+ dNow = (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec * 0.000001; \
+ dUserTime = dNow - dStart; \
+ if (dUserTime) \
+ printf(" %-45s\n k: %6i, t: %6.2f sec\n", #op, k, dUserTime); \
+ }
+
+/* Tests wNAF computation. Non-adjacent-form is discussed in the paper: D.
+ * Hankerson, J. Hernandez and A. Menezes, "Software implementation of
+ * elliptic curve cryptography over binary fields", Proc. CHES 2000. */
+
+mp_err
+main(void)
+{
+ signed char naf[BITSIZE + 1];
+ ECGroup *group = NULL;
+ mp_int k;
+ mp_int *scalar;
+ int i, count;
+ int res;
+ int w = 5;
+ char s[1000];
+
+ /* Get a 160 bit scalar to compute wNAF from */
+ group = ECGroup_fromName(ECCurve_SECG_PRIME_160R1);
+ scalar = &group->genx;
+
+ /* Compute wNAF representation of scalar */
+ ec_compute_wNAF(naf, BITSIZE, scalar, w);
+
+ /* Verify correctness of representation */
+ mp_init(&k); /* init k to 0 */
+
+ for (i = BITSIZE; i >= 0; i--) {
+ mp_add(&k, &k, &k);
+ /* digits in mp_???_d are unsigned */
+ if (naf[i] >= 0) {
+ mp_add_d(&k, naf[i], &k);
+ } else {
+ mp_sub_d(&k, -naf[i], &k);
+ }
+ }
+
+ if (mp_cmp(&k, scalar) != 0) {
+ printf("Error: incorrect NAF value.\n");
+ MP_CHECKOK(mp_toradix(&k, s, 16));
+ printf("NAF value %s\n", s);
+ MP_CHECKOK(mp_toradix(scalar, s, 16));
+ printf("original value %s\n", s);
+ goto CLEANUP;
+ }
+
+ /* Verify digits of representation are valid */
+ for (i = 0; i <= BITSIZE; i++) {
+ if (naf[i] % 2 == 0 && naf[i] != 0) {
+ printf("Error: Even non-zero digit found.\n");
+ goto CLEANUP;
+ }
+ if (naf[i] < -(ec_twoTo(w - 1)) || naf[i] >= ec_twoTo(w - 1)) {
+ printf("Error: Magnitude of naf digit too large.\n");
+ goto CLEANUP;
+ }
+ }
+
+ /* Verify sparsity of representation */
+ count = w - 1;
+ for (i = 0; i <= BITSIZE; i++) {
+ if (naf[i] != 0) {
+ if (count < w - 1) {
+ printf("Error: Sparsity failed.\n");
+ goto CLEANUP;
+ }
+ count = 0;
+ } else
+ count++;
+ }
+
+ /* Check timing */
+ M_TimeOperation(ec_compute_wNAF(naf, BITSIZE, scalar, w), 10000);
+
+ printf("Test passed.\n");
+CLEANUP:
+ ECGroup_free(group);
+ return MP_OKAY;
+}
diff --git a/security/nss/lib/freebl/ecl/tests/ecp_test.c b/security/nss/lib/freebl/ecl/tests/ecp_test.c
new file mode 100644
index 000000000..dcec4d747
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/tests/ecp_test.c
@@ -0,0 +1,409 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpprime.h"
+#include "ecl.h"
+#include "ecl-curve.h"
+#include "ecp.h"
+#include <stdio.h>
+#include <strings.h>
+#include <assert.h>
+
+#include <time.h>
+#include <sys/time.h>
+#include <sys/resource.h>
+
+/* Time k repetitions of operation op. */
+#define M_TimeOperation(op, k) \
+ { \
+ double dStart, dNow, dUserTime; \
+ struct rusage ru; \
+ int i; \
+ getrusage(RUSAGE_SELF, &ru); \
+ dStart = (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec * 0.000001; \
+ for (i = 0; i < k; i++) { \
+ { \
+ op; \
+ } \
+ }; \
+ getrusage(RUSAGE_SELF, &ru); \
+ dNow = (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec * 0.000001; \
+ dUserTime = dNow - dStart; \
+ if (dUserTime) \
+ printf(" %-45s k: %6i, t: %6.2f sec\n", #op, k, dUserTime); \
+ }
+
+/* Test curve using generic field arithmetic. */
+#define ECTEST_GENERIC_GFP(name_c, name) \
+ printf("Testing %s using generic implementation...\n", name_c); \
+ params = EC_GetNamedCurveParams(name); \
+ if (params == NULL) { \
+ printf(" Error: could not construct params.\n"); \
+ res = MP_NO; \
+ goto CLEANUP; \
+ } \
+ ECGroup_free(group); \
+ group = ECGroup_fromHex(params); \
+ if (group == NULL) { \
+ printf(" Error: could not construct group.\n"); \
+ res = MP_NO; \
+ goto CLEANUP; \
+ } \
+ MP_CHECKOK(ectest_curve_GFp(group, ectestPrint, ectestTime, 1)); \
+ printf("... okay.\n");
+
+/* Test curve using specific field arithmetic. */
+#define ECTEST_NAMED_GFP(name_c, name) \
+ printf("Testing %s using specific implementation...\n", name_c); \
+ ECGroup_free(group); \
+ group = ECGroup_fromName(name); \
+ if (group == NULL) { \
+ printf(" Warning: could not construct group.\n"); \
+ printf("... failed; continuing with remaining tests.\n"); \
+ } else { \
+ MP_CHECKOK(ectest_curve_GFp(group, ectestPrint, ectestTime, 0)); \
+ printf("... okay.\n"); \
+ }
+
+/* Performs basic tests of elliptic curve cryptography over prime fields.
+ * If tests fail, then it prints an error message, aborts, and returns an
+ * error code. Otherwise, returns 0. */
+int
+ectest_curve_GFp(ECGroup *group, int ectestPrint, int ectestTime,
+ int generic)
+{
+
+ mp_int one, order_1, gx, gy, rx, ry, n;
+ int size;
+ mp_err res;
+ char s[1000];
+
+ /* initialize values */
+ MP_CHECKOK(mp_init(&one));
+ MP_CHECKOK(mp_init(&order_1));
+ MP_CHECKOK(mp_init(&gx));
+ MP_CHECKOK(mp_init(&gy));
+ MP_CHECKOK(mp_init(&rx));
+ MP_CHECKOK(mp_init(&ry));
+ MP_CHECKOK(mp_init(&n));
+
+ MP_CHECKOK(mp_set_int(&one, 1));
+ MP_CHECKOK(mp_sub(&group->order, &one, &order_1));
+
+ /* encode base point */
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(&group->genx, &gx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(&group->geny, &gy, group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(&group->genx, &gx));
+ MP_CHECKOK(mp_copy(&group->geny, &gy));
+ }
+ if (ectestPrint) {
+ /* output base point */
+ printf(" base point P:\n");
+ MP_CHECKOK(mp_toradix(&gx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&gy, s, 16));
+ printf(" %s\n", s);
+ if (group->meth->field_enc) {
+ printf(" base point P (encoded):\n");
+ MP_CHECKOK(mp_toradix(&group->genx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&group->geny, s, 16));
+ printf(" %s\n", s);
+ }
+ }
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+ /* multiply base point by order - 1 and check for negative of base
+ * point */
+ MP_CHECKOK(ec_GFp_pt_mul_aff(&order_1, &group->genx, &group->geny, &rx, &ry, group));
+ if (ectestPrint) {
+ printf(" (order-1)*P (affine):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ MP_CHECKOK(group->meth->field_neg(&ry, &ry, group->meth));
+ if ((mp_cmp(&rx, &group->genx) != 0) || (mp_cmp(&ry, &group->geny) != 0)) {
+ printf(" Error: invalid result (expected (- base point)).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+#endif
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+ /* multiply base point by order - 1 and check for negative of base
+ * point */
+ MP_CHECKOK(ec_GFp_pt_mul_jac(&order_1, &group->genx, &group->geny, &rx, &ry, group));
+ if (ectestPrint) {
+ printf(" (order-1)*P (jacobian):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ MP_CHECKOK(group->meth->field_neg(&ry, &ry, group->meth));
+ if ((mp_cmp(&rx, &group->genx) != 0) || (mp_cmp(&ry, &group->geny) != 0)) {
+ printf(" Error: invalid result (expected (- base point)).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+#endif
+
+ /* multiply base point by order - 1 and check for negative of base
+ * point */
+ MP_CHECKOK(ECPoint_mul(group, &order_1, NULL, NULL, &rx, &ry));
+ if (ectestPrint) {
+ printf(" (order-1)*P (ECPoint_mul):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ MP_CHECKOK(mp_submod(&group->meth->irr, &ry, &group->meth->irr, &ry));
+ if ((mp_cmp(&rx, &gx) != 0) || (mp_cmp(&ry, &gy) != 0)) {
+ printf(" Error: invalid result (expected (- base point)).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ /* multiply base point by order - 1 and check for negative of base
+ * point */
+ MP_CHECKOK(ECPoint_mul(group, &order_1, &gx, &gy, &rx, &ry));
+ if (ectestPrint) {
+ printf(" (order-1)*P (ECPoint_mul):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ MP_CHECKOK(mp_submod(&group->meth->irr, &ry, &group->meth->irr, &ry));
+ if ((mp_cmp(&rx, &gx) != 0) || (mp_cmp(&ry, &gy) != 0)) {
+ printf(" Error: invalid result (expected (- base point)).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+ /* multiply base point by order and check for point at infinity */
+ MP_CHECKOK(ec_GFp_pt_mul_aff(&group->order, &group->genx, &group->geny, &rx, &ry,
+ group));
+ if (ectestPrint) {
+ printf(" (order)*P (affine):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ if (ec_GFp_pt_is_inf_aff(&rx, &ry) != MP_YES) {
+ printf(" Error: invalid result (expected point at infinity).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+#endif
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+ /* multiply base point by order and check for point at infinity */
+ MP_CHECKOK(ec_GFp_pt_mul_jac(&group->order, &group->genx, &group->geny, &rx, &ry,
+ group));
+ if (ectestPrint) {
+ printf(" (order)*P (jacobian):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ if (ec_GFp_pt_is_inf_aff(&rx, &ry) != MP_YES) {
+ printf(" Error: invalid result (expected point at infinity).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+#endif
+
+ /* multiply base point by order and check for point at infinity */
+ MP_CHECKOK(ECPoint_mul(group, &group->order, NULL, NULL, &rx, &ry));
+ if (ectestPrint) {
+ printf(" (order)*P (ECPoint_mul):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ if (ec_GFp_pt_is_inf_aff(&rx, &ry) != MP_YES) {
+ printf(" Error: invalid result (expected point at infinity).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ /* multiply base point by order and check for point at infinity */
+ MP_CHECKOK(ECPoint_mul(group, &group->order, &gx, &gy, &rx, &ry));
+ if (ectestPrint) {
+ printf(" (order)*P (ECPoint_mul):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ if (ec_GFp_pt_is_inf_aff(&rx, &ry) != MP_YES) {
+ printf(" Error: invalid result (expected point at infinity).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ /* check that (order-1)P + (order-1)P + P == (order-1)P */
+ MP_CHECKOK(ECPoints_mul(group, &order_1, &order_1, &gx, &gy, &rx, &ry));
+ MP_CHECKOK(ECPoints_mul(group, &one, &one, &rx, &ry, &rx, &ry));
+ if (ectestPrint) {
+ printf(" (order-1)*P + (order-1)*P + P == (order-1)*P (ECPoints_mul):\n");
+ MP_CHECKOK(mp_toradix(&rx, s, 16));
+ printf(" %s\n", s);
+ MP_CHECKOK(mp_toradix(&ry, s, 16));
+ printf(" %s\n", s);
+ }
+ MP_CHECKOK(mp_submod(&group->meth->irr, &ry, &group->meth->irr, &ry));
+ if ((mp_cmp(&rx, &gx) != 0) || (mp_cmp(&ry, &gy) != 0)) {
+ printf(" Error: invalid result (expected (- base point)).\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ /* test validate_point function */
+ if (ECPoint_validate(group, &gx, &gy) != MP_YES) {
+ printf(" Error: validate point on base point failed.\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+ MP_CHECKOK(mp_add_d(&gy, 1, &ry));
+ if (ECPoint_validate(group, &gx, &ry) != MP_NO) {
+ printf(" Error: validate point on invalid point passed.\n");
+ res = MP_NO;
+ goto CLEANUP;
+ }
+
+ if (ectestTime) {
+ /* compute random scalar */
+ size = mpl_significant_bits(&group->meth->irr);
+ if (size < MP_OKAY) {
+ goto CLEANUP;
+ }
+ MP_CHECKOK(mpp_random_size(&n, (size + ECL_BITS - 1) / ECL_BITS));
+ MP_CHECKOK(group->meth->field_mod(&n, &n, group->meth));
+ /* timed test */
+ if (generic) {
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+ M_TimeOperation(MP_CHECKOK(ec_GFp_pt_mul_aff(&n, &group->genx, &group->geny, &rx, &ry,
+ group)),
+ 100);
+#endif
+ M_TimeOperation(MP_CHECKOK(ECPoint_mul(group, &n, NULL, NULL, &rx, &ry)),
+ 100);
+ M_TimeOperation(MP_CHECKOK(ECPoints_mul(group, &n, &n, &gx, &gy, &rx, &ry)), 100);
+ } else {
+ M_TimeOperation(MP_CHECKOK(ECPoint_mul(group, &n, NULL, NULL, &rx, &ry)),
+ 100);
+ M_TimeOperation(MP_CHECKOK(ECPoint_mul(group, &n, &gx, &gy, &rx, &ry)),
+ 100);
+ M_TimeOperation(MP_CHECKOK(ECPoints_mul(group, &n, &n, &gx, &gy, &rx, &ry)), 100);
+ }
+ }
+
+CLEANUP:
+ mp_clear(&one);
+ mp_clear(&order_1);
+ mp_clear(&gx);
+ mp_clear(&gy);
+ mp_clear(&rx);
+ mp_clear(&ry);
+ mp_clear(&n);
+ if (res != MP_OKAY) {
+ printf(" Error: exiting with error value %i\n", res);
+ }
+ return res;
+}
+
+/* Prints help information. */
+void
+printUsage()
+{
+ printf("Usage: ecp_test [--print] [--time]\n");
+ printf(" --print Print out results of each point arithmetic test.\n");
+ printf(" --time Benchmark point operations and print results.\n");
+}
+
+/* Performs tests of elliptic curve cryptography over prime fields If
+ * tests fail, then it prints an error message, aborts, and returns an
+ * error code. Otherwise, returns 0. */
+int
+main(int argv, char **argc)
+{
+
+ int ectestTime = 0;
+ int ectestPrint = 0;
+ int i;
+ ECGroup *group = NULL;
+ ECCurveParams *params = NULL;
+ mp_err res;
+
+ /* read command-line arguments */
+ for (i = 1; i < argv; i++) {
+ if ((strcasecmp(argc[i], "time") == 0) || (strcasecmp(argc[i], "-time") == 0) || (strcasecmp(argc[i], "--time") == 0)) {
+ ectestTime = 1;
+ } else if ((strcasecmp(argc[i], "print") == 0) || (strcasecmp(argc[i], "-print") == 0) || (strcasecmp(argc[i], "--print") == 0)) {
+ ectestPrint = 1;
+ } else {
+ printUsage();
+ return 0;
+ }
+ }
+
+ /* generic arithmetic tests */
+ ECTEST_GENERIC_GFP("SECP-160R1", ECCurve_SECG_PRIME_160R1);
+
+ /* specific arithmetic tests */
+ ECTEST_NAMED_GFP("NIST-P192", ECCurve_NIST_P192);
+ ECTEST_NAMED_GFP("NIST-P224", ECCurve_NIST_P224);
+ ECTEST_NAMED_GFP("NIST-P256", ECCurve_NIST_P256);
+ ECTEST_NAMED_GFP("NIST-P384", ECCurve_NIST_P384);
+ ECTEST_NAMED_GFP("NIST-P521", ECCurve_NIST_P521);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME192v1", ECCurve_X9_62_PRIME_192V1);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME192v2", ECCurve_X9_62_PRIME_192V2);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME192v3", ECCurve_X9_62_PRIME_192V3);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME239v1", ECCurve_X9_62_PRIME_239V1);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME239v2", ECCurve_X9_62_PRIME_239V2);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME239v3", ECCurve_X9_62_PRIME_239V3);
+ ECTEST_NAMED_GFP("ANSI X9.62 PRIME256v1", ECCurve_X9_62_PRIME_256V1);
+ ECTEST_NAMED_GFP("SECP-112R1", ECCurve_SECG_PRIME_112R1);
+ ECTEST_NAMED_GFP("SECP-112R2", ECCurve_SECG_PRIME_112R2);
+ ECTEST_NAMED_GFP("SECP-128R1", ECCurve_SECG_PRIME_128R1);
+ ECTEST_NAMED_GFP("SECP-128R2", ECCurve_SECG_PRIME_128R2);
+ ECTEST_NAMED_GFP("SECP-160K1", ECCurve_SECG_PRIME_160K1);
+ ECTEST_NAMED_GFP("SECP-160R1", ECCurve_SECG_PRIME_160R1);
+ ECTEST_NAMED_GFP("SECP-160R2", ECCurve_SECG_PRIME_160R2);
+ ECTEST_NAMED_GFP("SECP-192K1", ECCurve_SECG_PRIME_192K1);
+ ECTEST_NAMED_GFP("SECP-192R1", ECCurve_SECG_PRIME_192R1);
+ ECTEST_NAMED_GFP("SECP-224K1", ECCurve_SECG_PRIME_224K1);
+ ECTEST_NAMED_GFP("SECP-224R1", ECCurve_SECG_PRIME_224R1);
+ ECTEST_NAMED_GFP("SECP-256K1", ECCurve_SECG_PRIME_256K1);
+ ECTEST_NAMED_GFP("SECP-256R1", ECCurve_SECG_PRIME_256R1);
+ ECTEST_NAMED_GFP("SECP-384R1", ECCurve_SECG_PRIME_384R1);
+ ECTEST_NAMED_GFP("SECP-521R1", ECCurve_SECG_PRIME_521R1);
+ ECTEST_NAMED_GFP("WTLS-6 (112)", ECCurve_WTLS_6);
+ ECTEST_NAMED_GFP("WTLS-7 (160)", ECCurve_WTLS_7);
+ ECTEST_NAMED_GFP("WTLS-8 (112)", ECCurve_WTLS_8);
+ ECTEST_NAMED_GFP("WTLS-9 (160)", ECCurve_WTLS_9);
+ ECTEST_NAMED_GFP("WTLS-12 (224)", ECCurve_WTLS_12);
+ ECTEST_NAMED_GFP("Curve25519", ECCurve25519);
+
+CLEANUP:
+ EC_FreeCurveParams(params);
+ ECGroup_free(group);
+ if (res != MP_OKAY) {
+ printf("Error: exiting with error value %i\n", res);
+ }
+ return res;
+}
diff --git a/security/nss/lib/freebl/ecl/uint128.c b/security/nss/lib/freebl/ecl/uint128.c
new file mode 100644
index 000000000..22cbd023c
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/uint128.c
@@ -0,0 +1,87 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "uint128.h"
+
+/* helper functions */
+uint64_t
+mask51(uint128_t x)
+{
+ return x.lo & MASK51;
+}
+
+uint64_t
+mask_lower(uint128_t x)
+{
+ return x.lo;
+}
+
+uint128_t
+mask51full(uint128_t x)
+{
+ uint128_t ret = { x.lo & MASK51, 0 };
+ return ret;
+}
+
+uint128_t
+init128x(uint64_t x)
+{
+ uint128_t ret = { x, 0 };
+ return ret;
+}
+
+/* arithmetic */
+
+uint128_t
+add128(uint128_t a, uint128_t b)
+{
+ uint128_t ret;
+ ret.lo = a.lo + b.lo;
+ ret.hi = a.hi + b.hi + (ret.lo < b.lo);
+ return ret;
+}
+
+/* out = 19 * a */
+uint128_t
+mul12819(uint128_t a)
+{
+ uint128_t ret = lshift128(a, 4);
+ ret = add128(ret, a);
+ ret = add128(ret, a);
+ ret = add128(ret, a);
+ return ret;
+}
+
+uint128_t
+mul6464(uint64_t a, uint64_t b)
+{
+ uint128_t ret;
+ uint64_t t0 = ((uint64_t)(uint32_t)a) * ((uint64_t)(uint32_t)b);
+ uint64_t t1 = (a >> 32) * ((uint64_t)(uint32_t)b) + (t0 >> 32);
+ uint64_t t2 = (b >> 32) * ((uint64_t)(uint32_t)a) + ((uint32_t)t1);
+ ret.lo = (((uint64_t)((uint32_t)t2)) << 32) + ((uint32_t)t0);
+ ret.hi = (a >> 32) * (b >> 32);
+ ret.hi += (t2 >> 32) + (t1 >> 32);
+ return ret;
+}
+
+/* only defined for n < 64 */
+uint128_t
+rshift128(uint128_t x, uint8_t n)
+{
+ uint128_t ret;
+ ret.lo = (x.lo >> n) + (x.hi << (64 - n));
+ ret.hi = x.hi >> n;
+ return ret;
+}
+
+/* only defined for n < 64 */
+uint128_t
+lshift128(uint128_t x, uint8_t n)
+{
+ uint128_t ret;
+ ret.hi = (x.hi << n) + (x.lo >> (64 - n));
+ ret.lo = x.lo << n;
+ return ret;
+}
diff --git a/security/nss/lib/freebl/ecl/uint128.h b/security/nss/lib/freebl/ecl/uint128.h
new file mode 100644
index 000000000..a3a71e6e7
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/uint128.h
@@ -0,0 +1,35 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include <stdint.h>
+
+#define MASK51 0x7ffffffffffffULL
+
+#ifdef HAVE_INT128_SUPPORT
+typedef unsigned __int128 uint128_t;
+#define add128(a, b) (a) + (b)
+#define mul6464(a, b) (uint128_t)(a) * (uint128_t)(b)
+#define mul12819(a) (uint128_t)(a) * 19
+#define rshift128(x, n) (x) >> (n)
+#define lshift128(x, n) (x) << (n)
+#define mask51(x) (x) & 0x7ffffffffffff
+#define mask_lower(x) (uint64_t)(x)
+#define mask51full(x) (x) & 0x7ffffffffffff
+#define init128x(x) (x)
+#else /* uint128_t for Windows and 32 bit intel systems */
+struct uint128_t_str {
+ uint64_t lo;
+ uint64_t hi;
+};
+typedef struct uint128_t_str uint128_t;
+uint128_t add128(uint128_t a, uint128_t b);
+uint128_t mul6464(uint64_t a, uint64_t b);
+uint128_t mul12819(uint128_t a);
+uint128_t rshift128(uint128_t x, uint8_t n);
+uint128_t lshift128(uint128_t x, uint8_t n);
+uint64_t mask51(uint128_t x);
+uint64_t mask_lower(uint128_t x);
+uint128_t mask51full(uint128_t x);
+uint128_t init128x(uint64_t x);
+#endif