summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/ecl/ecp.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/ecl/ecp.h')
-rw-r--r--security/nss/lib/freebl/ecl/ecp.h106
1 files changed, 106 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/ecp.h b/security/nss/lib/freebl/ecl/ecp.h
new file mode 100644
index 000000000..7e54e4e07
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp.h
@@ -0,0 +1,106 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef __ecp_h_
+#define __ecp_h_
+
+#include "ecl-priv.h"
+
+/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
+mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
+
+/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
+mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
+
+/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
+ * qy). Uses affine coordinates. */
+mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = P - Q. Uses affine coordinates. */
+mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = 2P. Uses affine coordinates. */
+mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Validates a point on a GFp curve. */
+mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Uses affine coordinates. */
+mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+/* Converts a point P(px, py) from affine coordinates to Jacobian
+ * projective coordinates R(rx, ry, rz). */
+mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group);
+
+/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
+ * affine coordinates R(rx, ry). */
+mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
+ * coordinates. */
+mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
+ const mp_int *pz);
+
+/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
+ * coordinates. */
+mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, qz). Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
+ const mp_int *pz, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+/* Computes R = 2P. Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Uses Jacobian coordinates. */
+mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
+ * (base point) of the group of points on the elliptic curve. Allows k1 =
+ * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
+ * coordinates. Input and output values are assumed to be NOT
+ * field-encoded and are in affine form. */
+mp_err
+ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
+ * curve points P and R can be identical. Uses mixed Modified-Jacobian
+ * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
+ * additions. Assumes input is already field-encoded using field_enc, and
+ * returns output that is still field-encoded. Uses 5-bit window NAF
+ * method (algorithm 11) for scalar-point multiplication from Brown,
+ * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
+ * Curves Over Prime Fields. */
+mp_err
+ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group);
+
+#endif /* __ecp_h_ */