diff options
Diffstat (limited to 'media/libav/libavcodec/fft_template.c')
-rw-r--r-- | media/libav/libavcodec/fft_template.c | 353 |
1 files changed, 353 insertions, 0 deletions
diff --git a/media/libav/libavcodec/fft_template.c b/media/libav/libavcodec/fft_template.c new file mode 100644 index 000000000..808f317c1 --- /dev/null +++ b/media/libav/libavcodec/fft_template.c @@ -0,0 +1,353 @@ +/* + * FFT/IFFT transforms + * Copyright (c) 2008 Loren Merritt + * Copyright (c) 2002 Fabrice Bellard + * Partly based on libdjbfft by D. J. Bernstein + * + * This file is part of Libav. + * + * Libav is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * Libav is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with Libav; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * FFT/IFFT transforms. + */ + +#include <stdlib.h> +#include <string.h> +#include "libavutil/mathematics.h" +#include "fft.h" +#include "fft-internal.h" + +/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */ +#if !CONFIG_HARDCODED_TABLES +COSTABLE(16); +COSTABLE(32); +COSTABLE(64); +COSTABLE(128); +COSTABLE(256); +COSTABLE(512); +COSTABLE(1024); +COSTABLE(2048); +COSTABLE(4096); +COSTABLE(8192); +COSTABLE(16384); +COSTABLE(32768); +COSTABLE(65536); +#endif +COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = { + NULL, NULL, NULL, NULL, + FFT_NAME(ff_cos_16), + FFT_NAME(ff_cos_32), + FFT_NAME(ff_cos_64), + FFT_NAME(ff_cos_128), + FFT_NAME(ff_cos_256), + FFT_NAME(ff_cos_512), + FFT_NAME(ff_cos_1024), + FFT_NAME(ff_cos_2048), + FFT_NAME(ff_cos_4096), + FFT_NAME(ff_cos_8192), + FFT_NAME(ff_cos_16384), + FFT_NAME(ff_cos_32768), + FFT_NAME(ff_cos_65536), +}; + +static void fft_permute_c(FFTContext *s, FFTComplex *z); +static void fft_calc_c(FFTContext *s, FFTComplex *z); + +static int split_radix_permutation(int i, int n, int inverse) +{ + int m; + if(n <= 2) return i&1; + m = n >> 1; + if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; + m >>= 1; + if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; + else return split_radix_permutation(i, m, inverse)*4 - 1; +} + +av_cold void ff_init_ff_cos_tabs(int index) +{ +#if !CONFIG_HARDCODED_TABLES + int i; + int m = 1<<index; + double freq = 2*M_PI/m; + FFTSample *tab = FFT_NAME(ff_cos_tabs)[index]; + for(i=0; i<=m/4; i++) + tab[i] = FIX15(cos(i*freq)); + for(i=1; i<m/4; i++) + tab[m/2-i] = tab[i]; +#endif +} + +static const int avx_tab[] = { + 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15 +}; + +static int is_second_half_of_fft32(int i, int n) +{ + if (n <= 32) + return i >= 16; + else if (i < n/2) + return is_second_half_of_fft32(i, n/2); + else if (i < 3*n/4) + return is_second_half_of_fft32(i - n/2, n/4); + else + return is_second_half_of_fft32(i - 3*n/4, n/4); +} + +static av_cold void fft_perm_avx(FFTContext *s) +{ + int i; + int n = 1 << s->nbits; + + for (i = 0; i < n; i += 16) { + int k; + if (is_second_half_of_fft32(i, n)) { + for (k = 0; k < 16; k++) + s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = + i + avx_tab[k]; + + } else { + for (k = 0; k < 16; k++) { + int j = i + k; + j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4); + s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j; + } + } + } +} + +av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse) +{ + int i, j, n; + + if (nbits < 2 || nbits > 16) + goto fail; + s->nbits = nbits; + n = 1 << nbits; + + s->revtab = av_malloc(n * sizeof(uint16_t)); + if (!s->revtab) + goto fail; + s->tmp_buf = av_malloc(n * sizeof(FFTComplex)); + if (!s->tmp_buf) + goto fail; + s->inverse = inverse; + s->fft_permutation = FF_FFT_PERM_DEFAULT; + + s->fft_permute = fft_permute_c; + s->fft_calc = fft_calc_c; +#if CONFIG_MDCT + s->imdct_calc = ff_imdct_calc_c; + s->imdct_half = ff_imdct_half_c; + s->mdct_calc = ff_mdct_calc_c; +#endif + +#if FFT_FLOAT + if (ARCH_AARCH64) ff_fft_init_aarch64(s); + if (ARCH_ARM) ff_fft_init_arm(s); + if (ARCH_PPC) ff_fft_init_ppc(s); + if (ARCH_X86) ff_fft_init_x86(s); + if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc; +#else + if (CONFIG_MDCT) s->mdct_calcw = ff_mdct_calcw_c; + if (ARCH_ARM) ff_fft_fixed_init_arm(s); +#endif + + for(j=4; j<=nbits; j++) { + ff_init_ff_cos_tabs(j); + } + + if (s->fft_permutation == FF_FFT_PERM_AVX) { + fft_perm_avx(s); + } else { + for(i=0; i<n; i++) { + int j = i; + if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) + j = (j&~3) | ((j>>1)&1) | ((j<<1)&2); + s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j; + } + } + + return 0; + fail: + av_freep(&s->revtab); + av_freep(&s->tmp_buf); + return -1; +} + +static void fft_permute_c(FFTContext *s, FFTComplex *z) +{ + int j, np; + const uint16_t *revtab = s->revtab; + np = 1 << s->nbits; + /* TODO: handle split-radix permute in a more optimal way, probably in-place */ + for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j]; + memcpy(z, s->tmp_buf, np * sizeof(FFTComplex)); +} + +av_cold void ff_fft_end(FFTContext *s) +{ + av_freep(&s->revtab); + av_freep(&s->tmp_buf); +} + +#define BUTTERFLIES(a0,a1,a2,a3) {\ + BF(t3, t5, t5, t1);\ + BF(a2.re, a0.re, a0.re, t5);\ + BF(a3.im, a1.im, a1.im, t3);\ + BF(t4, t6, t2, t6);\ + BF(a3.re, a1.re, a1.re, t4);\ + BF(a2.im, a0.im, a0.im, t6);\ +} + +// force loading all the inputs before storing any. +// this is slightly slower for small data, but avoids store->load aliasing +// for addresses separated by large powers of 2. +#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ + FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ + BF(t3, t5, t5, t1);\ + BF(a2.re, a0.re, r0, t5);\ + BF(a3.im, a1.im, i1, t3);\ + BF(t4, t6, t2, t6);\ + BF(a3.re, a1.re, r1, t4);\ + BF(a2.im, a0.im, i0, t6);\ +} + +#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ + CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ + CMUL(t5, t6, a3.re, a3.im, wre, wim);\ + BUTTERFLIES(a0,a1,a2,a3)\ +} + +#define TRANSFORM_ZERO(a0,a1,a2,a3) {\ + t1 = a2.re;\ + t2 = a2.im;\ + t5 = a3.re;\ + t6 = a3.im;\ + BUTTERFLIES(a0,a1,a2,a3)\ +} + +/* z[0...8n-1], w[1...2n-1] */ +#define PASS(name)\ +static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ +{\ + FFTDouble t1, t2, t3, t4, t5, t6;\ + int o1 = 2*n;\ + int o2 = 4*n;\ + int o3 = 6*n;\ + const FFTSample *wim = wre+o1;\ + n--;\ +\ + TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ + TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ + do {\ + z += 2;\ + wre += 2;\ + wim -= 2;\ + TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ + TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ + } while(--n);\ +} + +PASS(pass) +#undef BUTTERFLIES +#define BUTTERFLIES BUTTERFLIES_BIG +PASS(pass_big) + +#define DECL_FFT(n,n2,n4)\ +static void fft##n(FFTComplex *z)\ +{\ + fft##n2(z);\ + fft##n4(z+n4*2);\ + fft##n4(z+n4*3);\ + pass(z,FFT_NAME(ff_cos_##n),n4/2);\ +} + +static void fft4(FFTComplex *z) +{ + FFTDouble t1, t2, t3, t4, t5, t6, t7, t8; + + BF(t3, t1, z[0].re, z[1].re); + BF(t8, t6, z[3].re, z[2].re); + BF(z[2].re, z[0].re, t1, t6); + BF(t4, t2, z[0].im, z[1].im); + BF(t7, t5, z[2].im, z[3].im); + BF(z[3].im, z[1].im, t4, t8); + BF(z[3].re, z[1].re, t3, t7); + BF(z[2].im, z[0].im, t2, t5); +} + +static void fft8(FFTComplex *z) +{ + FFTDouble t1, t2, t3, t4, t5, t6; + + fft4(z); + + BF(t1, z[5].re, z[4].re, -z[5].re); + BF(t2, z[5].im, z[4].im, -z[5].im); + BF(t5, z[7].re, z[6].re, -z[7].re); + BF(t6, z[7].im, z[6].im, -z[7].im); + + BUTTERFLIES(z[0],z[2],z[4],z[6]); + TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); +} + +#if !CONFIG_SMALL +static void fft16(FFTComplex *z) +{ + FFTDouble t1, t2, t3, t4, t5, t6; + FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1]; + FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3]; + + fft8(z); + fft4(z+8); + fft4(z+12); + + TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); + TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); + TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); + TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); +} +#else +DECL_FFT(16,8,4) +#endif +DECL_FFT(32,16,8) +DECL_FFT(64,32,16) +DECL_FFT(128,64,32) +DECL_FFT(256,128,64) +DECL_FFT(512,256,128) +#if !CONFIG_SMALL +#define pass pass_big +#endif +DECL_FFT(1024,512,256) +DECL_FFT(2048,1024,512) +DECL_FFT(4096,2048,1024) +DECL_FFT(8192,4096,2048) +DECL_FFT(16384,8192,4096) +DECL_FFT(32768,16384,8192) +DECL_FFT(65536,32768,16384) + +static void (* const fft_dispatch[])(FFTComplex*) = { + fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, + fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, +}; + +static void fft_calc_c(FFTContext *s, FFTComplex *z) +{ + fft_dispatch[s->nbits-2](z); +} |