diff options
Diffstat (limited to 'security/nss/lib/freebl/alg2268.c')
-rw-r--r-- | security/nss/lib/freebl/alg2268.c | 509 |
1 files changed, 509 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/alg2268.c b/security/nss/lib/freebl/alg2268.c new file mode 100644 index 000000000..54c6f4dff --- /dev/null +++ b/security/nss/lib/freebl/alg2268.c @@ -0,0 +1,509 @@ +/* + * alg2268.c - implementation of the algorithm in RFC 2268 + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifdef FREEBL_NO_DEPEND +#include "stubs.h" +#endif + +#include "blapi.h" +#include "blapii.h" +#include "secerr.h" +#ifdef XP_UNIX_XXX +#include <stddef.h> /* for ptrdiff_t */ +#endif + +/* +** RC2 symmetric block cypher +*/ + +typedef SECStatus(rc2Func)(RC2Context *cx, unsigned char *output, + const unsigned char *input, unsigned int inputLen); + +/* forward declarations */ +static rc2Func rc2_EncryptECB; +static rc2Func rc2_DecryptECB; +static rc2Func rc2_EncryptCBC; +static rc2Func rc2_DecryptCBC; + +typedef union { + PRUint32 l[2]; + PRUint16 s[4]; + PRUint8 b[8]; +} RC2Block; + +struct RC2ContextStr { + union { + PRUint8 Kb[128]; + PRUint16 Kw[64]; + } u; + RC2Block iv; + rc2Func *enc; + rc2Func *dec; +}; + +#define B u.Kb +#define K u.Kw +#define BYTESWAP(x) ((x) << 8 | (x) >> 8) +#define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS)) +#define RC2_BLOCK_SIZE 8 + +#define LOAD_HARD(R) \ + R[0] = (PRUint16)input[1] << 8 | input[0]; \ + R[1] = (PRUint16)input[3] << 8 | input[2]; \ + R[2] = (PRUint16)input[5] << 8 | input[4]; \ + R[3] = (PRUint16)input[7] << 8 | input[6]; +#define LOAD_EASY(R) \ + R[0] = ((PRUint16 *)input)[0]; \ + R[1] = ((PRUint16 *)input)[1]; \ + R[2] = ((PRUint16 *)input)[2]; \ + R[3] = ((PRUint16 *)input)[3]; +#define STORE_HARD(R) \ + output[0] = (PRUint8)(R[0]); \ + output[1] = (PRUint8)(R[0] >> 8); \ + output[2] = (PRUint8)(R[1]); \ + output[3] = (PRUint8)(R[1] >> 8); \ + output[4] = (PRUint8)(R[2]); \ + output[5] = (PRUint8)(R[2] >> 8); \ + output[6] = (PRUint8)(R[3]); \ + output[7] = (PRUint8)(R[3] >> 8); +#define STORE_EASY(R) \ + ((PRUint16 *)output)[0] = R[0]; \ + ((PRUint16 *)output)[1] = R[1]; \ + ((PRUint16 *)output)[2] = R[2]; \ + ((PRUint16 *)output)[3] = R[3]; + +#if defined(NSS_X86_OR_X64) +#define LOAD(R) LOAD_EASY(R) +#define STORE(R) STORE_EASY(R) +#elif !defined(IS_LITTLE_ENDIAN) +#define LOAD(R) LOAD_HARD(R) +#define STORE(R) STORE_HARD(R) +#else +#define LOAD(R) \ + if ((ptrdiff_t)input & 1) { \ + LOAD_HARD(R) \ + } else { \ + LOAD_EASY(R) \ + } +#define STORE(R) \ + if ((ptrdiff_t)input & 1) { \ + STORE_HARD(R) \ + } else { \ + STORE_EASY(R) \ + } +#endif + +static const PRUint8 S[256] = { + 0331, 0170, 0371, 0304, 0031, 0335, 0265, 0355, 0050, 0351, 0375, 0171, 0112, 0240, 0330, 0235, + 0306, 0176, 0067, 0203, 0053, 0166, 0123, 0216, 0142, 0114, 0144, 0210, 0104, 0213, 0373, 0242, + 0027, 0232, 0131, 0365, 0207, 0263, 0117, 0023, 0141, 0105, 0155, 0215, 0011, 0201, 0175, 0062, + 0275, 0217, 0100, 0353, 0206, 0267, 0173, 0013, 0360, 0225, 0041, 0042, 0134, 0153, 0116, 0202, + 0124, 0326, 0145, 0223, 0316, 0140, 0262, 0034, 0163, 0126, 0300, 0024, 0247, 0214, 0361, 0334, + 0022, 0165, 0312, 0037, 0073, 0276, 0344, 0321, 0102, 0075, 0324, 0060, 0243, 0074, 0266, 0046, + 0157, 0277, 0016, 0332, 0106, 0151, 0007, 0127, 0047, 0362, 0035, 0233, 0274, 0224, 0103, 0003, + 0370, 0021, 0307, 0366, 0220, 0357, 0076, 0347, 0006, 0303, 0325, 0057, 0310, 0146, 0036, 0327, + 0010, 0350, 0352, 0336, 0200, 0122, 0356, 0367, 0204, 0252, 0162, 0254, 0065, 0115, 0152, 0052, + 0226, 0032, 0322, 0161, 0132, 0025, 0111, 0164, 0113, 0237, 0320, 0136, 0004, 0030, 0244, 0354, + 0302, 0340, 0101, 0156, 0017, 0121, 0313, 0314, 0044, 0221, 0257, 0120, 0241, 0364, 0160, 0071, + 0231, 0174, 0072, 0205, 0043, 0270, 0264, 0172, 0374, 0002, 0066, 0133, 0045, 0125, 0227, 0061, + 0055, 0135, 0372, 0230, 0343, 0212, 0222, 0256, 0005, 0337, 0051, 0020, 0147, 0154, 0272, 0311, + 0323, 0000, 0346, 0317, 0341, 0236, 0250, 0054, 0143, 0026, 0001, 0077, 0130, 0342, 0211, 0251, + 0015, 0070, 0064, 0033, 0253, 0063, 0377, 0260, 0273, 0110, 0014, 0137, 0271, 0261, 0315, 0056, + 0305, 0363, 0333, 0107, 0345, 0245, 0234, 0167, 0012, 0246, 0040, 0150, 0376, 0177, 0301, 0255 +}; + +RC2Context * +RC2_AllocateContext(void) +{ + return PORT_ZNew(RC2Context); +} +SECStatus +RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len, + const unsigned char *input, int mode, unsigned int efLen8, + unsigned int unused) +{ + PRUint8 *L, *L2; + int i; +#if !defined(IS_LITTLE_ENDIAN) + PRUint16 tmpS; +#endif + PRUint8 tmpB; + + if (!key || !cx || !len || len > (sizeof cx->B) || + efLen8 > (sizeof cx->B)) { + PORT_SetError(SEC_ERROR_INVALID_ARGS); + return SECFailure; + } + if (mode == NSS_RC2) { + /* groovy */ + } else if (mode == NSS_RC2_CBC) { + if (!input) { + PORT_SetError(SEC_ERROR_INVALID_ARGS); + return SECFailure; + } + } else { + PORT_SetError(SEC_ERROR_INVALID_ARGS); + return SECFailure; + } + + if (mode == NSS_RC2_CBC) { + cx->enc = &rc2_EncryptCBC; + cx->dec = &rc2_DecryptCBC; + LOAD(cx->iv.s); + } else { + cx->enc = &rc2_EncryptECB; + cx->dec = &rc2_DecryptECB; + } + + /* Step 0. Copy key into table. */ + memcpy(cx->B, key, len); + + /* Step 1. Compute all values to the right of the key. */ + L2 = cx->B; + L = L2 + len; + tmpB = L[-1]; + for (i = (sizeof cx->B) - len; i > 0; --i) { + *L++ = tmpB = S[(PRUint8)(tmpB + *L2++)]; + } + + /* step 2. Adjust left most byte of effective key. */ + i = (sizeof cx->B) - efLen8; + L = cx->B + i; + *L = tmpB = S[*L]; /* mask is always 0xff */ + + /* step 3. Recompute all values to the left of effective key. */ + L2 = --L + efLen8; + while (L >= cx->B) { + *L-- = tmpB = S[tmpB ^ *L2--]; + } + +#if !defined(IS_LITTLE_ENDIAN) + for (i = 63; i >= 0; --i) { + SWAPK(i); /* candidate for unrolling */ + } +#endif + return SECSuccess; +} + +/* +** Create a new RC2 context suitable for RC2 encryption/decryption. +** "key" raw key data +** "len" the number of bytes of key data +** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC) +** "mode" one of NSS_RC2 or NSS_RC2_CBC +** "effectiveKeyLen" in bytes, not bits. +** +** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block +** chaining" mode. +*/ +RC2Context * +RC2_CreateContext(const unsigned char *key, unsigned int len, + const unsigned char *iv, int mode, unsigned efLen8) +{ + RC2Context *cx = PORT_ZNew(RC2Context); + if (cx) { + SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0); + if (rv != SECSuccess) { + RC2_DestroyContext(cx, PR_TRUE); + cx = NULL; + } + } + return cx; +} + +/* +** Destroy an RC2 encryption/decryption context. +** "cx" the context +** "freeit" if PR_TRUE then free the object as well as its sub-objects +*/ +void +RC2_DestroyContext(RC2Context *cx, PRBool freeit) +{ + if (cx) { + memset(cx, 0, sizeof *cx); + if (freeit) { + PORT_Free(cx); + } + } +} + +#define ROL(x, k) (x << k | x >> (16 - k)) +#define MIX(j) \ + R0 = R0 + cx->K[4 * j + 0] + (R3 & R2) + (~R3 & R1); \ + R0 = ROL(R0, 1); \ + R1 = R1 + cx->K[4 * j + 1] + (R0 & R3) + (~R0 & R2); \ + R1 = ROL(R1, 2); \ + R2 = R2 + cx->K[4 * j + 2] + (R1 & R0) + (~R1 & R3); \ + R2 = ROL(R2, 3); \ + R3 = R3 + cx->K[4 * j + 3] + (R2 & R1) + (~R2 & R0); \ + R3 = ROL(R3, 5) +#define MASH \ + R0 = R0 + cx->K[R3 & 63]; \ + R1 = R1 + cx->K[R0 & 63]; \ + R2 = R2 + cx->K[R1 & 63]; \ + R3 = R3 + cx->K[R2 & 63] + +/* Encrypt one block */ +static void +rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) +{ + register PRUint16 R0, R1, R2, R3; + + /* step 1. Initialize input. */ + R0 = input->s[0]; + R1 = input->s[1]; + R2 = input->s[2]; + R3 = input->s[3]; + + /* step 2. Expand Key (already done, in context) */ + /* step 3. j = 0 */ + /* step 4. Perform 5 mixing rounds. */ + + MIX(0); + MIX(1); + MIX(2); + MIX(3); + MIX(4); + + /* step 5. Perform 1 mashing round. */ + MASH; + + /* step 6. Perform 6 mixing rounds. */ + + MIX(5); + MIX(6); + MIX(7); + MIX(8); + MIX(9); + MIX(10); + + /* step 7. Perform 1 mashing round. */ + MASH; + + /* step 8. Perform 5 mixing rounds. */ + + MIX(11); + MIX(12); + MIX(13); + MIX(14); + MIX(15); + + /* output results */ + output->s[0] = R0; + output->s[1] = R1; + output->s[2] = R2; + output->s[3] = R3; +} + +#define ROR(x, k) (x >> k | x << (16 - k)) +#define R_MIX(j) \ + R3 = ROR(R3, 5); \ + R3 = R3 - cx->K[4 * j + 3] - (R2 & R1) - (~R2 & R0); \ + R2 = ROR(R2, 3); \ + R2 = R2 - cx->K[4 * j + 2] - (R1 & R0) - (~R1 & R3); \ + R1 = ROR(R1, 2); \ + R1 = R1 - cx->K[4 * j + 1] - (R0 & R3) - (~R0 & R2); \ + R0 = ROR(R0, 1); \ + R0 = R0 - cx->K[4 * j + 0] - (R3 & R2) - (~R3 & R1) +#define R_MASH \ + R3 = R3 - cx->K[R2 & 63]; \ + R2 = R2 - cx->K[R1 & 63]; \ + R1 = R1 - cx->K[R0 & 63]; \ + R0 = R0 - cx->K[R3 & 63] + +/* Encrypt one block */ +static void +rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) +{ + register PRUint16 R0, R1, R2, R3; + + /* step 1. Initialize input. */ + R0 = input->s[0]; + R1 = input->s[1]; + R2 = input->s[2]; + R3 = input->s[3]; + + /* step 2. Expand Key (already done, in context) */ + /* step 3. j = 63 */ + /* step 4. Perform 5 r_mixing rounds. */ + R_MIX(15); + R_MIX(14); + R_MIX(13); + R_MIX(12); + R_MIX(11); + + /* step 5. Perform 1 r_mashing round. */ + R_MASH; + + /* step 6. Perform 6 r_mixing rounds. */ + R_MIX(10); + R_MIX(9); + R_MIX(8); + R_MIX(7); + R_MIX(6); + R_MIX(5); + + /* step 7. Perform 1 r_mashing round. */ + R_MASH; + + /* step 8. Perform 5 r_mixing rounds. */ + R_MIX(4); + R_MIX(3); + R_MIX(2); + R_MIX(1); + R_MIX(0); + + /* output results */ + output->s[0] = R0; + output->s[1] = R1; + output->s[2] = R2; + output->s[3] = R3; +} + +static SECStatus NO_SANITIZE_ALIGNMENT +rc2_EncryptECB(RC2Context *cx, unsigned char *output, + const unsigned char *input, unsigned int inputLen) +{ + RC2Block iBlock; + + while (inputLen > 0) { + LOAD(iBlock.s) + rc2_Encrypt1Block(cx, &iBlock, &iBlock); + STORE(iBlock.s) + output += RC2_BLOCK_SIZE; + input += RC2_BLOCK_SIZE; + inputLen -= RC2_BLOCK_SIZE; + } + return SECSuccess; +} + +static SECStatus NO_SANITIZE_ALIGNMENT +rc2_DecryptECB(RC2Context *cx, unsigned char *output, + const unsigned char *input, unsigned int inputLen) +{ + RC2Block iBlock; + + while (inputLen > 0) { + LOAD(iBlock.s) + rc2_Decrypt1Block(cx, &iBlock, &iBlock); + STORE(iBlock.s) + output += RC2_BLOCK_SIZE; + input += RC2_BLOCK_SIZE; + inputLen -= RC2_BLOCK_SIZE; + } + return SECSuccess; +} + +static SECStatus NO_SANITIZE_ALIGNMENT +rc2_EncryptCBC(RC2Context *cx, unsigned char *output, + const unsigned char *input, unsigned int inputLen) +{ + RC2Block iBlock; + + while (inputLen > 0) { + + LOAD(iBlock.s) + iBlock.l[0] ^= cx->iv.l[0]; + iBlock.l[1] ^= cx->iv.l[1]; + rc2_Encrypt1Block(cx, &iBlock, &iBlock); + cx->iv = iBlock; + STORE(iBlock.s) + output += RC2_BLOCK_SIZE; + input += RC2_BLOCK_SIZE; + inputLen -= RC2_BLOCK_SIZE; + } + return SECSuccess; +} + +static SECStatus NO_SANITIZE_ALIGNMENT +rc2_DecryptCBC(RC2Context *cx, unsigned char *output, + const unsigned char *input, unsigned int inputLen) +{ + RC2Block iBlock; + RC2Block oBlock; + + while (inputLen > 0) { + LOAD(iBlock.s) + rc2_Decrypt1Block(cx, &oBlock, &iBlock); + oBlock.l[0] ^= cx->iv.l[0]; + oBlock.l[1] ^= cx->iv.l[1]; + cx->iv = iBlock; + STORE(oBlock.s) + output += RC2_BLOCK_SIZE; + input += RC2_BLOCK_SIZE; + inputLen -= RC2_BLOCK_SIZE; + } + return SECSuccess; +} + +/* +** Perform RC2 encryption. +** "cx" the context +** "output" the output buffer to store the encrypted data. +** "outputLen" how much data is stored in "output". Set by the routine +** after some data is stored in output. +** "maxOutputLen" the maximum amount of data that can ever be +** stored in "output" +** "input" the input data +** "inputLen" the amount of input data +*/ +SECStatus +RC2_Encrypt(RC2Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + SECStatus rv = SECSuccess; + if (inputLen) { + if (inputLen % RC2_BLOCK_SIZE) { + PORT_SetError(SEC_ERROR_INPUT_LEN); + return SECFailure; + } + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } + rv = (*cx->enc)(cx, output, input, inputLen); + } + if (rv == SECSuccess) { + *outputLen = inputLen; + } + return rv; +} + +/* +** Perform RC2 decryption. +** "cx" the context +** "output" the output buffer to store the decrypted data. +** "outputLen" how much data is stored in "output". Set by the routine +** after some data is stored in output. +** "maxOutputLen" the maximum amount of data that can ever be +** stored in "output" +** "input" the input data +** "inputLen" the amount of input data +*/ +SECStatus +RC2_Decrypt(RC2Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + SECStatus rv = SECSuccess; + if (inputLen) { + if (inputLen % RC2_BLOCK_SIZE) { + PORT_SetError(SEC_ERROR_INPUT_LEN); + return SECFailure; + } + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } + rv = (*cx->dec)(cx, output, input, inputLen); + } + if (rv == SECSuccess) { + *outputLen = inputLen; + } + return rv; +} |