diff options
Diffstat (limited to 'media/libopus/celt/bands.c')
-rw-r--r-- | media/libopus/celt/bands.c | 1529 |
1 files changed, 1529 insertions, 0 deletions
diff --git a/media/libopus/celt/bands.c b/media/libopus/celt/bands.c new file mode 100644 index 000000000..87eaa6c03 --- /dev/null +++ b/media/libopus/celt/bands.c @@ -0,0 +1,1529 @@ +/* Copyright (c) 2007-2008 CSIRO + Copyright (c) 2007-2009 Xiph.Org Foundation + Copyright (c) 2008-2009 Gregory Maxwell + Written by Jean-Marc Valin and Gregory Maxwell */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <math.h> +#include "bands.h" +#include "modes.h" +#include "vq.h" +#include "cwrs.h" +#include "stack_alloc.h" +#include "os_support.h" +#include "mathops.h" +#include "rate.h" +#include "quant_bands.h" +#include "pitch.h" + +int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) +{ + int i; + for (i=0;i<N;i++) + { + if (val < thresholds[i]) + break; + } + if (i>prev && val < thresholds[prev]+hysteresis[prev]) + i=prev; + if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) + i=prev; + return i; +} + +opus_uint32 celt_lcg_rand(opus_uint32 seed) +{ + return 1664525 * seed + 1013904223; +} + +/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness + with this approximation is important because it has an impact on the bit allocation */ +static opus_int16 bitexact_cos(opus_int16 x) +{ + opus_int32 tmp; + opus_int16 x2; + tmp = (4096+((opus_int32)(x)*(x)))>>13; + celt_assert(tmp<=32767); + x2 = tmp; + x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); + celt_assert(x2<=32766); + return 1+x2; +} + +static int bitexact_log2tan(int isin,int icos) +{ + int lc; + int ls; + lc=EC_ILOG(icos); + ls=EC_ILOG(isin); + icos<<=15-lc; + isin<<=15-ls; + return (ls-lc)*(1<<11) + +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) + -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); +} + +#ifdef FIXED_POINT +/* Compute the amplitude (sqrt energy) in each of the bands */ +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) +{ + int i, c, N; + const opus_int16 *eBands = m->eBands; + N = m->shortMdctSize<<LM; + c=0; do { + for (i=0;i<end;i++) + { + int j; + opus_val32 maxval=0; + opus_val32 sum = 0; + + maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); + if (maxval > 0) + { + int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1); + j=eBands[i]<<LM; + if (shift>0) + { + do { + sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)), + EXTRACT16(SHR32(X[j+c*N],shift))); + } while (++j<eBands[i+1]<<LM); + } else { + do { + sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)), + EXTRACT16(SHL32(X[j+c*N],-shift))); + } while (++j<eBands[i+1]<<LM); + } + /* We're adding one here to ensure the normalized band isn't larger than unity norm */ + bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); + } else { + bandE[i+c*m->nbEBands] = EPSILON; + } + /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ + } + } while (++c<C); + /*printf ("\n");*/ +} + +/* Normalise each band such that the energy is one. */ +void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) +{ + int i, c, N; + const opus_int16 *eBands = m->eBands; + N = M*m->shortMdctSize; + c=0; do { + i=0; do { + opus_val16 g; + int j,shift; + opus_val16 E; + shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; + E = VSHR32(bandE[i+c*m->nbEBands], shift); + g = EXTRACT16(celt_rcp(SHL32(E,3))); + j=M*eBands[i]; do { + X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); + } while (++j<M*eBands[i+1]); + } while (++i<end); + } while (++c<C); +} + +#else /* FIXED_POINT */ +/* Compute the amplitude (sqrt energy) in each of the bands */ +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) +{ + int i, c, N; + const opus_int16 *eBands = m->eBands; + N = m->shortMdctSize<<LM; + c=0; do { + for (i=0;i<end;i++) + { + opus_val32 sum; + sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); + bandE[i+c*m->nbEBands] = celt_sqrt(sum); + /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ + } + } while (++c<C); + /*printf ("\n");*/ +} + +/* Normalise each band such that the energy is one. */ +void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) +{ + int i, c, N; + const opus_int16 *eBands = m->eBands; + N = M*m->shortMdctSize; + c=0; do { + for (i=0;i<end;i++) + { + int j; + opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); + for (j=M*eBands[i];j<M*eBands[i+1];j++) + X[j+c*N] = freq[j+c*N]*g; + } + } while (++c<C); +} + +#endif /* FIXED_POINT */ + +/* De-normalise the energy to produce the synthesis from the unit-energy bands */ +void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, + celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, + int end, int M, int downsample, int silence) +{ + int i, N; + int bound; + celt_sig * OPUS_RESTRICT f; + const celt_norm * OPUS_RESTRICT x; + const opus_int16 *eBands = m->eBands; + N = M*m->shortMdctSize; + bound = M*eBands[end]; + if (downsample!=1) + bound = IMIN(bound, N/downsample); + if (silence) + { + bound = 0; + start = end = 0; + } + f = freq; + x = X+M*eBands[start]; + for (i=0;i<M*eBands[start];i++) + *f++ = 0; + for (i=start;i<end;i++) + { + int j, band_end; + opus_val16 g; + opus_val16 lg; +#ifdef FIXED_POINT + int shift; +#endif + j=M*eBands[i]; + band_end = M*eBands[i+1]; + lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6)); +#ifndef FIXED_POINT + g = celt_exp2(lg); +#else + /* Handle the integer part of the log energy */ + shift = 16-(lg>>DB_SHIFT); + if (shift>31) + { + shift=0; + g=0; + } else { + /* Handle the fractional part. */ + g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); + } + /* Handle extreme gains with negative shift. */ + if (shift<0) + { + /* For shift < -2 we'd be likely to overflow, so we're capping + the gain here. This shouldn't happen unless the bitstream is + already corrupted. */ + if (shift < -2) + { + g = 32767; + shift = -2; + } + do { + *f++ = SHL32(MULT16_16(*x++, g), -shift); + } while (++j<band_end); + } else +#endif + /* Be careful of the fixed-point "else" just above when changing this code */ + do { + *f++ = SHR32(MULT16_16(*x++, g), shift); + } while (++j<band_end); + } + celt_assert(start <= end); + OPUS_CLEAR(&freq[bound], N-bound); +} + +/* This prevents energy collapse for transients with multiple short MDCTs */ +void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, + int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE, + const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch) +{ + int c, i, j, k; + for (i=start;i<end;i++) + { + int N0; + opus_val16 thresh, sqrt_1; + int depth; +#ifdef FIXED_POINT + int shift; + opus_val32 thresh32; +#endif + + N0 = m->eBands[i+1]-m->eBands[i]; + /* depth in 1/8 bits */ + celt_assert(pulses[i]>=0); + depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; + +#ifdef FIXED_POINT + thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); + thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); + { + opus_val32 t; + t = N0<<LM; + shift = celt_ilog2(t)>>1; + t = SHL32(t, (7-shift)<<1); + sqrt_1 = celt_rsqrt_norm(t); + } +#else + thresh = .5f*celt_exp2(-.125f*depth); + sqrt_1 = celt_rsqrt(N0<<LM); +#endif + + c=0; do + { + celt_norm *X; + opus_val16 prev1; + opus_val16 prev2; + opus_val32 Ediff; + opus_val16 r; + int renormalize=0; + prev1 = prev1logE[c*m->nbEBands+i]; + prev2 = prev2logE[c*m->nbEBands+i]; + if (C==1) + { + prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); + prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); + } + Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); + Ediff = MAX32(0, Ediff); + +#ifdef FIXED_POINT + if (Ediff < 16384) + { + opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); + r = 2*MIN16(16383,r32); + } else { + r = 0; + } + if (LM==3) + r = MULT16_16_Q14(23170, MIN32(23169, r)); + r = SHR16(MIN16(thresh, r),1); + r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); +#else + /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because + short blocks don't have the same energy as long */ + r = 2.f*celt_exp2(-Ediff); + if (LM==3) + r *= 1.41421356f; + r = MIN16(thresh, r); + r = r*sqrt_1; +#endif + X = X_+c*size+(m->eBands[i]<<LM); + for (k=0;k<1<<LM;k++) + { + /* Detect collapse */ + if (!(collapse_masks[i*C+c]&1<<k)) + { + /* Fill with noise */ + for (j=0;j<N0;j++) + { + seed = celt_lcg_rand(seed); + X[(j<<LM)+k] = (seed&0x8000 ? r : -r); + } + renormalize = 1; + } + } + /* We just added some energy, so we need to renormalise */ + if (renormalize) + renormalise_vector(X, N0<<LM, Q15ONE, arch); + } while (++c<C); + } +} + +static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) +{ + int i = bandID; + int j; + opus_val16 a1, a2; + opus_val16 left, right; + opus_val16 norm; +#ifdef FIXED_POINT + int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; +#endif + left = VSHR32(bandE[i],shift); + right = VSHR32(bandE[i+m->nbEBands],shift); + norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); + a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); + a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); + for (j=0;j<N;j++) + { + celt_norm r, l; + l = X[j]; + r = Y[j]; + X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14)); + /* Side is not encoded, no need to calculate */ + } +} + +static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) +{ + int j; + for (j=0;j<N;j++) + { + opus_val32 r, l; + l = MULT16_16(QCONST16(.70710678f, 15), X[j]); + r = MULT16_16(QCONST16(.70710678f, 15), Y[j]); + X[j] = EXTRACT16(SHR32(ADD32(l, r), 15)); + Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15)); + } +} + +static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch) +{ + int j; + opus_val32 xp=0, side=0; + opus_val32 El, Er; + opus_val16 mid2; +#ifdef FIXED_POINT + int kl, kr; +#endif + opus_val32 t, lgain, rgain; + + /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ + dual_inner_prod(Y, X, Y, N, &xp, &side, arch); + /* Compensating for the mid normalization */ + xp = MULT16_32_Q15(mid, xp); + /* mid and side are in Q15, not Q14 like X and Y */ + mid2 = SHR16(mid, 1); + El = MULT16_16(mid2, mid2) + side - 2*xp; + Er = MULT16_16(mid2, mid2) + side + 2*xp; + if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) + { + OPUS_COPY(Y, X, N); + return; + } + +#ifdef FIXED_POINT + kl = celt_ilog2(El)>>1; + kr = celt_ilog2(Er)>>1; +#endif + t = VSHR32(El, (kl-7)<<1); + lgain = celt_rsqrt_norm(t); + t = VSHR32(Er, (kr-7)<<1); + rgain = celt_rsqrt_norm(t); + +#ifdef FIXED_POINT + if (kl < 7) + kl = 7; + if (kr < 7) + kr = 7; +#endif + + for (j=0;j<N;j++) + { + celt_norm r, l; + /* Apply mid scaling (side is already scaled) */ + l = MULT16_16_P15(mid, X[j]); + r = Y[j]; + X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); + Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); + } +} + +/* Decide whether we should spread the pulses in the current frame */ +int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, + int last_decision, int *hf_average, int *tapset_decision, int update_hf, + int end, int C, int M) +{ + int i, c, N0; + int sum = 0, nbBands=0; + const opus_int16 * OPUS_RESTRICT eBands = m->eBands; + int decision; + int hf_sum=0; + + celt_assert(end>0); + + N0 = M*m->shortMdctSize; + + if (M*(eBands[end]-eBands[end-1]) <= 8) + return SPREAD_NONE; + c=0; do { + for (i=0;i<end;i++) + { + int j, N, tmp=0; + int tcount[3] = {0,0,0}; + const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; + N = M*(eBands[i+1]-eBands[i]); + if (N<=8) + continue; + /* Compute rough CDF of |x[j]| */ + for (j=0;j<N;j++) + { + opus_val32 x2N; /* Q13 */ + + x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); + if (x2N < QCONST16(0.25f,13)) + tcount[0]++; + if (x2N < QCONST16(0.0625f,13)) + tcount[1]++; + if (x2N < QCONST16(0.015625f,13)) + tcount[2]++; + } + + /* Only include four last bands (8 kHz and up) */ + if (i>m->nbEBands-4) + hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); + tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); + sum += tmp*256; + nbBands++; + } + } while (++c<C); + + if (update_hf) + { + if (hf_sum) + hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); + *hf_average = (*hf_average+hf_sum)>>1; + hf_sum = *hf_average; + if (*tapset_decision==2) + hf_sum += 4; + else if (*tapset_decision==0) + hf_sum -= 4; + if (hf_sum > 22) + *tapset_decision=2; + else if (hf_sum > 18) + *tapset_decision=1; + else + *tapset_decision=0; + } + /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ + celt_assert(nbBands>0); /* end has to be non-zero */ + celt_assert(sum>=0); + sum = celt_udiv(sum, nbBands); + /* Recursive averaging */ + sum = (sum+*average)>>1; + *average = sum; + /* Hysteresis */ + sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; + if (sum < 80) + { + decision = SPREAD_AGGRESSIVE; + } else if (sum < 256) + { + decision = SPREAD_NORMAL; + } else if (sum < 384) + { + decision = SPREAD_LIGHT; + } else { + decision = SPREAD_NONE; + } +#ifdef FUZZING + decision = rand()&0x3; + *tapset_decision=rand()%3; +#endif + return decision; +} + +/* Indexing table for converting from natural Hadamard to ordery Hadamard + This is essentially a bit-reversed Gray, on top of which we've added + an inversion of the order because we want the DC at the end rather than + the beginning. The lines are for N=2, 4, 8, 16 */ +static const int ordery_table[] = { + 1, 0, + 3, 0, 2, 1, + 7, 0, 4, 3, 6, 1, 5, 2, + 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, +}; + +static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) +{ + int i,j; + VARDECL(celt_norm, tmp); + int N; + SAVE_STACK; + N = N0*stride; + ALLOC(tmp, N, celt_norm); + celt_assert(stride>0); + if (hadamard) + { + const int *ordery = ordery_table+stride-2; + for (i=0;i<stride;i++) + { + for (j=0;j<N0;j++) + tmp[ordery[i]*N0+j] = X[j*stride+i]; + } + } else { + for (i=0;i<stride;i++) + for (j=0;j<N0;j++) + tmp[i*N0+j] = X[j*stride+i]; + } + OPUS_COPY(X, tmp, N); + RESTORE_STACK; +} + +static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) +{ + int i,j; + VARDECL(celt_norm, tmp); + int N; + SAVE_STACK; + N = N0*stride; + ALLOC(tmp, N, celt_norm); + if (hadamard) + { + const int *ordery = ordery_table+stride-2; + for (i=0;i<stride;i++) + for (j=0;j<N0;j++) + tmp[j*stride+i] = X[ordery[i]*N0+j]; + } else { + for (i=0;i<stride;i++) + for (j=0;j<N0;j++) + tmp[j*stride+i] = X[i*N0+j]; + } + OPUS_COPY(X, tmp, N); + RESTORE_STACK; +} + +void haar1(celt_norm *X, int N0, int stride) +{ + int i, j; + N0 >>= 1; + for (i=0;i<stride;i++) + for (j=0;j<N0;j++) + { + opus_val32 tmp1, tmp2; + tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]); + tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); + X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15)); + X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15)); + } +} + +static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) +{ + static const opus_int16 exp2_table8[8] = + {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; + int qn, qb; + int N2 = 2*N-1; + if (stereo && N==2) + N2--; + /* The upper limit ensures that in a stereo split with itheta==16384, we'll + always have enough bits left over to code at least one pulse in the + side; otherwise it would collapse, since it doesn't get folded. */ + qb = celt_sudiv(b+N2*offset, N2); + qb = IMIN(b-pulse_cap-(4<<BITRES), qb); + + qb = IMIN(8<<BITRES, qb); + + if (qb<(1<<BITRES>>1)) { + qn = 1; + } else { + qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); + qn = (qn+1)>>1<<1; + } + celt_assert(qn <= 256); + return qn; +} + +struct band_ctx { + int encode; + const CELTMode *m; + int i; + int intensity; + int spread; + int tf_change; + ec_ctx *ec; + opus_int32 remaining_bits; + const celt_ener *bandE; + opus_uint32 seed; + int arch; +}; + +struct split_ctx { + int inv; + int imid; + int iside; + int delta; + int itheta; + int qalloc; +}; + +static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, + celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, + int LM, + int stereo, int *fill) +{ + int qn; + int itheta=0; + int delta; + int imid, iside; + int qalloc; + int pulse_cap; + int offset; + opus_int32 tell; + int inv=0; + int encode; + const CELTMode *m; + int i; + int intensity; + ec_ctx *ec; + const celt_ener *bandE; + + encode = ctx->encode; + m = ctx->m; + i = ctx->i; + intensity = ctx->intensity; + ec = ctx->ec; + bandE = ctx->bandE; + + /* Decide on the resolution to give to the split parameter theta */ + pulse_cap = m->logN[i]+LM*(1<<BITRES); + offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); + qn = compute_qn(N, *b, offset, pulse_cap, stereo); + if (stereo && i>=intensity) + qn = 1; + if (encode) + { + /* theta is the atan() of the ratio between the (normalized) + side and mid. With just that parameter, we can re-scale both + mid and side because we know that 1) they have unit norm and + 2) they are orthogonal. */ + itheta = stereo_itheta(X, Y, stereo, N, ctx->arch); + } + tell = ec_tell_frac(ec); + if (qn!=1) + { + if (encode) + itheta = (itheta*(opus_int32)qn+8192)>>14; + + /* Entropy coding of the angle. We use a uniform pdf for the + time split, a step for stereo, and a triangular one for the rest. */ + if (stereo && N>2) + { + int p0 = 3; + int x = itheta; + int x0 = qn/2; + int ft = p0*(x0+1) + x0; + /* Use a probability of p0 up to itheta=8192 and then use 1 after */ + if (encode) + { + ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); + } else { + int fs; + fs=ec_decode(ec,ft); + if (fs<(x0+1)*p0) + x=fs/p0; + else + x=x0+1+(fs-(x0+1)*p0); + ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); + itheta = x; + } + } else if (B0>1 || stereo) { + /* Uniform pdf */ + if (encode) + ec_enc_uint(ec, itheta, qn+1); + else + itheta = ec_dec_uint(ec, qn+1); + } else { + int fs=1, ft; + ft = ((qn>>1)+1)*((qn>>1)+1); + if (encode) + { + int fl; + + fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; + fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : + ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); + + ec_encode(ec, fl, fl+fs, ft); + } else { + /* Triangular pdf */ + int fl=0; + int fm; + fm = ec_decode(ec, ft); + + if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) + { + itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; + fs = itheta + 1; + fl = itheta*(itheta + 1)>>1; + } + else + { + itheta = (2*(qn + 1) + - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; + fs = qn + 1 - itheta; + fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); + } + + ec_dec_update(ec, fl, fl+fs, ft); + } + } + celt_assert(itheta>=0); + itheta = celt_udiv((opus_int32)itheta*16384, qn); + if (encode && stereo) + { + if (itheta==0) + intensity_stereo(m, X, Y, bandE, i, N); + else + stereo_split(X, Y, N); + } + /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. + Let's do that at higher complexity */ + } else if (stereo) { + if (encode) + { + inv = itheta > 8192; + if (inv) + { + int j; + for (j=0;j<N;j++) + Y[j] = -Y[j]; + } + intensity_stereo(m, X, Y, bandE, i, N); + } + if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) + { + if (encode) + ec_enc_bit_logp(ec, inv, 2); + else + inv = ec_dec_bit_logp(ec, 2); + } else + inv = 0; + itheta = 0; + } + qalloc = ec_tell_frac(ec) - tell; + *b -= qalloc; + + if (itheta == 0) + { + imid = 32767; + iside = 0; + *fill &= (1<<B)-1; + delta = -16384; + } else if (itheta == 16384) + { + imid = 0; + iside = 32767; + *fill &= ((1<<B)-1)<<B; + delta = 16384; + } else { + imid = bitexact_cos((opus_int16)itheta); + iside = bitexact_cos((opus_int16)(16384-itheta)); + /* This is the mid vs side allocation that minimizes squared error + in that band. */ + delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); + } + + sctx->inv = inv; + sctx->imid = imid; + sctx->iside = iside; + sctx->delta = delta; + sctx->itheta = itheta; + sctx->qalloc = qalloc; +} +static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, + celt_norm *lowband_out) +{ +#ifdef RESYNTH + int resynth = 1; +#else + int resynth = !ctx->encode; +#endif + int c; + int stereo; + celt_norm *x = X; + int encode; + ec_ctx *ec; + + encode = ctx->encode; + ec = ctx->ec; + + stereo = Y != NULL; + c=0; do { + int sign=0; + if (ctx->remaining_bits>=1<<BITRES) + { + if (encode) + { + sign = x[0]<0; + ec_enc_bits(ec, sign, 1); + } else { + sign = ec_dec_bits(ec, 1); + } + ctx->remaining_bits -= 1<<BITRES; + b-=1<<BITRES; + } + if (resynth) + x[0] = sign ? -NORM_SCALING : NORM_SCALING; + x = Y; + } while (++c<1+stereo); + if (lowband_out) + lowband_out[0] = SHR16(X[0],4); + return 1; +} + +/* This function is responsible for encoding and decoding a mono partition. + It can split the band in two and transmit the energy difference with + the two half-bands. It can be called recursively so bands can end up being + split in 8 parts. */ +static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, + int N, int b, int B, celt_norm *lowband, + int LM, + opus_val16 gain, int fill) +{ + const unsigned char *cache; + int q; + int curr_bits; + int imid=0, iside=0; + int B0=B; + opus_val16 mid=0, side=0; + unsigned cm=0; +#ifdef RESYNTH + int resynth = 1; +#else + int resynth = !ctx->encode; +#endif + celt_norm *Y=NULL; + int encode; + const CELTMode *m; + int i; + int spread; + ec_ctx *ec; + + encode = ctx->encode; + m = ctx->m; + i = ctx->i; + spread = ctx->spread; + ec = ctx->ec; + + /* If we need 1.5 more bit than we can produce, split the band in two. */ + cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; + if (LM != -1 && b > cache[cache[0]]+12 && N>2) + { + int mbits, sbits, delta; + int itheta; + int qalloc; + struct split_ctx sctx; + celt_norm *next_lowband2=NULL; + opus_int32 rebalance; + + N >>= 1; + Y = X+N; + LM -= 1; + if (B==1) + fill = (fill&1)|(fill<<1); + B = (B+1)>>1; + + compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, + LM, 0, &fill); + imid = sctx.imid; + iside = sctx.iside; + delta = sctx.delta; + itheta = sctx.itheta; + qalloc = sctx.qalloc; +#ifdef FIXED_POINT + mid = imid; + side = iside; +#else + mid = (1.f/32768)*imid; + side = (1.f/32768)*iside; +#endif + + /* Give more bits to low-energy MDCTs than they would otherwise deserve */ + if (B0>1 && (itheta&0x3fff)) + { + if (itheta > 8192) + /* Rough approximation for pre-echo masking */ + delta -= delta>>(4-LM); + else + /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ + delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); + } + mbits = IMAX(0, IMIN(b, (b-delta)/2)); + sbits = b-mbits; + ctx->remaining_bits -= qalloc; + + if (lowband) + next_lowband2 = lowband+N; /* >32-bit split case */ + + rebalance = ctx->remaining_bits; + if (mbits >= sbits) + { + cm = quant_partition(ctx, X, N, mbits, B, + lowband, LM, + MULT16_16_P15(gain,mid), fill); + rebalance = mbits - (rebalance-ctx->remaining_bits); + if (rebalance > 3<<BITRES && itheta!=0) + sbits += rebalance - (3<<BITRES); + cm |= quant_partition(ctx, Y, N, sbits, B, + next_lowband2, LM, + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); + } else { + cm = quant_partition(ctx, Y, N, sbits, B, + next_lowband2, LM, + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); + rebalance = sbits - (rebalance-ctx->remaining_bits); + if (rebalance > 3<<BITRES && itheta!=16384) + mbits += rebalance - (3<<BITRES); + cm |= quant_partition(ctx, X, N, mbits, B, + lowband, LM, + MULT16_16_P15(gain,mid), fill); + } + } else { + /* This is the basic no-split case */ + q = bits2pulses(m, i, LM, b); + curr_bits = pulses2bits(m, i, LM, q); + ctx->remaining_bits -= curr_bits; + + /* Ensures we can never bust the budget */ + while (ctx->remaining_bits < 0 && q > 0) + { + ctx->remaining_bits += curr_bits; + q--; + curr_bits = pulses2bits(m, i, LM, q); + ctx->remaining_bits -= curr_bits; + } + + if (q!=0) + { + int K = get_pulses(q); + + /* Finally do the actual quantization */ + if (encode) + { + cm = alg_quant(X, N, K, spread, B, ec +#ifdef RESYNTH + , gain +#endif + ); + } else { + cm = alg_unquant(X, N, K, spread, B, ec, gain); + } + } else { + /* If there's no pulse, fill the band anyway */ + int j; + if (resynth) + { + unsigned cm_mask; + /* B can be as large as 16, so this shift might overflow an int on a + 16-bit platform; use a long to get defined behavior.*/ + cm_mask = (unsigned)(1UL<<B)-1; + fill &= cm_mask; + if (!fill) + { + OPUS_CLEAR(X, N); + } else { + if (lowband == NULL) + { + /* Noise */ + for (j=0;j<N;j++) + { + ctx->seed = celt_lcg_rand(ctx->seed); + X[j] = (celt_norm)((opus_int32)ctx->seed>>20); + } + cm = cm_mask; + } else { + /* Folded spectrum */ + for (j=0;j<N;j++) + { + opus_val16 tmp; + ctx->seed = celt_lcg_rand(ctx->seed); + /* About 48 dB below the "normal" folding level */ + tmp = QCONST16(1.0f/256, 10); + tmp = (ctx->seed)&0x8000 ? tmp : -tmp; + X[j] = lowband[j]+tmp; + } + cm = fill; + } + renormalise_vector(X, N, gain, ctx->arch); + } + } + } + } + + return cm; +} + + +/* This function is responsible for encoding and decoding a band for the mono case. */ +static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, + int N, int b, int B, celt_norm *lowband, + int LM, celt_norm *lowband_out, + opus_val16 gain, celt_norm *lowband_scratch, int fill) +{ + int N0=N; + int N_B=N; + int N_B0; + int B0=B; + int time_divide=0; + int recombine=0; + int longBlocks; + unsigned cm=0; +#ifdef RESYNTH + int resynth = 1; +#else + int resynth = !ctx->encode; +#endif + int k; + int encode; + int tf_change; + + encode = ctx->encode; + tf_change = ctx->tf_change; + + longBlocks = B0==1; + + N_B = celt_udiv(N_B, B); + + /* Special case for one sample */ + if (N==1) + { + return quant_band_n1(ctx, X, NULL, b, lowband_out); + } + + if (tf_change>0) + recombine = tf_change; + /* Band recombining to increase frequency resolution */ + + if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) + { + OPUS_COPY(lowband_scratch, lowband, N); + lowband = lowband_scratch; + } + + for (k=0;k<recombine;k++) + { + static const unsigned char bit_interleave_table[16]={ + 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 + }; + if (encode) + haar1(X, N>>k, 1<<k); + if (lowband) + haar1(lowband, N>>k, 1<<k); + fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; + } + B>>=recombine; + N_B<<=recombine; + + /* Increasing the time resolution */ + while ((N_B&1) == 0 && tf_change<0) + { + if (encode) + haar1(X, N_B, B); + if (lowband) + haar1(lowband, N_B, B); + fill |= fill<<B; + B <<= 1; + N_B >>= 1; + time_divide++; + tf_change++; + } + B0=B; + N_B0 = N_B; + + /* Reorganize the samples in time order instead of frequency order */ + if (B0>1) + { + if (encode) + deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); + if (lowband) + deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); + } + + cm = quant_partition(ctx, X, N, b, B, lowband, + LM, gain, fill); + + /* This code is used by the decoder and by the resynthesis-enabled encoder */ + if (resynth) + { + /* Undo the sample reorganization going from time order to frequency order */ + if (B0>1) + interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); + + /* Undo time-freq changes that we did earlier */ + N_B = N_B0; + B = B0; + for (k=0;k<time_divide;k++) + { + B >>= 1; + N_B <<= 1; + cm |= cm>>B; + haar1(X, N_B, B); + } + + for (k=0;k<recombine;k++) + { + static const unsigned char bit_deinterleave_table[16]={ + 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, + 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF + }; + cm = bit_deinterleave_table[cm]; + haar1(X, N0>>k, 1<<k); + } + B<<=recombine; + + /* Scale output for later folding */ + if (lowband_out) + { + int j; + opus_val16 n; + n = celt_sqrt(SHL32(EXTEND32(N0),22)); + for (j=0;j<N0;j++) + lowband_out[j] = MULT16_16_Q15(n,X[j]); + } + cm &= (1<<B)-1; + } + return cm; +} + + +/* This function is responsible for encoding and decoding a band for the stereo case. */ +static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, + int N, int b, int B, celt_norm *lowband, + int LM, celt_norm *lowband_out, + celt_norm *lowband_scratch, int fill) +{ + int imid=0, iside=0; + int inv = 0; + opus_val16 mid=0, side=0; + unsigned cm=0; +#ifdef RESYNTH + int resynth = 1; +#else + int resynth = !ctx->encode; +#endif + int mbits, sbits, delta; + int itheta; + int qalloc; + struct split_ctx sctx; + int orig_fill; + int encode; + ec_ctx *ec; + + encode = ctx->encode; + ec = ctx->ec; + + /* Special case for one sample */ + if (N==1) + { + return quant_band_n1(ctx, X, Y, b, lowband_out); + } + + orig_fill = fill; + + compute_theta(ctx, &sctx, X, Y, N, &b, B, B, + LM, 1, &fill); + inv = sctx.inv; + imid = sctx.imid; + iside = sctx.iside; + delta = sctx.delta; + itheta = sctx.itheta; + qalloc = sctx.qalloc; +#ifdef FIXED_POINT + mid = imid; + side = iside; +#else + mid = (1.f/32768)*imid; + side = (1.f/32768)*iside; +#endif + + /* This is a special case for N=2 that only works for stereo and takes + advantage of the fact that mid and side are orthogonal to encode + the side with just one bit. */ + if (N==2) + { + int c; + int sign=0; + celt_norm *x2, *y2; + mbits = b; + sbits = 0; + /* Only need one bit for the side. */ + if (itheta != 0 && itheta != 16384) + sbits = 1<<BITRES; + mbits -= sbits; + c = itheta > 8192; + ctx->remaining_bits -= qalloc+sbits; + + x2 = c ? Y : X; + y2 = c ? X : Y; + if (sbits) + { + if (encode) + { + /* Here we only need to encode a sign for the side. */ + sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; + ec_enc_bits(ec, sign, 1); + } else { + sign = ec_dec_bits(ec, 1); + } + } + sign = 1-2*sign; + /* We use orig_fill here because we want to fold the side, but if + itheta==16384, we'll have cleared the low bits of fill. */ + cm = quant_band(ctx, x2, N, mbits, B, lowband, + LM, lowband_out, Q15ONE, lowband_scratch, orig_fill); + /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), + and there's no need to worry about mixing with the other channel. */ + y2[0] = -sign*x2[1]; + y2[1] = sign*x2[0]; + if (resynth) + { + celt_norm tmp; + X[0] = MULT16_16_Q15(mid, X[0]); + X[1] = MULT16_16_Q15(mid, X[1]); + Y[0] = MULT16_16_Q15(side, Y[0]); + Y[1] = MULT16_16_Q15(side, Y[1]); + tmp = X[0]; + X[0] = SUB16(tmp,Y[0]); + Y[0] = ADD16(tmp,Y[0]); + tmp = X[1]; + X[1] = SUB16(tmp,Y[1]); + Y[1] = ADD16(tmp,Y[1]); + } + } else { + /* "Normal" split code */ + opus_int32 rebalance; + + mbits = IMAX(0, IMIN(b, (b-delta)/2)); + sbits = b-mbits; + ctx->remaining_bits -= qalloc; + + rebalance = ctx->remaining_bits; + if (mbits >= sbits) + { + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized + mid for folding later. */ + cm = quant_band(ctx, X, N, mbits, B, + lowband, LM, lowband_out, + Q15ONE, lowband_scratch, fill); + rebalance = mbits - (rebalance-ctx->remaining_bits); + if (rebalance > 3<<BITRES && itheta!=0) + sbits += rebalance - (3<<BITRES); + + /* For a stereo split, the high bits of fill are always zero, so no + folding will be done to the side. */ + cm |= quant_band(ctx, Y, N, sbits, B, + NULL, LM, NULL, + side, NULL, fill>>B); + } else { + /* For a stereo split, the high bits of fill are always zero, so no + folding will be done to the side. */ + cm = quant_band(ctx, Y, N, sbits, B, + NULL, LM, NULL, + side, NULL, fill>>B); + rebalance = sbits - (rebalance-ctx->remaining_bits); + if (rebalance > 3<<BITRES && itheta!=16384) + mbits += rebalance - (3<<BITRES); + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized + mid for folding later. */ + cm |= quant_band(ctx, X, N, mbits, B, + lowband, LM, lowband_out, + Q15ONE, lowband_scratch, fill); + } + } + + + /* This code is used by the decoder and by the resynthesis-enabled encoder */ + if (resynth) + { + if (N!=2) + stereo_merge(X, Y, mid, N, ctx->arch); + if (inv) + { + int j; + for (j=0;j<N;j++) + Y[j] = -Y[j]; + } + } + return cm; +} + + +void quant_all_bands(int encode, const CELTMode *m, int start, int end, + celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, + const celt_ener *bandE, int *pulses, int shortBlocks, int spread, + int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, + opus_int32 balance, ec_ctx *ec, int LM, int codedBands, + opus_uint32 *seed, int arch) +{ + int i; + opus_int32 remaining_bits; + const opus_int16 * OPUS_RESTRICT eBands = m->eBands; + celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; + VARDECL(celt_norm, _norm); + celt_norm *lowband_scratch; + int B; + int M; + int lowband_offset; + int update_lowband = 1; + int C = Y_ != NULL ? 2 : 1; + int norm_offset; +#ifdef RESYNTH + int resynth = 1; +#else + int resynth = !encode; +#endif + struct band_ctx ctx; + SAVE_STACK; + + M = 1<<LM; + B = shortBlocks ? M : 1; + norm_offset = M*eBands[start]; + /* No need to allocate norm for the last band because we don't need an + output in that band. */ + ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); + norm = _norm; + norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; + /* We can use the last band as scratch space because we don't need that + scratch space for the last band. */ + lowband_scratch = X_+M*eBands[m->nbEBands-1]; + + lowband_offset = 0; + ctx.bandE = bandE; + ctx.ec = ec; + ctx.encode = encode; + ctx.intensity = intensity; + ctx.m = m; + ctx.seed = *seed; + ctx.spread = spread; + ctx.arch = arch; + for (i=start;i<end;i++) + { + opus_int32 tell; + int b; + int N; + opus_int32 curr_balance; + int effective_lowband=-1; + celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; + int tf_change=0; + unsigned x_cm; + unsigned y_cm; + int last; + + ctx.i = i; + last = (i==end-1); + + X = X_+M*eBands[i]; + if (Y_!=NULL) + Y = Y_+M*eBands[i]; + else + Y = NULL; + N = M*eBands[i+1]-M*eBands[i]; + tell = ec_tell_frac(ec); + + /* Compute how many bits we want to allocate to this band */ + if (i != start) + balance -= tell; + remaining_bits = total_bits-tell-1; + ctx.remaining_bits = remaining_bits; + if (i <= codedBands-1) + { + curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); + b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); + } else { + b = 0; + } + + if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) + lowband_offset = i; + + tf_change = tf_res[i]; + ctx.tf_change = tf_change; + if (i>=m->effEBands) + { + X=norm; + if (Y_!=NULL) + Y = norm; + lowband_scratch = NULL; + } + if (i==end-1) + lowband_scratch = NULL; + + /* Get a conservative estimate of the collapse_mask's for the bands we're + going to be folding from. */ + if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) + { + int fold_start; + int fold_end; + int fold_i; + /* This ensures we never repeat spectral content within one band */ + effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); + fold_start = lowband_offset; + while(M*eBands[--fold_start] > effective_lowband+norm_offset); + fold_end = lowband_offset-1; + while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); + x_cm = y_cm = 0; + fold_i = fold_start; do { + x_cm |= collapse_masks[fold_i*C+0]; + y_cm |= collapse_masks[fold_i*C+C-1]; + } while (++fold_i<fold_end); + } + /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost + always) be non-zero. */ + else + x_cm = y_cm = (1<<B)-1; + + if (dual_stereo && i==intensity) + { + int j; + + /* Switch off dual stereo to do intensity. */ + dual_stereo = 0; + if (resynth) + for (j=0;j<M*eBands[i]-norm_offset;j++) + norm[j] = HALF32(norm[j]+norm2[j]); + } + if (dual_stereo) + { + x_cm = quant_band(&ctx, X, N, b/2, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm); + y_cm = quant_band(&ctx, Y, N, b/2, B, + effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, + last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm); + } else { + if (Y!=NULL) + { + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); + } else { + x_cm = quant_band(&ctx, X, N, b, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); + } + y_cm = x_cm; + } + collapse_masks[i*C+0] = (unsigned char)x_cm; + collapse_masks[i*C+C-1] = (unsigned char)y_cm; + balance += pulses[i] + tell; + + /* Update the folding position only as long as we have 1 bit/sample depth. */ + update_lowband = b>(N<<BITRES); + } + *seed = ctx.seed; + + RESTORE_STACK; +} + |