diff options
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/slapack_lite.c')
-rw-r--r-- | media/sphinxbase/src/libsphinxbase/util/slapack_lite.c | 1461 |
1 files changed, 0 insertions, 1461 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c b/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c deleted file mode 100644 index 4d4e1af31..000000000 --- a/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c +++ /dev/null @@ -1,1461 +0,0 @@ -/* -NOTE: This is generated code. Look in README.python for information on - remaking this file. -*/ -#include "sphinxbase/f2c.h" - -#ifdef HAVE_CONFIG -#include "config.h" -#else -extern doublereal slamch_(char *); -#define EPSILON slamch_("Epsilon") -#define SAFEMINIMUM slamch_("Safe minimum") -#define PRECISION slamch_("Precision") -#define BASE slamch_("Base") -#endif - - -extern doublereal slapy2_(real *, real *); - - - -/* Table of constant values */ - -static integer c__0 = 0; -static real c_b163 = 0.f; -static real c_b164 = 1.f; -static integer c__1 = 1; -static real c_b181 = -1.f; -static integer c_n1 = -1; - -integer ieeeck_(integer *ispec, real *zero, real *one) -{ - /* System generated locals */ - integer ret_val; - - /* Local variables */ - static real nan1, nan2, nan3, nan4, nan5, nan6, neginf, posinf, negzro, - newzro; - - -/* - -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - June 30, 1998 - - - Purpose - ======= - - IEEECK is called from the ILAENV to verify that Infinity and - possibly NaN arithmetic is safe (i.e. will not trap). - - Arguments - ========= - - ISPEC (input) INTEGER - Specifies whether to test just for inifinity arithmetic - or whether to test for infinity and NaN arithmetic. - = 0: Verify infinity arithmetic only. - = 1: Verify infinity and NaN arithmetic. - - ZERO (input) REAL - Must contain the value 0.0 - This is passed to prevent the compiler from optimizing - away this code. - - ONE (input) REAL - Must contain the value 1.0 - This is passed to prevent the compiler from optimizing - away this code. - - RETURN VALUE: INTEGER - = 0: Arithmetic failed to produce the correct answers - = 1: Arithmetic produced the correct answers -*/ - - ret_val = 1; - - posinf = *one / *zero; - if (posinf <= *one) { - ret_val = 0; - return ret_val; - } - - neginf = -(*one) / *zero; - if (neginf >= *zero) { - ret_val = 0; - return ret_val; - } - - negzro = *one / (neginf + *one); - if (negzro != *zero) { - ret_val = 0; - return ret_val; - } - - neginf = *one / negzro; - if (neginf >= *zero) { - ret_val = 0; - return ret_val; - } - - newzro = negzro + *zero; - if (newzro != *zero) { - ret_val = 0; - return ret_val; - } - - posinf = *one / newzro; - if (posinf <= *one) { - ret_val = 0; - return ret_val; - } - - neginf *= posinf; - if (neginf >= *zero) { - ret_val = 0; - return ret_val; - } - - posinf *= posinf; - if (posinf <= *one) { - ret_val = 0; - return ret_val; - } - - -/* Return if we were only asked to check infinity arithmetic */ - - if (*ispec == 0) { - return ret_val; - } - - nan1 = posinf + neginf; - - nan2 = posinf / neginf; - - nan3 = posinf / posinf; - - nan4 = posinf * *zero; - - nan5 = neginf * negzro; - - nan6 = nan5 * 0.f; - - if (nan1 == nan1) { - ret_val = 0; - return ret_val; - } - - if (nan2 == nan2) { - ret_val = 0; - return ret_val; - } - - if (nan3 == nan3) { - ret_val = 0; - return ret_val; - } - - if (nan4 == nan4) { - ret_val = 0; - return ret_val; - } - - if (nan5 == nan5) { - ret_val = 0; - return ret_val; - } - - if (nan6 == nan6) { - ret_val = 0; - return ret_val; - } - - return ret_val; -} /* ieeeck_ */ - -integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1, - integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen - opts_len) -{ - /* System generated locals */ - integer ret_val; - - /* Builtin functions */ - /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); - integer s_cmp(char *, char *, ftnlen, ftnlen); - - /* Local variables */ - static integer i__; - static char c1[1], c2[2], c3[3], c4[2]; - static integer ic, nb, iz, nx; - static logical cname, sname; - static integer nbmin; - extern integer ieeeck_(integer *, real *, real *); - static char subnam[6]; - - -/* - -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - June 30, 1999 - - - Purpose - ======= - - ILAENV is called from the LAPACK routines to choose problem-dependent - parameters for the local environment. See ISPEC for a description of - the parameters. - - This version provides a set of parameters which should give good, - but not optimal, performance on many of the currently available - computers. Users are encouraged to modify this subroutine to set - the tuning parameters for their particular machine using the option - and problem size information in the arguments. - - This routine will not function correctly if it is converted to all - lower case. Converting it to all upper case is allowed. - - Arguments - ========= - - ISPEC (input) INTEGER - Specifies the parameter to be returned as the value of - ILAENV. - = 1: the optimal blocksize; if this value is 1, an unblocked - algorithm will give the best performance. - = 2: the minimum block size for which the block routine - should be used; if the usable block size is less than - this value, an unblocked routine should be used. - = 3: the crossover point (in a block routine, for N less - than this value, an unblocked routine should be used) - = 4: the number of shifts, used in the nonsymmetric - eigenvalue routines - = 5: the minimum column dimension for blocking to be used; - rectangular blocks must have dimension at least k by m, - where k is given by ILAENV(2,...) and m by ILAENV(5,...) - = 6: the crossover point for the SVD (when reducing an m by n - matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds - this value, a QR factorization is used first to reduce - the matrix to a triangular form.) - = 7: the number of processors - = 8: the crossover point for the multishift QR and QZ methods - for nonsymmetric eigenvalue problems. - = 9: maximum size of the subproblems at the bottom of the - computation tree in the divide-and-conquer algorithm - (used by xGELSD and xGESDD) - =10: ieee NaN arithmetic can be trusted not to trap - =11: infinity arithmetic can be trusted not to trap - - NAME (input) CHARACTER*(*) - The name of the calling subroutine, in either upper case or - lower case. - - OPTS (input) CHARACTER*(*) - The character options to the subroutine NAME, concatenated - into a single character string. For example, UPLO = 'U', - TRANS = 'T', and DIAG = 'N' for a triangular routine would - be specified as OPTS = 'UTN'. - - N1 (input) INTEGER - N2 (input) INTEGER - N3 (input) INTEGER - N4 (input) INTEGER - Problem dimensions for the subroutine NAME; these may not all - be required. - - (ILAENV) (output) INTEGER - >= 0: the value of the parameter specified by ISPEC - < 0: if ILAENV = -k, the k-th argument had an illegal value. - - Further Details - =============== - - The following conventions have been used when calling ILAENV from the - LAPACK routines: - 1) OPTS is a concatenation of all of the character options to - subroutine NAME, in the same order that they appear in the - argument list for NAME, even if they are not used in determining - the value of the parameter specified by ISPEC. - 2) The problem dimensions N1, N2, N3, N4 are specified in the order - that they appear in the argument list for NAME. N1 is used - first, N2 second, and so on, and unused problem dimensions are - passed a value of -1. - 3) The parameter value returned by ILAENV is checked for validity in - the calling subroutine. For example, ILAENV is used to retrieve - the optimal blocksize for STRTRI as follows: - - NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) - IF( NB.LE.1 ) NB = MAX( 1, N ) - - ===================================================================== -*/ - - - switch (*ispec) { - case 1: goto L100; - case 2: goto L100; - case 3: goto L100; - case 4: goto L400; - case 5: goto L500; - case 6: goto L600; - case 7: goto L700; - case 8: goto L800; - case 9: goto L900; - case 10: goto L1000; - case 11: goto L1100; - } - -/* Invalid value for ISPEC */ - - ret_val = -1; - return ret_val; - -L100: - -/* Convert NAME to upper case if the first character is lower case. */ - - ret_val = 1; - s_copy(subnam, name__, (ftnlen)6, name_len); - ic = *(unsigned char *)subnam; - iz = 'Z'; - if (iz == 90 || iz == 122) { - -/* ASCII character set */ - - if (ic >= 97 && ic <= 122) { - *(unsigned char *)subnam = (char) (ic - 32); - for (i__ = 2; i__ <= 6; ++i__) { - ic = *(unsigned char *)&subnam[i__ - 1]; - if (ic >= 97 && ic <= 122) { - *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); - } -/* L10: */ - } - } - - } else if (iz == 233 || iz == 169) { - -/* EBCDIC character set */ - - if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && - ic <= 169) { - *(unsigned char *)subnam = (char) (ic + 64); - for (i__ = 2; i__ <= 6; ++i__) { - ic = *(unsigned char *)&subnam[i__ - 1]; - if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= - 162 && ic <= 169) { - *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64); - } -/* L20: */ - } - } - - } else if (iz == 218 || iz == 250) { - -/* Prime machines: ASCII+128 */ - - if (ic >= 225 && ic <= 250) { - *(unsigned char *)subnam = (char) (ic - 32); - for (i__ = 2; i__ <= 6; ++i__) { - ic = *(unsigned char *)&subnam[i__ - 1]; - if (ic >= 225 && ic <= 250) { - *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); - } -/* L30: */ - } - } - } - - *(unsigned char *)c1 = *(unsigned char *)subnam; - sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D'; - cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z'; - if (! (cname || sname)) { - return ret_val; - } - s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2); - s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3); - s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2); - - switch (*ispec) { - case 1: goto L110; - case 2: goto L200; - case 3: goto L300; - } - -L110: - -/* - ISPEC = 1: block size - - In these examples, separate code is provided for setting NB for - real and complex. We assume that NB will take the same value in - single or double precision. -*/ - - nb = 1; - - if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, - "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen) - 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) - == 0) { - if (sname) { - nb = 32; - } else { - nb = 32; - } - } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 32; - } else { - nb = 32; - } - } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 32; - } else { - nb = 32; - } - } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } - } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } - } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nb = 32; - } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { - nb = 64; - } - } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - nb = 64; - } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nb = 32; - } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { - nb = 64; - } - } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nb = 32; - } - } else if (*(unsigned char *)c3 == 'M') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nb = 32; - } - } - } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nb = 32; - } - } else if (*(unsigned char *)c3 == 'M') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nb = 32; - } - } - } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - if (*n4 <= 64) { - nb = 1; - } else { - nb = 32; - } - } else { - if (*n4 <= 64) { - nb = 1; - } else { - nb = 32; - } - } - } - } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - if (*n2 <= 64) { - nb = 1; - } else { - nb = 32; - } - } else { - if (*n2 <= 64) { - nb = 1; - } else { - nb = 32; - } - } - } - } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } - } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nb = 64; - } else { - nb = 64; - } - } - } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) { - nb = 1; - } - } - ret_val = nb; - return ret_val; - -L200: - -/* ISPEC = 2: minimum block size */ - - nbmin = 2; - if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( - ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( - ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) - { - if (sname) { - nbmin = 2; - } else { - nbmin = 2; - } - } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nbmin = 2; - } else { - nbmin = 2; - } - } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nbmin = 2; - } else { - nbmin = 2; - } - } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nbmin = 2; - } else { - nbmin = 2; - } - } - } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nbmin = 8; - } else { - nbmin = 8; - } - } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nbmin = 2; - } - } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nbmin = 2; - } - } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nbmin = 2; - } - } else if (*(unsigned char *)c3 == 'M') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nbmin = 2; - } - } - } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nbmin = 2; - } - } else if (*(unsigned char *)c3 == 'M') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nbmin = 2; - } - } - } - ret_val = nbmin; - return ret_val; - -L300: - -/* ISPEC = 3: crossover point */ - - nx = 0; - if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( - ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( - ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) - { - if (sname) { - nx = 128; - } else { - nx = 128; - } - } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nx = 128; - } else { - nx = 128; - } - } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { - if (sname) { - nx = 128; - } else { - nx = 128; - } - } - } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { - if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nx = 32; - } - } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { - if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { - nx = 32; - } - } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nx = 128; - } - } - } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { - if (*(unsigned char *)c3 == 'G') { - if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", - (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( - ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == - 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( - c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( - ftnlen)2, (ftnlen)2) == 0) { - nx = 128; - } - } - } - ret_val = nx; - return ret_val; - -L400: - -/* ISPEC = 4: number of shifts (used by xHSEQR) */ - - ret_val = 6; - return ret_val; - -L500: - -/* ISPEC = 5: minimum column dimension (not used) */ - - ret_val = 2; - return ret_val; - -L600: - -/* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */ - - ret_val = (integer) ((real) min(*n1,*n2) * 1.6f); - return ret_val; - -L700: - -/* ISPEC = 7: number of processors (not used) */ - - ret_val = 1; - return ret_val; - -L800: - -/* ISPEC = 8: crossover point for multishift (used by xHSEQR) */ - - ret_val = 50; - return ret_val; - -L900: - -/* - ISPEC = 9: maximum size of the subproblems at the bottom of the - computation tree in the divide-and-conquer algorithm - (used by xGELSD and xGESDD) -*/ - - ret_val = 25; - return ret_val; - -L1000: - -/* - ISPEC = 10: ieee NaN arithmetic can be trusted not to trap - - ILAENV = 0 -*/ - ret_val = 1; - if (ret_val == 1) { - ret_val = ieeeck_(&c__0, &c_b163, &c_b164); - } - return ret_val; - -L1100: - -/* - ISPEC = 11: infinity arithmetic can be trusted not to trap - - ILAENV = 0 -*/ - ret_val = 1; - if (ret_val == 1) { - ret_val = ieeeck_(&c__1, &c_b163, &c_b164); - } - return ret_val; - -/* End of ILAENV */ - -} /* ilaenv_ */ - -/* Subroutine */ int sposv_(char *uplo, integer *n, integer *nrhs, real *a, - integer *lda, real *b, integer *ldb, integer *info) -{ - /* System generated locals */ - integer a_dim1, a_offset, b_dim1, b_offset, i__1; - - /* Local variables */ - extern logical lsame_(char *, char *); - extern /* Subroutine */ int xerbla_(char *, integer *), spotrf_( - char *, integer *, real *, integer *, integer *), spotrs_( - char *, integer *, integer *, real *, integer *, real *, integer * - , integer *); - - -/* - -- LAPACK driver routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - March 31, 1993 - - - Purpose - ======= - - SPOSV computes the solution to a real system of linear equations - A * X = B, - where A is an N-by-N symmetric positive definite matrix and X and B - are N-by-NRHS matrices. - - The Cholesky decomposition is used to factor A as - A = U**T* U, if UPLO = 'U', or - A = L * L**T, if UPLO = 'L', - where U is an upper triangular matrix and L is a lower triangular - matrix. The factored form of A is then used to solve the system of - equations A * X = B. - - Arguments - ========= - - UPLO (input) CHARACTER*1 - = 'U': Upper triangle of A is stored; - = 'L': Lower triangle of A is stored. - - N (input) INTEGER - The number of linear equations, i.e., the order of the - matrix A. N >= 0. - - NRHS (input) INTEGER - The number of right hand sides, i.e., the number of columns - of the matrix B. NRHS >= 0. - - A (input/output) REAL array, dimension (LDA,N) - On entry, the symmetric matrix A. If UPLO = 'U', the leading - N-by-N upper triangular part of A contains the upper - triangular part of the matrix A, and the strictly lower - triangular part of A is not referenced. If UPLO = 'L', the - leading N-by-N lower triangular part of A contains the lower - triangular part of the matrix A, and the strictly upper - triangular part of A is not referenced. - - On exit, if INFO = 0, the factor U or L from the Cholesky - factorization A = U**T*U or A = L*L**T. - - LDA (input) INTEGER - The leading dimension of the array A. LDA >= max(1,N). - - B (input/output) REAL array, dimension (LDB,NRHS) - On entry, the N-by-NRHS right hand side matrix B. - On exit, if INFO = 0, the N-by-NRHS solution matrix X. - - LDB (input) INTEGER - The leading dimension of the array B. LDB >= max(1,N). - - INFO (output) INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i, the leading minor of order i of A is not - positive definite, so the factorization could not be - completed, and the solution has not been computed. - - ===================================================================== - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - b_dim1 = *ldb; - b_offset = 1 + b_dim1; - b -= b_offset; - - /* Function Body */ - *info = 0; - if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { - *info = -1; - } else if (*n < 0) { - *info = -2; - } else if (*nrhs < 0) { - *info = -3; - } else if (*lda < max(1,*n)) { - *info = -5; - } else if (*ldb < max(1,*n)) { - *info = -7; - } - if (*info != 0) { - i__1 = -(*info); - xerbla_("SPOSV ", &i__1); - return 0; - } - -/* Compute the Cholesky factorization A = U'*U or A = L*L'. */ - - spotrf_(uplo, n, &a[a_offset], lda, info); - if (*info == 0) { - -/* Solve the system A*X = B, overwriting B with X. */ - - spotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info); - - } - return 0; - -/* End of SPOSV */ - -} /* sposv_ */ - -/* Subroutine */ int spotf2_(char *uplo, integer *n, real *a, integer *lda, - integer *info) -{ - /* System generated locals */ - integer a_dim1, a_offset, i__1, i__2, i__3; - real r__1; - - /* Builtin functions */ - double sqrt(doublereal); - - /* Local variables */ - static integer j; - static real ajj; - extern doublereal sdot_(integer *, real *, integer *, real *, integer *); - extern logical lsame_(char *, char *); - extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), - sgemv_(char *, integer *, integer *, real *, real *, integer *, - real *, integer *, real *, real *, integer *); - static logical upper; - extern /* Subroutine */ int xerbla_(char *, integer *); - - -/* - -- LAPACK routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - February 29, 1992 - - - Purpose - ======= - - SPOTF2 computes the Cholesky factorization of a real symmetric - positive definite matrix A. - - The factorization has the form - A = U' * U , if UPLO = 'U', or - A = L * L', if UPLO = 'L', - where U is an upper triangular matrix and L is lower triangular. - - This is the unblocked version of the algorithm, calling Level 2 BLAS. - - Arguments - ========= - - UPLO (input) CHARACTER*1 - Specifies whether the upper or lower triangular part of the - symmetric matrix A is stored. - = 'U': Upper triangular - = 'L': Lower triangular - - N (input) INTEGER - The order of the matrix A. N >= 0. - - A (input/output) REAL array, dimension (LDA,N) - On entry, the symmetric matrix A. If UPLO = 'U', the leading - n by n upper triangular part of A contains the upper - triangular part of the matrix A, and the strictly lower - triangular part of A is not referenced. If UPLO = 'L', the - leading n by n lower triangular part of A contains the lower - triangular part of the matrix A, and the strictly upper - triangular part of A is not referenced. - - On exit, if INFO = 0, the factor U or L from the Cholesky - factorization A = U'*U or A = L*L'. - - LDA (input) INTEGER - The leading dimension of the array A. LDA >= max(1,N). - - INFO (output) INTEGER - = 0: successful exit - < 0: if INFO = -k, the k-th argument had an illegal value - > 0: if INFO = k, the leading minor of order k is not - positive definite, and the factorization could not be - completed. - - ===================================================================== - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - - /* Function Body */ - *info = 0; - upper = lsame_(uplo, "U"); - if (! upper && ! lsame_(uplo, "L")) { - *info = -1; - } else if (*n < 0) { - *info = -2; - } else if (*lda < max(1,*n)) { - *info = -4; - } - if (*info != 0) { - i__1 = -(*info); - xerbla_("SPOTF2", &i__1); - return 0; - } - -/* Quick return if possible */ - - if (*n == 0) { - return 0; - } - - if (upper) { - -/* Compute the Cholesky factorization A = U'*U. */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - -/* Compute U(J,J) and test for non-positive-definiteness. */ - - i__2 = j - 1; - ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j * a_dim1 + 1], &c__1, - &a[j * a_dim1 + 1], &c__1); - if (ajj <= 0.f) { - a[j + j * a_dim1] = ajj; - goto L30; - } - ajj = sqrt(ajj); - a[j + j * a_dim1] = ajj; - -/* Compute elements J+1:N of row J. */ - - if (j < *n) { - i__2 = j - 1; - i__3 = *n - j; - sgemv_("Transpose", &i__2, &i__3, &c_b181, &a[(j + 1) * - a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b164, - &a[j + (j + 1) * a_dim1], lda); - i__2 = *n - j; - r__1 = 1.f / ajj; - sscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda); - } -/* L10: */ - } - } else { - -/* Compute the Cholesky factorization A = L*L'. */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - -/* Compute L(J,J) and test for non-positive-definiteness. */ - - i__2 = j - 1; - ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j + a_dim1], lda, &a[j - + a_dim1], lda); - if (ajj <= 0.f) { - a[j + j * a_dim1] = ajj; - goto L30; - } - ajj = sqrt(ajj); - a[j + j * a_dim1] = ajj; - -/* Compute elements J+1:N of column J. */ - - if (j < *n) { - i__2 = *n - j; - i__3 = j - 1; - sgemv_("No transpose", &i__2, &i__3, &c_b181, &a[j + 1 + - a_dim1], lda, &a[j + a_dim1], lda, &c_b164, &a[j + 1 - + j * a_dim1], &c__1); - i__2 = *n - j; - r__1 = 1.f / ajj; - sscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1); - } -/* L20: */ - } - } - goto L40; - -L30: - *info = j; - -L40: - return 0; - -/* End of SPOTF2 */ - -} /* spotf2_ */ - -/* Subroutine */ int spotrf_(char *uplo, integer *n, real *a, integer *lda, - integer *info) -{ - /* System generated locals */ - integer a_dim1, a_offset, i__1, i__2, i__3, i__4; - - /* Local variables */ - static integer j, jb, nb; - extern logical lsame_(char *, char *); - extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, - integer *, real *, real *, integer *, real *, integer *, real *, - real *, integer *); - static logical upper; - extern /* Subroutine */ int strsm_(char *, char *, char *, char *, - integer *, integer *, real *, real *, integer *, real *, integer * - ), ssyrk_(char *, char *, integer - *, integer *, real *, real *, integer *, real *, real *, integer * - ), spotf2_(char *, integer *, real *, integer *, - integer *), xerbla_(char *, integer *); - extern integer ilaenv_(integer *, char *, char *, integer *, integer *, - integer *, integer *, ftnlen, ftnlen); - - -/* - -- LAPACK routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - March 31, 1993 - - - Purpose - ======= - - SPOTRF computes the Cholesky factorization of a real symmetric - positive definite matrix A. - - The factorization has the form - A = U**T * U, if UPLO = 'U', or - A = L * L**T, if UPLO = 'L', - where U is an upper triangular matrix and L is lower triangular. - - This is the block version of the algorithm, calling Level 3 BLAS. - - Arguments - ========= - - UPLO (input) CHARACTER*1 - = 'U': Upper triangle of A is stored; - = 'L': Lower triangle of A is stored. - - N (input) INTEGER - The order of the matrix A. N >= 0. - - A (input/output) REAL array, dimension (LDA,N) - On entry, the symmetric matrix A. If UPLO = 'U', the leading - N-by-N upper triangular part of A contains the upper - triangular part of the matrix A, and the strictly lower - triangular part of A is not referenced. If UPLO = 'L', the - leading N-by-N lower triangular part of A contains the lower - triangular part of the matrix A, and the strictly upper - triangular part of A is not referenced. - - On exit, if INFO = 0, the factor U or L from the Cholesky - factorization A = U**T*U or A = L*L**T. - - LDA (input) INTEGER - The leading dimension of the array A. LDA >= max(1,N). - - INFO (output) INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i, the leading minor of order i is not - positive definite, and the factorization could not be - completed. - - ===================================================================== - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - - /* Function Body */ - *info = 0; - upper = lsame_(uplo, "U"); - if (! upper && ! lsame_(uplo, "L")) { - *info = -1; - } else if (*n < 0) { - *info = -2; - } else if (*lda < max(1,*n)) { - *info = -4; - } - if (*info != 0) { - i__1 = -(*info); - xerbla_("SPOTRF", &i__1); - return 0; - } - -/* Quick return if possible */ - - if (*n == 0) { - return 0; - } - -/* Determine the block size for this environment. */ - - nb = ilaenv_(&c__1, "SPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( - ftnlen)1); - if (nb <= 1 || nb >= *n) { - -/* Use unblocked code. */ - - spotf2_(uplo, n, &a[a_offset], lda, info); - } else { - -/* Use blocked code. */ - - if (upper) { - -/* Compute the Cholesky factorization A = U'*U. */ - - i__1 = *n; - i__2 = nb; - for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { - -/* - Update and factorize the current diagonal block and test - for non-positive-definiteness. - - Computing MIN -*/ - i__3 = nb, i__4 = *n - j + 1; - jb = min(i__3,i__4); - i__3 = j - 1; - ssyrk_("Upper", "Transpose", &jb, &i__3, &c_b181, &a[j * - a_dim1 + 1], lda, &c_b164, &a[j + j * a_dim1], lda); - spotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info); - if (*info != 0) { - goto L30; - } - if (j + jb <= *n) { - -/* Compute the current block row. */ - - i__3 = *n - j - jb + 1; - i__4 = j - 1; - sgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, & - c_b181, &a[j * a_dim1 + 1], lda, &a[(j + jb) * - a_dim1 + 1], lda, &c_b164, &a[j + (j + jb) * - a_dim1], lda); - i__3 = *n - j - jb + 1; - strsm_("Left", "Upper", "Transpose", "Non-unit", &jb, & - i__3, &c_b164, &a[j + j * a_dim1], lda, &a[j + (j - + jb) * a_dim1], lda); - } -/* L10: */ - } - - } else { - -/* Compute the Cholesky factorization A = L*L'. */ - - i__2 = *n; - i__1 = nb; - for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { - -/* - Update and factorize the current diagonal block and test - for non-positive-definiteness. - - Computing MIN -*/ - i__3 = nb, i__4 = *n - j + 1; - jb = min(i__3,i__4); - i__3 = j - 1; - ssyrk_("Lower", "No transpose", &jb, &i__3, &c_b181, &a[j + - a_dim1], lda, &c_b164, &a[j + j * a_dim1], lda); - spotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info); - if (*info != 0) { - goto L30; - } - if (j + jb <= *n) { - -/* Compute the current block column. */ - - i__3 = *n - j - jb + 1; - i__4 = j - 1; - sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, & - c_b181, &a[j + jb + a_dim1], lda, &a[j + a_dim1], - lda, &c_b164, &a[j + jb + j * a_dim1], lda); - i__3 = *n - j - jb + 1; - strsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, & - jb, &c_b164, &a[j + j * a_dim1], lda, &a[j + jb + - j * a_dim1], lda); - } -/* L20: */ - } - } - } - goto L40; - -L30: - *info = *info + j - 1; - -L40: - return 0; - -/* End of SPOTRF */ - -} /* spotrf_ */ - -/* Subroutine */ int spotrs_(char *uplo, integer *n, integer *nrhs, real *a, - integer *lda, real *b, integer *ldb, integer *info) -{ - /* System generated locals */ - integer a_dim1, a_offset, b_dim1, b_offset, i__1; - - /* Local variables */ - extern logical lsame_(char *, char *); - static logical upper; - extern /* Subroutine */ int strsm_(char *, char *, char *, char *, - integer *, integer *, real *, real *, integer *, real *, integer * - ), xerbla_(char *, integer *); - - -/* - -- LAPACK routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - March 31, 1993 - - - Purpose - ======= - - SPOTRS solves a system of linear equations A*X = B with a symmetric - positive definite matrix A using the Cholesky factorization - A = U**T*U or A = L*L**T computed by SPOTRF. - - Arguments - ========= - - UPLO (input) CHARACTER*1 - = 'U': Upper triangle of A is stored; - = 'L': Lower triangle of A is stored. - - N (input) INTEGER - The order of the matrix A. N >= 0. - - NRHS (input) INTEGER - The number of right hand sides, i.e., the number of columns - of the matrix B. NRHS >= 0. - - A (input) REAL array, dimension (LDA,N) - The triangular factor U or L from the Cholesky factorization - A = U**T*U or A = L*L**T, as computed by SPOTRF. - - LDA (input) INTEGER - The leading dimension of the array A. LDA >= max(1,N). - - B (input/output) REAL array, dimension (LDB,NRHS) - On entry, the right hand side matrix B. - On exit, the solution matrix X. - - LDB (input) INTEGER - The leading dimension of the array B. LDB >= max(1,N). - - INFO (output) INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - - ===================================================================== - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - b_dim1 = *ldb; - b_offset = 1 + b_dim1; - b -= b_offset; - - /* Function Body */ - *info = 0; - upper = lsame_(uplo, "U"); - if (! upper && ! lsame_(uplo, "L")) { - *info = -1; - } else if (*n < 0) { - *info = -2; - } else if (*nrhs < 0) { - *info = -3; - } else if (*lda < max(1,*n)) { - *info = -5; - } else if (*ldb < max(1,*n)) { - *info = -7; - } - if (*info != 0) { - i__1 = -(*info); - xerbla_("SPOTRS", &i__1); - return 0; - } - -/* Quick return if possible */ - - if (*n == 0 || *nrhs == 0) { - return 0; - } - - if (upper) { - -/* - Solve A*X = B where A = U'*U. - - Solve U'*X = B, overwriting B with X. -*/ - - strsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b164, &a[ - a_offset], lda, &b[b_offset], ldb); - -/* Solve U*X = B, overwriting B with X. */ - - strsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b164, - &a[a_offset], lda, &b[b_offset], ldb); - } else { - -/* - Solve A*X = B where A = L*L'. - - Solve L*X = B, overwriting B with X. -*/ - - strsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b164, - &a[a_offset], lda, &b[b_offset], ldb); - -/* Solve L'*X = B, overwriting B with X. */ - - strsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b164, &a[ - a_offset], lda, &b[b_offset], ldb); - } - - return 0; - -/* End of SPOTRS */ - -} /* spotrs_ */ - |