diff options
Diffstat (limited to 'media/libvpx/vp8/encoder/firstpass.c')
-rw-r--r-- | media/libvpx/vp8/encoder/firstpass.c | 3368 |
1 files changed, 3368 insertions, 0 deletions
diff --git a/media/libvpx/vp8/encoder/firstpass.c b/media/libvpx/vp8/encoder/firstpass.c new file mode 100644 index 000000000..3deb4abb3 --- /dev/null +++ b/media/libvpx/vp8/encoder/firstpass.c @@ -0,0 +1,3368 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <math.h> +#include <limits.h> +#include <stdio.h> + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "block.h" +#include "onyx_int.h" +#include "vp8/common/variance.h" +#include "encodeintra.h" +#include "vp8/common/setupintrarecon.h" +#include "vp8/common/systemdependent.h" +#include "mcomp.h" +#include "firstpass.h" +#include "vpx_scale/vpx_scale.h" +#include "encodemb.h" +#include "vp8/common/extend.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/swapyv12buffer.h" +#include "rdopt.h" +#include "vp8/common/quant_common.h" +#include "encodemv.h" +#include "encodeframe.h" + +/* #define OUTPUT_FPF 1 */ + +extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); + +#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] +extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; + +extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; + +#define IIFACTOR 1.5 +#define IIKFACTOR1 1.40 +#define IIKFACTOR2 1.5 +#define RMAX 14.0 +#define GF_RMAX 48.0 + +#define KF_MB_INTRA_MIN 300 +#define GF_MB_INTRA_MIN 200 + +#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) + +#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 +#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 + +#define NEW_BOOST 1 + +static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; +static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; + + +static const int cq_level[QINDEX_RANGE] = +{ + 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, + 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, + 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, + 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, + 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, + 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, + 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, + 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 +}; + +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); + +/* Resets the first pass file to the given position using a relative seek + * from the current position + */ +static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) +{ + cpi->twopass.stats_in = Position; +} + +static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) +{ + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) + return EOF; + + *next_frame = *cpi->twopass.stats_in; + return 1; +} + +/* Read frame stats at an offset from the current position */ +static int read_frame_stats( VP8_COMP *cpi, + FIRSTPASS_STATS *frame_stats, + int offset ) +{ + FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; + + /* Check legality of offset */ + if ( offset >= 0 ) + { + if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) + return EOF; + } + else if ( offset < 0 ) + { + if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) + return EOF; + } + + *frame_stats = fps_ptr[offset]; + return 1; +} + +static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) +{ + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) + return EOF; + + *fps = *cpi->twopass.stats_in; + cpi->twopass.stats_in = + (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); + return 1; +} + +static void output_stats(const VP8_COMP *cpi, + struct vpx_codec_pkt_list *pktlist, + FIRSTPASS_STATS *stats) +{ + struct vpx_codec_cx_pkt pkt; + (void)cpi; + pkt.kind = VPX_CODEC_STATS_PKT; + pkt.data.twopass_stats.buf = stats; + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); + vpx_codec_pkt_list_add(pktlist, &pkt); + +/* TEMP debug code */ +#if OUTPUT_FPF + + { + FILE *fpfile; + fpfile = fopen("firstpass.stt", "a"); + + fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" + " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" + " %12.0f %12.0f %12.4f\n", + stats->frame, + stats->intra_error, + stats->coded_error, + stats->ssim_weighted_pred_err, + stats->pcnt_inter, + stats->pcnt_motion, + stats->pcnt_second_ref, + stats->pcnt_neutral, + stats->MVr, + stats->mvr_abs, + stats->MVc, + stats->mvc_abs, + stats->MVrv, + stats->MVcv, + stats->mv_in_out_count, + stats->new_mv_count, + stats->count, + stats->duration); + fclose(fpfile); + } +#endif +} + +static void zero_stats(FIRSTPASS_STATS *section) +{ + section->frame = 0.0; + section->intra_error = 0.0; + section->coded_error = 0.0; + section->ssim_weighted_pred_err = 0.0; + section->pcnt_inter = 0.0; + section->pcnt_motion = 0.0; + section->pcnt_second_ref = 0.0; + section->pcnt_neutral = 0.0; + section->MVr = 0.0; + section->mvr_abs = 0.0; + section->MVc = 0.0; + section->mvc_abs = 0.0; + section->MVrv = 0.0; + section->MVcv = 0.0; + section->mv_in_out_count = 0.0; + section->new_mv_count = 0.0; + section->count = 0.0; + section->duration = 1.0; +} + +static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) +{ + section->frame += frame->frame; + section->intra_error += frame->intra_error; + section->coded_error += frame->coded_error; + section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; + section->pcnt_inter += frame->pcnt_inter; + section->pcnt_motion += frame->pcnt_motion; + section->pcnt_second_ref += frame->pcnt_second_ref; + section->pcnt_neutral += frame->pcnt_neutral; + section->MVr += frame->MVr; + section->mvr_abs += frame->mvr_abs; + section->MVc += frame->MVc; + section->mvc_abs += frame->mvc_abs; + section->MVrv += frame->MVrv; + section->MVcv += frame->MVcv; + section->mv_in_out_count += frame->mv_in_out_count; + section->new_mv_count += frame->new_mv_count; + section->count += frame->count; + section->duration += frame->duration; +} + +static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) +{ + section->frame -= frame->frame; + section->intra_error -= frame->intra_error; + section->coded_error -= frame->coded_error; + section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; + section->pcnt_inter -= frame->pcnt_inter; + section->pcnt_motion -= frame->pcnt_motion; + section->pcnt_second_ref -= frame->pcnt_second_ref; + section->pcnt_neutral -= frame->pcnt_neutral; + section->MVr -= frame->MVr; + section->mvr_abs -= frame->mvr_abs; + section->MVc -= frame->MVc; + section->mvc_abs -= frame->mvc_abs; + section->MVrv -= frame->MVrv; + section->MVcv -= frame->MVcv; + section->mv_in_out_count -= frame->mv_in_out_count; + section->new_mv_count -= frame->new_mv_count; + section->count -= frame->count; + section->duration -= frame->duration; +} + +static void avg_stats(FIRSTPASS_STATS *section) +{ + if (section->count < 1.0) + return; + + section->intra_error /= section->count; + section->coded_error /= section->count; + section->ssim_weighted_pred_err /= section->count; + section->pcnt_inter /= section->count; + section->pcnt_second_ref /= section->count; + section->pcnt_neutral /= section->count; + section->pcnt_motion /= section->count; + section->MVr /= section->count; + section->mvr_abs /= section->count; + section->MVc /= section->count; + section->mvc_abs /= section->count; + section->MVrv /= section->count; + section->MVcv /= section->count; + section->mv_in_out_count /= section->count; + section->duration /= section->count; +} + +/* Calculate a modified Error used in distributing bits between easier + * and harder frames + */ +static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) +{ + double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / + cpi->twopass.total_stats.count ); + double this_err = this_frame->ssim_weighted_pred_err; + double modified_err; + + if (this_err > av_err) + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); + else + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); + + return modified_err; +} + +static const double weight_table[256] = { +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, +0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, +0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, +0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, +0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 +}; + +static double simple_weight(YV12_BUFFER_CONFIG *source) +{ + int i, j; + + unsigned char *src = source->y_buffer; + double sum_weights = 0.0; + + /* Loop throught the Y plane raw examining levels and creating a weight + * for the image + */ + i = source->y_height; + do + { + j = source->y_width; + do + { + sum_weights += weight_table[ *src]; + src++; + }while(--j); + src -= source->y_width; + src += source->y_stride; + }while(--i); + + sum_weights /= (source->y_height * source->y_width); + + return sum_weights; +} + + +/* This function returns the current per frame maximum bitrate target */ +static int frame_max_bits(VP8_COMP *cpi) +{ + /* Max allocation for a single frame based on the max section guidelines + * passed in and how many bits are left + */ + int max_bits; + + /* For CBR we need to also consider buffer fullness. + * If we are running below the optimal level then we need to gradually + * tighten up on max_bits. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); + + /* For CBR base this on the target average bits per frame plus the + * maximum sedction rate passed in by the user + */ + max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); + + /* If our buffer is below the optimum level */ + if (buffer_fullness_ratio < 1.0) + { + /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ + int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; + + max_bits = (int)(max_bits * buffer_fullness_ratio); + + /* Lowest value we will set ... which should allow the buffer to + * refill. + */ + if (max_bits < min_max_bits) + max_bits = min_max_bits; + } + } + /* VBR */ + else + { + /* For VBR base this on the bits and frames left plus the + * two_pass_vbrmax_section rate passed in by the user + */ + max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); + } + + /* Trap case where we are out of bits */ + if (max_bits < 0) + max_bits = 0; + + return max_bits; +} + +void vp8_init_first_pass(VP8_COMP *cpi) +{ + zero_stats(&cpi->twopass.total_stats); +} + +void vp8_end_first_pass(VP8_COMP *cpi) +{ + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); +} + +static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, + YV12_BUFFER_CONFIG * raw_buffer, + int * raw_motion_err, + YV12_BUFFER_CONFIG * recon_buffer, + int * best_motion_err, int recon_yoffset) +{ + MACROBLOCKD * const xd = & x->e_mbd; + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + + unsigned char *src_ptr = (*(b->base_src) + b->src); + int src_stride = b->src_stride; + unsigned char *raw_ptr; + int raw_stride = raw_buffer->y_stride; + unsigned char *ref_ptr; + int ref_stride = x->e_mbd.pre.y_stride; + (void)cpi; + + /* Set up pointers for this macro block raw buffer */ + raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + + d->offset); + vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, + (unsigned int *)(raw_motion_err)); + + /* Set up pointers for this macro block recon buffer */ + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; + ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); + vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, + (unsigned int *)(best_motion_err)); +} + +static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, + int_mv *ref_mv, MV *best_mv, + YV12_BUFFER_CONFIG *recon_buffer, + int *best_motion_err, int recon_yoffset ) +{ + MACROBLOCKD *const xd = & x->e_mbd; + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + int num00; + + int_mv tmp_mv; + int_mv ref_mv_full; + + int tmp_err; + int step_param = 3; /* Dont search over full range for first pass */ + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + int n; + vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; + int new_mv_mode_penalty = 256; + + /* override the default variance function to use MSE */ + v_fn_ptr.vf = vpx_mse16x16; + + /* Set up pointers for this macro block recon buffer */ + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; + + /* Initial step/diamond search centred on best mv */ + tmp_mv.as_int = 0; + ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; + ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, + x->sadperbit16, &num00, &v_fn_ptr, + x->mvcost, ref_mv); + if ( tmp_err < INT_MAX-new_mv_mode_penalty ) + tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) + { + *best_motion_err = tmp_err; + best_mv->row = tmp_mv.as_mv.row; + best_mv->col = tmp_mv.as_mv.col; + } + + /* Further step/diamond searches as necessary */ + n = num00; + num00 = 0; + + while (n < further_steps) + { + n++; + + if (num00) + num00--; + else + { + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, + step_param + n, x->sadperbit16, + &num00, &v_fn_ptr, x->mvcost, + ref_mv); + if ( tmp_err < INT_MAX-new_mv_mode_penalty ) + tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) + { + *best_motion_err = tmp_err; + best_mv->row = tmp_mv.as_mv.row; + best_mv->col = tmp_mv.as_mv.col; + } + } + } +} + +void vp8_first_pass(VP8_COMP *cpi) +{ + int mb_row, mb_col; + MACROBLOCK *const x = & cpi->mb; + VP8_COMMON *const cm = & cpi->common; + MACROBLOCKD *const xd = & x->e_mbd; + + int recon_yoffset, recon_uvoffset; + YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; + YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; + YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; + int recon_y_stride = lst_yv12->y_stride; + int recon_uv_stride = lst_yv12->uv_stride; + int64_t intra_error = 0; + int64_t coded_error = 0; + + int sum_mvr = 0, sum_mvc = 0; + int sum_mvr_abs = 0, sum_mvc_abs = 0; + int sum_mvrs = 0, sum_mvcs = 0; + int mvcount = 0; + int intercount = 0; + int second_ref_count = 0; + int intrapenalty = 256; + int neutral_count = 0; + int new_mv_count = 0; + int sum_in_vectors = 0; + uint32_t lastmv_as_int = 0; + + int_mv zero_ref_mv; + + zero_ref_mv.as_int = 0; + + vp8_clear_system_state(); + + x->src = * cpi->Source; + xd->pre = *lst_yv12; + xd->dst = *new_yv12; + + x->partition_info = x->pi; + + xd->mode_info_context = cm->mi; + + if(!cm->use_bilinear_mc_filter) + { + xd->subpixel_predict = vp8_sixtap_predict4x4; + xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; + xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; + xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; + } + else + { + xd->subpixel_predict = vp8_bilinear_predict4x4; + xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; + xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; + xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; + } + + vp8_build_block_offsets(x); + + /* set up frame new frame for intra coded blocks */ + vp8_setup_intra_recon(new_yv12); + vp8cx_frame_init_quantizer(cpi); + + /* Initialise the MV cost table to the defaults */ + { + int flag[2] = {1, 1}; + vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); + memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); + vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); + } + + /* for each macroblock row in image */ + for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) + { + int_mv best_ref_mv; + + best_ref_mv.as_int = 0; + + /* reset above block coeffs */ + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * 8); + + /* Set up limit values for motion vectors to prevent them extending + * outside the UMV borders + */ + x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); + + + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) + { + int this_error; + int gf_motion_error = INT_MAX; + int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + + xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; + xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; + xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + + /* Copy current mb to a buffer */ + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); + + /* do intra 16x16 prediction */ + this_error = vp8_encode_intra(cpi, x, use_dc_pred); + + /* "intrapenalty" below deals with situations where the intra + * and inter error scores are very low (eg a plain black frame) + * We do not have special cases in first pass for 0,0 and + * nearest etc so all inter modes carry an overhead cost + * estimate fot the mv. When the error score is very low this + * causes us to pick all or lots of INTRA modes and throw lots + * of key frames. This penalty adds a cost matching that of a + * 0,0 mv to the intra case. + */ + this_error += intrapenalty; + + /* Cumulative intra error total */ + intra_error += (int64_t)this_error; + + /* Set up limit values for motion vectors to prevent them + * extending outside the UMV borders + */ + x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); + + /* Other than for the first frame do a motion search */ + if (cm->current_video_frame > 0) + { + BLOCKD *d = &x->e_mbd.block[0]; + MV tmp_mv = {0, 0}; + int tmp_err; + int motion_error = INT_MAX; + int raw_motion_error = INT_MAX; + + /* Simple 0,0 motion with no mv overhead */ + zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, + &raw_motion_error, lst_yv12, &motion_error, + recon_yoffset ); + d->bmi.mv.as_mv.row = 0; + d->bmi.mv.as_mv.col = 0; + + if (raw_motion_error < cpi->oxcf.encode_breakout) + goto skip_motion_search; + + /* Test last reference frame using the previous best mv as the + * starting point (best reference) for the search + */ + first_pass_motion_search(cpi, x, &best_ref_mv, + &d->bmi.mv.as_mv, lst_yv12, + &motion_error, recon_yoffset); + + /* If the current best reference mv is not centred on 0,0 + * then do a 0,0 based search as well + */ + if (best_ref_mv.as_int) + { + tmp_err = INT_MAX; + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, + lst_yv12, &tmp_err, recon_yoffset); + + if ( tmp_err < motion_error ) + { + motion_error = tmp_err; + d->bmi.mv.as_mv.row = tmp_mv.row; + d->bmi.mv.as_mv.col = tmp_mv.col; + } + } + + /* Experimental search in a second reference frame ((0,0) + * based only) + */ + if (cm->current_video_frame > 1) + { + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); + + if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) + { + second_ref_count++; + } + + /* Reset to last frame as reference buffer */ + xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; + xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; + xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; + } + +skip_motion_search: + /* Intra assumed best */ + best_ref_mv.as_int = 0; + + if (motion_error <= this_error) + { + /* Keep a count of cases where the inter and intra were + * very close and very low. This helps with scene cut + * detection for example in cropped clips with black bars + * at the sides or top and bottom. + */ + if( (((this_error-intrapenalty) * 9) <= + (motion_error*10)) && + (this_error < (2*intrapenalty)) ) + { + neutral_count++; + } + + d->bmi.mv.as_mv.row *= 8; + d->bmi.mv.as_mv.col *= 8; + this_error = motion_error; + vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); + vp8_encode_inter16x16y(x); + sum_mvr += d->bmi.mv.as_mv.row; + sum_mvr_abs += abs(d->bmi.mv.as_mv.row); + sum_mvc += d->bmi.mv.as_mv.col; + sum_mvc_abs += abs(d->bmi.mv.as_mv.col); + sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; + sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; + intercount++; + + best_ref_mv.as_int = d->bmi.mv.as_int; + + /* Was the vector non-zero */ + if (d->bmi.mv.as_int) + { + mvcount++; + + /* Was it different from the last non zero vector */ + if ( d->bmi.mv.as_int != lastmv_as_int ) + new_mv_count++; + lastmv_as_int = d->bmi.mv.as_int; + + /* Does the Row vector point inwards or outwards */ + if (mb_row < cm->mb_rows / 2) + { + if (d->bmi.mv.as_mv.row > 0) + sum_in_vectors--; + else if (d->bmi.mv.as_mv.row < 0) + sum_in_vectors++; + } + else if (mb_row > cm->mb_rows / 2) + { + if (d->bmi.mv.as_mv.row > 0) + sum_in_vectors++; + else if (d->bmi.mv.as_mv.row < 0) + sum_in_vectors--; + } + + /* Does the Row vector point inwards or outwards */ + if (mb_col < cm->mb_cols / 2) + { + if (d->bmi.mv.as_mv.col > 0) + sum_in_vectors--; + else if (d->bmi.mv.as_mv.col < 0) + sum_in_vectors++; + } + else if (mb_col > cm->mb_cols / 2) + { + if (d->bmi.mv.as_mv.col > 0) + sum_in_vectors++; + else if (d->bmi.mv.as_mv.col < 0) + sum_in_vectors--; + } + } + } + } + + coded_error += (int64_t)this_error; + + /* adjust to the next column of macroblocks */ + x->src.y_buffer += 16; + x->src.u_buffer += 8; + x->src.v_buffer += 8; + + recon_yoffset += 16; + recon_uvoffset += 8; + } + + /* adjust to the next row of mbs */ + x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; + x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + + /* extend the recon for intra prediction */ + vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); + vp8_clear_system_state(); + } + + vp8_clear_system_state(); + { + double weight = 0.0; + + FIRSTPASS_STATS fps; + + fps.frame = cm->current_video_frame ; + fps.intra_error = (double)(intra_error >> 8); + fps.coded_error = (double)(coded_error >> 8); + weight = simple_weight(cpi->Source); + + + if (weight < 0.1) + weight = 0.1; + + fps.ssim_weighted_pred_err = fps.coded_error * weight; + + fps.pcnt_inter = 0.0; + fps.pcnt_motion = 0.0; + fps.MVr = 0.0; + fps.mvr_abs = 0.0; + fps.MVc = 0.0; + fps.mvc_abs = 0.0; + fps.MVrv = 0.0; + fps.MVcv = 0.0; + fps.mv_in_out_count = 0.0; + fps.new_mv_count = 0.0; + fps.count = 1.0; + + fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; + fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; + fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; + + if (mvcount > 0) + { + fps.MVr = (double)sum_mvr / (double)mvcount; + fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; + fps.MVc = (double)sum_mvc / (double)mvcount; + fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; + fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; + fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; + fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); + fps.new_mv_count = new_mv_count; + + fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; + } + + /* TODO: handle the case when duration is set to 0, or something less + * than the full time between subsequent cpi->source_time_stamps + */ + fps.duration = (double)(cpi->source->ts_end + - cpi->source->ts_start); + + /* don't want to do output stats with a stack variable! */ + memcpy(&cpi->twopass.this_frame_stats, + &fps, + sizeof(FIRSTPASS_STATS)); + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); + accumulate_stats(&cpi->twopass.total_stats, &fps); + } + + /* Copy the previous Last Frame into the GF buffer if specific + * conditions for doing so are met + */ + if ((cm->current_video_frame > 0) && + (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && + ((cpi->twopass.this_frame_stats.intra_error / + DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > + 2.0)) + { + vp8_yv12_copy_frame(lst_yv12, gld_yv12); + } + + /* swap frame pointers so last frame refers to the frame we just + * compressed + */ + vp8_swap_yv12_buffer(lst_yv12, new_yv12); + vp8_yv12_extend_frame_borders(lst_yv12); + + /* Special case for the first frame. Copy into the GF buffer as a + * second reference. + */ + if (cm->current_video_frame == 0) + { + vp8_yv12_copy_frame(lst_yv12, gld_yv12); + } + + + /* use this to see what the first pass reconstruction looks like */ + if (0) + { + char filename[512]; + FILE *recon_file; + sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); + + if (cm->current_video_frame == 0) + recon_file = fopen(filename, "wb"); + else + recon_file = fopen(filename, "ab"); + + (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, + recon_file); + fclose(recon_file); + } + + cm->current_video_frame++; + +} +extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; + +/* Estimate a cost per mb attributable to overheads such as the coding of + * modes and motion vectors. + * Currently simplistic in its assumptions for testing. + */ + +static double bitcost( double prob ) +{ + if (prob > 0.000122) + return -log(prob) / log(2.0); + else + return 13.0; +} +static int64_t estimate_modemvcost(VP8_COMP *cpi, + FIRSTPASS_STATS * fpstats) +{ + int mv_cost; + int64_t mode_cost; + + double av_pct_inter = fpstats->pcnt_inter / fpstats->count; + double av_pct_motion = fpstats->pcnt_motion / fpstats->count; + double av_intra = (1.0 - av_pct_inter); + + double zz_cost; + double motion_cost; + double intra_cost; + + zz_cost = bitcost(av_pct_inter - av_pct_motion); + motion_cost = bitcost(av_pct_motion); + intra_cost = bitcost(av_intra); + + /* Estimate of extra bits per mv overhead for mbs + * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb + */ + mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; + + /* Crude estimate of overhead cost from modes + * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb + */ + mode_cost = (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + + (av_pct_motion * motion_cost) + + (av_intra * intra_cost)) * cpi->common.MBs) * 512; + + return mv_cost + mode_cost; +} + +static double calc_correction_factor( double err_per_mb, + double err_devisor, + double pt_low, + double pt_high, + int Q ) +{ + double power_term; + double error_term = err_per_mb / err_devisor; + double correction_factor; + + /* Adjustment based on Q to power term. */ + power_term = pt_low + (Q * 0.01); + power_term = (power_term > pt_high) ? pt_high : power_term; + + /* Adjustments to error term */ + /* TBD */ + + /* Calculate correction factor */ + correction_factor = pow(error_term, power_term); + + /* Clip range */ + correction_factor = + (correction_factor < 0.05) + ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; + + return correction_factor; +} + +static int estimate_max_q(VP8_COMP *cpi, + FIRSTPASS_STATS * fpstats, + int section_target_bandwitdh, + int overhead_bits ) +{ + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double section_err = (fpstats->coded_error / fpstats->count); + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + int overhead_bits_per_mb; + + if (section_target_bandwitdh <= 0) + return cpi->twopass.maxq_max_limit; /* Highest value allowed */ + + target_norm_bits_per_mb = + (section_target_bandwitdh < (1 << 20)) + ? (512 * section_target_bandwitdh) / num_mbs + : 512 * (section_target_bandwitdh / num_mbs); + + /* Calculate a corrective factor based on a rolling ratio of bits spent + * vs target bits + */ + if ((cpi->rolling_target_bits > 0) && + (cpi->active_worst_quality < cpi->worst_quality)) + { + double rolling_ratio; + + rolling_ratio = (double)cpi->rolling_actual_bits / + (double)cpi->rolling_target_bits; + + if (rolling_ratio < 0.95) + cpi->twopass.est_max_qcorrection_factor -= 0.005; + else if (rolling_ratio > 1.05) + cpi->twopass.est_max_qcorrection_factor += 0.005; + + cpi->twopass.est_max_qcorrection_factor = + (cpi->twopass.est_max_qcorrection_factor < 0.1) + ? 0.1 + : (cpi->twopass.est_max_qcorrection_factor > 10.0) + ? 10.0 : cpi->twopass.est_max_qcorrection_factor; + } + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) + { + if (cpi->oxcf.cpu_used <= 5) + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + else + speed_correction = 1.25; + } + + /* Estimate of overhead bits per mb */ + /* Correction to overhead bits for min allowed Q. */ + overhead_bits_per_mb = overhead_bits / num_mbs; + overhead_bits_per_mb = (int)(overhead_bits_per_mb * + pow( 0.98, (double)cpi->twopass.maxq_min_limit )); + + /* Try and pick a max Q that will be high enough to encode the + * content at the given rate. + */ + for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) + { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; + + bits_per_mb_at_this_q = (int)(.5 + err_correction_factor + * speed_correction * cpi->twopass.est_max_qcorrection_factor + * cpi->twopass.section_max_qfactor + * (double)bits_per_mb_at_this_q); + + /* Mode and motion overhead */ + /* As Q rises in real encode loop rd code will force overhead down + * We make a crude adjustment for this here as *.98 per Q step. + */ + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) + break; + } + + /* Restriction on active max q for constrained quality mode. */ + if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && + (Q < cpi->cq_target_quality) ) + { + Q = cpi->cq_target_quality; + } + + /* Adjust maxq_min_limit and maxq_max_limit limits based on + * average q observed in clip for non kf/gf.arf frames + * Give average a chance to settle though. + */ + if ( (cpi->ni_frames > + ((int)cpi->twopass.total_stats.count >> 8)) && + (cpi->ni_frames > 150) ) + { + cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) + ? (cpi->ni_av_qi + 32) : cpi->worst_quality; + cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) + ? (cpi->ni_av_qi - 32) : cpi->best_quality; + } + + return Q; +} + +/* For cq mode estimate a cq level that matches the observed + * complexity and data rate. + */ +static int estimate_cq( VP8_COMP *cpi, + FIRSTPASS_STATS * fpstats, + int section_target_bandwitdh, + int overhead_bits ) +{ + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double section_err = (fpstats->coded_error / fpstats->count); + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + double clip_iiratio; + double clip_iifactor; + int overhead_bits_per_mb; + + if (0) + { + FILE *f = fopen("epmp.stt", "a"); + fprintf(f, "%10.2f\n", err_per_mb ); + fclose(f); + } + + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) + ? (512 * section_target_bandwitdh) / num_mbs + : 512 * (section_target_bandwitdh / num_mbs); + + /* Estimate of overhead bits per mb */ + overhead_bits_per_mb = overhead_bits / num_mbs; + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) + { + if (cpi->oxcf.cpu_used <= 5) + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + else + speed_correction = 1.25; + } + + /* II ratio correction factor for clip as a whole */ + clip_iiratio = cpi->twopass.total_stats.intra_error / + DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); + clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); + if (clip_iifactor < 0.80) + clip_iifactor = 0.80; + + /* Try and pick a Q that can encode the content at the given rate. */ + for (Q = 0; Q < MAXQ; Q++) + { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; + + bits_per_mb_at_this_q = + (int)( .5 + err_correction_factor * + speed_correction * + clip_iifactor * + (double)bits_per_mb_at_this_q); + + /* Mode and motion overhead */ + /* As Q rises in real encode loop rd code will force overhead down + * We make a crude adjustment for this here as *.98 per Q step. + */ + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) + break; + } + + /* Clip value to range "best allowed to (worst allowed - 1)" */ + Q = cq_level[Q]; + if ( Q >= cpi->worst_quality ) + Q = cpi->worst_quality - 1; + if ( Q < cpi->best_quality ) + Q = cpi->best_quality; + + return Q; +} + +static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) +{ + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) + { + if (cpi->oxcf.cpu_used <= 5) + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + else + speed_correction = 1.25; + } + + /* Try and pick a Q that can encode the content at the given rate. */ + for (Q = 0; Q < MAXQ; Q++) + { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + (int)( .5 + ( err_correction_factor * + speed_correction * + cpi->twopass.est_max_qcorrection_factor * + (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) + break; + } + + return Q; +} + +/* Estimate a worst case Q for a KF group */ +static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) +{ + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; + int bits_per_mb_at_this_q; + + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + double current_spend_ratio = 1.0; + + double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; + double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; + + double iiratio_correction_factor = 1.0; + + double combined_correction_factor; + + /* Trap special case where the target is <= 0 */ + if (target_norm_bits_per_mb <= 0) + return MAXQ * 2; + + /* Calculate a corrective factor based on a rolling ratio of bits spent + * vs target bits + * This is clamped to the range 0.1 to 10.0 + */ + if (cpi->long_rolling_target_bits <= 0) + current_spend_ratio = 10.0; + else + { + current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; + current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; + } + + /* Calculate a correction factor based on the quality of prediction in + * the sequence as indicated by intra_inter error score ratio (IIRatio) + * The idea here is to favour subsampling in the hardest sections vs + * the easyest. + */ + iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); + + if (iiratio_correction_factor < 0.5) + iiratio_correction_factor = 0.5; + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) + { + if (cpi->oxcf.cpu_used <= 5) + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + else + speed_correction = 1.25; + } + + /* Combine the various factors calculated above */ + combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; + + /* Try and pick a Q that should be high enough to encode the content at + * the given rate. + */ + for (Q = 0; Q < MAXQ; Q++) + { + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); + + bits_per_mb_at_this_q = + (int)(.5 + ( err_correction_factor * + combined_correction_factor * + (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) + break; + } + + /* If we could not hit the target even at Max Q then estimate what Q + * would have been required + */ + while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) + { + + bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); + Q++; + } + + if (0) + { + FILE *f = fopen("estkf_q.stt", "a"); + fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, + target_norm_bits_per_mb, err_per_mb, err_correction_factor, + current_spend_ratio, group_iiratio, iiratio_correction_factor, + (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); + fclose(f); + } + + return Q; +} + +void vp8_init_second_pass(VP8_COMP *cpi) +{ + FIRSTPASS_STATS this_frame; + FIRSTPASS_STATS *start_pos; + + double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); + + zero_stats(&cpi->twopass.total_stats); + zero_stats(&cpi->twopass.total_left_stats); + + if (!cpi->twopass.stats_in_end) + return; + + cpi->twopass.total_stats = *cpi->twopass.stats_in_end; + cpi->twopass.total_left_stats = cpi->twopass.total_stats; + + /* each frame can have a different duration, as the frame rate in the + * source isn't guaranteed to be constant. The frame rate prior to + * the first frame encoded in the second pass is a guess. However the + * sum duration is not. Its calculated based on the actual durations of + * all frames from the first pass. + */ + vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); + + cpi->output_framerate = cpi->framerate; + cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; + cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); + + /* Calculate a minimum intra value to be used in determining the IIratio + * scores used in the second pass. We have this minimum to make sure + * that clips that are static but "low complexity" in the intra domain + * are still boosted appropriately for KF/GF/ARF + */ + cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; + cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; + + /* Scan the first pass file and calculate an average Intra / Inter error + * score ratio for the sequence + */ + { + double sum_iiratio = 0.0; + double IIRatio; + + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ + + while (input_stats(cpi, &this_frame) != EOF) + { + IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); + IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; + sum_iiratio += IIRatio; + } + + cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); + + /* Reset file position */ + reset_fpf_position(cpi, start_pos); + } + + /* Scan the first pass file and calculate a modified total error based + * upon the bias/power function used to allocate bits + */ + { + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ + + cpi->twopass.modified_error_total = 0.0; + cpi->twopass.modified_error_used = 0.0; + + while (input_stats(cpi, &this_frame) != EOF) + { + cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); + } + cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; + + reset_fpf_position(cpi, start_pos); /* Reset file position */ + + } +} + +void vp8_end_second_pass(VP8_COMP *cpi) +{ + (void)cpi; +} + +/* This function gives and estimate of how badly we believe the prediction + * quality is decaying from frame to frame. + */ +static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) +{ + double prediction_decay_rate; + double motion_decay; + double motion_pct = next_frame->pcnt_motion; + (void)cpi; + + /* Initial basis is the % mbs inter coded */ + prediction_decay_rate = next_frame->pcnt_inter; + + /* High % motion -> somewhat higher decay rate */ + motion_decay = (1.0 - (motion_pct / 20.0)); + if (motion_decay < prediction_decay_rate) + prediction_decay_rate = motion_decay; + + /* Adjustment to decay rate based on speed of motion */ + { + double this_mv_rabs; + double this_mv_cabs; + double distance_factor; + + this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); + this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); + + distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + + (this_mv_cabs * this_mv_cabs)) / 250.0; + distance_factor = ((distance_factor > 1.0) + ? 0.0 : (1.0 - distance_factor)); + if (distance_factor < prediction_decay_rate) + prediction_decay_rate = distance_factor; + } + + return prediction_decay_rate; +} + +/* Function to test for a condition where a complex transition is followed + * by a static section. For example in slide shows where there is a fade + * between slides. This is to help with more optimal kf and gf positioning. + */ +static int detect_transition_to_still( + VP8_COMP *cpi, + int frame_interval, + int still_interval, + double loop_decay_rate, + double decay_accumulator ) +{ + int trans_to_still = 0; + + /* Break clause to detect very still sections after motion + * For example a static image after a fade or other transition + * instead of a clean scene cut. + */ + if ( (frame_interval > MIN_GF_INTERVAL) && + (loop_decay_rate >= 0.999) && + (decay_accumulator < 0.9) ) + { + int j; + FIRSTPASS_STATS * position = cpi->twopass.stats_in; + FIRSTPASS_STATS tmp_next_frame; + double decay_rate; + + /* Look ahead a few frames to see if static condition persists... */ + for ( j = 0; j < still_interval; j++ ) + { + if (EOF == input_stats(cpi, &tmp_next_frame)) + break; + + decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); + if ( decay_rate < 0.999 ) + break; + } + /* Reset file position */ + reset_fpf_position(cpi, position); + + /* Only if it does do we signal a transition to still */ + if ( j == still_interval ) + trans_to_still = 1; + } + + return trans_to_still; +} + +/* This function detects a flash through the high relative pcnt_second_ref + * score in the frame following a flash frame. The offset passed in should + * reflect this + */ +static int detect_flash( VP8_COMP *cpi, int offset ) +{ + FIRSTPASS_STATS next_frame; + + int flash_detected = 0; + + /* Read the frame data. */ + /* The return is 0 (no flash detected) if not a valid frame */ + if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) + { + /* What we are looking for here is a situation where there is a + * brief break in prediction (such as a flash) but subsequent frames + * are reasonably well predicted by an earlier (pre flash) frame. + * The recovery after a flash is indicated by a high pcnt_second_ref + * comapred to pcnt_inter. + */ + if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && + (next_frame.pcnt_second_ref >= 0.5 ) ) + { + flash_detected = 1; + + /*if (1) + { + FILE *f = fopen("flash.stt", "a"); + fprintf(f, "%8.0f %6.2f %6.2f\n", + next_frame.frame, + next_frame.pcnt_inter, + next_frame.pcnt_second_ref); + fclose(f); + }*/ + } + } + + return flash_detected; +} + +/* Update the motion related elements to the GF arf boost calculation */ +static void accumulate_frame_motion_stats( + VP8_COMP *cpi, + FIRSTPASS_STATS * this_frame, + double * this_frame_mv_in_out, + double * mv_in_out_accumulator, + double * abs_mv_in_out_accumulator, + double * mv_ratio_accumulator ) +{ + double this_frame_mvr_ratio; + double this_frame_mvc_ratio; + double motion_pct; + (void)cpi; + + /* Accumulate motion stats. */ + motion_pct = this_frame->pcnt_motion; + + /* Accumulate Motion In/Out of frame stats */ + *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; + *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; + *abs_mv_in_out_accumulator += + fabs(this_frame->mv_in_out_count * motion_pct); + + /* Accumulate a measure of how uniform (or conversely how random) + * the motion field is. (A ratio of absmv / mv) + */ + if (motion_pct > 0.05) + { + this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / + DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); + + this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / + DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); + + *mv_ratio_accumulator += + (this_frame_mvr_ratio < this_frame->mvr_abs) + ? (this_frame_mvr_ratio * motion_pct) + : this_frame->mvr_abs * motion_pct; + + *mv_ratio_accumulator += + (this_frame_mvc_ratio < this_frame->mvc_abs) + ? (this_frame_mvc_ratio * motion_pct) + : this_frame->mvc_abs * motion_pct; + + } +} + +/* Calculate a baseline boost number for the current frame. */ +static double calc_frame_boost( + VP8_COMP *cpi, + FIRSTPASS_STATS * this_frame, + double this_frame_mv_in_out ) +{ + double frame_boost; + + /* Underlying boost factor is based on inter intra error ratio */ + if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) + frame_boost = (IIFACTOR * this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); + else + frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); + + /* Increase boost for frames where new data coming into frame + * (eg zoom out). Slightly reduce boost if there is a net balance + * of motion out of the frame (zoom in). + * The range for this_frame_mv_in_out is -1.0 to +1.0 + */ + if (this_frame_mv_in_out > 0.0) + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + /* In extreme case boost is halved */ + else + frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); + + /* Clip to maximum */ + if (frame_boost > GF_RMAX) + frame_boost = GF_RMAX; + + return frame_boost; +} + +#if NEW_BOOST +static int calc_arf_boost( + VP8_COMP *cpi, + int offset, + int f_frames, + int b_frames, + int *f_boost, + int *b_boost ) +{ + FIRSTPASS_STATS this_frame; + + int i; + double boost_score = 0.0; + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + double r; + int flash_detected = 0; + + /* Search forward from the proposed arf/next gf position */ + for ( i = 0; i < f_frames; i++ ) + { + if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) + break; + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( cpi, &this_frame, + &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); + + /* Calculate the baseline boost number for this frame */ + r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); + + /* We want to discount the the flash frame itself and the recovery + * frame that follows as both will have poor scores. + */ + flash_detected = detect_flash(cpi, (i+offset)) || + detect_flash(cpi, (i+offset+1)); + + /* Cumulative effect of prediction quality decay */ + if ( !flash_detected ) + { + decay_accumulator = + decay_accumulator * + get_prediction_decay_rate(cpi, &this_frame); + decay_accumulator = + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + boost_score += (decay_accumulator * r); + + /* Break out conditions. */ + if ( (!flash_detected) && + ((mv_ratio_accumulator > 100.0) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) ) ) + { + break; + } + } + + *f_boost = (int)(boost_score * 100.0) >> 4; + + /* Reset for backward looking loop */ + boost_score = 0.0; + mv_ratio_accumulator = 0.0; + decay_accumulator = 1.0; + this_frame_mv_in_out = 0.0; + mv_in_out_accumulator = 0.0; + abs_mv_in_out_accumulator = 0.0; + + /* Search forward from the proposed arf/next gf position */ + for ( i = -1; i >= -b_frames; i-- ) + { + if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) + break; + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( cpi, &this_frame, + &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); + + /* Calculate the baseline boost number for this frame */ + r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); + + /* We want to discount the the flash frame itself and the recovery + * frame that follows as both will have poor scores. + */ + flash_detected = detect_flash(cpi, (i+offset)) || + detect_flash(cpi, (i+offset+1)); + + /* Cumulative effect of prediction quality decay */ + if ( !flash_detected ) + { + decay_accumulator = + decay_accumulator * + get_prediction_decay_rate(cpi, &this_frame); + decay_accumulator = + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + + boost_score += (decay_accumulator * r); + + /* Break out conditions. */ + if ( (!flash_detected) && + ((mv_ratio_accumulator > 100.0) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) ) ) + { + break; + } + } + *b_boost = (int)(boost_score * 100.0) >> 4; + + return (*f_boost + *b_boost); +} +#endif + +/* Analyse and define a gf/arf group . */ +static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) +{ + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS *start_pos; + int i; + double r; + double boost_score = 0.0; + double old_boost_score = 0.0; + double gf_group_err = 0.0; + double gf_first_frame_err = 0.0; + double mod_frame_err = 0.0; + + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + + double loop_decay_rate = 1.00; /* Starting decay rate */ + + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + double mod_err_per_mb_accumulator = 0.0; + + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ + + unsigned int allow_alt_ref = + cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; + + int alt_boost = 0; + int f_boost = 0; + int b_boost = 0; + int flash_detected; + + cpi->twopass.gf_group_bits = 0; + cpi->twopass.gf_decay_rate = 0; + + vp8_clear_system_state(); + + start_pos = cpi->twopass.stats_in; + + memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ + + /* Load stats for the current frame. */ + mod_frame_err = calculate_modified_err(cpi, this_frame); + + /* Note the error of the frame at the start of the group (this will be + * the GF frame error if we code a normal gf + */ + gf_first_frame_err = mod_frame_err; + + /* Special treatment if the current frame is a key frame (which is also + * a gf). If it is then its error score (and hence bit allocation) need + * to be subtracted out from the calculation for the GF group + */ + if (cpi->common.frame_type == KEY_FRAME) + gf_group_err -= gf_first_frame_err; + + /* Scan forward to try and work out how many frames the next gf group + * should contain and what level of boost is appropriate for the GF + * or ARF that will be coded with the group + */ + i = 0; + + while (((i < cpi->twopass.static_scene_max_gf_interval) || + ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && + (i < cpi->twopass.frames_to_key)) + { + i++; + + /* Accumulate error score of frames in this gf group */ + mod_frame_err = calculate_modified_err(cpi, this_frame); + + gf_group_err += mod_frame_err; + + mod_err_per_mb_accumulator += + mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); + + if (EOF == input_stats(cpi, &next_frame)) + break; + + /* Test for the case where there is a brief flash but the prediction + * quality back to an earlier frame is then restored. + */ + flash_detected = detect_flash(cpi, 0); + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( cpi, &next_frame, + &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); + + /* Calculate a baseline boost number for this frame */ + r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); + + /* Cumulative effect of prediction quality decay */ + if ( !flash_detected ) + { + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + decay_accumulator = decay_accumulator * loop_decay_rate; + decay_accumulator = + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + boost_score += (decay_accumulator * r); + + /* Break clause to detect very still sections after motion + * For example a staic image after a fade or other transition. + */ + if ( detect_transition_to_still( cpi, i, 5, + loop_decay_rate, + decay_accumulator ) ) + { + allow_alt_ref = 0; + boost_score = old_boost_score; + break; + } + + /* Break out conditions. */ + if ( + /* Break at cpi->max_gf_interval unless almost totally static */ + (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || + ( + /* Dont break out with a very short interval */ + (i > MIN_GF_INTERVAL) && + /* Dont break out very close to a key frame */ + ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && + ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && + (!flash_detected) && + ((mv_ratio_accumulator > 100.0) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) || + ((boost_score - old_boost_score) < 2.0)) + ) ) + { + boost_score = old_boost_score; + break; + } + + memcpy(this_frame, &next_frame, sizeof(*this_frame)); + + old_boost_score = boost_score; + } + + cpi->twopass.gf_decay_rate = + (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; + + /* When using CBR apply additional buffer related upper limits */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + double max_boost; + + /* For cbr apply buffer related limits */ + if (cpi->drop_frames_allowed) + { + int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * + (cpi->oxcf.optimal_buffer_level / 100); + + if (cpi->buffer_level > df_buffer_level) + max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + else + max_boost = 0.0; + } + else if (cpi->buffer_level > 0) + { + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } + else + { + max_boost = 0.0; + } + + if (boost_score > max_boost) + boost_score = max_boost; + } + + /* Dont allow conventional gf too near the next kf */ + if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) + { + while (i < cpi->twopass.frames_to_key) + { + i++; + + if (EOF == input_stats(cpi, this_frame)) + break; + + if (i < cpi->twopass.frames_to_key) + { + mod_frame_err = calculate_modified_err(cpi, this_frame); + gf_group_err += mod_frame_err; + } + } + } + + cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; + +#if NEW_BOOST + /* Alterrnative boost calculation for alt ref */ + alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); +#endif + + /* Should we use the alternate refernce frame */ + if (allow_alt_ref && + (i >= MIN_GF_INTERVAL) && + /* dont use ARF very near next kf */ + (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && +#if NEW_BOOST + ((next_frame.pcnt_inter > 0.75) || + (next_frame.pcnt_second_ref > 0.5)) && + ((mv_in_out_accumulator / (double)i > -0.2) || + (mv_in_out_accumulator > -2.0)) && + (b_boost > 100) && + (f_boost > 100) ) +#else + (next_frame.pcnt_inter > 0.75) && + ((mv_in_out_accumulator / (double)i > -0.2) || + (mv_in_out_accumulator > -2.0)) && + (cpi->gfu_boost > 100) && + (cpi->twopass.gf_decay_rate <= + (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) +#endif + { + int Boost; + int allocation_chunks; + int Q = (cpi->oxcf.fixed_q < 0) + ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; + int tmp_q; + int arf_frame_bits = 0; + int group_bits; + +#if NEW_BOOST + cpi->gfu_boost = alt_boost; +#endif + + /* Estimate the bits to be allocated to the group as a whole */ + if ((cpi->twopass.kf_group_bits > 0) && + (cpi->twopass.kf_group_error_left > 0)) + { + group_bits = (int)((double)cpi->twopass.kf_group_bits * + (gf_group_err / (double)cpi->twopass.kf_group_error_left)); + } + else + group_bits = 0; + + /* Boost for arf frame */ +#if NEW_BOOST + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; +#else + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); +#endif + Boost += (i * 50); + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) + Boost = ((cpi->baseline_gf_interval + 1) * 200); + else if (Boost < 125) + Boost = 125; + + allocation_chunks = (i * 100) + Boost; + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (Boost > 1000) + { + Boost /= 2; + allocation_chunks /= 2; + } + + /* Calculate the number of bits to be spent on the arf based on the + * boost number + */ + arf_frame_bits = (int)((double)Boost * (group_bits / + (double)allocation_chunks)); + + /* Estimate if there are enough bits available to make worthwhile use + * of an arf. + */ + tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); + + /* Only use an arf if it is likely we will be able to code + * it at a lower Q than the surrounding frames. + */ + if (tmp_q < cpi->worst_quality) + { + int half_gf_int; + int frames_after_arf; + int frames_bwd = cpi->oxcf.arnr_max_frames - 1; + int frames_fwd = cpi->oxcf.arnr_max_frames - 1; + + cpi->source_alt_ref_pending = 1; + + /* + * For alt ref frames the error score for the end frame of the + * group (the alt ref frame) should not contribute to the group + * total and hence the number of bit allocated to the group. + * Rather it forms part of the next group (it is the GF at the + * start of the next group) + * gf_group_err -= mod_frame_err; + * + * For alt ref frames alt ref frame is technically part of the + * GF frame for the next group but we always base the error + * calculation and bit allocation on the current group of frames. + * + * Set the interval till the next gf or arf. + * For ARFs this is the number of frames to be coded before the + * future frame that is coded as an ARF. + * The future frame itself is part of the next group + */ + cpi->baseline_gf_interval = i; + + /* + * Define the arnr filter width for this group of frames: + * We only filter frames that lie within a distance of half + * the GF interval from the ARF frame. We also have to trap + * cases where the filter extends beyond the end of clip. + * Note: this_frame->frame has been updated in the loop + * so it now points at the ARF frame. + */ + half_gf_int = cpi->baseline_gf_interval >> 1; + frames_after_arf = (int)(cpi->twopass.total_stats.count - + this_frame->frame - 1); + + switch (cpi->oxcf.arnr_type) + { + case 1: /* Backward filter */ + frames_fwd = 0; + if (frames_bwd > half_gf_int) + frames_bwd = half_gf_int; + break; + + case 2: /* Forward filter */ + if (frames_fwd > half_gf_int) + frames_fwd = half_gf_int; + if (frames_fwd > frames_after_arf) + frames_fwd = frames_after_arf; + frames_bwd = 0; + break; + + case 3: /* Centered filter */ + default: + frames_fwd >>= 1; + if (frames_fwd > frames_after_arf) + frames_fwd = frames_after_arf; + if (frames_fwd > half_gf_int) + frames_fwd = half_gf_int; + + frames_bwd = frames_fwd; + + /* For even length filter there is one more frame backward + * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. + */ + if (frames_bwd < half_gf_int) + frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; + break; + } + + cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; + } + else + { + cpi->source_alt_ref_pending = 0; + cpi->baseline_gf_interval = i; + } + } + else + { + cpi->source_alt_ref_pending = 0; + cpi->baseline_gf_interval = i; + } + + /* + * Now decide how many bits should be allocated to the GF group as a + * proportion of those remaining in the kf group. + * The final key frame group in the clip is treated as a special case + * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. + * This is also important for short clips where there may only be one + * key frame. + */ + if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - + cpi->common.current_video_frame)) + { + cpi->twopass.kf_group_bits = + (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; + } + + /* Calculate the bits to be allocated to the group as a whole */ + if ((cpi->twopass.kf_group_bits > 0) && + (cpi->twopass.kf_group_error_left > 0)) + { + cpi->twopass.gf_group_bits = + (int64_t)(cpi->twopass.kf_group_bits * + (gf_group_err / cpi->twopass.kf_group_error_left)); + } + else + cpi->twopass.gf_group_bits = 0; + + cpi->twopass.gf_group_bits = + (cpi->twopass.gf_group_bits < 0) + ? 0 + : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) + ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; + + /* Clip cpi->twopass.gf_group_bits based on user supplied data rate + * variability limit (cpi->oxcf.two_pass_vbrmax_section) + */ + if (cpi->twopass.gf_group_bits > + (int64_t)max_bits * cpi->baseline_gf_interval) + cpi->twopass.gf_group_bits = + (int64_t)max_bits * cpi->baseline_gf_interval; + + /* Reset the file position */ + reset_fpf_position(cpi, start_pos); + + /* Update the record of error used so far (only done once per gf group) */ + cpi->twopass.modified_error_used += gf_group_err; + + /* Assign bits to the arf or gf. */ + for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { + int Boost; + int allocation_chunks; + int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; + int gf_bits; + + /* For ARF frames */ + if (cpi->source_alt_ref_pending && i == 0) + { +#if NEW_BOOST + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; +#else + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); +#endif + Boost += (cpi->baseline_gf_interval * 50); + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) + Boost = ((cpi->baseline_gf_interval + 1) * 200); + else if (Boost < 125) + Boost = 125; + + allocation_chunks = + ((cpi->baseline_gf_interval + 1) * 100) + Boost; + } + /* Else for standard golden frames */ + else + { + /* boost based on inter / intra ratio of subsequent frames */ + Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > (cpi->baseline_gf_interval * 150)) + Boost = (cpi->baseline_gf_interval * 150); + else if (Boost < 125) + Boost = 125; + + allocation_chunks = + (cpi->baseline_gf_interval * 100) + (Boost - 100); + } + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (Boost > 1000) + { + Boost /= 2; + allocation_chunks /= 2; + } + + /* Calculate the number of bits to be spent on the gf or arf based on + * the boost number + */ + gf_bits = (int)((double)Boost * + (cpi->twopass.gf_group_bits / + (double)allocation_chunks)); + + /* If the frame that is to be boosted is simpler than the average for + * the gf/arf group then use an alternative calculation + * based on the error score of the frame itself + */ + if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) + { + double alt_gf_grp_bits; + int alt_gf_bits; + + alt_gf_grp_bits = + (double)cpi->twopass.kf_group_bits * + (mod_frame_err * (double)cpi->baseline_gf_interval) / + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); + + alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / + (double)allocation_chunks)); + + if (gf_bits > alt_gf_bits) + { + gf_bits = alt_gf_bits; + } + } + /* Else if it is harder than other frames in the group make sure it at + * least receives an allocation in keeping with its relative error + * score, otherwise it may be worse off than an "un-boosted" frame + */ + else + { + int alt_gf_bits = + (int)((double)cpi->twopass.kf_group_bits * + mod_frame_err / + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); + + if (alt_gf_bits > gf_bits) + { + gf_bits = alt_gf_bits; + } + } + + /* Apply an additional limit for CBR */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) + cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); + } + + /* Dont allow a negative value for gf_bits */ + if (gf_bits < 0) + gf_bits = 0; + + /* Add in minimum for a frame */ + gf_bits += cpi->min_frame_bandwidth; + + if (i == 0) + { + cpi->twopass.gf_bits = gf_bits; + } + if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) + { + /* Per frame bit target for this frame */ + cpi->per_frame_bandwidth = gf_bits; + } + } + + { + /* Adjust KF group bits and error remainin */ + cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; + cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; + + if (cpi->twopass.kf_group_bits < 0) + cpi->twopass.kf_group_bits = 0; + + /* Note the error score left in the remaining frames of the group. + * For normal GFs we want to remove the error score for the first + * frame of the group (except in Key frame case where this has + * already happened) + */ + if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) + cpi->twopass.gf_group_error_left = (int)(gf_group_err - + gf_first_frame_err); + else + cpi->twopass.gf_group_error_left = (int) gf_group_err; + + cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; + + if (cpi->twopass.gf_group_bits < 0) + cpi->twopass.gf_group_bits = 0; + + /* This condition could fail if there are two kfs very close together + * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the + * calculation of cpi->twopass.alt_extra_bits. + */ + if ( cpi->baseline_gf_interval >= 3 ) + { +#if NEW_BOOST + int boost = (cpi->source_alt_ref_pending) + ? b_boost : cpi->gfu_boost; +#else + int boost = cpi->gfu_boost; +#endif + if ( boost >= 150 ) + { + int pct_extra; + + pct_extra = (boost - 100) / 50; + pct_extra = (pct_extra > 20) ? 20 : pct_extra; + + cpi->twopass.alt_extra_bits = + (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; + cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; + cpi->twopass.alt_extra_bits /= + ((cpi->baseline_gf_interval-1)>>1); + } + else + cpi->twopass.alt_extra_bits = 0; + } + else + cpi->twopass.alt_extra_bits = 0; + } + + /* Adjustments based on a measure of complexity of the section */ + if (cpi->common.frame_type != KEY_FRAME) + { + FIRSTPASS_STATS sectionstats; + double Ratio; + + zero_stats(§ionstats); + reset_fpf_position(cpi, start_pos); + + for (i = 0 ; i < cpi->baseline_gf_interval ; i++) + { + input_stats(cpi, &next_frame); + accumulate_stats(§ionstats, &next_frame); + } + + avg_stats(§ionstats); + + cpi->twopass.section_intra_rating = (unsigned int) + (sectionstats.intra_error / + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); + + Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); + + if (cpi->twopass.section_max_qfactor < 0.80) + cpi->twopass.section_max_qfactor = 0.80; + + reset_fpf_position(cpi, start_pos); + } +} + +/* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ +static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) +{ + int target_frame_size; + + double modified_err; + double err_fraction; + + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ + + /* Calculate modified prediction error used in bit allocation */ + modified_err = calculate_modified_err(cpi, this_frame); + + /* What portion of the remaining GF group error is used by this frame */ + if (cpi->twopass.gf_group_error_left > 0) + err_fraction = modified_err / cpi->twopass.gf_group_error_left; + else + err_fraction = 0.0; + + /* How many of those bits available for allocation should we give it? */ + target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); + + /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) + * at the top end. + */ + if (target_frame_size < 0) + target_frame_size = 0; + else + { + if (target_frame_size > max_bits) + target_frame_size = max_bits; + + if (target_frame_size > cpi->twopass.gf_group_bits) + target_frame_size = (int)cpi->twopass.gf_group_bits; + } + + /* Adjust error and bits remaining */ + cpi->twopass.gf_group_error_left -= (int)modified_err; + cpi->twopass.gf_group_bits -= target_frame_size; + + if (cpi->twopass.gf_group_bits < 0) + cpi->twopass.gf_group_bits = 0; + + /* Add in the minimum number of bits that is set aside for every frame. */ + target_frame_size += cpi->min_frame_bandwidth; + + /* Every other frame gets a few extra bits */ + if ( (cpi->frames_since_golden & 0x01) && + (cpi->frames_till_gf_update_due > 0) ) + { + target_frame_size += cpi->twopass.alt_extra_bits; + } + + /* Per frame bit target for this frame */ + cpi->per_frame_bandwidth = target_frame_size; +} + +void vp8_second_pass(VP8_COMP *cpi) +{ + int tmp_q; + int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); + + FIRSTPASS_STATS this_frame = {0}; + FIRSTPASS_STATS this_frame_copy; + + double this_frame_intra_error; + double this_frame_coded_error; + + int overhead_bits; + + if (!cpi->twopass.stats_in) + { + return ; + } + + vp8_clear_system_state(); + + if (EOF == input_stats(cpi, &this_frame)) + return; + + this_frame_intra_error = this_frame.intra_error; + this_frame_coded_error = this_frame.coded_error; + + /* keyframe and section processing ! */ + if (cpi->twopass.frames_to_key == 0) + { + /* Define next KF group and assign bits to it */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + find_next_key_frame(cpi, &this_frame_copy); + + /* Special case: Error error_resilient_mode mode does not make much + * sense for two pass but with its current meaning this code is + * designed to stop outlandish behaviour if someone does set it when + * using two pass. It effectively disables GF groups. This is + * temporary code until we decide what should really happen in this + * case. + */ + if (cpi->oxcf.error_resilient_mode) + { + cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; + cpi->twopass.gf_group_error_left = + (int)cpi->twopass.kf_group_error_left; + cpi->baseline_gf_interval = cpi->twopass.frames_to_key; + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + cpi->source_alt_ref_pending = 0; + } + + } + + /* Is this a GF / ARF (Note that a KF is always also a GF) */ + if (cpi->frames_till_gf_update_due == 0) + { + /* Define next gf group and assign bits to it */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + define_gf_group(cpi, &this_frame_copy); + + /* If we are going to code an altref frame at the end of the group + * and the current frame is not a key frame.... If the previous + * group used an arf this frame has already benefited from that arf + * boost and it should not be given extra bits If the previous + * group was NOT coded using arf we may want to apply some boost to + * this GF as well + */ + if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) + { + /* Assign a standard frames worth of bits from those allocated + * to the GF group + */ + int bak = cpi->per_frame_bandwidth; + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + cpi->per_frame_bandwidth = bak; + } + } + + /* Otherwise this is an ordinary frame */ + else + { + /* Special case: Error error_resilient_mode mode does not make much + * sense for two pass but with its current meaning but this code is + * designed to stop outlandish behaviour if someone does set it + * when using two pass. It effectively disables GF groups. This is + * temporary code till we decide what should really happen in this + * case. + */ + if (cpi->oxcf.error_resilient_mode) + { + cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; + + if (cpi->common.frame_type != KEY_FRAME) + { + /* Assign bits from those allocated to the GF group */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + } + } + else + { + /* Assign bits from those allocated to the GF group */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + } + } + + /* Keep a globally available copy of this and the next frame's iiratio. */ + cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / + DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); + { + FIRSTPASS_STATS next_frame; + if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) + { + cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + } + } + + /* Set nominal per second bandwidth for this frame */ + cpi->target_bandwidth = (int) + (cpi->per_frame_bandwidth * cpi->output_framerate); + if (cpi->target_bandwidth < 0) + cpi->target_bandwidth = 0; + + + /* Account for mv, mode and other overheads. */ + overhead_bits = (int)estimate_modemvcost( + cpi, &cpi->twopass.total_left_stats ); + + /* Special case code for first frame. */ + if (cpi->common.current_video_frame == 0) + { + cpi->twopass.est_max_qcorrection_factor = 1.0; + + /* Set a cq_level in constrained quality mode. */ + if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) + { + int est_cq; + + est_cq = + estimate_cq( cpi, + &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits ); + + cpi->cq_target_quality = cpi->oxcf.cq_level; + if ( est_cq > cpi->cq_target_quality ) + cpi->cq_target_quality = est_cq; + } + + /* guess at maxq needed in 2nd pass */ + cpi->twopass.maxq_max_limit = cpi->worst_quality; + cpi->twopass.maxq_min_limit = cpi->best_quality; + + tmp_q = estimate_max_q( + cpi, + &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits ); + + /* Limit the maxq value returned subsequently. + * This increases the risk of overspend or underspend if the initial + * estimate for the clip is bad, but helps prevent excessive + * variation in Q, especially near the end of a clip + * where for example a small overspend may cause Q to crash + */ + cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) + ? (tmp_q + 32) : cpi->worst_quality; + cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) + ? (tmp_q - 32) : cpi->best_quality; + + cpi->active_worst_quality = tmp_q; + cpi->ni_av_qi = tmp_q; + } + + /* The last few frames of a clip almost always have to few or too many + * bits and for the sake of over exact rate control we dont want to make + * radical adjustments to the allowed quantizer range just to use up a + * few surplus bits or get beneath the target rate. + */ + else if ( (cpi->common.current_video_frame < + (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && + ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < + (unsigned int)cpi->twopass.total_stats.count) ) + { + if (frames_left < 1) + frames_left = 1; + + tmp_q = estimate_max_q( + cpi, + &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits ); + + /* Move active_worst_quality but in a damped way */ + if (tmp_q > cpi->active_worst_quality) + cpi->active_worst_quality ++; + else if (tmp_q < cpi->active_worst_quality) + cpi->active_worst_quality --; + + cpi->active_worst_quality = + ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; + } + + cpi->twopass.frames_to_key --; + + /* Update the total stats remaining sturcture */ + subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); +} + + +static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) +{ + int is_viable_kf = 0; + + /* Does the frame satisfy the primary criteria of a key frame + * If so, then examine how well it predicts subsequent frames + */ + if ((this_frame->pcnt_second_ref < 0.10) && + (next_frame->pcnt_second_ref < 0.10) && + ((this_frame->pcnt_inter < 0.05) || + ( + ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && + ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && + ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || + (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || + ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) + ) + ) + ) + ) + { + int i; + FIRSTPASS_STATS *start_pos; + + FIRSTPASS_STATS local_next_frame; + + double boost_score = 0.0; + double old_boost_score = 0.0; + double decay_accumulator = 1.0; + double next_iiratio; + + memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); + + /* Note the starting file position so we can reset to it */ + start_pos = cpi->twopass.stats_in; + + /* Examine how well the key frame predicts subsequent frames */ + for (i = 0 ; i < 16; i++) + { + next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; + + if (next_iiratio > RMAX) + next_iiratio = RMAX; + + /* Cumulative effect of decay in prediction quality */ + if (local_next_frame.pcnt_inter > 0.85) + decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; + else + decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); + + /* Keep a running total */ + boost_score += (decay_accumulator * next_iiratio); + + /* Test various breakout clauses */ + if ((local_next_frame.pcnt_inter < 0.05) || + (next_iiratio < 1.5) || + (((local_next_frame.pcnt_inter - + local_next_frame.pcnt_neutral) < 0.20) && + (next_iiratio < 3.0)) || + ((boost_score - old_boost_score) < 0.5) || + (local_next_frame.intra_error < 200) + ) + { + break; + } + + old_boost_score = boost_score; + + /* Get the next frame details */ + if (EOF == input_stats(cpi, &local_next_frame)) + break; + } + + /* If there is tolerable prediction for at least the next 3 frames + * then break out else discard this pottential key frame and move on + */ + if (boost_score > 5.0 && (i > 3)) + is_viable_kf = 1; + else + { + /* Reset the file position */ + reset_fpf_position(cpi, start_pos); + + is_viable_kf = 0; + } + } + + return is_viable_kf; +} +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) +{ + int i,j; + FIRSTPASS_STATS last_frame; + FIRSTPASS_STATS first_frame; + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS *start_position; + + double decay_accumulator = 1.0; + double boost_score = 0; + double old_boost_score = 0.0; + double loop_decay_rate; + + double kf_mod_err = 0.0; + double kf_group_err = 0.0; + double kf_group_intra_err = 0.0; + double kf_group_coded_err = 0.0; + double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; + + memset(&next_frame, 0, sizeof(next_frame)); + + vp8_clear_system_state(); + start_position = cpi->twopass.stats_in; + + cpi->common.frame_type = KEY_FRAME; + + /* is this a forced key frame by interval */ + cpi->this_key_frame_forced = cpi->next_key_frame_forced; + + /* Clear the alt ref active flag as this can never be active on a key + * frame + */ + cpi->source_alt_ref_active = 0; + + /* Kf is always a gf so clear frames till next gf counter */ + cpi->frames_till_gf_update_due = 0; + + cpi->twopass.frames_to_key = 1; + + /* Take a copy of the initial frame details */ + memcpy(&first_frame, this_frame, sizeof(*this_frame)); + + cpi->twopass.kf_group_bits = 0; + cpi->twopass.kf_group_error_left = 0; + + kf_mod_err = calculate_modified_err(cpi, this_frame); + + /* find the next keyframe */ + i = 0; + while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) + { + /* Accumulate kf group error */ + kf_group_err += calculate_modified_err(cpi, this_frame); + + /* These figures keep intra and coded error counts for all frames + * including key frames in the group. The effect of the key frame + * itself can be subtracted out using the first_frame data + * collected above + */ + kf_group_intra_err += this_frame->intra_error; + kf_group_coded_err += this_frame->coded_error; + + /* Load the next frame's stats. */ + memcpy(&last_frame, this_frame, sizeof(*this_frame)); + input_stats(cpi, this_frame); + + /* Provided that we are not at the end of the file... */ + if (cpi->oxcf.auto_key + && lookup_next_frame_stats(cpi, &next_frame) != EOF) + { + /* Normal scene cut check */ + if ( ( i >= MIN_GF_INTERVAL ) && + test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) + { + break; + } + + /* How fast is prediction quality decaying */ + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + /* We want to know something about the recent past... rather than + * as used elsewhere where we are concened with decay in prediction + * quality since the last GF or KF. + */ + recent_loop_decay[i%8] = loop_decay_rate; + decay_accumulator = 1.0; + for (j = 0; j < 8; j++) + { + decay_accumulator = decay_accumulator * recent_loop_decay[j]; + } + + /* Special check for transition or high motion followed by a + * static scene. + */ + if ( detect_transition_to_still( cpi, i, + (cpi->key_frame_frequency-i), + loop_decay_rate, + decay_accumulator ) ) + { + break; + } + + + /* Step on to the next frame */ + cpi->twopass.frames_to_key ++; + + /* If we don't have a real key frame within the next two + * forcekeyframeevery intervals then break out of the loop. + */ + if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) + break; + } else + cpi->twopass.frames_to_key ++; + + i++; + } + + /* If there is a max kf interval set by the user we must obey it. + * We already breakout of the loop above at 2x max. + * This code centers the extra kf if the actual natural + * interval is between 1x and 2x + */ + if (cpi->oxcf.auto_key + && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) + { + FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; + FIRSTPASS_STATS tmp_frame; + + cpi->twopass.frames_to_key /= 2; + + /* Copy first frame details */ + memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); + + /* Reset to the start of the group */ + reset_fpf_position(cpi, start_position); + + kf_group_err = 0; + kf_group_intra_err = 0; + kf_group_coded_err = 0; + + /* Rescan to get the correct error data for the forced kf group */ + for( i = 0; i < cpi->twopass.frames_to_key; i++ ) + { + /* Accumulate kf group errors */ + kf_group_err += calculate_modified_err(cpi, &tmp_frame); + kf_group_intra_err += tmp_frame.intra_error; + kf_group_coded_err += tmp_frame.coded_error; + + /* Load a the next frame's stats */ + input_stats(cpi, &tmp_frame); + } + + /* Reset to the start of the group */ + reset_fpf_position(cpi, current_pos); + + cpi->next_key_frame_forced = 1; + } + else + cpi->next_key_frame_forced = 0; + + /* Special case for the last frame of the file */ + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) + { + /* Accumulate kf group error */ + kf_group_err += calculate_modified_err(cpi, this_frame); + + /* These figures keep intra and coded error counts for all frames + * including key frames in the group. The effect of the key frame + * itself can be subtracted out using the first_frame data + * collected above + */ + kf_group_intra_err += this_frame->intra_error; + kf_group_coded_err += this_frame->coded_error; + } + + /* Calculate the number of bits that should be assigned to the kf group. */ + if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) + { + /* Max for a single normal frame (not key frame) */ + int max_bits = frame_max_bits(cpi); + + /* Maximum bits for the kf group */ + int64_t max_grp_bits; + + /* Default allocation based on bits left and relative + * complexity of the section + */ + cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * + ( kf_group_err / + cpi->twopass.modified_error_left )); + + /* Clip based on maximum per frame rate defined by the user. */ + max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; + if (cpi->twopass.kf_group_bits > max_grp_bits) + cpi->twopass.kf_group_bits = max_grp_bits; + + /* Additional special case for CBR if buffer is getting full. */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; + int64_t buffer_lvl = cpi->buffer_level; + + /* If the buffer is near or above the optimal and this kf group is + * not being allocated much then increase the allocation a bit. + */ + if (buffer_lvl >= opt_buffer_lvl) + { + int64_t high_water_mark = (opt_buffer_lvl + + cpi->oxcf.maximum_buffer_size) >> 1; + + int64_t av_group_bits; + + /* Av bits per frame * number of frames */ + av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * + (int64_t)cpi->twopass.frames_to_key; + + /* We are at or above the maximum. */ + if (cpi->buffer_level >= high_water_mark) + { + int64_t min_group_bits; + + min_group_bits = av_group_bits + + (int64_t)(buffer_lvl - + high_water_mark); + + if (cpi->twopass.kf_group_bits < min_group_bits) + cpi->twopass.kf_group_bits = min_group_bits; + } + /* We are above optimal but below the maximum */ + else if (cpi->twopass.kf_group_bits < av_group_bits) + { + int64_t bits_below_av = av_group_bits - + cpi->twopass.kf_group_bits; + + cpi->twopass.kf_group_bits += + (int64_t)((double)bits_below_av * + (double)(buffer_lvl - opt_buffer_lvl) / + (double)(high_water_mark - opt_buffer_lvl)); + } + } + } + } + else + cpi->twopass.kf_group_bits = 0; + + /* Reset the first pass file position */ + reset_fpf_position(cpi, start_position); + + /* determine how big to make this keyframe based on how well the + * subsequent frames use inter blocks + */ + decay_accumulator = 1.0; + boost_score = 0.0; + + for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) + { + double r; + + if (EOF == input_stats(cpi, &next_frame)) + break; + + if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) + r = (IIKFACTOR2 * next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + else + r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + + if (r > RMAX) + r = RMAX; + + /* How fast is prediction quality decaying */ + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + decay_accumulator = decay_accumulator * loop_decay_rate; + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + + boost_score += (decay_accumulator * r); + + if ((i > MIN_GF_INTERVAL) && + ((boost_score - old_boost_score) < 1.0)) + { + break; + } + + old_boost_score = boost_score; + } + + if (1) + { + FIRSTPASS_STATS sectionstats; + double Ratio; + + zero_stats(§ionstats); + reset_fpf_position(cpi, start_position); + + for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) + { + input_stats(cpi, &next_frame); + accumulate_stats(§ionstats, &next_frame); + } + + avg_stats(§ionstats); + + cpi->twopass.section_intra_rating = (unsigned int) + (sectionstats.intra_error + / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); + + Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); + + if (cpi->twopass.section_max_qfactor < 0.80) + cpi->twopass.section_max_qfactor = 0.80; + } + + /* When using CBR apply additional buffer fullness related upper limits */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + double max_boost; + + if (cpi->drop_frames_allowed) + { + int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark + * (cpi->oxcf.optimal_buffer_level / 100)); + + if (cpi->buffer_level > df_buffer_level) + max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + else + max_boost = 0.0; + } + else if (cpi->buffer_level > 0) + { + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } + else + { + max_boost = 0.0; + } + + if (boost_score > max_boost) + boost_score = max_boost; + } + + /* Reset the first pass file position */ + reset_fpf_position(cpi, start_position); + + /* Work out how many bits to allocate for the key frame itself */ + if (1) + { + int kf_boost = (int)boost_score; + int allocation_chunks; + int Counter = cpi->twopass.frames_to_key; + int alt_kf_bits; + YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; + /* Min boost based on kf interval */ +#if 0 + + while ((kf_boost < 48) && (Counter > 0)) + { + Counter -= 2; + kf_boost ++; + } + +#endif + + if (kf_boost < 48) + { + kf_boost += ((Counter + 1) >> 1); + + if (kf_boost > 48) kf_boost = 48; + } + + /* bigger frame sizes need larger kf boosts, smaller frames smaller + * boosts... + */ + if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) + kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); + else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) + kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); + + /* Min KF boost */ + kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ + if (kf_boost < 250) + kf_boost = 250; + + /* + * We do three calculations for kf size. + * The first is based on the error score for the whole kf group. + * The second (optionaly) on the key frames own error if this is + * smaller than the average for the group. + * The final one insures that the frame receives at least the + * allocation it would have received based on its own error score vs + * the error score remaining + * Special case if the sequence appears almost totaly static + * as measured by the decay accumulator. In this case we want to + * spend almost all of the bits on the key frame. + * cpi->twopass.frames_to_key-1 because key frame itself is taken + * care of by kf_boost. + */ + if ( decay_accumulator >= 0.99 ) + { + allocation_chunks = + ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; + } + else + { + allocation_chunks = + ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; + } + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (kf_boost > 1000) + { + kf_boost /= 2; + allocation_chunks /= 2; + } + + cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; + + /* Calculate the number of bits to be spent on the key frame */ + cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); + + /* Apply an additional limit for CBR */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) + cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); + } + + /* If the key frame is actually easier than the average for the + * kf group (which does sometimes happen... eg a blank intro frame) + * Then use an alternate calculation based on the kf error score + * which should give a smaller key frame. + */ + if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) + { + double alt_kf_grp_bits = + ((double)cpi->twopass.bits_left * + (kf_mod_err * (double)cpi->twopass.frames_to_key) / + DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); + + alt_kf_bits = (int)((double)kf_boost * + (alt_kf_grp_bits / (double)allocation_chunks)); + + if (cpi->twopass.kf_bits > alt_kf_bits) + { + cpi->twopass.kf_bits = alt_kf_bits; + } + } + /* Else if it is much harder than other frames in the group make sure + * it at least receives an allocation in keeping with its relative + * error score + */ + else + { + alt_kf_bits = + (int)((double)cpi->twopass.bits_left * + (kf_mod_err / + DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); + + if (alt_kf_bits > cpi->twopass.kf_bits) + { + cpi->twopass.kf_bits = alt_kf_bits; + } + } + + cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; + /* Add in the minimum frame allowance */ + cpi->twopass.kf_bits += cpi->min_frame_bandwidth; + + /* Peer frame bit target for this frame */ + cpi->per_frame_bandwidth = cpi->twopass.kf_bits; + + /* Convert to a per second bitrate */ + cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * + cpi->output_framerate); + } + + /* Note the total error score of the kf group minus the key frame itself */ + cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); + + /* Adjust the count of total modified error left. The count of bits left + * is adjusted elsewhere based on real coded frame sizes + */ + cpi->twopass.modified_error_left -= kf_group_err; + + if (cpi->oxcf.allow_spatial_resampling) + { + int resample_trigger = 0; + int last_kf_resampled = 0; + int kf_q; + int scale_val = 0; + int hr, hs, vr, vs; + int new_width = cpi->oxcf.Width; + int new_height = cpi->oxcf.Height; + + int projected_buffer_level; + int tmp_q; + + double projected_bits_perframe; + double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); + double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; + double bits_per_frame; + double av_bits_per_frame; + double effective_size_ratio; + + if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) + last_kf_resampled = 1; + + /* Set back to unscaled by defaults */ + cpi->common.horiz_scale = NORMAL; + cpi->common.vert_scale = NORMAL; + + /* Calculate Average bits per frame. */ + av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate); + + /* CBR... Use the clip average as the target for deciding resample */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + bits_per_frame = av_bits_per_frame; + } + + /* In VBR we want to avoid downsampling in easy section unless we + * are under extreme pressure So use the larger of target bitrate + * for this section or average bitrate for sequence + */ + else + { + /* This accounts for how hard the section is... */ + bits_per_frame = (double) + (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); + + /* Dont turn to resampling in easy sections just because they + * have been assigned a small number of bits + */ + if (bits_per_frame < av_bits_per_frame) + bits_per_frame = av_bits_per_frame; + } + + /* bits_per_frame should comply with our minimum */ + if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) + bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); + + /* Work out if spatial resampling is necessary */ + kf_q = estimate_kf_group_q(cpi, err_per_frame, + (int)bits_per_frame, group_iiratio); + + /* If we project a required Q higher than the maximum allowed Q then + * make a guess at the actual size of frames in this section + */ + projected_bits_perframe = bits_per_frame; + tmp_q = kf_q; + + while (tmp_q > cpi->worst_quality) + { + projected_bits_perframe *= 1.04; + tmp_q--; + } + + /* Guess at buffer level at the end of the section */ + projected_buffer_level = (int) + (cpi->buffer_level - (int) + ((projected_bits_perframe - av_bits_per_frame) * + cpi->twopass.frames_to_key)); + + if (0) + { + FILE *f = fopen("Subsamle.stt", "a"); + fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); + fclose(f); + } + + /* The trigger for spatial resampling depends on the various + * parameters such as whether we are streaming (CBR) or VBR. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) + { + /* Trigger resample if we are projected to fall below down + * sample level or resampled last time and are projected to + * remain below the up sample level + */ + if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || + (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) + resample_trigger = 1; + else + resample_trigger = 0; + } + else + { + int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); + int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; + + /* If triggered last time the threshold for triggering again is + * reduced: + * + * Projected Q higher than allowed and Overspend > 5% of total + * bits + */ + if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || + ((kf_q > cpi->worst_quality) && + (over_spend > clip_bits / 20))) + resample_trigger = 1; + else + resample_trigger = 0; + + } + + if (resample_trigger) + { + while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) + { + scale_val ++; + + cpi->common.vert_scale = vscale_lookup[scale_val]; + cpi->common.horiz_scale = hscale_lookup[scale_val]; + + Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); + Scale2Ratio(cpi->common.vert_scale, &vr, &vs); + + new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; + new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; + + /* Reducing the area to 1/4 does not reduce the complexity + * (err_per_frame) to 1/4... effective_sizeratio attempts + * to provide a crude correction for this + */ + effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); + effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; + + /* Now try again and see what Q we get with the smaller + * image size + */ + kf_q = estimate_kf_group_q(cpi, + err_per_frame * effective_size_ratio, + (int)bits_per_frame, group_iiratio); + + if (0) + { + FILE *f = fopen("Subsamle.stt", "a"); + fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); + fclose(f); + } + } + } + + if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) + { + cpi->common.Width = new_width; + cpi->common.Height = new_height; + vp8_alloc_compressor_data(cpi); + } + } +} |