diff options
Diffstat (limited to 'media/libjpeg/jmorecfg.h')
-rw-r--r-- | media/libjpeg/jmorecfg.h | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/media/libjpeg/jmorecfg.h b/media/libjpeg/jmorecfg.h new file mode 100644 index 000000000..d73b1090d --- /dev/null +++ b/media/libjpeg/jmorecfg.h @@ -0,0 +1,400 @@ +/* + * jmorecfg.h + * + * This file was part of the Independent JPEG Group's software: + * Copyright (C) 1991-1997, Thomas G. Lane. + * Modified 1997-2009 by Guido Vollbeding. + * libjpeg-turbo Modifications: + * Copyright (C) 2009, 2011, 2014-2015, D. R. Commander. + * For conditions of distribution and use, see the accompanying README.ijg + * file. + * + * This file contains additional configuration options that customize the + * JPEG software for special applications or support machine-dependent + * optimizations. Most users will not need to touch this file. + */ + +#include <stdint.h> + +/* + * Maximum number of components (color channels) allowed in JPEG image. + * To meet the letter of the JPEG spec, set this to 255. However, darn + * few applications need more than 4 channels (maybe 5 for CMYK + alpha + * mask). We recommend 10 as a reasonable compromise; use 4 if you are + * really short on memory. (Each allowed component costs a hundred or so + * bytes of storage, whether actually used in an image or not.) + */ + +#define MAX_COMPONENTS 10 /* maximum number of image components */ + + +/* + * Basic data types. + * You may need to change these if you have a machine with unusual data + * type sizes; for example, "char" not 8 bits, "short" not 16 bits, + * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, + * but it had better be at least 16. + */ + +/* Representation of a single sample (pixel element value). + * We frequently allocate large arrays of these, so it's important to keep + * them small. But if you have memory to burn and access to char or short + * arrays is very slow on your hardware, you might want to change these. + */ + +#if BITS_IN_JSAMPLE == 8 +/* JSAMPLE should be the smallest type that will hold the values 0..255. + * You can use a signed char by having GETJSAMPLE mask it with 0xFF. + */ + +#ifdef HAVE_UNSIGNED_CHAR + +typedef unsigned char JSAMPLE; +#define GETJSAMPLE(value) ((int) (value)) + +#else /* not HAVE_UNSIGNED_CHAR */ + +typedef char JSAMPLE; +#ifdef __CHAR_UNSIGNED__ +#define GETJSAMPLE(value) ((int) (value)) +#else +#define GETJSAMPLE(value) ((int) (value) & 0xFF) +#endif /* __CHAR_UNSIGNED__ */ + +#endif /* HAVE_UNSIGNED_CHAR */ + +#define MAXJSAMPLE 255 +#define CENTERJSAMPLE 128 + +#endif /* BITS_IN_JSAMPLE == 8 */ + + +#if BITS_IN_JSAMPLE == 12 +/* JSAMPLE should be the smallest type that will hold the values 0..4095. + * On nearly all machines "short" will do nicely. + */ + +typedef short JSAMPLE; +#define GETJSAMPLE(value) ((int) (value)) + +#define MAXJSAMPLE 4095 +#define CENTERJSAMPLE 2048 + +#endif /* BITS_IN_JSAMPLE == 12 */ + + +/* Representation of a DCT frequency coefficient. + * This should be a signed value of at least 16 bits; "short" is usually OK. + * Again, we allocate large arrays of these, but you can change to int + * if you have memory to burn and "short" is really slow. + */ + +typedef short JCOEF; + + +/* Compressed datastreams are represented as arrays of JOCTET. + * These must be EXACTLY 8 bits wide, at least once they are written to + * external storage. Note that when using the stdio data source/destination + * managers, this is also the data type passed to fread/fwrite. + */ + +#ifdef HAVE_UNSIGNED_CHAR + +typedef unsigned char JOCTET; +#define GETJOCTET(value) (value) + +#else /* not HAVE_UNSIGNED_CHAR */ + +typedef char JOCTET; +#ifdef __CHAR_UNSIGNED__ +#define GETJOCTET(value) (value) +#else +#define GETJOCTET(value) ((value) & 0xFF) +#endif /* __CHAR_UNSIGNED__ */ + +#endif /* HAVE_UNSIGNED_CHAR */ + + +/* These typedefs are used for various table entries and so forth. + * They must be at least as wide as specified; but making them too big + * won't cost a huge amount of memory, so we don't provide special + * extraction code like we did for JSAMPLE. (In other words, these + * typedefs live at a different point on the speed/space tradeoff curve.) + */ + +/* UINT8 must hold at least the values 0..255. */ + +typedef uint8_t UINT8; + +/* UINT16 must hold at least the values 0..65535. */ + +typedef uint16_t UINT16; + +/* INT16 must hold at least the values -32768..32767. */ + +typedef int16_t INT16; + +/* INT32 must hold at least signed 32-bit values. + * + * NOTE: The INT32 typedef dates back to libjpeg v5 (1994.) Integers were + * sometimes 16-bit back then (MS-DOS), which is why INT32 is typedef'd to + * long. It also wasn't common (or at least as common) in 1994 for INT32 to be + * defined by platform headers. Since then, however, INT32 is defined in + * several other common places: + * + * Xmd.h (X11 header) typedefs INT32 to int on 64-bit platforms and long on + * 32-bit platforms (i.e always a 32-bit signed type.) + * + * basetsd.h (Win32 header) typedefs INT32 to int (always a 32-bit signed type + * on modern platforms.) + * + * qglobal.h (Qt header) typedefs INT32 to int (always a 32-bit signed type on + * modern platforms.) + * + * This is a recipe for conflict, since "long" and "int" aren't always + * compatible types. Since the definition of INT32 has technically been part + * of the libjpeg API for more than 20 years, we can't remove it, but we do not + * use it internally any longer. We instead define a separate type (JLONG) + * for internal use, which ensures that internal behavior will always be the + * same regardless of any external headers that may be included. + */ + +typedef int32_t INT32; + +/* Datatype used for image dimensions. The JPEG standard only supports + * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore + * "unsigned int" is sufficient on all machines. However, if you need to + * handle larger images and you don't mind deviating from the spec, you + * can change this datatype. (Note that changing this datatype will + * potentially require modifying the SIMD code. The x86-64 SIMD extensions, + * in particular, assume a 32-bit JDIMENSION.) + */ + +typedef unsigned int JDIMENSION; + +#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ + + +/* These macros are used in all function definitions and extern declarations. + * You could modify them if you need to change function linkage conventions; + * in particular, you'll need to do that to make the library a Windows DLL. + * Another application is to make all functions global for use with debuggers + * or code profilers that require it. + */ + +/* a function called through method pointers: */ +#define METHODDEF(type) static type +/* a function used only in its module: */ +#define LOCAL(type) static type +/* a function referenced thru EXTERNs: */ +#define GLOBAL(type) type +/* a reference to a GLOBAL function: */ +#define EXTERN(type) extern type + + +/* Originally, this macro was used as a way of defining function prototypes + * for both modern compilers as well as older compilers that did not support + * prototype parameters. libjpeg-turbo has never supported these older, + * non-ANSI compilers, but the macro is still included because there is some + * software out there that uses it. + */ + +#define JMETHOD(type,methodname,arglist) type (*methodname) arglist + + +/* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS), + * but again, some software relies on this macro. + */ + +#undef FAR +#define FAR + + +/* + * On a few systems, type boolean and/or its values FALSE, TRUE may appear + * in standard header files. Or you may have conflicts with application- + * specific header files that you want to include together with these files. + * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. + */ + +#ifndef HAVE_BOOLEAN +typedef int boolean; +#endif +#ifndef FALSE /* in case these macros already exist */ +#define FALSE 0 /* values of boolean */ +#endif +#ifndef TRUE +#define TRUE 1 +#endif + + +/* + * The remaining options affect code selection within the JPEG library, + * but they don't need to be visible to most applications using the library. + * To minimize application namespace pollution, the symbols won't be + * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. + */ + +#ifdef JPEG_INTERNALS +#define JPEG_INTERNAL_OPTIONS +#endif + +#ifdef JPEG_INTERNAL_OPTIONS + + +/* + * These defines indicate whether to include various optional functions. + * Undefining some of these symbols will produce a smaller but less capable + * library. Note that you can leave certain source files out of the + * compilation/linking process if you've #undef'd the corresponding symbols. + * (You may HAVE to do that if your compiler doesn't like null source files.) + */ + +/* Capability options common to encoder and decoder: */ + +#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ +#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ +#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ + +/* Encoder capability options: */ + +#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ +#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ +#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ +/* Note: if you selected 12-bit data precision, it is dangerous to turn off + * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit + * precision, so jchuff.c normally uses entropy optimization to compute + * usable tables for higher precision. If you don't want to do optimization, + * you'll have to supply different default Huffman tables. + * The exact same statements apply for progressive JPEG: the default tables + * don't work for progressive mode. (This may get fixed, however.) + */ +#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ + +/* Decoder capability options: */ + +#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ +#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ +#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ +#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ +#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ +#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ +#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ +#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ +#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ + +/* more capability options later, no doubt */ + + +/* + * The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial + * feature of libjpeg. The idea was that, if an application developer needed + * to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could + * change these macros, rebuild libjpeg, and link their application statically + * with it. In reality, few people ever did this, because there were some + * severe restrictions involved (cjpeg and djpeg no longer worked properly, + * compressing/decompressing RGB JPEGs no longer worked properly, and the color + * quantizer wouldn't work with pixel sizes other than 3.) Further, since all + * of the O/S-supplied versions of libjpeg were built with the default values + * of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications have + * come to regard these values as immutable. + * + * The libjpeg-turbo colorspace extensions provide a much cleaner way of + * compressing from/decompressing to buffers with arbitrary component orders + * and pixel sizes. Thus, we do not support changing the values of RGB_RED, + * RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions + * listed above, changing these values will also break the SIMD extensions and + * the regression tests. + */ + +#define RGB_RED 0 /* Offset of Red in an RGB scanline element */ +#define RGB_GREEN 1 /* Offset of Green */ +#define RGB_BLUE 2 /* Offset of Blue */ +#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ + +#define JPEG_NUMCS 17 + +#define EXT_RGB_RED 0 +#define EXT_RGB_GREEN 1 +#define EXT_RGB_BLUE 2 +#define EXT_RGB_PIXELSIZE 3 + +#define EXT_RGBX_RED 0 +#define EXT_RGBX_GREEN 1 +#define EXT_RGBX_BLUE 2 +#define EXT_RGBX_PIXELSIZE 4 + +#define EXT_BGR_RED 2 +#define EXT_BGR_GREEN 1 +#define EXT_BGR_BLUE 0 +#define EXT_BGR_PIXELSIZE 3 + +#define EXT_BGRX_RED 2 +#define EXT_BGRX_GREEN 1 +#define EXT_BGRX_BLUE 0 +#define EXT_BGRX_PIXELSIZE 4 + +#define EXT_XBGR_RED 3 +#define EXT_XBGR_GREEN 2 +#define EXT_XBGR_BLUE 1 +#define EXT_XBGR_PIXELSIZE 4 + +#define EXT_XRGB_RED 1 +#define EXT_XRGB_GREEN 2 +#define EXT_XRGB_BLUE 3 +#define EXT_XRGB_PIXELSIZE 4 + +static const int rgb_red[JPEG_NUMCS] = { + -1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED, + EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, + EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, + -1 +}; + +static const int rgb_green[JPEG_NUMCS] = { + -1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN, + EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, + EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, + -1 +}; + +static const int rgb_blue[JPEG_NUMCS] = { + -1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE, + EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, + EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, + -1 +}; + +static const int rgb_pixelsize[JPEG_NUMCS] = { + -1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, + EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, + EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, + -1 +}; + +/* Definitions for speed-related optimizations. */ + +/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying + * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER + * as short on such a machine. MULTIPLIER must be at least 16 bits wide. + */ + +#ifndef MULTIPLIER +#ifndef WITH_SIMD +#define MULTIPLIER int /* type for fastest integer multiply */ +#else +#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */ +#endif +#endif + + +/* FAST_FLOAT should be either float or double, whichever is done faster + * by your compiler. (Note that this type is only used in the floating point + * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) + */ + +#ifndef FAST_FLOAT +#define FAST_FLOAT float +#endif + +#endif /* JPEG_INTERNAL_OPTIONS */ |