summaryrefslogtreecommitdiffstats
path: root/modules/fdlibm/src
diff options
context:
space:
mode:
Diffstat (limited to 'modules/fdlibm/src')
-rw-r--r--modules/fdlibm/src/e_acos.cpp5
-rw-r--r--modules/fdlibm/src/e_acosh.cpp5
-rw-r--r--modules/fdlibm/src/e_asin.cpp5
-rw-r--r--modules/fdlibm/src/e_atan2.cpp4
-rw-r--r--modules/fdlibm/src/e_exp.cpp7
-rw-r--r--modules/fdlibm/src/e_hypot.cpp7
-rw-r--r--modules/fdlibm/src/e_pow.cpp54
-rw-r--r--modules/fdlibm/src/e_sqrt.cpp446
-rw-r--r--modules/fdlibm/src/fdlibm.h1
-rw-r--r--modules/fdlibm/src/k_exp.cpp2
-rw-r--r--modules/fdlibm/src/math_private.h129
-rw-r--r--modules/fdlibm/src/moz.build18
-rw-r--r--modules/fdlibm/src/s_asinh.cpp5
-rw-r--r--modules/fdlibm/src/s_cbrt.cpp1
-rw-r--r--modules/fdlibm/src/s_expm1.cpp2
-rw-r--r--modules/fdlibm/src/s_fabs.cpp7
-rw-r--r--modules/fdlibm/src/s_nearbyint.cpp2
-rw-r--r--modules/fdlibm/src/s_scalbn.cpp12
18 files changed, 164 insertions, 548 deletions
diff --git a/modules/fdlibm/src/e_acos.cpp b/modules/fdlibm/src/e_acos.cpp
index 12be296cb..4f497b3b3 100644
--- a/modules/fdlibm/src/e_acos.cpp
+++ b/modules/fdlibm/src/e_acos.cpp
@@ -38,6 +38,7 @@
* Function needed: sqrt
*/
+#include <cmath>
#include <float.h>
#include "math_private.h"
@@ -87,13 +88,13 @@ __ieee754_acos(double x)
z = (one+x)*0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- s = sqrt(z);
+ s = std::sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
- s = sqrt(z);
+ s = std::sqrt(z);
df = s;
SET_LOW_WORD(df,0);
c = (z-df*df)/(s+df);
diff --git a/modules/fdlibm/src/e_acosh.cpp b/modules/fdlibm/src/e_acosh.cpp
index bdabcec3e..ce52d5aaa 100644
--- a/modules/fdlibm/src/e_acosh.cpp
+++ b/modules/fdlibm/src/e_acosh.cpp
@@ -29,6 +29,7 @@
* acosh(NaN) is NaN without signal.
*/
+#include <cmath>
#include <float.h>
#include "math_private.h"
@@ -55,9 +56,9 @@ __ieee754_acosh(double x)
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
- return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
+ return __ieee754_log(2.0*x-one/(x+std::sqrt(t-one)));
} else { /* 1<x<2 */
t = x-one;
- return log1p(t+sqrt(2.0*t+t*t));
+ return log1p(t+std::sqrt(2.0*t+t*t));
}
}
diff --git a/modules/fdlibm/src/e_asin.cpp b/modules/fdlibm/src/e_asin.cpp
index 396f49449..e896bde9e 100644
--- a/modules/fdlibm/src/e_asin.cpp
+++ b/modules/fdlibm/src/e_asin.cpp
@@ -6,7 +6,7 @@
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -44,6 +44,7 @@
*
*/
+#include <cmath>
#include <float.h>
#include "math_private.h"
@@ -95,7 +96,7 @@ __ieee754_asin(double x)
t = w*0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
- s = sqrt(t);
+ s = std::sqrt(t);
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
diff --git a/modules/fdlibm/src/e_atan2.cpp b/modules/fdlibm/src/e_atan2.cpp
index 9990072cf..f45ad187f 100644
--- a/modules/fdlibm/src/e_atan2.cpp
+++ b/modules/fdlibm/src/e_atan2.cpp
@@ -69,8 +69,8 @@ __ieee754_atan2(double y, double x)
iy = hy&0x7fffffff;
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
- return x+y;
- if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
+ return nan_mix(x, y);
+ if(hx==0x3ff00000&&lx==0) return atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
diff --git a/modules/fdlibm/src/e_exp.cpp b/modules/fdlibm/src/e_exp.cpp
index b31979134..92af819ce 100644
--- a/modules/fdlibm/src/e_exp.cpp
+++ b/modules/fdlibm/src/e_exp.cpp
@@ -96,6 +96,8 @@ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+static const double E = 2.7182818284590452354; /* e */
+
static volatile double
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
@@ -127,6 +129,7 @@ __ieee754_exp(double x) /* default IEEE double exp */
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if (x == 1.0) return E;
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = (int)(invln2*x+halF[xsb]);
@@ -144,9 +147,9 @@ __ieee754_exp(double x) /* default IEEE double exp */
/* x is now in primary range */
t = x*x;
if(k >= -1021)
- INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
+ INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20, 0);
else
- INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
+ INSERT_WORDS(twopk,((u_int32_t)(0x3ff+(k+1000)))<<20, 0);
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
diff --git a/modules/fdlibm/src/e_hypot.cpp b/modules/fdlibm/src/e_hypot.cpp
index f5c7037bb..a23571150 100644
--- a/modules/fdlibm/src/e_hypot.cpp
+++ b/modules/fdlibm/src/e_hypot.cpp
@@ -46,6 +46,7 @@
* than 1 ulps (units in the last place)
*/
+#include <cmath>
#include <float.h>
#include "math_private.h"
@@ -69,7 +70,7 @@ __ieee754_hypot(double x, double y)
if(ha >= 0x7ff00000) { /* Inf or NaN */
u_int32_t low;
/* Use original arg order iff result is NaN; quieten sNaNs. */
- w = fabs(x+0.0)-fabs(y+0.0);
+ w = fabsl(x+0.0L)-fabs(y+0);
GET_LOW_WORD(low,a);
if(((ha&0xfffff)|low)==0) w = a;
GET_LOW_WORD(low,b);
@@ -105,7 +106,7 @@ __ieee754_hypot(double x, double y)
t1 = 0;
SET_HIGH_WORD(t1,ha);
t2 = a-t1;
- w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
+ w = std::sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
@@ -114,7 +115,7 @@ __ieee754_hypot(double x, double y)
t1 = 0;
SET_HIGH_WORD(t1,ha+0x00100000);
t2 = a - t1;
- w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+ w = std::sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
u_int32_t high;
diff --git a/modules/fdlibm/src/e_pow.cpp b/modules/fdlibm/src/e_pow.cpp
index 366e3933b..c18226b8a 100644
--- a/modules/fdlibm/src/e_pow.cpp
+++ b/modules/fdlibm/src/e_pow.cpp
@@ -4,7 +4,7 @@
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -19,7 +19,7 @@
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating multi-precision
+ * 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
@@ -47,16 +47,19 @@
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
- * always returns the correct integer provided it is
+ * always returns the correct integer provided it is
* representable.
*
* Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
+#include <cmath>
+
+#include <float.h>
#include "math_private.h"
static const double
@@ -64,6 +67,9 @@ bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
+half = 0.5,
+qrtr = 0.25,
+thrd = 3.3333333333333331e-01, /* 0x3fd55555, 0x55555555 */
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
@@ -106,15 +112,15 @@ __ieee754_pow(double x, double y)
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
- if((iy|ly)==0) return one;
+ if((iy|ly)==0) return one;
/* x==1: 1**y = 1, even if y is NaN */
if (hx==0x3ff00000 && lx == 0) return one;
/* y!=zero: result is NaN if either arg is NaN */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return (x+0.0)+(y+0.0);
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return nan_mix(x, y);
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
@@ -122,22 +128,22 @@ __ieee754_pow(double x, double y)
* yisint = 2 ... y is an even int
*/
yisint = 0;
- if(hx<0) {
+ if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
- if((j<<(52-k))==ly) yisint = 2-(j&1);
+ if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
- }
- }
+ }
+ }
/* special value of y */
- if(ly==0) {
+ if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return one; /* (-1)**+-inf is 1 */
@@ -145,14 +151,14 @@ __ieee754_pow(double x, double y)
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
- }
+ }
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
- return sqrt(x);
+ return std::sqrt(x);
}
}
@@ -165,13 +171,13 @@ __ieee754_pow(double x, double y)
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
+ } else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
-
+
/* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
n = (hx>>31)+1;
but ANSI C says a right shift of a signed negative quantity is
@@ -193,10 +199,10 @@ __ieee754_pow(double x, double y)
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-one; /* t has 20 trailing zeros */
- w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
+ w = (t*t)*(half-t*(thrd-t*qrtr));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
@@ -233,9 +239,9 @@ __ieee754_pow(double x, double y)
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+ss);
s2 = s_h*s_h;
- t_h = 3.0+s2+r;
+ t_h = 3+s2+r;
SET_LOW_WORD(t_h,0);
- t_l = r-((t_h-3.0)-s2);
+ t_l = r-((t_h-3)-s2);
/* u+v = ss*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*ss;
@@ -246,7 +252,7 @@ __ieee754_pow(double x, double y)
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (double)n;
+ t = n;
t1 = (((z_h+z_l)+dp_h[k])+t);
SET_LOW_WORD(t1,0);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
@@ -286,7 +292,7 @@ __ieee754_pow(double x, double y)
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
- }
+ }
t = p_l+p_h;
SET_LOW_WORD(t,0);
u = t*lg2_h;
diff --git a/modules/fdlibm/src/e_sqrt.cpp b/modules/fdlibm/src/e_sqrt.cpp
deleted file mode 100644
index 681505390..000000000
--- a/modules/fdlibm/src/e_sqrt.cpp
+++ /dev/null
@@ -1,446 +0,0 @@
-
-/* @(#)e_sqrt.c 1.3 95/01/18 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-//#include <sys/cdefs.h>
-//__FBSDID("$FreeBSD$");
-
-/* __ieee754_sqrt(x)
- * Return correctly rounded sqrt.
- * ------------------------------------------
- * | Use the hardware sqrt if you have one |
- * ------------------------------------------
- * Method:
- * Bit by bit method using integer arithmetic. (Slow, but portable)
- * 1. Normalization
- * Scale x to y in [1,4) with even powers of 2:
- * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
- * sqrt(x) = 2^k * sqrt(y)
- * 2. Bit by bit computation
- * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
- * i 0
- * i+1 2
- * s = 2*q , and y = 2 * ( y - q ). (1)
- * i i i i
- *
- * To compute q from q , one checks whether
- * i+1 i
- *
- * -(i+1) 2
- * (q + 2 ) <= y. (2)
- * i
- * -(i+1)
- * If (2) is false, then q = q ; otherwise q = q + 2 .
- * i+1 i i+1 i
- *
- * With some algebric manipulation, it is not difficult to see
- * that (2) is equivalent to
- * -(i+1)
- * s + 2 <= y (3)
- * i i
- *
- * The advantage of (3) is that s and y can be computed by
- * i i
- * the following recurrence formula:
- * if (3) is false
- *
- * s = s , y = y ; (4)
- * i+1 i i+1 i
- *
- * otherwise,
- * -i -(i+1)
- * s = s + 2 , y = y - s - 2 (5)
- * i+1 i i+1 i i
- *
- * One may easily use induction to prove (4) and (5).
- * Note. Since the left hand side of (3) contain only i+2 bits,
- * it does not necessary to do a full (53-bit) comparison
- * in (3).
- * 3. Final rounding
- * After generating the 53 bits result, we compute one more bit.
- * Together with the remainder, we can decide whether the
- * result is exact, bigger than 1/2ulp, or less than 1/2ulp
- * (it will never equal to 1/2ulp).
- * The rounding mode can be detected by checking whether
- * huge + tiny is equal to huge, and whether huge - tiny is
- * equal to huge for some floating point number "huge" and "tiny".
- *
- * Special cases:
- * sqrt(+-0) = +-0 ... exact
- * sqrt(inf) = inf
- * sqrt(-ve) = NaN ... with invalid signal
- * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
- *
- * Other methods : see the appended file at the end of the program below.
- *---------------
- */
-
-#include <float.h>
-
-#include "math_private.h"
-
-static const double one = 1.0, tiny=1.0e-300;
-
-double
-__ieee754_sqrt(double x)
-{
- double z;
- int32_t sign = (int)0x80000000;
- int32_t ix0,s0,q,m,t,i;
- u_int32_t r,t1,s1,ix1,q1;
-
- EXTRACT_WORDS(ix0,ix1,x);
-
- /* take care of Inf and NaN */
- if((ix0&0x7ff00000)==0x7ff00000) {
- return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
- sqrt(-inf)=sNaN */
- }
- /* take care of zero */
- if(ix0<=0) {
- if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
- else if(ix0<0)
- return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
- }
- /* normalize x */
- m = (ix0>>20);
- if(m==0) { /* subnormal x */
- while(ix0==0) {
- m -= 21;
- ix0 |= (ix1>>11); ix1 <<= 21;
- }
- for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
- m -= i-1;
- ix0 |= (ix1>>(32-i));
- ix1 <<= i;
- }
- m -= 1023; /* unbias exponent */
- ix0 = (ix0&0x000fffff)|0x00100000;
- if(m&1){ /* odd m, double x to make it even */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- }
- m >>= 1; /* m = [m/2] */
-
- /* generate sqrt(x) bit by bit */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
- r = 0x00200000; /* r = moving bit from right to left */
-
- while(r!=0) {
- t = s0+r;
- if(t<=ix0) {
- s0 = t+r;
- ix0 -= t;
- q += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r>>=1;
- }
-
- r = sign;
- while(r!=0) {
- t1 = s1+r;
- t = s0;
- if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
- s1 = t1+r;
- if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
- ix0 -= t;
- if (ix1 < t1) ix0 -= 1;
- ix1 -= t1;
- q1 += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r>>=1;
- }
-
- /* use floating add to find out rounding direction */
- if((ix0|ix1)!=0) {
- z = one-tiny; /* trigger inexact flag */
- if (z>=one) {
- z = one+tiny;
- if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
- else if (z>one) {
- if (q1==(u_int32_t)0xfffffffe) q+=1;
- q1+=2;
- } else
- q1 += (q1&1);
- }
- }
- ix0 = (q>>1)+0x3fe00000;
- ix1 = q1>>1;
- if ((q&1)==1) ix1 |= sign;
- ix0 += (m <<20);
- INSERT_WORDS(z,ix0,ix1);
- return z;
-}
-
-/*
-Other methods (use floating-point arithmetic)
--------------
-(This is a copy of a drafted paper by Prof W. Kahan
-and K.C. Ng, written in May, 1986)
-
- Two algorithms are given here to implement sqrt(x)
- (IEEE double precision arithmetic) in software.
- Both supply sqrt(x) correctly rounded. The first algorithm (in
- Section A) uses newton iterations and involves four divisions.
- The second one uses reciproot iterations to avoid division, but
- requires more multiplications. Both algorithms need the ability
- to chop results of arithmetic operations instead of round them,
- and the INEXACT flag to indicate when an arithmetic operation
- is executed exactly with no roundoff error, all part of the
- standard (IEEE 754-1985). The ability to perform shift, add,
- subtract and logical AND operations upon 32-bit words is needed
- too, though not part of the standard.
-
-A. sqrt(x) by Newton Iteration
-
- (1) Initial approximation
-
- Let x0 and x1 be the leading and the trailing 32-bit words of
- a floating point number x (in IEEE double format) respectively
-
- 1 11 52 ...widths
- ------------------------------------------------------
- x: |s| e | f |
- ------------------------------------------------------
- msb lsb msb lsb ...order
-
-
- ------------------------ ------------------------
- x0: |s| e | f1 | x1: | f2 |
- ------------------------ ------------------------
-
- By performing shifts and subtracts on x0 and x1 (both regarded
- as integers), we obtain an 8-bit approximation of sqrt(x) as
- follows.
-
- k := (x0>>1) + 0x1ff80000;
- y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
- Here k is a 32-bit integer and T1[] is an integer array containing
- correction terms. Now magically the floating value of y (y's
- leading 32-bit word is y0, the value of its trailing word is 0)
- approximates sqrt(x) to almost 8-bit.
-
- Value of T1:
- static int T1[32]= {
- 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
- 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
- 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
- 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
-
- (2) Iterative refinement
-
- Apply Heron's rule three times to y, we have y approximates
- sqrt(x) to within 1 ulp (Unit in the Last Place):
-
- y := (y+x/y)/2 ... almost 17 sig. bits
- y := (y+x/y)/2 ... almost 35 sig. bits
- y := y-(y-x/y)/2 ... within 1 ulp
-
-
- Remark 1.
- Another way to improve y to within 1 ulp is:
-
- y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
- y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
-
- 2
- (x-y )*y
- y := y + 2* ---------- ...within 1 ulp
- 2
- 3y + x
-
-
- This formula has one division fewer than the one above; however,
- it requires more multiplications and additions. Also x must be
- scaled in advance to avoid spurious overflow in evaluating the
- expression 3y*y+x. Hence it is not recommended uless division
- is slow. If division is very slow, then one should use the
- reciproot algorithm given in section B.
-
- (3) Final adjustment
-
- By twiddling y's last bit it is possible to force y to be
- correctly rounded according to the prevailing rounding mode
- as follows. Let r and i be copies of the rounding mode and
- inexact flag before entering the square root program. Also we
- use the expression y+-ulp for the next representable floating
- numbers (up and down) of y. Note that y+-ulp = either fixed
- point y+-1, or multiply y by nextafter(1,+-inf) in chopped
- mode.
-
- I := FALSE; ... reset INEXACT flag I
- R := RZ; ... set rounding mode to round-toward-zero
- z := x/y; ... chopped quotient, possibly inexact
- If(not I) then { ... if the quotient is exact
- if(z=y) {
- I := i; ... restore inexact flag
- R := r; ... restore rounded mode
- return sqrt(x):=y.
- } else {
- z := z - ulp; ... special rounding
- }
- }
- i := TRUE; ... sqrt(x) is inexact
- If (r=RN) then z=z+ulp ... rounded-to-nearest
- If (r=RP) then { ... round-toward-+inf
- y = y+ulp; z=z+ulp;
- }
- y := y+z; ... chopped sum
- y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
- I := i; ... restore inexact flag
- R := r; ... restore rounded mode
- return sqrt(x):=y.
-
- (4) Special cases
-
- Square root of +inf, +-0, or NaN is itself;
- Square root of a negative number is NaN with invalid signal.
-
-
-B. sqrt(x) by Reciproot Iteration
-
- (1) Initial approximation
-
- Let x0 and x1 be the leading and the trailing 32-bit words of
- a floating point number x (in IEEE double format) respectively
- (see section A). By performing shifs and subtracts on x0 and y0,
- we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
-
- k := 0x5fe80000 - (x0>>1);
- y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
-
- Here k is a 32-bit integer and T2[] is an integer array
- containing correction terms. Now magically the floating
- value of y (y's leading 32-bit word is y0, the value of
- its trailing word y1 is set to zero) approximates 1/sqrt(x)
- to almost 7.8-bit.
-
- Value of T2:
- static int T2[64]= {
- 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
- 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
- 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
- 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
- 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
- 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
- 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
- 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
-
- (2) Iterative refinement
-
- Apply Reciproot iteration three times to y and multiply the
- result by x to get an approximation z that matches sqrt(x)
- to about 1 ulp. To be exact, we will have
- -1ulp < sqrt(x)-z<1.0625ulp.
-
- ... set rounding mode to Round-to-nearest
- y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
- y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
- ... special arrangement for better accuracy
- z := x*y ... 29 bits to sqrt(x), with z*y<1
- z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
-
- Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
- (a) the term z*y in the final iteration is always less than 1;
- (b) the error in the final result is biased upward so that
- -1 ulp < sqrt(x) - z < 1.0625 ulp
- instead of |sqrt(x)-z|<1.03125ulp.
-
- (3) Final adjustment
-
- By twiddling y's last bit it is possible to force y to be
- correctly rounded according to the prevailing rounding mode
- as follows. Let r and i be copies of the rounding mode and
- inexact flag before entering the square root program. Also we
- use the expression y+-ulp for the next representable floating
- numbers (up and down) of y. Note that y+-ulp = either fixed
- point y+-1, or multiply y by nextafter(1,+-inf) in chopped
- mode.
-
- R := RZ; ... set rounding mode to round-toward-zero
- switch(r) {
- case RN: ... round-to-nearest
- if(x<= z*(z-ulp)...chopped) z = z - ulp; else
- if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
- break;
- case RZ:case RM: ... round-to-zero or round-to--inf
- R:=RP; ... reset rounding mod to round-to-+inf
- if(x<z*z ... rounded up) z = z - ulp; else
- if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
- break;
- case RP: ... round-to-+inf
- if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
- if(x>z*z ...chopped) z = z+ulp;
- break;
- }
-
- Remark 3. The above comparisons can be done in fixed point. For
- example, to compare x and w=z*z chopped, it suffices to compare
- x1 and w1 (the trailing parts of x and w), regarding them as
- two's complement integers.
-
- ...Is z an exact square root?
- To determine whether z is an exact square root of x, let z1 be the
- trailing part of z, and also let x0 and x1 be the leading and
- trailing parts of x.
-
- If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
- I := 1; ... Raise Inexact flag: z is not exact
- else {
- j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
- k := z1 >> 26; ... get z's 25-th and 26-th
- fraction bits
- I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
- }
- R:= r ... restore rounded mode
- return sqrt(x):=z.
-
- If multiplication is cheaper then the foregoing red tape, the
- Inexact flag can be evaluated by
-
- I := i;
- I := (z*z!=x) or I.
-
- Note that z*z can overwrite I; this value must be sensed if it is
- True.
-
- Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
- zero.
-
- --------------------
- z1: | f2 |
- --------------------
- bit 31 bit 0
-
- Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
- or even of logb(x) have the following relations:
-
- -------------------------------------------------
- bit 27,26 of z1 bit 1,0 of x1 logb(x)
- -------------------------------------------------
- 00 00 odd and even
- 01 01 even
- 10 10 odd
- 10 00 even
- 11 01 even
- -------------------------------------------------
-
- (4) Special cases (see (4) of Section A).
-
- */
-
diff --git a/modules/fdlibm/src/fdlibm.h b/modules/fdlibm/src/fdlibm.h
index 0ad215911..324e5d0b0 100644
--- a/modules/fdlibm/src/fdlibm.h
+++ b/modules/fdlibm/src/fdlibm.h
@@ -33,7 +33,6 @@ double log(double);
double log10(double);
double pow(double, double);
-double sqrt(double);
double fabs(double);
double floor(double);
diff --git a/modules/fdlibm/src/k_exp.cpp b/modules/fdlibm/src/k_exp.cpp
index a0699fa4a..9394c8fd8 100644
--- a/modules/fdlibm/src/k_exp.cpp
+++ b/modules/fdlibm/src/k_exp.cpp
@@ -1,4 +1,6 @@
/*-
+ * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
+ *
* Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
diff --git a/modules/fdlibm/src/math_private.h b/modules/fdlibm/src/math_private.h
index 86597e75f..d9ec44817 100644
--- a/modules/fdlibm/src/math_private.h
+++ b/modules/fdlibm/src/math_private.h
@@ -45,6 +45,47 @@
#define u_int64_t uint64_t
#endif
+/* A union which permits us to convert between a long double and
+ four 32 bit ints. */
+
+#if MOZ_BIG_ENDIAN
+
+typedef union
+{
+ long double value;
+ struct {
+ u_int32_t mswhi;
+ u_int32_t mswlo;
+ u_int32_t lswhi;
+ u_int32_t lswlo;
+ } parts32;
+ struct {
+ u_int64_t msw;
+ u_int64_t lsw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
+#if MOZ_LITTLE_ENDIAN
+
+typedef union
+{
+ long double value;
+ struct {
+ u_int32_t lswlo;
+ u_int32_t lswhi;
+ u_int32_t mswlo;
+ u_int32_t mswhi;
+ } parts32;
+ struct {
+ u_int64_t lsw;
+ u_int64_t msw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
/*
* A union which permits us to convert between a double and two 32 bit
* ints.
@@ -307,8 +348,9 @@ do { \
/* Support switching the mode to FP_PE if necessary. */
#if defined(__i386__) && !defined(NO_FPSETPREC)
-#define ENTERI() \
- long double __retval; \
+#define ENTERI() ENTERIT(long double)
+#define ENTERIT(returntype) \
+ returntype __retval; \
fp_prec_t __oprec; \
\
if ((__oprec = fpgetprec()) != FP_PE) \
@@ -319,9 +361,22 @@ do { \
fpsetprec(__oprec); \
RETURNF(__retval); \
} while (0)
+#define ENTERV() \
+ fp_prec_t __oprec; \
+ \
+ if ((__oprec = fpgetprec()) != FP_PE) \
+ fpsetprec(FP_PE)
+#define RETURNV() do { \
+ if (__oprec != FP_PE) \
+ fpsetprec(__oprec); \
+ return; \
+} while (0)
#else
-#define ENTERI(x)
+#define ENTERI()
+#define ENTERIT(x)
#define RETURNI(x) RETURNF(x)
+#define ENTERV()
+#define RETURNV() return
#endif
/* Default return statement if hack*_t() is not used. */
@@ -436,6 +491,31 @@ do { \
*/
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
+/*
+ * Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
+ * signaling NaNs into quiet NaNs by setting a quiet bit. We do this
+ * because we want to never return a signaling NaN, and also because we
+ * don't want the quiet bit to affect the result. Then mix the converted
+ * args using the specified operation.
+ *
+ * When one arg is NaN, the result is typically that arg quieted. When both
+ * args are NaNs, the result is typically the quietening of the arg whose
+ * mantissa is largest after quietening. When neither arg is NaN, the
+ * result may be NaN because it is indeterminate, or finite for subsequent
+ * construction of a NaN as the indeterminate 0.0L/0.0L.
+ *
+ * Technical complications: the result in bits after rounding to the final
+ * precision might depend on the runtime precision and/or on compiler
+ * optimizations, especially when different register sets are used for
+ * different precisions. Try to make the result not depend on at least the
+ * runtime precision by always doing the main mixing step in long double
+ * precision. Try to reduce dependencies on optimizations by adding the
+ * the 0's in different precisions (unless everything is in long double
+ * precision).
+ */
+#define nan_mix(x, y) (nan_mix_op((x), (y), +))
+#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
+
#ifdef _COMPLEX_H
/*
@@ -511,48 +591,6 @@ CMPLXL(long double x, long double y)
#endif /* _COMPLEX_H */
-#ifdef __GNUCLIKE_ASM
-
-/* Asm versions of some functions. */
-
-#ifdef __amd64__
-static __inline int
-irint(double x)
-{
- int n;
-
- asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINT
-#endif
-
-#ifdef __i386__
-static __inline int
-irint(double x)
-{
- int n;
-
- asm("fistl %0" : "=m" (n) : "t" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINT
-#endif
-
-#if defined(__amd64__) || defined(__i386__)
-static __inline int
-irintl(long double x)
-{
- int n;
-
- asm("fistl %0" : "=m" (n) : "t" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINTL
-#endif
-
-#endif /* __GNUCLIKE_ASM */
-
#ifdef DEBUG
#if defined(__amd64__) || defined(__i386__)
#define breakpoint() asm("int $3")
@@ -759,7 +797,6 @@ irintl(long double x)
#define log fdlibm::log
#define log10 fdlibm::log10
#define pow fdlibm::pow
-#define sqrt fdlibm::sqrt
#define ceil fdlibm::ceil
#define ceilf fdlibm::ceilf
#define fabs fdlibm::fabs
diff --git a/modules/fdlibm/src/moz.build b/modules/fdlibm/src/moz.build
index b197881ac..be5bf3d9b 100644
--- a/modules/fdlibm/src/moz.build
+++ b/modules/fdlibm/src/moz.build
@@ -10,26 +10,35 @@ EXPORTS += [
FINAL_LIBRARY = 'js'
-if CONFIG['GNU_CXX']:
+if CONFIG['CC_TYPE'] in ('clang', 'gcc'):
CXXFLAGS += [
'-Wno-parentheses',
'-Wno-sign-compare',
]
-if CONFIG['CLANG_CXX']:
+if CONFIG['CC_TYPE'] == 'clang':
CXXFLAGS += [
'-Wno-dangling-else',
]
-if CONFIG['_MSC_VER']:
+if CONFIG['CC_TYPE'] in ('msvc', 'clang-cl'):
CXXFLAGS += [
- '-wd4018', # signed/unsigned mismatch
'-wd4146', # unary minus operator applied to unsigned type
'-wd4305', # truncation from 'double' to 'const float'
'-wd4723', # potential divide by 0
'-wd4756', # overflow in constant arithmetic
]
+if CONFIG['CC_TYPE'] == 'msvc':
+ CXXFLAGS += [
+ '-wd4018', # signed/unsigned mismatch
+ ]
+
+if CONFIG['CC_TYPE'] == 'clang-cl':
+ CXXFLAGS += [
+ '-Wno-sign-compare', # signed/unsigned mismatch
+ ]
+
SOURCES += [
'e_acos.cpp',
'e_acosh.cpp',
@@ -44,7 +53,6 @@ SOURCES += [
'e_log2.cpp',
'e_pow.cpp',
'e_sinh.cpp',
- 'e_sqrt.cpp',
'k_exp.cpp',
's_asinh.cpp',
's_atan.cpp',
diff --git a/modules/fdlibm/src/s_asinh.cpp b/modules/fdlibm/src/s_asinh.cpp
index 400fd89c1..7ecc396bb 100644
--- a/modules/fdlibm/src/s_asinh.cpp
+++ b/modules/fdlibm/src/s_asinh.cpp
@@ -24,6 +24,7 @@
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
*/
+#include <cmath>
#include <float.h>
#include "math_private.h"
@@ -48,10 +49,10 @@ asinh(double x)
w = __ieee754_log(fabs(x))+ln2;
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
t = fabs(x);
- w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
+ w = __ieee754_log(2.0*t+one/(std::sqrt(x*x+one)+t));
} else { /* 2.0 > |x| > 2**-28 */
t = x*x;
- w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
+ w =log1p(fabs(x)+t/(one+std::sqrt(one+t)));
}
if(hx>0) return w; else return -w;
}
diff --git a/modules/fdlibm/src/s_cbrt.cpp b/modules/fdlibm/src/s_cbrt.cpp
index a2de24af7..fe3747e81 100644
--- a/modules/fdlibm/src/s_cbrt.cpp
+++ b/modules/fdlibm/src/s_cbrt.cpp
@@ -15,6 +15,7 @@
//#include <sys/cdefs.h>
//__FBSDID("$FreeBSD$");
+#include <float.h>
#include "math_private.h"
/* cbrt(x)
diff --git a/modules/fdlibm/src/s_expm1.cpp b/modules/fdlibm/src/s_expm1.cpp
index 4c19485de..90ebc1698 100644
--- a/modules/fdlibm/src/s_expm1.cpp
+++ b/modules/fdlibm/src/s_expm1.cpp
@@ -187,7 +187,7 @@ expm1(double x)
e = hxs*((r1-t)/(6.0 - x*t));
if(k==0) return x - (x*e-hxs); /* c is 0 */
else {
- INSERT_WORDS(twopk,0x3ff00000+(k<<20),0); /* 2^k */
+ INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0); /* 2^k */
e = (x*(e-c)-c);
e -= hxs;
if(k== -1) return 0.5*(x-e)-0.5;
diff --git a/modules/fdlibm/src/s_fabs.cpp b/modules/fdlibm/src/s_fabs.cpp
index 3bea0478a..6ca84d71b 100644
--- a/modules/fdlibm/src/s_fabs.cpp
+++ b/modules/fdlibm/src/s_fabs.cpp
@@ -1,4 +1,4 @@
- /* @(#)s_fabs.c 5.1 93/09/24 */
+/* @(#)s_fabs.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
@@ -10,9 +10,8 @@
* ====================================================
*/
-#ifndef lint
- //static char rcsid[] = "$FreeBSD$";
-#endif
+//#include <sys/cdefs.h>
+//__FBSDID("$FreeBSD$");
/*
* fabs(x) returns the absolute value of x.
diff --git a/modules/fdlibm/src/s_nearbyint.cpp b/modules/fdlibm/src/s_nearbyint.cpp
index 532bb5d8d..6c04212d3 100644
--- a/modules/fdlibm/src/s_nearbyint.cpp
+++ b/modules/fdlibm/src/s_nearbyint.cpp
@@ -1,4 +1,6 @@
/*-
+ * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
+ *
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
diff --git a/modules/fdlibm/src/s_scalbn.cpp b/modules/fdlibm/src/s_scalbn.cpp
index 5dbf58c23..dfbcf5c57 100644
--- a/modules/fdlibm/src/s_scalbn.cpp
+++ b/modules/fdlibm/src/s_scalbn.cpp
@@ -10,9 +10,8 @@
* ====================================================
*/
-#ifndef lint
-//static char rcsid[] = "$FreeBSD$";
-#endif
+//#include <sys/cdefs.h>
+//__FBSDID("$FreeBSD$");
/*
* scalbn (double x, int n)
@@ -21,7 +20,6 @@
* exponentiation or a multiplication.
*/
-//#include <sys/cdefs.h>
#include <float.h>
#include "math_private.h"
@@ -50,10 +48,12 @@ scalbn (double x, int n)
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
- if (k <= -54)
+ if (k <= -54) {
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysign(huge,x); /*overflow*/
- else return tiny*copysign(tiny,x); /*underflow*/
+ else
+ return tiny*copysign(tiny,x); /*underflow*/
+ }
k += 54; /* subnormal result */
SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
return x*twom54;