diff options
Diffstat (limited to 'mozglue/linker/ElfLoader.cpp')
-rw-r--r-- | mozglue/linker/ElfLoader.cpp | 1310 |
1 files changed, 1310 insertions, 0 deletions
diff --git a/mozglue/linker/ElfLoader.cpp b/mozglue/linker/ElfLoader.cpp new file mode 100644 index 000000000..76225d1e7 --- /dev/null +++ b/mozglue/linker/ElfLoader.cpp @@ -0,0 +1,1310 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this file, + * You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include <string> +#include <cstring> +#include <cstdlib> +#include <cstdio> +#include <dlfcn.h> +#include <unistd.h> +#include <errno.h> +#include <algorithm> +#include <fcntl.h> +#include "ElfLoader.h" +#include "BaseElf.h" +#include "CustomElf.h" +#include "Mappable.h" +#include "Logging.h" +#include <inttypes.h> + +#if defined(ANDROID) +#include <sys/syscall.h> + +#include <android/api-level.h> +#if __ANDROID_API__ < 8 +/* Android API < 8 doesn't provide sigaltstack */ + +extern "C" { + +inline int sigaltstack(const stack_t *ss, stack_t *oss) { + return syscall(__NR_sigaltstack, ss, oss); +} + +} /* extern "C" */ +#endif /* __ANDROID_API__ */ +#endif /* ANDROID */ + +#ifdef __ARM_EABI__ +extern "C" MOZ_EXPORT const void * +__gnu_Unwind_Find_exidx(void *pc, int *pcount) __attribute__((weak)); +#endif + +/* Pointer to the PT_DYNAMIC section of the executable or library + * containing this code. */ +extern "C" Elf::Dyn _DYNAMIC[]; + +using namespace mozilla; + +/** + * dlfcn.h replacements functions + */ + +void * +__wrap_dlopen(const char *path, int flags) +{ + RefPtr<LibHandle> handle = ElfLoader::Singleton.Load(path, flags); + if (handle) + handle->AddDirectRef(); + return handle; +} + +const char * +__wrap_dlerror(void) +{ + const char *error = ElfLoader::Singleton.lastError; + ElfLoader::Singleton.lastError = nullptr; + return error; +} + +void * +__wrap_dlsym(void *handle, const char *symbol) +{ + if (!handle) { + ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported"; + return nullptr; + } + if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { + LibHandle *h = reinterpret_cast<LibHandle *>(handle); + return h->GetSymbolPtr(symbol); + } + return dlsym(handle, symbol); +} + +int +__wrap_dlclose(void *handle) +{ + if (!handle) { + ElfLoader::Singleton.lastError = "No handle given to dlclose()"; + return -1; + } + reinterpret_cast<LibHandle *>(handle)->ReleaseDirectRef(); + return 0; +} + +int +__wrap_dladdr(void *addr, Dl_info *info) +{ + RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(addr); + if (!handle) { + return dladdr(addr, info); + } + info->dli_fname = handle->GetPath(); + info->dli_fbase = handle->GetBase(); + return 1; +} + +int +__wrap_dl_iterate_phdr(dl_phdr_cb callback, void *data) +{ + if (!ElfLoader::Singleton.dbg) + return -1; + + int pipefd[2]; + bool valid_pipe = (pipe(pipefd) == 0); + AutoCloseFD read_fd(pipefd[0]); + AutoCloseFD write_fd(pipefd[1]); + + for (ElfLoader::DebuggerHelper::iterator it = ElfLoader::Singleton.dbg.begin(); + it < ElfLoader::Singleton.dbg.end(); ++it) { + dl_phdr_info info; + info.dlpi_addr = reinterpret_cast<Elf::Addr>(it->l_addr); + info.dlpi_name = it->l_name; + info.dlpi_phdr = nullptr; + info.dlpi_phnum = 0; + + // Assuming l_addr points to Elf headers (in most cases, this is true), + // get the Phdr location from there. + // Unfortunately, when l_addr doesn't point to Elf headers, it may point + // to unmapped memory, or worse, unreadable memory. The only way to detect + // the latter without causing a SIGSEGV is to use the pointer in a system + // call that will try to read from there, and return an EFAULT error if + // it can't. One such system call is write(). It used to be possible to + // use a file descriptor on /dev/null for these kind of things, but recent + // Linux kernels never return an EFAULT error when using /dev/null. + // So instead, we use a self pipe. We do however need to read() from the + // read end of the pipe as well so as to not fill up the pipe buffer and + // block on subsequent writes. + // In the unlikely event reads from or write to the pipe fail for some + // other reason than EFAULT, we don't try any further and just skip setting + // the Phdr location for all subsequent libraries, rather than trying to + // start over with a new pipe. + int can_read = true; + if (valid_pipe) { + int ret; + char raw_ehdr[sizeof(Elf::Ehdr)]; + static_assert(sizeof(raw_ehdr) < PIPE_BUF, "PIPE_BUF is too small"); + do { + // writes are atomic when smaller than PIPE_BUF, per POSIX.1-2008. + ret = write(write_fd, it->l_addr, sizeof(raw_ehdr)); + } while (ret == -1 && errno == EINTR); + if (ret != sizeof(raw_ehdr)) { + if (ret == -1 && errno == EFAULT) { + can_read = false; + } else { + valid_pipe = false; + } + } else { + size_t nbytes = 0; + do { + // Per POSIX.1-2008, interrupted reads can return a length smaller + // than the given one instead of failing with errno EINTR. + ret = read(read_fd, raw_ehdr + nbytes, sizeof(raw_ehdr) - nbytes); + if (ret > 0) + nbytes += ret; + } while ((nbytes != sizeof(raw_ehdr) && ret > 0) || + (ret == -1 && errno == EINTR)); + if (nbytes != sizeof(raw_ehdr)) { + valid_pipe = false; + } + } + } + + if (valid_pipe && can_read) { + const Elf::Ehdr *ehdr = Elf::Ehdr::validate(it->l_addr); + if (ehdr) { + info.dlpi_phdr = reinterpret_cast<const Elf::Phdr *>( + reinterpret_cast<const char *>(ehdr) + ehdr->e_phoff); + info.dlpi_phnum = ehdr->e_phnum; + } + } + + int ret = callback(&info, sizeof(dl_phdr_info), data); + if (ret) + return ret; + } + return 0; +} + +#ifdef __ARM_EABI__ +const void * +__wrap___gnu_Unwind_Find_exidx(void *pc, int *pcount) +{ + RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(pc); + if (handle) + return handle->FindExidx(pcount); + if (__gnu_Unwind_Find_exidx) + return __gnu_Unwind_Find_exidx(pc, pcount); + *pcount = 0; + return nullptr; +} +#endif + +/** + * faulty.lib public API + */ + +MFBT_API size_t +__dl_get_mappable_length(void *handle) { + if (!handle) + return 0; + return reinterpret_cast<LibHandle *>(handle)->GetMappableLength(); +} + +MFBT_API void * +__dl_mmap(void *handle, void *addr, size_t length, off_t offset) +{ + if (!handle) + return nullptr; + return reinterpret_cast<LibHandle *>(handle)->MappableMMap(addr, length, + offset); +} + +MFBT_API void +__dl_munmap(void *handle, void *addr, size_t length) +{ + if (!handle) + return; + return reinterpret_cast<LibHandle *>(handle)->MappableMUnmap(addr, length); +} + +MFBT_API bool +IsSignalHandlingBroken() +{ + return ElfLoader::Singleton.isSignalHandlingBroken(); +} + +namespace { + +/** + * Returns the part after the last '/' for the given path + */ +const char * +LeafName(const char *path) +{ + const char *lastSlash = strrchr(path, '/'); + if (lastSlash) + return lastSlash + 1; + return path; +} + +} /* Anonymous namespace */ + +/** + * LibHandle + */ +LibHandle::~LibHandle() +{ + free(path); +} + +const char * +LibHandle::GetName() const +{ + return path ? LeafName(path) : nullptr; +} + +size_t +LibHandle::GetMappableLength() const +{ + if (!mappable) + mappable = GetMappable(); + if (!mappable) + return 0; + return mappable->GetLength(); +} + +void * +LibHandle::MappableMMap(void *addr, size_t length, off_t offset) const +{ + if (!mappable) + mappable = GetMappable(); + if (!mappable) + return MAP_FAILED; + void* mapped = mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset); + if (mapped != MAP_FAILED) { + /* Ensure the availability of all pages within the mapping */ + for (size_t off = 0; off < length; off += PageSize()) { + mappable->ensure(reinterpret_cast<char *>(mapped) + off); + } + } + return mapped; +} + +void +LibHandle::MappableMUnmap(void *addr, size_t length) const +{ + if (mappable) + mappable->munmap(addr, length); +} + +/** + * SystemElf + */ +already_AddRefed<LibHandle> +SystemElf::Load(const char *path, int flags) +{ + /* The Android linker returns a handle when the file name matches an + * already loaded library, even when the full path doesn't exist */ + if (path && path[0] == '/' && (access(path, F_OK) == -1)){ + DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, (void *)nullptr); + return nullptr; + } + + void *handle = dlopen(path, flags); + DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, handle); + ElfLoader::Singleton.lastError = dlerror(); + if (handle) { + SystemElf *elf = new SystemElf(path, handle); + ElfLoader::Singleton.Register(elf); + RefPtr<LibHandle> lib(elf); + return lib.forget(); + } + return nullptr; +} + +SystemElf::~SystemElf() +{ + if (!dlhandle) + return; + DEBUG_LOG("dlclose(%p [\"%s\"])", dlhandle, GetPath()); + dlclose(dlhandle); + ElfLoader::Singleton.lastError = dlerror(); + ElfLoader::Singleton.Forget(this); +} + +void * +SystemElf::GetSymbolPtr(const char *symbol) const +{ + void *sym = dlsym(dlhandle, symbol); + DEBUG_LOG("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol, sym); + ElfLoader::Singleton.lastError = dlerror(); + return sym; +} + +Mappable * +SystemElf::GetMappable() const +{ + const char *path = GetPath(); + if (!path) + return nullptr; +#ifdef ANDROID + /* On Android, if we don't have the full path, try in /system/lib */ + const char *name = LeafName(path); + std::string systemPath; + if (name == path) { + systemPath = "/system/lib/"; + systemPath += path; + path = systemPath.c_str(); + } +#endif + + return MappableFile::Create(path); +} + +#ifdef __ARM_EABI__ +const void * +SystemElf::FindExidx(int *pcount) const +{ + /* TODO: properly implement when ElfLoader::GetHandleByPtr + does return SystemElf handles */ + *pcount = 0; + return nullptr; +} +#endif + +/** + * ElfLoader + */ + +/* Unique ElfLoader instance */ +ElfLoader ElfLoader::Singleton; + +already_AddRefed<LibHandle> +ElfLoader::Load(const char *path, int flags, LibHandle *parent) +{ + /* Ensure logging is initialized or refresh if environment changed. */ + Logging::Init(); + + /* Ensure self_elf initialization. */ + if (!self_elf) + Init(); + + RefPtr<LibHandle> handle; + + /* Handle dlopen(nullptr) directly. */ + if (!path) { + handle = SystemElf::Load(nullptr, flags); + return handle.forget(); + } + + /* TODO: Handle relative paths correctly */ + const char *name = LeafName(path); + + /* Search the list of handles we already have for a match. When the given + * path is not absolute, compare file names, otherwise compare full paths. */ + if (name == path) { + for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) + if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0)) { + handle = *it; + return handle.forget(); + } + } else { + for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) + if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0)) { + handle = *it; + return handle.forget(); + } + } + + char *abs_path = nullptr; + const char *requested_path = path; + + /* When the path is not absolute and the library is being loaded for + * another, first try to load the library from the directory containing + * that parent library. */ + if ((name == path) && parent) { + const char *parentPath = parent->GetPath(); + abs_path = new char[strlen(parentPath) + strlen(path)]; + strcpy(abs_path, parentPath); + char *slash = strrchr(abs_path, '/'); + strcpy(slash + 1, path); + path = abs_path; + } + + Mappable *mappable = GetMappableFromPath(path); + + /* Try loading with the custom linker if we have a Mappable */ + if (mappable) + handle = CustomElf::Load(mappable, path, flags); + + /* Try loading with the system linker if everything above failed */ + if (!handle) + handle = SystemElf::Load(path, flags); + + /* If we didn't have an absolute path and haven't been able to load + * a library yet, try in the system search path */ + if (!handle && abs_path) + handle = SystemElf::Load(name, flags); + + delete [] abs_path; + DEBUG_LOG("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags, + reinterpret_cast<void *>(parent), parent ? parent->GetPath() : "", + static_cast<void *>(handle)); + + return handle.forget(); +} + +already_AddRefed<LibHandle> +ElfLoader::GetHandleByPtr(void *addr) +{ + /* Scan the list of handles we already have for a match */ + for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) { + if ((*it)->Contains(addr)) { + RefPtr<LibHandle> lib = *it; + return lib.forget(); + } + } + return nullptr; +} + +Mappable * +ElfLoader::GetMappableFromPath(const char *path) +{ + const char *name = LeafName(path); + Mappable *mappable = nullptr; + RefPtr<Zip> zip; + const char *subpath; + if ((subpath = strchr(path, '!'))) { + char *zip_path = strndup(path, subpath - path); + while (*(++subpath) == '/') { } + zip = ZipCollection::GetZip(zip_path); + free(zip_path); + Zip::Stream s; + if (zip && zip->GetStream(subpath, &s)) { + /* When the MOZ_LINKER_EXTRACT environment variable is set to "1", + * compressed libraries are going to be (temporarily) extracted as + * files, in the directory pointed by the MOZ_LINKER_CACHE + * environment variable. */ + const char *extract = getenv("MOZ_LINKER_EXTRACT"); + if (extract && !strncmp(extract, "1", 2 /* Including '\0' */)) + mappable = MappableExtractFile::Create(name, zip, &s); + if (!mappable) { + if (s.GetType() == Zip::Stream::DEFLATE) { + mappable = MappableDeflate::Create(name, zip, &s); + } else if (s.GetType() == Zip::Stream::STORE) { + mappable = MappableSeekableZStream::Create(name, zip, &s); + } + } + } + } + /* If we couldn't load above, try with a MappableFile */ + if (!mappable && !zip) + mappable = MappableFile::Create(path); + + return mappable; +} + +void +ElfLoader::Register(LibHandle *handle) +{ + handles.push_back(handle); +} + +void +ElfLoader::Register(CustomElf *handle) +{ + Register(static_cast<LibHandle *>(handle)); + if (dbg) { + dbg.Add(handle); + } +} + +void +ElfLoader::Forget(LibHandle *handle) +{ + /* Ensure logging is initialized or refresh if environment changed. */ + Logging::Init(); + + LibHandleList::iterator it = std::find(handles.begin(), handles.end(), handle); + if (it != handles.end()) { + DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast<void *>(handle), + handle->GetPath()); + handles.erase(it); + } else { + DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"]): Handle not found", + reinterpret_cast<void *>(handle), handle->GetPath()); + } +} + +void +ElfLoader::Forget(CustomElf *handle) +{ + Forget(static_cast<LibHandle *>(handle)); + if (dbg) { + dbg.Remove(handle); + } +} + +void +ElfLoader::Init() +{ + Dl_info info; + /* On Android < 4.1 can't reenter dl* functions. So when the library + * containing this code is dlopen()ed, it can't call dladdr from a + * static initializer. */ + if (dladdr(_DYNAMIC, &info) != 0) { + self_elf = LoadedElf::Create(info.dli_fname, info.dli_fbase); + } +#if defined(ANDROID) + if (dladdr(FunctionPtr(syscall), &info) != 0) { + libc = LoadedElf::Create(info.dli_fname, info.dli_fbase); + } +#endif +} + +ElfLoader::~ElfLoader() +{ + LibHandleList list; + + if (!Singleton.IsShutdownExpected()) { + MOZ_CRASH("Unexpected shutdown"); + } + + /* Release self_elf and libc */ + self_elf = nullptr; +#if defined(ANDROID) + libc = nullptr; +#endif + + /* Build up a list of all library handles with direct (external) references. + * We actually skip system library handles because we want to keep at least + * some of these open. Most notably, Mozilla codebase keeps a few libgnome + * libraries deliberately open because of the mess that libORBit destruction + * is. dlclose()ing these libraries actually leads to problems. */ + for (LibHandleList::reverse_iterator it = handles.rbegin(); + it < handles.rend(); ++it) { + if ((*it)->DirectRefCount()) { + if (SystemElf *se = (*it)->AsSystemElf()) { + se->Forget(); + } else { + list.push_back(*it); + } + } + } + /* Force release all external references to the handles collected above */ + for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) { + while ((*it)->ReleaseDirectRef()) { } + } + /* Remove the remaining system handles. */ + if (handles.size()) { + list = handles; + for (LibHandleList::reverse_iterator it = list.rbegin(); + it < list.rend(); ++it) { + if ((*it)->AsSystemElf()) { + DEBUG_LOG("ElfLoader::~ElfLoader(): Remaining handle for \"%s\" " + "[%d direct refs, %d refs total]", (*it)->GetPath(), + (*it)->DirectRefCount(), (*it)->refCount()); + } else { + DEBUG_LOG("ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" " + "[%d direct refs, %d refs total]", (*it)->GetPath(), + (*it)->DirectRefCount(), (*it)->refCount()); + /* Not removing, since it could have references to other libraries, + * destroying them as a side effect, and possibly leaving dangling + * pointers in the handle list we're scanning */ + } + } + } +} + +void +ElfLoader::stats(const char *when) +{ + if (MOZ_LIKELY(!Logging::isVerbose())) + return; + + for (LibHandleList::iterator it = Singleton.handles.begin(); + it < Singleton.handles.end(); ++it) + (*it)->stats(when); +} + +#ifdef __ARM_EABI__ +int +ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor, + void *dso_handle) +{ + Singleton.destructors.push_back( + DestructorCaller(destructor, that, dso_handle)); + return 0; +} +#else +int +ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that, + void *dso_handle) +{ + Singleton.destructors.push_back( + DestructorCaller(destructor, that, dso_handle)); + return 0; +} +#endif + +void +ElfLoader::__wrap_cxa_finalize(void *dso_handle) +{ + /* Call all destructors for the given DSO handle in reverse order they were + * registered. */ + std::vector<DestructorCaller>::reverse_iterator it; + for (it = Singleton.destructors.rbegin(); + it < Singleton.destructors.rend(); ++it) { + if (it->IsForHandle(dso_handle)) { + it->Call(); + } + } +} + +void +ElfLoader::DestructorCaller::Call() +{ + if (destructor) { + DEBUG_LOG("ElfLoader::DestructorCaller::Call(%p, %p, %p)", + FunctionPtr(destructor), object, dso_handle); + destructor(object); + destructor = nullptr; + } +} + +ElfLoader::DebuggerHelper::DebuggerHelper(): dbg(nullptr), firstAdded(nullptr) +{ + /* Find ELF auxiliary vectors. + * + * The kernel stores the following data on the stack when starting a + * program: + * argc + * argv[0] (pointer into argv strings defined below) + * argv[1] (likewise) + * ... + * argv[argc - 1] (likewise) + * nullptr + * envp[0] (pointer into environment strings defined below) + * envp[1] (likewise) + * ... + * envp[n] (likewise) + * nullptr + * ... (more NULLs on some platforms such as Android 4.3) + * auxv[0] (first ELF auxiliary vector) + * auxv[1] (second ELF auxiliary vector) + * ... + * auxv[p] (last ELF auxiliary vector) + * (AT_NULL, nullptr) + * padding + * argv strings, separated with '\0' + * environment strings, separated with '\0' + * nullptr + * + * What we are after are the auxv values defined by the following struct. + */ + struct AuxVector { + Elf::Addr type; + Elf::Addr value; + }; + + /* Pointer to the environment variables list */ + extern char **environ; + + /* The environment may have changed since the program started, in which + * case the environ variables list isn't the list the kernel put on stack + * anymore. But in this new list, variables that didn't change still point + * to the strings the kernel put on stack. It is quite unlikely that two + * modified environment variables point to two consecutive strings in memory, + * so we assume that if two consecutive environment variables point to two + * consecutive strings, we found strings the kernel put on stack. */ + char **env; + for (env = environ; *env; env++) + if (*env + strlen(*env) + 1 == env[1]) + break; + if (!*env) + return; + + /* Next, we scan the stack backwards to find a pointer to one of those + * strings we found above, which will give us the location of the original + * envp list. As we are looking for pointers, we need to look at 32-bits or + * 64-bits aligned values, depening on the architecture. */ + char **scan = reinterpret_cast<char **>( + reinterpret_cast<uintptr_t>(*env) & ~(sizeof(void *) - 1)); + while (*env != *scan) + scan--; + + /* Finally, scan forward to find the last environment variable pointer and + * thus the first auxiliary vector. */ + while (*scan++); + + /* Some platforms have more NULLs here, so skip them if we encounter them */ + while (!*scan) + scan++; + + AuxVector *auxv = reinterpret_cast<AuxVector *>(scan); + + /* The two values of interest in the auxiliary vectors are AT_PHDR and + * AT_PHNUM, which gives us the the location and size of the ELF program + * headers. */ + Array<Elf::Phdr> phdrs; + char *base = nullptr; + while (auxv->type) { + if (auxv->type == AT_PHDR) { + phdrs.Init(reinterpret_cast<Elf::Phdr*>(auxv->value)); + /* Assume the base address is the first byte of the same page */ + base = reinterpret_cast<char *>(PageAlignedPtr(auxv->value)); + } + if (auxv->type == AT_PHNUM) + phdrs.Init(auxv->value); + auxv++; + } + + if (!phdrs) { + DEBUG_LOG("Couldn't find program headers"); + return; + } + + /* In some cases, the address for the program headers we get from the + * auxiliary vectors is not mapped, because of the PT_LOAD segments + * definitions in the program executable. Trying to map anonymous memory + * with a hint giving the base address will return a different address + * if something is mapped there, and the base address otherwise. */ + MappedPtr mem(MemoryRange::mmap(base, PageSize(), PROT_NONE, + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); + if (mem == base) { + /* If program headers aren't mapped, try to map them */ + int fd = open("/proc/self/exe", O_RDONLY); + if (fd == -1) { + DEBUG_LOG("Failed to open /proc/self/exe"); + return; + } + mem.Assign(MemoryRange::mmap(base, PageSize(), PROT_READ, MAP_PRIVATE, + fd, 0)); + /* If we don't manage to map at the right address, just give up. */ + if (mem != base) { + DEBUG_LOG("Couldn't read program headers"); + return; + } + } + /* Sanity check: the first bytes at the base address should be an ELF + * header. */ + if (!Elf::Ehdr::validate(base)) { + DEBUG_LOG("Couldn't find program base"); + return; + } + + /* Search for the program PT_DYNAMIC segment */ + Array<Elf::Dyn> dyns; + for (Array<Elf::Phdr>::iterator phdr = phdrs.begin(); phdr < phdrs.end(); + ++phdr) { + /* While the program headers are expected within the first mapped page of + * the program executable, the executable PT_LOADs may actually make them + * loaded at an address that is not the wanted base address of the + * library. We thus need to adjust the base address, compensating for the + * virtual address of the PT_LOAD segment corresponding to offset 0. */ + if (phdr->p_type == PT_LOAD && phdr->p_offset == 0) + base -= phdr->p_vaddr; + if (phdr->p_type == PT_DYNAMIC) + dyns.Init(base + phdr->p_vaddr, phdr->p_filesz); + } + if (!dyns) { + DEBUG_LOG("Failed to find PT_DYNAMIC section in program"); + return; + } + + /* Search for the DT_DEBUG information */ + for (Array<Elf::Dyn>::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) { + if (dyn->d_tag == DT_DEBUG) { + dbg = reinterpret_cast<r_debug *>(dyn->d_un.d_ptr); + break; + } + } + DEBUG_LOG("DT_DEBUG points at %p", static_cast<void *>(dbg)); +} + +/** + * Helper class to ensure the given pointer is writable within the scope of + * an instance. Permissions to the memory page where the pointer lies are + * restored to their original value when the instance is destroyed. + */ +class EnsureWritable +{ +public: + template <typename T> + EnsureWritable(T *ptr, size_t length_ = sizeof(T)) + { + MOZ_ASSERT(length_ < PageSize()); + prot = -1; + page = MAP_FAILED; + + char *firstPage = PageAlignedPtr(reinterpret_cast<char *>(ptr)); + char *lastPageEnd = PageAlignedEndPtr(reinterpret_cast<char *>(ptr) + length_); + length = lastPageEnd - firstPage; + uintptr_t start = reinterpret_cast<uintptr_t>(firstPage); + uintptr_t end; + + prot = getProt(start, &end); + if (prot == -1 || (start + length) > end) + MOZ_CRASH(); + + if (prot & PROT_WRITE) + return; + + page = firstPage; + mprotect(page, length, prot | PROT_WRITE); + } + + ~EnsureWritable() + { + if (page != MAP_FAILED) { + mprotect(page, length, prot); +} + } + +private: + int getProt(uintptr_t addr, uintptr_t *end) + { + /* The interesting part of the /proc/self/maps format looks like: + * startAddr-endAddr rwxp */ + int result = 0; + AutoCloseFILE f(fopen("/proc/self/maps", "r")); + while (f) { + unsigned long long startAddr, endAddr; + char perms[5]; + if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr, perms) != 3) + return -1; + if (addr < startAddr || addr >= endAddr) + continue; + if (perms[0] == 'r') + result |= PROT_READ; + else if (perms[0] != '-') + return -1; + if (perms[1] == 'w') + result |= PROT_WRITE; + else if (perms[1] != '-') + return -1; + if (perms[2] == 'x') + result |= PROT_EXEC; + else if (perms[2] != '-') + return -1; + *end = endAddr; + return result; + } + return -1; + } + + int prot; + void *page; + size_t length; +}; + +/** + * The system linker maintains a doubly linked list of library it loads + * for use by the debugger. Unfortunately, it also uses the list pointers + * in a lot of operations and adding our data in the list is likely to + * trigger crashes when the linker tries to use data we don't provide or + * that fall off the amount data we allocated. Fortunately, the linker only + * traverses the list forward and accesses the head of the list from a + * private pointer instead of using the value in the r_debug structure. + * This means we can safely add members at the beginning of the list. + * Unfortunately, gdb checks the coherency of l_prev values, so we have + * to adjust the l_prev value for the first element the system linker + * knows about. Fortunately, it doesn't use l_prev, and the first element + * is not ever going to be released before our elements, since it is the + * program executable, so the system linker should not be changing + * r_debug::r_map. + */ +void +ElfLoader::DebuggerHelper::Add(ElfLoader::link_map *map) +{ + if (!dbg->r_brk) + return; + dbg->r_state = r_debug::RT_ADD; + dbg->r_brk(); + map->l_prev = nullptr; + map->l_next = dbg->r_map; + if (!firstAdded) { + firstAdded = map; + /* When adding a library for the first time, r_map points to data + * handled by the system linker, and that data may be read-only */ + EnsureWritable w(&dbg->r_map->l_prev); + dbg->r_map->l_prev = map; + } else + dbg->r_map->l_prev = map; + dbg->r_map = map; + dbg->r_state = r_debug::RT_CONSISTENT; + dbg->r_brk(); +} + +void +ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map *map) +{ + if (!dbg->r_brk) + return; + dbg->r_state = r_debug::RT_DELETE; + dbg->r_brk(); + if (dbg->r_map == map) + dbg->r_map = map->l_next; + else if (map->l_prev) { + map->l_prev->l_next = map->l_next; + } + if (map == firstAdded) { + firstAdded = map->l_prev; + /* When removing the first added library, its l_next is going to be + * data handled by the system linker, and that data may be read-only */ + EnsureWritable w(&map->l_next->l_prev); + map->l_next->l_prev = map->l_prev; + } else if (map->l_next) { + map->l_next->l_prev = map->l_prev; + } + dbg->r_state = r_debug::RT_CONSISTENT; + dbg->r_brk(); +} + +#if defined(ANDROID) +/* As some system libraries may be calling signal() or sigaction() to + * set a SIGSEGV handler, effectively breaking MappableSeekableZStream, + * or worse, restore our SIGSEGV handler with wrong flags (which using + * signal() will do), we want to hook into the system's sigaction() to + * replace it with our own wrapper instead, so that our handler is never + * replaced. We used to only do that with libraries this linker loads, + * but it turns out at least one system library does call signal() and + * breaks us (libsc-a3xx.so on the Samsung Galaxy S4). + * As libc's signal (bsd_signal/sysv_signal, really) calls sigaction + * under the hood, instead of calling the signal system call directly, + * we only need to hook sigaction. This is true for both bionic and + * glibc. + */ + +/* libc's sigaction */ +extern "C" int +sigaction(int signum, const struct sigaction *act, + struct sigaction *oldact); + +/* Simple reimplementation of sigaction. This is roughly equivalent + * to the assembly that comes in bionic, but not quite equivalent to + * glibc's implementation, so we only use this on Android. */ +int +sys_sigaction(int signum, const struct sigaction *act, + struct sigaction *oldact) +{ + return syscall(__NR_sigaction, signum, act, oldact); +} + +/* Replace the first instructions of the given function with a jump + * to the given new function. */ +template <typename T> +static bool +Divert(T func, T new_func) +{ + void *ptr = FunctionPtr(func); + uintptr_t addr = reinterpret_cast<uintptr_t>(ptr); + +#if defined(__i386__) + // A 32-bit jump is a 5 bytes instruction. + EnsureWritable w(ptr, 5); + *reinterpret_cast<unsigned char *>(addr) = 0xe9; // jmp + *reinterpret_cast<intptr_t *>(addr + 1) = + reinterpret_cast<uintptr_t>(new_func) - addr - 5; // target displacement + return true; +#elif defined(__arm__) + const unsigned char trampoline[] = { + // .thumb + 0x46, 0x04, // nop + 0x78, 0x47, // bx pc + 0x46, 0x04, // nop + // .arm + 0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc, #-4] + // .word <new_func> + }; + const unsigned char *start; + if (addr & 0x01) { + /* Function is thumb, the actual address of the code is without the + * least significant bit. */ + addr--; + /* The arm part of the trampoline needs to be 32-bit aligned */ + if (addr & 0x02) + start = trampoline; + else + start = trampoline + 2; + } else { + /* Function is arm, we only need the arm part of the trampoline */ + start = trampoline + 6; + } + + size_t len = sizeof(trampoline) - (start - trampoline); + EnsureWritable w(reinterpret_cast<void *>(addr), len + sizeof(void *)); + memcpy(reinterpret_cast<void *>(addr), start, len); + *reinterpret_cast<void **>(addr + len) = FunctionPtr(new_func); + cacheflush(addr, addr + len + sizeof(void *), 0); + return true; +#else + return false; +#endif +} +#else +#define sys_sigaction sigaction +template <typename T> +static bool +Divert(T func, T new_func) +{ + return false; +} +#endif + +namespace { + +/* Clock that only accounts for time spent in the current process. */ +static uint64_t ProcessTimeStamp_Now() +{ + struct timespec ts; + int rv = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); + + if (rv != 0) { + return 0; + } + + uint64_t baseNs = (uint64_t)ts.tv_sec * 1000000000; + return baseNs + (uint64_t)ts.tv_nsec; +} + +} + +/* Data structure used to pass data to the temporary signal handler, + * as well as triggering a test crash. */ +struct TmpData { + volatile int crash_int; + volatile uint64_t crash_timestamp; +}; + +SEGVHandler::SEGVHandler() +: initialized(false), registeredHandler(false), signalHandlingBroken(true) +, signalHandlingSlow(true) +{ + /* Ensure logging is initialized before the DEBUG_LOG in the test_handler. + * As this constructor runs before the ElfLoader constructor (by effect + * of ElfLoader inheriting from this class), this also initializes on behalf + * of ElfLoader and DebuggerHelper. */ + Logging::Init(); + + /* Initialize oldStack.ss_flags to an invalid value when used to set + * an alternative stack, meaning we haven't got information about the + * original alternative stack and thus don't mean to restore it in + * the destructor. */ + oldStack.ss_flags = SS_ONSTACK; + + /* Get the current segfault signal handler. */ + struct sigaction old_action; + sys_sigaction(SIGSEGV, nullptr, &old_action); + + /* Some devices don't provide useful information to their SIGSEGV handlers, + * making it impossible for on-demand decompression to work. To check if + * we're on such a device, setup a temporary handler and deliberately + * trigger a segfault. The handler will set signalHandlingBroken if the + * provided information is bogus. + * Some other devices have a kernel option enabled that makes SIGSEGV handler + * have an overhead so high that it affects how on-demand decompression + * performs. The handler will also set signalHandlingSlow if the triggered + * SIGSEGV took too much time. */ + struct sigaction action; + action.sa_sigaction = &SEGVHandler::test_handler; + sigemptyset(&action.sa_mask); + action.sa_flags = SA_SIGINFO | SA_NODEFER; + action.sa_restorer = nullptr; + stackPtr.Assign(MemoryRange::mmap(nullptr, PageSize(), + PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); + if (stackPtr.get() == MAP_FAILED) + return; + if (sys_sigaction(SIGSEGV, &action, nullptr)) + return; + + TmpData *data = reinterpret_cast<TmpData*>(stackPtr.get()); + data->crash_timestamp = ProcessTimeStamp_Now(); + mprotect(stackPtr, stackPtr.GetLength(), PROT_NONE); + data->crash_int = 123; + /* Restore the original segfault signal handler. */ + sys_sigaction(SIGSEGV, &old_action, nullptr); + stackPtr.Assign(MAP_FAILED, 0); +} + +void +SEGVHandler::FinishInitialization() +{ + /* Ideally, we'd need some locking here, but in practice, we're not + * going to race with another thread. */ + initialized = true; + + if (signalHandlingBroken || signalHandlingSlow) + return; + + typedef int (*sigaction_func)(int, const struct sigaction *, + struct sigaction *); + + sigaction_func libc_sigaction; + +#if defined(ANDROID) + /* Android > 4.4 comes with a sigaction wrapper in a LD_PRELOADed library + * (libsigchain) for ART. That wrapper kind of does the same trick as we + * do, so we need extra care in handling it. + * - Divert the libc's sigaction, assuming the LD_PRELOADed library uses + * it under the hood (which is more or less true according to the source + * of that library, since it's doing a lookup in RTLD_NEXT) + * - With the LD_PRELOADed library in place, all calls to sigaction from + * from system libraries will go to the LD_PRELOADed library. + * - The LD_PRELOADed library calls to sigaction go to our __wrap_sigaction. + * - The calls to sigaction from libraries faulty.lib loads are sent to + * the LD_PRELOADed library. + * In practice, for signal handling, this means: + * - The signal handler registered to the kernel is ours. + * - Our handler redispatches to the LD_PRELOADed library's if there's a + * segfault we don't handle. + * - The LD_PRELOADed library redispatches according to whatever system + * library or faulty.lib-loaded library set with sigaction. + * + * When there is no sigaction wrapper in place: + * - Divert the libc's sigaction. + * - Calls to sigaction from system library and faulty.lib-loaded libraries + * all go to the libc's sigaction, which end up in our __wrap_sigaction. + * - The signal handler registered to the kernel is ours. + * - Our handler redispatches according to whatever system library or + * faulty.lib-loaded library set with sigaction. + */ + void *libc = dlopen("libc.so", RTLD_GLOBAL | RTLD_LAZY); + if (libc) { + /* + * Lollipop bionic only has a small trampoline in sigaction, with the real + * work happening in __sigaction. Divert there instead of sigaction if it exists. + * Bug 1154803 + */ + libc_sigaction = reinterpret_cast<sigaction_func>(dlsym(libc, "__sigaction")); + + if (!libc_sigaction) { + libc_sigaction = + reinterpret_cast<sigaction_func>(dlsym(libc, "sigaction")); + } + } else +#endif + { + libc_sigaction = sigaction; + } + + if (!Divert(libc_sigaction, __wrap_sigaction)) + return; + + /* Setup an alternative stack if the already existing one is not big + * enough, or if there is none. */ + if (sigaltstack(nullptr, &oldStack) == 0) { + if (oldStack.ss_flags == SS_ONSTACK) + oldStack.ss_flags = 0; + if (!oldStack.ss_sp || oldStack.ss_size < stackSize) { + stackPtr.Assign(MemoryRange::mmap(nullptr, stackSize, + PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); + if (stackPtr.get() == MAP_FAILED) + return; + stack_t stack; + stack.ss_sp = stackPtr; + stack.ss_size = stackSize; + stack.ss_flags = 0; + if (sigaltstack(&stack, nullptr) != 0) + return; + } + } + /* Register our own handler, and store the already registered one in + * SEGVHandler's struct sigaction member */ + action.sa_sigaction = &SEGVHandler::handler; + action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK; + registeredHandler = !sys_sigaction(SIGSEGV, &action, &this->action); +} + +SEGVHandler::~SEGVHandler() +{ + /* Restore alternative stack for signals */ + if (oldStack.ss_flags != SS_ONSTACK) + sigaltstack(&oldStack, nullptr); + /* Restore original signal handler */ + if (registeredHandler) + sys_sigaction(SIGSEGV, &this->action, nullptr); +} + +/* Test handler for a deliberately triggered SIGSEGV that determines whether + * useful information is provided to signal handlers, particularly whether + * si_addr is filled in properly, and whether the segfault handler is called + * quickly enough. */ +void SEGVHandler::test_handler(int signum, siginfo_t *info, void *context) +{ + SEGVHandler &that = ElfLoader::Singleton; + if (signum == SIGSEGV && info && + info->si_addr == that.stackPtr.get()) + that.signalHandlingBroken = false; + mprotect(that.stackPtr, that.stackPtr.GetLength(), PROT_READ | PROT_WRITE); + TmpData *data = reinterpret_cast<TmpData*>(that.stackPtr.get()); + uint64_t latency = ProcessTimeStamp_Now() - data->crash_timestamp; + DEBUG_LOG("SEGVHandler latency: %" PRIu64, latency); + /* See bug 886736 for timings on different devices, 150 µs is reasonably above + * the latency on "working" devices and seems to be short enough to not incur + * a huge overhead to on-demand decompression. */ + if (latency <= 150000) + that.signalHandlingSlow = false; +} + +/* TODO: "properly" handle signal masks and flags */ +void SEGVHandler::handler(int signum, siginfo_t *info, void *context) +{ + //ASSERT(signum == SIGSEGV); + DEBUG_LOG("Caught segmentation fault @%p", info->si_addr); + + /* Check whether we segfaulted in the address space of a CustomElf. We're + * only expecting that to happen as an access error. */ + if (info->si_code == SEGV_ACCERR) { + RefPtr<LibHandle> handle = + ElfLoader::Singleton.GetHandleByPtr(info->si_addr); + BaseElf *elf; + if (handle && (elf = handle->AsBaseElf())) { + DEBUG_LOG("Within the address space of %s", handle->GetPath()); + if (elf->mappable && elf->mappable->ensure(info->si_addr)) { + return; + } + } + } + + /* Redispatch to the registered handler */ + SEGVHandler &that = ElfLoader::Singleton; + if (that.action.sa_flags & SA_SIGINFO) { + DEBUG_LOG("Redispatching to registered handler @%p", + FunctionPtr(that.action.sa_sigaction)); + that.action.sa_sigaction(signum, info, context); + } else if (that.action.sa_handler == SIG_DFL) { + DEBUG_LOG("Redispatching to default handler"); + /* Reset the handler to the default one, and trigger it. */ + sys_sigaction(signum, &that.action, nullptr); + raise(signum); + } else if (that.action.sa_handler != SIG_IGN) { + DEBUG_LOG("Redispatching to registered handler @%p", + FunctionPtr(that.action.sa_handler)); + that.action.sa_handler(signum); + } else { + DEBUG_LOG("Ignoring"); + } +} + +int +SEGVHandler::__wrap_sigaction(int signum, const struct sigaction *act, + struct sigaction *oldact) +{ + SEGVHandler &that = ElfLoader::Singleton; + + /* Use system sigaction() function for all but SIGSEGV signals. */ + if (!that.registeredHandler || (signum != SIGSEGV)) + return sys_sigaction(signum, act, oldact); + + if (oldact) + *oldact = that.action; + if (act) + that.action = *act; + return 0; +} + +Logging Logging::Singleton; |