diff options
Diffstat (limited to 'media/libaom/src/av1/decoder/decodeframe.c')
-rw-r--r-- | media/libaom/src/av1/decoder/decodeframe.c | 5567 |
1 files changed, 5567 insertions, 0 deletions
diff --git a/media/libaom/src/av1/decoder/decodeframe.c b/media/libaom/src/av1/decoder/decodeframe.c new file mode 100644 index 000000000..31f14b531 --- /dev/null +++ b/media/libaom/src/av1/decoder/decodeframe.c @@ -0,0 +1,5567 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stddef.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom/aom_codec.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_reader.h" +#include "aom_dsp/bitreader.h" +#include "aom_dsp/bitreader_buffer.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_ports/mem.h" +#include "aom_ports/mem_ops.h" +#include "aom_scale/aom_scale.h" +#include "aom_util/aom_thread.h" + +#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG + +#include "av1/common/alloccommon.h" +#include "av1/common/cdef.h" +#include "av1/common/cfl.h" +#if CONFIG_INSPECTION +#include "av1/decoder/inspection.h" +#endif +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/frame_buffers.h" +#include "av1/common/idct.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/resize.h" +#include "av1/common/seg_common.h" +#include "av1/common/thread_common.h" +#include "av1/common/tile_common.h" +#include "av1/common/warped_motion.h" +#include "av1/common/obmc.h" +#include "av1/decoder/decodeframe.h" +#include "av1/decoder/decodemv.h" +#include "av1/decoder/decoder.h" +#include "av1/decoder/decodetxb.h" +#include "av1/decoder/detokenize.h" + +#define ACCT_STR __func__ + +// This is needed by ext_tile related unit tests. +#define EXT_TILE_DEBUG 1 +#define MC_TEMP_BUF_PELS \ + (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ + ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) + +// Checks that the remaining bits start with a 1 and ends with 0s. +// It consumes an additional byte, if already byte aligned before the check. +int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { + AV1_COMMON *const cm = &pbi->common; + // bit_offset is set to 0 (mod 8) when the reader is already byte aligned + int bits_before_alignment = 8 - rb->bit_offset % 8; + int trailing = aom_rb_read_literal(rb, bits_before_alignment); + if (trailing != (1 << (bits_before_alignment - 1))) { + cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + return 0; +} + +// Use only_chroma = 1 to only set the chroma planes +static void set_planes_to_neutral_grey(const SequenceHeader *const seq_params, + const YV12_BUFFER_CONFIG *const buf, + int only_chroma) { + if (seq_params->use_highbitdepth) { + const int val = 1 << (seq_params->bit_depth - 1); + for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { + const int is_uv = plane > 0; + uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]); + // Set the first row to neutral grey. Then copy the first row to all + // subsequent rows. + if (buf->crop_heights[is_uv] > 0) { + aom_memset16(base, val, buf->crop_widths[is_uv]); + for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) { + memcpy(&base[row_idx * buf->strides[is_uv]], base, + sizeof(*base) * buf->crop_widths[is_uv]); + } + } + } + } else { + for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { + const int is_uv = plane > 0; + for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) { + memset(&buf->buffers[plane][row_idx * buf->uv_stride], 1 << 7, + buf->crop_widths[is_uv]); + } + } + } +} + +static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + aom_reader *const r, int plane, + int runit_idx); + +static void setup_compound_reference_mode(AV1_COMMON *cm) { + cm->comp_fwd_ref[0] = LAST_FRAME; + cm->comp_fwd_ref[1] = LAST2_FRAME; + cm->comp_fwd_ref[2] = LAST3_FRAME; + cm->comp_fwd_ref[3] = GOLDEN_FRAME; + + cm->comp_bwd_ref[0] = BWDREF_FRAME; + cm->comp_bwd_ref[1] = ALTREF2_FRAME; + cm->comp_bwd_ref[2] = ALTREF_FRAME; +} + +static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { + return len != 0 && len <= (size_t)(end - start); +} + +static TX_MODE read_tx_mode(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + if (cm->coded_lossless) return ONLY_4X4; + return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; +} + +static REFERENCE_MODE read_frame_reference_mode( + const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + if (frame_is_intra_only(cm)) { + return SINGLE_REFERENCE; + } else { + return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; + } +} + +static void inverse_transform_block(MACROBLOCKD *xd, int plane, + const TX_TYPE tx_type, + const TX_SIZE tx_size, uint8_t *dst, + int stride, int reduced_tx_set) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = pd->dqcoeff; + eob_info *eob_data = pd->eob_data + xd->txb_offset[plane]; + uint16_t scan_line = eob_data->max_scan_line; + uint16_t eob = eob_data->eob; + + memcpy(dqcoeff, pd->dqcoeff_block + xd->cb_offset[plane], + (scan_line + 1) * sizeof(dqcoeff[0])); + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, stride, + eob, reduced_tx_set); + memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); +} + +static void read_coeffs_tx_intra_block(const AV1_COMMON *const cm, + MACROBLOCKD *const xd, + aom_reader *const r, const int plane, + const int row, const int col, + const TX_SIZE tx_size) { + MB_MODE_INFO *mbmi = xd->mi[0]; + if (!mbmi->skip) { +#if TXCOEFF_TIMER + struct aom_usec_timer timer; + aom_usec_timer_start(&timer); +#endif + av1_read_coeffs_txb_facade(cm, xd, r, plane, row, col, tx_size); +#if TXCOEFF_TIMER + aom_usec_timer_mark(&timer); + const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); + cm->txcoeff_timer += elapsed_time; + ++cm->txb_count; +#endif + } +} + +static void decode_block_void(const AV1_COMMON *const cm, MACROBLOCKD *const xd, + aom_reader *const r, const int plane, + const int row, const int col, + const TX_SIZE tx_size) { + (void)cm; + (void)xd; + (void)r; + (void)plane; + (void)row; + (void)col; + (void)tx_size; +} + +static void predict_inter_block_void(AV1_COMMON *const cm, + MACROBLOCKD *const xd, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + (void)cm; + (void)xd; + (void)mi_row; + (void)mi_col; + (void)bsize; +} + +static void cfl_store_inter_block_void(AV1_COMMON *const cm, + MACROBLOCKD *const xd) { + (void)cm; + (void)xd; +} + +static void predict_and_reconstruct_intra_block( + const AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *const r, + const int plane, const int row, const int col, const TX_SIZE tx_size) { + (void)r; + MB_MODE_INFO *mbmi = xd->mi[0]; + PLANE_TYPE plane_type = get_plane_type(plane); + + av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); + + if (!mbmi->skip) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + + // tx_type will be read out in av1_read_coeffs_txb_facade + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, row, col, tx_size, + cm->reduced_tx_set_used); + eob_info *eob_data = pd->eob_data + xd->txb_offset[plane]; + if (eob_data->eob) { + uint8_t *dst = + &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; + inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, + cm->reduced_tx_set_used); + } + } + if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) { + cfl_store_tx(xd, row, col, tx_size, mbmi->sb_type); + } +} + +static void inverse_transform_inter_block(const AV1_COMMON *const cm, + MACROBLOCKD *const xd, + aom_reader *const r, const int plane, + const int blk_row, const int blk_col, + const TX_SIZE tx_size) { + (void)r; + PLANE_TYPE plane_type = get_plane_type(plane); + const struct macroblockd_plane *const pd = &xd->plane[plane]; + + // tx_type will be read out in av1_read_coeffs_txb_facade + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + + uint8_t *dst = + &pd->dst + .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; + inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, + cm->reduced_tx_set_used); +#if CONFIG_MISMATCH_DEBUG + int pixel_c, pixel_r; + BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; + int blk_w = block_size_wide[bsize]; + int blk_h = block_size_high[bsize]; + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, + pd->subsampling_x, pd->subsampling_y); + mismatch_check_block_tx(dst, pd->dst.stride, cm->frame_offset, plane, pixel_c, + pixel_r, blk_w, blk_h, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); +#endif +} + +static void set_cb_buffer_offsets(MACROBLOCKD *const xd, TX_SIZE tx_size, + int plane) { + xd->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; + xd->txb_offset[plane] = + xd->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); +} + +static void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td, + aom_reader *r, MB_MODE_INFO *const mbmi, + int plane, BLOCK_SIZE plane_bsize, + int blk_row, int blk_col, int block, + TX_SIZE tx_size, int *eob_total) { + MACROBLOCKD *const xd = &td->xd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + // Scale to match transform block unit. + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + if (tx_size == plane_tx_size || plane) { + td->read_coeffs_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col, + tx_size); + + td->inverse_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col, + tx_size); + eob_info *eob_data = pd->eob_data + xd->txb_offset[plane]; + *eob_total += eob_data->eob; + set_cb_buffer_offsets(xd, tx_size, plane); + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); + assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int sub_step = bsw * bsh; + + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + + decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, + offsetc, block, sub_txs, eob_total); + block += sub_step; + } + } + } +} + +static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, + int bh, int x_mis, int y_mis) { + const int num_planes = av1_num_planes(cm); + + const int offset = mi_row * cm->mi_stride + mi_col; + const TileInfo *const tile = &xd->tile; + + xd->mi = cm->mi_grid_visible + offset; + xd->mi[0] = &cm->mi[offset]; + // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of + // passing bsize from decode_partition(). + xd->mi[0]->sb_type = bsize; +#if CONFIG_RD_DEBUG + xd->mi[0]->mi_row = mi_row; + xd->mi[0]->mi_col = mi_col; +#endif + xd->cfl.mi_row = mi_row; + xd->cfl.mi_col = mi_col; + + assert(x_mis && y_mis); + for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0]; + int idx = cm->mi_stride; + for (int y = 1; y < y_mis; ++y) { + memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0])); + idx += cm->mi_stride; + } + + set_plane_n4(xd, bw, bh, num_planes); + set_skip_context(xd, mi_row, mi_col, num_planes); + + // Distance of Mb to the various image edges. These are specified to 8th pel + // as they are always compared to values that are in 1/8th pel units + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, + mi_col, 0, num_planes); +} + +static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, + int mi_row, int mi_col, aom_reader *r, + PARTITION_TYPE partition, BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); + const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); + +#if CONFIG_ACCOUNTING + aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); +#endif + set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); + xd->mi[0]->partition = partition; + av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); + if (bsize >= BLOCK_8X8 && + (seq_params->subsampling_x || seq_params->subsampling_y)) { + const BLOCK_SIZE uv_subsize = + ss_size_lookup[bsize][seq_params->subsampling_x] + [seq_params->subsampling_y]; + if (uv_subsize == BLOCK_INVALID) + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Invalid block size."); + } + + int reader_corrupted_flag = aom_reader_has_error(r); + aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag); +} + +typedef struct PadBlock { + int x0; + int x1; + int y0; + int y1; +} PadBlock; + +static void highbd_build_mc_border(const uint8_t *src8, int src_stride, + uint8_t *dst8, int dst_stride, int x, int y, + int b_w, int b_h, int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + const uint16_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) aom_memset16(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); + + if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} + +static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, int x, int y, int b_w, int b_h, + int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint8_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) memset(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy); + + if (right) memset(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} + +static INLINE int update_extend_mc_border_params( + const struct scale_factors *const sf, struct buf_2d *const pre_buf, + MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv, + int do_warp, int is_intrabc, int *x_pad, int *y_pad) { + const int is_scaled = av1_is_scaled(sf); + // Get reference width and height. + int frame_width = pre_buf->width; + int frame_height = pre_buf->height; + + // Do border extension if there is motion or + // width/height is not a multiple of 8 pixels. + if ((!is_intrabc) && (!do_warp) && + (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || + (frame_height & 0x7))) { + if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { + block->x0 -= AOM_INTERP_EXTEND - 1; + block->x1 += AOM_INTERP_EXTEND; + *x_pad = 1; + } + + if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { + block->y0 -= AOM_INTERP_EXTEND - 1; + block->y1 += AOM_INTERP_EXTEND; + *y_pad = 1; + } + + // Skip border extension if block is inside the frame. + if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || + block->y1 > frame_height - 1) { + return 1; + } + } + return 0; +} + +static INLINE void extend_mc_border(const struct scale_factors *const sf, + struct buf_2d *const pre_buf, + MV32 scaled_mv, PadBlock block, + int subpel_x_mv, int subpel_y_mv, + int do_warp, int is_intrabc, int highbd, + uint8_t *mc_buf, uint8_t **pre, + int *src_stride) { + int x_pad = 0, y_pad = 0; + if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, + subpel_x_mv, subpel_y_mv, do_warp, + is_intrabc, &x_pad, &y_pad)) { + // Get reference block pointer. + const uint8_t *const buf_ptr = + pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; + int buf_stride = pre_buf->stride; + const int b_w = block.x1 - block.x0; + const int b_h = block.y1 - block.y0; + + // Extend the border. + if (highbd) { + highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, + block.y0, b_w, b_h, pre_buf->width, + pre_buf->height); + } else { + build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w, + b_h, pre_buf->width, pre_buf->height); + } + *src_stride = b_w; + *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w + + x_pad * (AOM_INTERP_EXTEND - 1); + } +} + +static INLINE void dec_calc_subpel_params( + MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv, + int plane, const int pre_x, const int pre_y, int x, int y, + struct buf_2d *const pre_buf, SubpelParams *subpel_params, int bw, int bh, + PadBlock *block, int mi_x, int mi_y, MV32 *scaled_mv, int *subpel_x_mv, + int *subpel_y_mv) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int is_scaled = av1_is_scaled(sf); + if (is_scaled) { + int ssx = pd->subsampling_x; + int ssy = pd->subsampling_y; + int orig_pos_y = (pre_y + y) << SUBPEL_BITS; + orig_pos_y += mv.row * (1 << (1 - ssy)); + int orig_pos_x = (pre_x + x) << SUBPEL_BITS; + orig_pos_x += mv.col * (1 << (1 - ssx)); + int pos_y = sf->scale_value_y(orig_pos_y, sf); + int pos_x = sf->scale_value_x(orig_pos_x, sf); + pos_x += SCALE_EXTRA_OFF; + pos_y += SCALE_EXTRA_OFF; + + const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); + const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); + const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) + << SCALE_SUBPEL_BITS; + const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; + pos_y = clamp(pos_y, top, bottom); + pos_x = clamp(pos_x, left, right); + + subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; + subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; + subpel_params->xs = sf->x_step_q4; + subpel_params->ys = sf->y_step_q4; + + // Get reference block top left coordinate. + block->x0 = pos_x >> SCALE_SUBPEL_BITS; + block->y0 = pos_y >> SCALE_SUBPEL_BITS; + + // Get reference block bottom right coordinate. + block->x1 = + ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1; + block->y1 = + ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1; + + MV temp_mv; + temp_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, + pd->subsampling_y); + *scaled_mv = av1_scale_mv(&temp_mv, (mi_x + x), (mi_y + y), sf); + scaled_mv->row += SCALE_EXTRA_OFF; + scaled_mv->col += SCALE_EXTRA_OFF; + + *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; + *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; + } else { + // Get block position in current frame. + int pos_x = (pre_x + x) << SUBPEL_BITS; + int pos_y = (pre_y + y) << SUBPEL_BITS; + + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; + subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; + subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; + + // Get reference block top left coordinate. + pos_x += mv_q4.col; + pos_y += mv_q4.row; + block->x0 = pos_x >> SUBPEL_BITS; + block->y0 = pos_y >> SUBPEL_BITS; + + // Get reference block bottom right coordinate. + block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1; + block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1; + + scaled_mv->row = mv_q4.row; + scaled_mv->col = mv_q4.col; + *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; + *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; + } +} + +static INLINE void dec_build_inter_predictors(const AV1_COMMON *cm, + MACROBLOCKD *xd, int plane, + const MB_MODE_INFO *mi, + int build_for_obmc, int bw, + int bh, int mi_x, int mi_y) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + int is_compound = has_second_ref(mi); + int ref; + const int is_intrabc = is_intrabc_block(mi); + assert(IMPLIES(is_intrabc, !is_compound)); + int is_global[2] = { 0, 0 }; + for (ref = 0; ref < 1 + is_compound; ++ref) { + const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; + is_global[ref] = is_global_mv_block(mi, wm->wmtype); + } + + const BLOCK_SIZE bsize = mi->sb_type; + const int ss_x = pd->subsampling_x; + const int ss_y = pd->subsampling_y; + int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) || + (block_size_high[bsize] < 8 && ss_y); + + if (is_intrabc) sub8x8_inter = 0; + + // For sub8x8 chroma blocks, we may be covering more than one luma block's + // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for + // the top-left corner of the prediction source - the correct top-left corner + // is at (pre_x, pre_y). + const int row_start = + (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; + const int col_start = + (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; + const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; + const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; + + sub8x8_inter = sub8x8_inter && !build_for_obmc; + if (sub8x8_inter) { + for (int row = row_start; row <= 0 && sub8x8_inter; ++row) { + for (int col = col_start; col <= 0; ++col) { + const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + if (!is_inter_block(this_mbmi)) sub8x8_inter = 0; + if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0; + } + } + } + + if (sub8x8_inter) { + // block size + const int b4_w = block_size_wide[bsize] >> ss_x; + const int b4_h = block_size_high[bsize] >> ss_y; + const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); + const int b8_w = block_size_wide[plane_bsize] >> ss_x; + const int b8_h = block_size_high[plane_bsize] >> ss_y; + assert(!is_compound); + + const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; + + int row = row_start; + int src_stride; + for (int y = 0; y < b8_h; y += b4_h) { + int col = col_start; + for (int x = 0; x < b8_w; x += b4_w) { + MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + is_compound = has_second_ref(this_mbmi); + int tmp_dst_stride = 8; + assert(bw < 8 || bh < 8); + ConvolveParams conv_params = get_conv_params_no_round( + 0, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd); + conv_params.use_jnt_comp_avg = 0; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; + + ref = 0; + const RefBuffer *ref_buf = + &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; + + pd->pre[ref].buf0 = + (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; + pd->pre[ref].buf = + pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y, + ref_buf->buf->uv_stride, + &ref_buf->sf); + pd->pre[ref].width = ref_buf->buf->uv_crop_width; + pd->pre[ref].height = ref_buf->buf->uv_crop_height; + pd->pre[ref].stride = ref_buf->buf->uv_stride; + + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : &ref_buf->sf; + struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; + + const MV mv = this_mbmi->mv[ref].as_mv; + + uint8_t *pre; + SubpelParams subpel_params; + PadBlock block; + MV32 scaled_mv; + int subpel_x_mv, subpel_y_mv; + int highbd; + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global[ref]; + warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; + + dec_calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, + &subpel_params, bw, bh, &block, mi_x, mi_y, + &scaled_mv, &subpel_x_mv, &subpel_y_mv); + pre = pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; + src_stride = pre_buf->stride; + highbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + extend_mc_border(sf, pre_buf, scaled_mv, block, subpel_x_mv, + subpel_y_mv, 0, is_intrabc, highbd, xd->mc_buf[ref], + &pre, &src_stride); + conv_params.do_average = ref; + if (is_masked_compound_type(mi->interinter_comp.type)) { + // masked compound type has its own average mechanism + conv_params.do_average = 0; + } + + av1_make_inter_predictor( + pre, src_stride, dst, dst_buf->stride, &subpel_params, sf, b4_w, + b4_h, &conv_params, this_mbmi->interp_filters, &warp_types, + (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, + plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); + + ++col; + } + ++row; + } + + for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; + return; + } + + { + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *const dst = dst_buf->buf; + uint8_t *pre[2]; + SubpelParams subpel_params[2]; + int src_stride[2]; + for (ref = 0; ref < 1 + is_compound; ++ref) { + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; + struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; + const MV mv = mi->mv[ref].as_mv; + PadBlock block; + MV32 scaled_mv; + int subpel_x_mv, subpel_y_mv; + int highbd; + + dec_calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, + &subpel_params[ref], bw, bh, &block, mi_x, mi_y, + &scaled_mv, &subpel_x_mv, &subpel_y_mv); + pre[ref] = pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; + src_stride[ref] = pre_buf->stride; + highbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global[ref]; + warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; + int do_warp = (bw >= 8 && bh >= 8 && + av1_allow_warp(mi, &warp_types, + &xd->global_motion[mi->ref_frame[ref]], + build_for_obmc, subpel_params[ref].xs, + subpel_params[ref].ys, NULL)); + do_warp = (do_warp && xd->cur_frame_force_integer_mv == 0); + + extend_mc_border(sf, pre_buf, scaled_mv, block, subpel_x_mv, subpel_y_mv, + do_warp, is_intrabc, highbd, xd->mc_buf[ref], &pre[ref], + &src_stride[ref]); + } + + ConvolveParams conv_params = get_conv_params_no_round( + 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); + av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset, + &conv_params.bck_offset, + &conv_params.use_jnt_comp_avg, is_compound); + + for (ref = 0; ref < 1 + is_compound; ++ref) { + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global[ref]; + warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; + conv_params.do_average = ref; + if (is_masked_compound_type(mi->interinter_comp.type)) { + // masked compound type has its own average mechanism + conv_params.do_average = 0; + } + + if (ref && is_masked_compound_type(mi->interinter_comp.type)) + av1_make_masked_inter_predictor( + pre[ref], src_stride[ref], dst, dst_buf->stride, + &subpel_params[ref], sf, bw, bh, &conv_params, mi->interp_filters, + plane, &warp_types, mi_x >> pd->subsampling_x, + mi_y >> pd->subsampling_y, ref, xd, cm->allow_warped_motion); + else + av1_make_inter_predictor( + pre[ref], src_stride[ref], dst, dst_buf->stride, + &subpel_params[ref], sf, bw, bh, &conv_params, mi->interp_filters, + &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, + plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); + } + } +} + +static void dec_build_inter_predictors_for_planes(const AV1_COMMON *cm, + MACROBLOCKD *xd, + BLOCK_SIZE bsize, int mi_row, + int mi_col, int plane_from, + int plane_to) { + int plane; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + for (plane = plane_from; plane <= plane_to; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = pd->width; + const int bh = pd->height; + + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + + dec_build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y); + } +} + +static void dec_build_inter_predictors_sby(const AV1_COMMON *cm, + MACROBLOCKD *xd, int mi_row, + int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize) { + dec_build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0); + + if (is_interintra_pred(xd->mi[0])) { + BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, + { xd->plane[0].dst.stride, 0, 0 } }; + if (!ctx) ctx = &default_ctx; + av1_build_interintra_predictors_sbp(cm, xd, xd->plane[0].dst.buf, + xd->plane[0].dst.stride, ctx, 0, bsize); + } +} + +static void dec_build_inter_predictors_sbuv(const AV1_COMMON *cm, + MACROBLOCKD *xd, int mi_row, + int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize) { + dec_build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1, + MAX_MB_PLANE - 1); + + if (is_interintra_pred(xd->mi[0])) { + BUFFER_SET default_ctx = { + { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, + { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } + }; + if (!ctx) ctx = &default_ctx; + av1_build_interintra_predictors_sbuv( + cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, + xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); + } +} + +static void dec_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + BUFFER_SET *ctx, BLOCK_SIZE bsize) { + const int num_planes = av1_num_planes(cm); + dec_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); + if (num_planes > 1) + dec_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); +} + +static INLINE void dec_build_prediction_by_above_pred( + MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, + MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int above_mi_col = ctxt->mi_col + rel_mi_col; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *above_mbmi; + + av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width, + &backup_mbmi, ctxt, num_planes); + mi_x = above_mi_col << MI_SIZE_LOG2; + mi_y = ctxt->mi_row << MI_SIZE_LOG2; + + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; + int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, + block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; + dec_build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x, + mi_y); + } +} + +static void dec_build_prediction_by_above_preds( + const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { + if (!xd->up_available) return; + + // Adjust mb_to_bottom_edge to have the correct value for the OBMC + // prediction block. This is half the height of the original block, + // except for 128-wide blocks, where we only use a height of 32. + int this_height = xd->n4_h * MI_SIZE; + int pred_height = AOMMIN(this_height / 2, 32); + xd->mb_to_bottom_edge += (this_height - pred_height) * 8; + + struct build_prediction_ctxt ctxt = { cm, mi_row, + mi_col, tmp_buf, + tmp_width, tmp_height, + tmp_stride, xd->mb_to_right_edge }; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + foreach_overlappable_nb_above(cm, xd, mi_col, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + dec_build_prediction_by_above_pred, &ctxt); + + xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); + xd->mb_to_right_edge = ctxt.mb_to_far_edge; + xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; +} + +static INLINE void dec_build_prediction_by_left_pred( + MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, + MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int left_mi_row = ctxt->mi_row + rel_mi_row; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *left_mbmi; + + av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height, + &backup_mbmi, ctxt, num_planes); + mi_x = ctxt->mi_col << MI_SIZE_LOG2; + mi_y = left_mi_row << MI_SIZE_LOG2; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, + block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); + int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; + dec_build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x, + mi_y); + } +} + +static void dec_build_prediction_by_left_preds( + const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { + if (!xd->left_available) return; + + // Adjust mb_to_right_edge to have the correct value for the OBMC + // prediction block. This is half the width of the original block, + // except for 128-wide blocks, where we only use a width of 32. + int this_width = xd->n4_w * MI_SIZE; + int pred_width = AOMMIN(this_width / 2, 32); + xd->mb_to_right_edge += (this_width - pred_width) * 8; + + struct build_prediction_ctxt ctxt = { cm, mi_row, + mi_col, tmp_buf, + tmp_width, tmp_height, + tmp_stride, xd->mb_to_bottom_edge }; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + foreach_overlappable_nb_left(cm, xd, mi_row, + max_neighbor_obmc[mi_size_high_log2[bsize]], + dec_build_prediction_by_left_pred, &ctxt); + + xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); + xd->mb_to_right_edge -= (this_width - pred_width) * 8; + xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; +} + +static void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, + MACROBLOCKD *xd, int mi_row, + int mi_col) { + const int num_planes = av1_num_planes(cm); + uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; + int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int len = sizeof(uint16_t); + dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]); + dst_buf1[1] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len); + dst_buf1[2] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len); + dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]); + dst_buf2[1] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len); + dst_buf2[2] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len); + } else { + dst_buf1[0] = xd->tmp_obmc_bufs[0]; + dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; + dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; + dst_buf2[0] = xd->tmp_obmc_bufs[1]; + dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; + dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; + } + dec_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, + dst_width1, dst_height1, dst_stride1); + dec_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, + dst_width2, dst_height2, dst_stride2); + av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm), + mi_row, mi_col, 0, num_planes); + av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, + dst_buf2, dst_stride2); +} + +static void cfl_store_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd) { + MB_MODE_INFO *mbmi = xd->mi[0]; + if (store_cfl_required(cm, xd)) { + cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); + } +} + +static void predict_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd, + int mi_row, int mi_col, BLOCK_SIZE bsize) { + MB_MODE_INFO *mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { + const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; + if (frame < LAST_FRAME) { + assert(is_intrabc_block(mbmi)); + assert(frame == INTRA_FRAME); + assert(ref == 0); + } else { + RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; + + xd->block_refs[ref] = ref_buf; + av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf, + num_planes); + } + } + + dec_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) { + dec_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + } +#if CONFIG_MISMATCH_DEBUG + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + int pixel_c, pixel_r; + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, + pd->subsampling_y); + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset, + plane, pixel_c, pixel_r, pd->width, pd->height, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); + } +#endif +} + +static void set_color_index_map_offset(MACROBLOCKD *const xd, int plane, + aom_reader *r) { + (void)r; + Av1ColorMapParam params; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + av1_get_block_dimensions(mbmi->sb_type, plane, xd, ¶ms.plane_width, + ¶ms.plane_height, NULL, NULL); + xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; +} + +static void decode_token_recon_block(AV1Decoder *const pbi, + ThreadData *const td, int mi_row, + int mi_col, aom_reader *r, + BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &td->xd; + const int num_planes = av1_num_planes(cm); + + MB_MODE_INFO *mbmi = xd->mi[0]; + CFL_CTX *const cfl = &xd->cfl; + cfl->is_chroma_reference = is_chroma_reference( + mi_row, mi_col, bsize, cfl->subsampling_x, cfl->subsampling_y); + + if (!is_inter_block(mbmi)) { + int row, col; + assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + for (row = 0; row < max_blocks_high; row += mu_blocks_high) { + for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const int stepr = tx_size_high_unit[tx_size]; + const int stepc = tx_size_wide_unit[tx_size]; + + const int unit_height = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); + const int unit_width = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); + + for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += stepr) { + for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += stepc) { + td->read_coeffs_tx_intra_block_visit(cm, xd, r, plane, blk_row, + blk_col, tx_size); + td->predict_and_recon_intra_block_visit(cm, xd, r, plane, blk_row, + blk_col, tx_size); + set_cb_buffer_offsets(xd, tx_size, plane); + } + } + } + } + } + } else { + td->predict_inter_block_visit(cm, xd, mi_row, mi_col, bsize); + // Reconstruction + if (!mbmi->skip) { + int eobtotal = 0; + + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + int row, col; + + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + assert(max_unit_bsize == + get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + for (row = 0; row < max_blocks_high; row += mu_blocks_high) { + for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + const BLOCK_SIZE bsizec = + scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + const BLOCK_SIZE plane_bsize = get_plane_block_size( + bsizec, pd->subsampling_x, pd->subsampling_y); + + const TX_SIZE max_tx_size = + get_vartx_max_txsize(xd, plane_bsize, plane); + const int bh_var_tx = tx_size_high_unit[max_tx_size]; + const int bw_var_tx = tx_size_wide_unit[max_tx_size]; + int block = 0; + int step = + tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + int blk_row, blk_col; + const int unit_height = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_high + row, max_blocks_high), + pd->subsampling_y); + const int unit_width = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_wide + col, max_blocks_wide), + pd->subsampling_x); + + for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += bh_var_tx) { + for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += bw_var_tx) { + decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, + blk_row, blk_col, block, max_tx_size, + &eobtotal); + block += step; + } + } + } + } + } + } + td->cfl_store_inter_block_visit(cm, xd); + } + + av1_visit_palette(pbi, xd, mi_row, mi_col, r, bsize, + set_color_index_map_offset); +} + +#if LOOP_FILTER_BITMASK +static void store_bitmask_vartx(AV1_COMMON *cm, int mi_row, int mi_col, + BLOCK_SIZE bsize, TX_SIZE tx_size, + MB_MODE_INFO *mbmi); +#endif + +static void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, + TX_SIZE tx_size, int depth, +#if LOOP_FILTER_BITMASK + AV1_COMMON *cm, int mi_row, int mi_col, +#endif + int blk_row, int blk_col, aom_reader *r) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + int is_split = 0; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int max_blocks_high = max_block_high(xd, bsize, 0); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + assert(tx_size > TX_4X4); + + if (depth == MAX_VARTX_DEPTH) { + for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { + for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { + const int index = + av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx); + mbmi->inter_tx_size[index] = tx_size; + } + } + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + return; + } + + const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, + mbmi->sb_type, tx_size); + is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR); + + if (is_split) { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + + if (sub_txs == TX_4X4) { + for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { + for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { + const int index = + av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx); + mbmi->inter_tx_size[index] = sub_txs; + } + } + mbmi->tx_size = sub_txs; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, sub_txs, tx_size); +#if LOOP_FILTER_BITMASK + store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, BLOCK_8X8, + TX_4X4, mbmi); +#endif + return; + } +#if LOOP_FILTER_BITMASK + if (depth + 1 == MAX_VARTX_DEPTH) { + store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, + txsize_to_bsize[tx_size], sub_txs, mbmi); + } +#endif + + assert(bsw > 0 && bsh > 0); + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + int offsetr = blk_row + row; + int offsetc = blk_col + col; + read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, +#if LOOP_FILTER_BITMASK + cm, mi_row, mi_col, +#endif + offsetr, offsetc, r); + } + } + } else { + for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { + for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { + const int index = + av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx); + mbmi->inter_tx_size[index] = tx_size; + } + } + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); +#if LOOP_FILTER_BITMASK + store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, + txsize_to_bsize[tx_size], tx_size, mbmi); +#endif + } +} + +static TX_SIZE read_selected_tx_size(MACROBLOCKD *xd, aom_reader *r) { + // TODO(debargha): Clean up the logic here. This function should only + // be called for intra. + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + const int max_depths = bsize_to_max_depth(bsize); + const int ctx = get_tx_size_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], + max_depths + 1, ACCT_STR); + assert(depth >= 0 && depth <= max_depths); + const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); + return tx_size; +} + +static TX_SIZE read_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int is_inter, + int allow_select_inter, aom_reader *r) { + const TX_MODE tx_mode = cm->tx_mode; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; + + if (block_signals_txsize(bsize)) { + if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { + const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); + return coded_tx_size; + } else { + return tx_size_from_tx_mode(bsize, tx_mode); + } + } else { + assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); + return max_txsize_rect_lookup[bsize]; + } +} + +#if LOOP_FILTER_BITMASK +static void store_bitmask_vartx(AV1_COMMON *cm, int mi_row, int mi_col, + BLOCK_SIZE bsize, TX_SIZE tx_size, + MB_MODE_INFO *mbmi) { + LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); + const TX_SIZE tx_size_y_vert = txsize_vert_map[tx_size]; + const TX_SIZE tx_size_y_horz = txsize_horz_map[tx_size]; + const TX_SIZE tx_size_uv_vert = txsize_vert_map[av1_get_max_uv_txsize( + mbmi->sb_type, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y)]; + const TX_SIZE tx_size_uv_horz = txsize_horz_map[av1_get_max_uv_txsize( + mbmi->sb_type, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y)]; + const int is_square_transform_size = tx_size <= TX_64X64; + int mask_id = 0; + int offset = 0; + const int half_ratio_tx_size_max32 = + (tx_size > TX_64X64) & (tx_size <= TX_32X16); + if (is_square_transform_size) { + switch (tx_size) { + case TX_4X4: mask_id = mask_id_table_tx_4x4[bsize]; break; + case TX_8X8: + mask_id = mask_id_table_tx_8x8[bsize]; + offset = 19; + break; + case TX_16X16: + mask_id = mask_id_table_tx_16x16[bsize]; + offset = 33; + break; + case TX_32X32: + mask_id = mask_id_table_tx_32x32[bsize]; + offset = 42; + break; + case TX_64X64: mask_id = 46; break; + default: assert(!is_square_transform_size); return; + } + mask_id += offset; + } else if (half_ratio_tx_size_max32) { + int tx_size_equal_block_size = bsize == txsize_to_bsize[tx_size]; + mask_id = 47 + 2 * (tx_size - TX_4X8) + (tx_size_equal_block_size ? 0 : 1); + } else if (tx_size == TX_32X64) { + mask_id = 59; + } else if (tx_size == TX_64X32) { + mask_id = 60; + } else { // quarter ratio tx size + mask_id = 61 + (tx_size - TX_4X16); + } + int index = 0; + const int row = mi_row % MI_SIZE_64X64; + const int col = mi_col % MI_SIZE_64X64; + const int shift = get_index_shift(col, row, &index); + const int vert_shift = tx_size_y_vert <= TX_8X8 ? shift : col; + for (int i = 0; i + index < 4; ++i) { + // y vertical. + lfm->tx_size_ver[0][tx_size_y_horz].bits[i + index] |= + (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); + // y horizontal. + lfm->tx_size_hor[0][tx_size_y_vert].bits[i + index] |= + (above_mask_univariant_reordered[mask_id].bits[i] << shift); + // u/v vertical. + lfm->tx_size_ver[1][tx_size_uv_horz].bits[i + index] |= + (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); + // u/v horizontal. + lfm->tx_size_hor[1][tx_size_uv_vert].bits[i + index] |= + (above_mask_univariant_reordered[mask_id].bits[i] << shift); + } +} + +static void store_bitmask_univariant_tx(AV1_COMMON *cm, int mi_row, int mi_col, + BLOCK_SIZE bsize, MB_MODE_INFO *mbmi) { + // Use a lookup table that provides one bitmask for a given block size and + // a univariant transform size. + int index; + int shift; + int row; + int col; + LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); + const TX_SIZE tx_size_y_vert = txsize_vert_map[mbmi->tx_size]; + const TX_SIZE tx_size_y_horz = txsize_horz_map[mbmi->tx_size]; + const TX_SIZE tx_size_uv_vert = txsize_vert_map[av1_get_max_uv_txsize( + mbmi->sb_type, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y)]; + const TX_SIZE tx_size_uv_horz = txsize_horz_map[av1_get_max_uv_txsize( + mbmi->sb_type, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y)]; + const int is_square_transform_size = mbmi->tx_size <= TX_64X64; + int mask_id = 0; + int offset = 0; + const int half_ratio_tx_size_max32 = + (mbmi->tx_size > TX_64X64) & (mbmi->tx_size <= TX_32X16); + if (is_square_transform_size) { + switch (mbmi->tx_size) { + case TX_4X4: mask_id = mask_id_table_tx_4x4[bsize]; break; + case TX_8X8: + mask_id = mask_id_table_tx_8x8[bsize]; + offset = 19; + break; + case TX_16X16: + mask_id = mask_id_table_tx_16x16[bsize]; + offset = 33; + break; + case TX_32X32: + mask_id = mask_id_table_tx_32x32[bsize]; + offset = 42; + break; + case TX_64X64: mask_id = 46; break; + default: assert(!is_square_transform_size); return; + } + mask_id += offset; + } else if (half_ratio_tx_size_max32) { + int tx_size_equal_block_size = bsize == txsize_to_bsize[mbmi->tx_size]; + mask_id = + 47 + 2 * (mbmi->tx_size - TX_4X8) + (tx_size_equal_block_size ? 0 : 1); + } else if (mbmi->tx_size == TX_32X64) { + mask_id = 59; + } else if (mbmi->tx_size == TX_64X32) { + mask_id = 60; + } else { // quarter ratio tx size + mask_id = 61 + (mbmi->tx_size - TX_4X16); + } + row = mi_row % MI_SIZE_64X64; + col = mi_col % MI_SIZE_64X64; + shift = get_index_shift(col, row, &index); + const int vert_shift = tx_size_y_vert <= TX_8X8 ? shift : col; + for (int i = 0; i + index < 4; ++i) { + // y vertical. + lfm->tx_size_ver[0][tx_size_y_horz].bits[i + index] |= + (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); + // y horizontal. + lfm->tx_size_hor[0][tx_size_y_vert].bits[i + index] |= + (above_mask_univariant_reordered[mask_id].bits[i] << shift); + // u/v vertical. + lfm->tx_size_ver[1][tx_size_uv_horz].bits[i + index] |= + (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); + // u/v horizontal. + lfm->tx_size_hor[1][tx_size_uv_vert].bits[i + index] |= + (above_mask_univariant_reordered[mask_id].bits[i] << shift); + } +} + +static void store_bitmask_other_info(AV1_COMMON *cm, int mi_row, int mi_col, + BLOCK_SIZE bsize, MB_MODE_INFO *mbmi) { + int index; + int shift; + int row; + LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); + const int row_start = mi_row % MI_SIZE_64X64; + const int col_start = mi_col % MI_SIZE_64X64; + shift = get_index_shift(col_start, row_start, &index); + const uint64_t top_edge_mask = + ((uint64_t)1 << (shift + mi_size_wide[bsize])) - ((uint64_t)1 << shift); + lfm->is_horz_border.bits[index] |= top_edge_mask; + const int is_vert_border = mask_id_table_vert_border[bsize]; + const int vert_shift = block_size_high[bsize] <= 8 ? shift : col_start; + for (int i = 0; i + index < 4; ++i) { + lfm->is_vert_border.bits[i + index] |= + (left_mask_univariant_reordered[is_vert_border].bits[i] << vert_shift); + } + const int is_skip = mbmi->skip && is_inter_block(mbmi); + if (is_skip) { + const int is_skip_mask = mask_id_table_tx_4x4[bsize]; + for (int i = 0; i + index < 4; ++i) { + lfm->skip.bits[i + index] |= + (above_mask_univariant_reordered[is_skip_mask].bits[i] << shift); + } + } + const uint8_t level_vert_y = get_filter_level(cm, &cm->lf_info, 0, 0, mbmi); + const uint8_t level_horz_y = get_filter_level(cm, &cm->lf_info, 1, 0, mbmi); + const uint8_t level_u = get_filter_level(cm, &cm->lf_info, 0, 1, mbmi); + const uint8_t level_v = get_filter_level(cm, &cm->lf_info, 0, 2, mbmi); + for (int r = mi_row; r < mi_row + mi_size_high[bsize]; r++) { + index = 0; + row = r % MI_SIZE_64X64; + memset(&lfm->lfl_y_ver[row][col_start], level_vert_y, + sizeof(uint8_t) * mi_size_wide[bsize]); + memset(&lfm->lfl_y_hor[row][col_start], level_horz_y, + sizeof(uint8_t) * mi_size_wide[bsize]); + memset(&lfm->lfl_u[row][col_start], level_u, + sizeof(uint8_t) * mi_size_wide[bsize]); + memset(&lfm->lfl_v[row][col_start], level_v, + sizeof(uint8_t) * mi_size_wide[bsize]); + } +} +#endif + +static void parse_decode_block(AV1Decoder *const pbi, ThreadData *const td, + int mi_row, int mi_col, aom_reader *r, + PARTITION_TYPE partition, BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &td->xd; + decode_mbmi_block(pbi, xd, mi_row, mi_col, r, partition, bsize); + + av1_visit_palette(pbi, xd, mi_row, mi_col, r, bsize, + av1_decode_palette_tokens); + + AV1_COMMON *cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *mbmi = xd->mi[0]; + int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && + !mbmi->skip && inter_block_tx && !xd->lossless[mbmi->segment_id]) { + const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; + const int height = block_size_high[bsize] >> tx_size_high_log2[0]; + + for (int idy = 0; idy < height; idy += bh) + for (int idx = 0; idx < width; idx += bw) + read_tx_size_vartx(xd, mbmi, max_tx_size, 0, +#if LOOP_FILTER_BITMASK + cm, mi_row, mi_col, +#endif + idy, idx, r); + } else { + mbmi->tx_size = read_tx_size(cm, xd, inter_block_tx, !mbmi->skip, r); + if (inter_block_tx) + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, + mbmi->skip && is_inter_block(mbmi), xd); +#if LOOP_FILTER_BITMASK + const int w = mi_size_wide[bsize]; + const int h = mi_size_high[bsize]; + if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { + store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi); + } else { + for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { + for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { + store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col, + BLOCK_64X64, mbmi); + } + } + } +#endif + } +#if LOOP_FILTER_BITMASK + const int w = mi_size_wide[bsize]; + const int h = mi_size_high[bsize]; + if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { + store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi); + } else { + for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { + for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { + store_bitmask_other_info(cm, mi_row + row, mi_col + col, BLOCK_64X64, + mbmi); + } + } + } +#endif + + if (cm->delta_q_present_flag) { + for (int i = 0; i < MAX_SEGMENTS; i++) { + const int current_qindex = + av1_get_qindex(&cm->seg, i, xd->current_qindex); + for (int j = 0; j < num_planes; ++j) { + const int dc_delta_q = + j == 0 ? cm->y_dc_delta_q + : (j == 1 ? cm->u_dc_delta_q : cm->v_dc_delta_q); + const int ac_delta_q = + j == 0 ? 0 : (j == 1 ? cm->u_ac_delta_q : cm->v_ac_delta_q); + xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX( + current_qindex, dc_delta_q, cm->seq_params.bit_depth); + xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( + current_qindex, ac_delta_q, cm->seq_params.bit_depth); + } + } + } + if (mbmi->skip) av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes); + + decode_token_recon_block(pbi, td, mi_row, mi_col, r, bsize); + + int reader_corrupted_flag = aom_reader_has_error(r); + aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag); +} + +static void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, + ThreadData *const td, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &td->xd; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int num_planes = av1_num_planes(cm); + + const int offset = mi_row * cm->mi_stride + mi_col; + const TileInfo *const tile = &xd->tile; + + xd->mi = cm->mi_grid_visible + offset; + xd->cfl.mi_row = mi_row; + xd->cfl.mi_col = mi_col; + + set_plane_n4(xd, bw, bh, num_planes); + + // Distance of Mb to the various image edges. These are specified to 8th pel + // as they are always compared to values that are in 1/8th pel units + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, + mi_col, 0, num_planes); +} + +static void decode_block(AV1Decoder *const pbi, ThreadData *const td, + int mi_row, int mi_col, aom_reader *r, + PARTITION_TYPE partition, BLOCK_SIZE bsize) { + (void)partition; + set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); + decode_token_recon_block(pbi, td, mi_row, mi_col, r, bsize); +} + +static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, + aom_reader *r, int has_rows, int has_cols, + BLOCK_SIZE bsize) { + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!has_rows && !has_cols) return PARTITION_SPLIT; + + assert(ctx >= 0); + aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx]; + if (has_rows && has_cols) { + return (PARTITION_TYPE)aom_read_symbol( + r, partition_cdf, partition_cdf_length(bsize), ACCT_STR); + } else if (!has_rows && has_cols) { + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_vert_alike(cdf, partition_cdf, bsize); + assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); + return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; + } else { + assert(has_rows && !has_cols); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_horz_alike(cdf, partition_cdf, bsize); + assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); + return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; + } +} + +// TODO(slavarnway): eliminate bsize and subsize in future commits +static void decode_partition(AV1Decoder *const pbi, ThreadData *const td, + int mi_row, int mi_col, aom_reader *r, + BLOCK_SIZE bsize, int parse_decode_flag) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &td->xd; + const int bw = mi_size_wide[bsize]; + const int hbs = bw >> 1; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + const int quarter_step = bw / 4; + BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + // parse_decode_flag takes the following values : + // 01 - do parse only + // 10 - do decode only + // 11 - do parse and decode + static const block_visitor_fn_t block_visit[4] = { + NULL, parse_decode_block, decode_block, parse_decode_block + }; + + if (parse_decode_flag & 1) { + const int num_planes = av1_num_planes(cm); + for (int plane = 0; plane < num_planes; ++plane) { + int rcol0, rcol1, rrow0, rrow1; + if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, + &rcol0, &rcol1, &rrow0, &rrow1)) { + const int rstride = cm->rst_info[plane].horz_units_per_tile; + for (int rrow = rrow0; rrow < rrow1; ++rrow) { + for (int rcol = rcol0; rcol < rcol1; ++rcol) { + const int runit_idx = rcol + rrow * rstride; + loop_restoration_read_sb_coeffs(cm, xd, r, plane, runit_idx); + } + } + } + } + + partition = (bsize < BLOCK_8X8) ? PARTITION_NONE + : read_partition(xd, mi_row, mi_col, r, + has_rows, has_cols, bsize); + } else { + partition = get_partition(cm, mi_row, mi_col, bsize); + } + subsize = get_partition_subsize(bsize, partition); + + // Check the bitstream is conformant: if there is subsampling on the + // chroma planes, subsize must subsample to a valid block size. + const struct macroblockd_plane *const pd_u = &xd->plane[1]; + if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == + BLOCK_INVALID) { + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Block size %dx%d invalid with this subsampling mode", + block_size_wide[subsize], block_size_high[subsize]); + } + +#define DEC_BLOCK_STX_ARG +#define DEC_BLOCK_EPT_ARG partition, +#define DEC_BLOCK(db_r, db_c, db_subsize) \ + block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), r, \ + DEC_BLOCK_EPT_ARG(db_subsize)) +#define DEC_PARTITION(db_r, db_c, db_subsize) \ + decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), r, (db_subsize), \ + parse_decode_flag) + + switch (partition) { + case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break; + case PARTITION_HORZ: + DEC_BLOCK(mi_row, mi_col, subsize); + if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize); + break; + case PARTITION_VERT: + DEC_BLOCK(mi_row, mi_col, subsize); + if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize); + break; + case PARTITION_SPLIT: + DEC_PARTITION(mi_row, mi_col, subsize); + DEC_PARTITION(mi_row, mi_col + hbs, subsize); + DEC_PARTITION(mi_row + hbs, mi_col, subsize); + DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize); + break; + case PARTITION_HORZ_A: + DEC_BLOCK(mi_row, mi_col, bsize2); + DEC_BLOCK(mi_row, mi_col + hbs, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col, subsize); + break; + case PARTITION_HORZ_B: + DEC_BLOCK(mi_row, mi_col, subsize); + DEC_BLOCK(mi_row + hbs, mi_col, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); + break; + case PARTITION_VERT_A: + DEC_BLOCK(mi_row, mi_col, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col, bsize2); + DEC_BLOCK(mi_row, mi_col + hbs, subsize); + break; + case PARTITION_VERT_B: + DEC_BLOCK(mi_row, mi_col, subsize); + DEC_BLOCK(mi_row, mi_col + hbs, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); + break; + case PARTITION_HORZ_4: + for (int i = 0; i < 4; ++i) { + int this_mi_row = mi_row + i * quarter_step; + if (i > 0 && this_mi_row >= cm->mi_rows) break; + DEC_BLOCK(this_mi_row, mi_col, subsize); + } + break; + case PARTITION_VERT_4: + for (int i = 0; i < 4; ++i) { + int this_mi_col = mi_col + i * quarter_step; + if (i > 0 && this_mi_col >= cm->mi_cols) break; + DEC_BLOCK(mi_row, this_mi_col, subsize); + } + break; + default: assert(0 && "Invalid partition type"); + } + +#undef DEC_PARTITION +#undef DEC_BLOCK +#undef DEC_BLOCK_EPT_ARG +#undef DEC_BLOCK_STX_ARG + + if (parse_decode_flag & 1) + update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); +} + +static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, + const size_t read_size, + struct aom_internal_error_info *error_info, + aom_reader *r, uint8_t allow_update_cdf) { + // Validate the calculated partition length. If the buffer + // described by the partition can't be fully read, then restrict + // it to the portion that can be (for EC mode) or throw an error. + if (!read_is_valid(data, read_size, data_end)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + + if (aom_reader_init(r, data, read_size)) + aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, + "Failed to allocate bool decoder %d", 1); + + r->allow_update_cdf = allow_update_cdf; +} + +static void setup_segmentation(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb) { + struct segmentation *const seg = &cm->seg; + + seg->update_map = 0; + seg->update_data = 0; + seg->temporal_update = 0; + + seg->enabled = aom_rb_read_bit(rb); + if (!seg->enabled) { + if (cm->cur_frame->seg_map) + memset(cm->cur_frame->seg_map, 0, (cm->mi_rows * cm->mi_cols)); + + memset(seg, 0, sizeof(*seg)); + segfeatures_copy(&cm->cur_frame->seg, seg); + return; + } + if (cm->seg.enabled && cm->prev_frame && + (cm->mi_rows == cm->prev_frame->mi_rows) && + (cm->mi_cols == cm->prev_frame->mi_cols)) { + cm->last_frame_seg_map = cm->prev_frame->seg_map; + } else { + cm->last_frame_seg_map = NULL; + } + // Read update flags + if (cm->primary_ref_frame == PRIMARY_REF_NONE) { + // These frames can't use previous frames, so must signal map + features + seg->update_map = 1; + seg->temporal_update = 0; + seg->update_data = 1; + } else { + seg->update_map = aom_rb_read_bit(rb); + if (seg->update_map) { + seg->temporal_update = aom_rb_read_bit(rb); + } else { + seg->temporal_update = 0; + } + seg->update_data = aom_rb_read_bit(rb); + } + + // Segmentation data update + if (seg->update_data) { + av1_clearall_segfeatures(seg); + + for (int i = 0; i < MAX_SEGMENTS; i++) { + for (int j = 0; j < SEG_LVL_MAX; j++) { + int data = 0; + const int feature_enabled = aom_rb_read_bit(rb); + if (feature_enabled) { + av1_enable_segfeature(seg, i, j); + + const int data_max = av1_seg_feature_data_max(j); + const int data_min = -data_max; + const int ubits = get_unsigned_bits(data_max); + + if (av1_is_segfeature_signed(j)) { + data = aom_rb_read_inv_signed_literal(rb, ubits); + } else { + data = aom_rb_read_literal(rb, ubits); + } + + data = clamp(data, data_min, data_max); + } + av1_set_segdata(seg, i, j, data); + } + } + calculate_segdata(seg); + } else if (cm->prev_frame) { + segfeatures_copy(seg, &cm->prev_frame->seg); + } + segfeatures_copy(&cm->cur_frame->seg, seg); +} + +static void decode_restoration_mode(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + assert(!cm->all_lossless); + const int num_planes = av1_num_planes(cm); + if (cm->allow_intrabc) return; + int all_none = 1, chroma_none = 1; + for (int p = 0; p < num_planes; ++p) { + RestorationInfo *rsi = &cm->rst_info[p]; + if (aom_rb_read_bit(rb)) { + rsi->frame_restoration_type = + aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; + } else { + rsi->frame_restoration_type = + aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; + } + if (rsi->frame_restoration_type != RESTORE_NONE) { + all_none = 0; + chroma_none &= p == 0; + } + } + if (!all_none) { + assert(cm->seq_params.sb_size == BLOCK_64X64 || + cm->seq_params.sb_size == BLOCK_128X128); + const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; + + for (int p = 0; p < num_planes; ++p) + cm->rst_info[p].restoration_unit_size = sb_size; + + RestorationInfo *rsi = &cm->rst_info[0]; + + if (sb_size == 64) { + rsi->restoration_unit_size <<= aom_rb_read_bit(rb); + } + if (rsi->restoration_unit_size > 64) { + rsi->restoration_unit_size <<= aom_rb_read_bit(rb); + } + } else { + const int size = RESTORATION_UNITSIZE_MAX; + for (int p = 0; p < num_planes; ++p) + cm->rst_info[p].restoration_unit_size = size; + } + + if (num_planes > 1) { + int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); + if (s && !chroma_none) { + cm->rst_info[1].restoration_unit_size = + cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s); + } else { + cm->rst_info[1].restoration_unit_size = + cm->rst_info[0].restoration_unit_size; + } + cm->rst_info[2].restoration_unit_size = + cm->rst_info[1].restoration_unit_size; + } +} + +static void read_wiener_filter(int wiener_win, WienerInfo *wiener_info, + WienerInfo *ref_wiener_info, aom_reader *rb) { + memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); + memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); + + if (wiener_win == WIENER_WIN) + wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + + WIENER_FILT_TAP0_MINV; + else + wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; + wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + + WIENER_FILT_TAP1_MINV; + wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + + WIENER_FILT_TAP2_MINV; + // The central element has an implicit +WIENER_FILT_STEP + wiener_info->vfilter[WIENER_HALFWIN] = + -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + + wiener_info->vfilter[2]); + + if (wiener_win == WIENER_WIN) + wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + + WIENER_FILT_TAP0_MINV; + else + wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; + wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + + WIENER_FILT_TAP1_MINV; + wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + + WIENER_FILT_TAP2_MINV; + // The central element has an implicit +WIENER_FILT_STEP + wiener_info->hfilter[WIENER_HALFWIN] = + -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + + wiener_info->hfilter[2]); + memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); +} + +static void read_sgrproj_filter(SgrprojInfo *sgrproj_info, + SgrprojInfo *ref_sgrproj_info, aom_reader *rb) { + sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); + const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; + + if (params->r[0] == 0) { + sgrproj_info->xqd[0] = 0; + sgrproj_info->xqd[1] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + + SGRPROJ_PRJ_MIN1; + } else if (params->r[1] == 0) { + sgrproj_info->xqd[0] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + + SGRPROJ_PRJ_MIN0; + sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], + SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); + } else { + sgrproj_info->xqd[0] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + + SGRPROJ_PRJ_MIN0; + sgrproj_info->xqd[1] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + + SGRPROJ_PRJ_MIN1; + } + + memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); +} + +static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + aom_reader *const r, int plane, + int runit_idx) { + const RestorationInfo *rsi = &cm->rst_info[plane]; + RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; + if (rsi->frame_restoration_type == RESTORE_NONE) return; + + assert(!cm->all_lossless); + + const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; + WienerInfo *wiener_info = xd->wiener_info + plane; + SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; + + if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { + rui->restoration_type = + aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf, + RESTORE_SWITCHABLE_TYPES, ACCT_STR); + switch (rui->restoration_type) { + case RESTORE_WIENER: + read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); + break; + case RESTORE_SGRPROJ: + read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); + break; + default: assert(rui->restoration_type == RESTORE_NONE); break; + } + } else if (rsi->frame_restoration_type == RESTORE_WIENER) { + if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) { + rui->restoration_type = RESTORE_WIENER; + read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); + } else { + rui->restoration_type = RESTORE_NONE; + } + } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { + if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) { + rui->restoration_type = RESTORE_SGRPROJ; + read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); + } else { + rui->restoration_type = RESTORE_NONE; + } + } +} + +static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + const int num_planes = av1_num_planes(cm); + struct loopfilter *lf = &cm->lf; + if (cm->allow_intrabc || cm->coded_lossless) { + // write default deltas to frame buffer + av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); + av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); + return; + } + assert(!cm->coded_lossless); + if (cm->prev_frame) { + // write deltas to frame buffer + memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); + memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); + } else { + av1_set_default_ref_deltas(lf->ref_deltas); + av1_set_default_mode_deltas(lf->mode_deltas); + } + lf->filter_level[0] = aom_rb_read_literal(rb, 6); + lf->filter_level[1] = aom_rb_read_literal(rb, 6); + if (num_planes > 1) { + if (lf->filter_level[0] || lf->filter_level[1]) { + lf->filter_level_u = aom_rb_read_literal(rb, 6); + lf->filter_level_v = aom_rb_read_literal(rb, 6); + } + } + lf->sharpness_level = aom_rb_read_literal(rb, 3); + + // Read in loop filter deltas applied at the MB level based on mode or ref + // frame. + lf->mode_ref_delta_update = 0; + + lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); + if (lf->mode_ref_delta_enabled) { + lf->mode_ref_delta_update = aom_rb_read_bit(rb); + if (lf->mode_ref_delta_update) { + for (int i = 0; i < REF_FRAMES; i++) + if (aom_rb_read_bit(rb)) + lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); + + for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) + if (aom_rb_read_bit(rb)) + lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); + } + } + + // write deltas to frame buffer + memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES); + memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS); +} + +static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + const int num_planes = av1_num_planes(cm); + if (cm->allow_intrabc) return; + cm->cdef_pri_damping = cm->cdef_sec_damping = aom_rb_read_literal(rb, 2) + 3; + cm->cdef_bits = aom_rb_read_literal(rb, 2); + cm->nb_cdef_strengths = 1 << cm->cdef_bits; + for (int i = 0; i < cm->nb_cdef_strengths; i++) { + cm->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); + cm->cdef_uv_strengths[i] = + num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; + } +} + +static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { + return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; +} + +static void setup_quantization(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb) { + const SequenceHeader *const seq_params = &cm->seq_params; + const int num_planes = av1_num_planes(cm); + cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); + cm->y_dc_delta_q = read_delta_q(rb); + if (num_planes > 1) { + int diff_uv_delta = 0; + if (seq_params->separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); + cm->u_dc_delta_q = read_delta_q(rb); + cm->u_ac_delta_q = read_delta_q(rb); + if (diff_uv_delta) { + cm->v_dc_delta_q = read_delta_q(rb); + cm->v_ac_delta_q = read_delta_q(rb); + } else { + cm->v_dc_delta_q = cm->u_dc_delta_q; + cm->v_ac_delta_q = cm->u_ac_delta_q; + } + } else { + cm->u_dc_delta_q = 0; + cm->u_ac_delta_q = 0; + cm->v_dc_delta_q = 0; + cm->v_ac_delta_q = 0; + } + cm->dequant_bit_depth = seq_params->bit_depth; + cm->using_qmatrix = aom_rb_read_bit(rb); + if (cm->using_qmatrix) { + cm->qm_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); + cm->qm_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); + if (!seq_params->separate_uv_delta_q) + cm->qm_v = cm->qm_u; + else + cm->qm_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); + } else { + cm->qm_y = 0; + cm->qm_u = 0; + cm->qm_v = 0; + } +} + +// Build y/uv dequant values based on segmentation. +static void setup_segmentation_dequant(AV1_COMMON *const cm) { + const int bit_depth = cm->seq_params.bit_depth; + const int using_qm = cm->using_qmatrix; + // When segmentation is disabled, only the first value is used. The + // remaining are don't cares. + const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; + for (int i = 0; i < max_segments; ++i) { + const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); + cm->y_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, cm->y_dc_delta_q, bit_depth); + cm->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); + cm->u_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, cm->u_dc_delta_q, bit_depth); + cm->u_dequant_QTX[i][1] = + av1_ac_quant_QTX(qindex, cm->u_ac_delta_q, bit_depth); + cm->v_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, cm->v_dc_delta_q, bit_depth); + cm->v_dequant_QTX[i][1] = + av1_ac_quant_QTX(qindex, cm->v_ac_delta_q, bit_depth); + const int lossless = qindex == 0 && cm->y_dc_delta_q == 0 && + cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && + cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; + // NB: depends on base index so there is only 1 set per frame + // No quant weighting when lossless or signalled not using QM + int qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_y; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + cm->y_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_Y, j); + } + qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_u; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + cm->u_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_U, j); + } + qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_v; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + cm->v_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_V, j); + } + } +} + +static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { + return aom_rb_read_bit(rb) ? SWITCHABLE + : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); +} + +static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + cm->render_width = cm->superres_upscaled_width; + cm->render_height = cm->superres_upscaled_height; + if (aom_rb_read_bit(rb)) + av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); +} + +// TODO(afergs): make "struct aom_read_bit_buffer *const rb"? +static void setup_superres(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb, + int *width, int *height) { + cm->superres_upscaled_width = *width; + cm->superres_upscaled_height = *height; + + const SequenceHeader *const seq_params = &cm->seq_params; + if (!seq_params->enable_superres) return; + + if (aom_rb_read_bit(rb)) { + cm->superres_scale_denominator = + (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); + cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; + // Don't edit cm->width or cm->height directly, or the buffers won't get + // resized correctly + av1_calculate_scaled_superres_size(width, height, + cm->superres_scale_denominator); + } else { + // 1:1 scaling - ie. no scaling, scale not provided + cm->superres_scale_denominator = SCALE_NUMERATOR; + } +} + +static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { +#if CONFIG_SIZE_LIMIT + if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Dimensions of %dx%d beyond allowed size of %dx%d.", + width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); +#endif + if (cm->width != width || cm->height != height) { + const int new_mi_rows = + ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; + const int new_mi_cols = + ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; + + // Allocations in av1_alloc_context_buffers() depend on individual + // dimensions as well as the overall size. + if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { + if (av1_alloc_context_buffers(cm, width, height)) { + // The cm->mi_* values have been cleared and any existing context + // buffers have been freed. Clear cm->width and cm->height to be + // consistent and to force a realloc next time. + cm->width = 0; + cm->height = 0; + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } + } else { + av1_set_mb_mi(cm, width, height); + } + av1_init_context_buffers(cm); + cm->width = width; + cm->height = height; + } + + ensure_mv_buffer(cm->cur_frame, cm); + cm->cur_frame->width = cm->width; + cm->cur_frame->height = cm->height; +} + +static void setup_buffer_pool(AV1_COMMON *cm) { + BufferPool *const pool = cm->buffer_pool; + const SequenceHeader *const seq_params = &cm->seq_params; + + lock_buffer_pool(pool); + if (aom_realloc_frame_buffer( + get_frame_new_buffer(cm), cm->width, cm->height, + seq_params->subsampling_x, seq_params->subsampling_y, + seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, + &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, + pool->cb_priv)) { + unlock_buffer_pool(pool); + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + unlock_buffer_pool(pool); + + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = + seq_params->subsampling_x; + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = + seq_params->subsampling_y; + pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = + (unsigned int)seq_params->bit_depth; + pool->frame_bufs[cm->new_fb_idx].buf.color_primaries = + seq_params->color_primaries; + pool->frame_bufs[cm->new_fb_idx].buf.transfer_characteristics = + seq_params->transfer_characteristics; + pool->frame_bufs[cm->new_fb_idx].buf.matrix_coefficients = + seq_params->matrix_coefficients; + pool->frame_bufs[cm->new_fb_idx].buf.monochrome = seq_params->monochrome; + pool->frame_bufs[cm->new_fb_idx].buf.chroma_sample_position = + seq_params->chroma_sample_position; + pool->frame_bufs[cm->new_fb_idx].buf.color_range = seq_params->color_range; + pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; + pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; +} + +static void setup_frame_size(AV1_COMMON *cm, int frame_size_override_flag, + struct aom_read_bit_buffer *rb) { + const SequenceHeader *const seq_params = &cm->seq_params; + int width, height; + + if (frame_size_override_flag) { + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); + if (width > seq_params->max_frame_width || + height > seq_params->max_frame_height) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Frame dimensions are larger than the maximum values"); + } + } else { + width = seq_params->max_frame_width; + height = seq_params->max_frame_height; + } + + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + setup_buffer_pool(cm); +} + +static void setup_sb_size(SequenceHeader *seq_params, + struct aom_read_bit_buffer *rb) { + set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); +} + +static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, + int ref_xss, int ref_yss, + aom_bit_depth_t this_bit_depth, + int this_xss, int this_yss) { + return ref_bit_depth == this_bit_depth && ref_xss == this_xss && + ref_yss == this_yss; +} + +static void setup_frame_size_with_refs(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + int width, height; + int found = 0; + int has_valid_ref_frame = 0; + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + if (aom_rb_read_bit(rb)) { + YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; + width = buf->y_crop_width; + height = buf->y_crop_height; + cm->render_width = buf->render_width; + cm->render_height = buf->render_height; + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + found = 1; + break; + } + } + + const SequenceHeader *const seq_params = &cm->seq_params; + if (!found) { + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + + av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + } + + if (width <= 0 || height <= 0) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid frame size"); + + // Check to make sure at least one of frames that this frame references + // has valid dimensions. + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + RefBuffer *const ref_frame = &cm->frame_refs[i]; + has_valid_ref_frame |= + valid_ref_frame_size(ref_frame->buf->y_crop_width, + ref_frame->buf->y_crop_height, width, height); + } + if (!has_valid_ref_frame) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Referenced frame has invalid size"); + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + RefBuffer *const ref_frame = &cm->frame_refs[i]; + if (!valid_ref_frame_img_fmt( + ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, + ref_frame->buf->subsampling_y, seq_params->bit_depth, + seq_params->subsampling_x, seq_params->subsampling_y)) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Referenced frame has incompatible color format"); + } + setup_buffer_pool(cm); +} + +// Same function as av1_read_uniform but reading from uncompresses header wb +static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + const int v = aom_rb_read_literal(rb, l - 1); + assert(l != 0); + if (v < m) + return v; + else + return (v << 1) - m + aom_rb_read_bit(rb); +} + +static void read_tile_info_max_tile(AV1_COMMON *const cm, + struct aom_read_bit_buffer *const rb) { + int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); + int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); + int width_sb = width_mi >> cm->seq_params.mib_size_log2; + int height_sb = height_mi >> cm->seq_params.mib_size_log2; + + av1_get_tile_limits(cm); + cm->uniform_tile_spacing_flag = aom_rb_read_bit(rb); + + // Read tile columns + if (cm->uniform_tile_spacing_flag) { + cm->log2_tile_cols = cm->min_log2_tile_cols; + while (cm->log2_tile_cols < cm->max_log2_tile_cols) { + if (!aom_rb_read_bit(rb)) { + break; + } + cm->log2_tile_cols++; + } + } else { + int i; + int start_sb; + for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { + const int size_sb = + 1 + rb_read_uniform(rb, AOMMIN(width_sb, cm->max_tile_width_sb)); + cm->tile_col_start_sb[i] = start_sb; + start_sb += size_sb; + width_sb -= size_sb; + } + cm->tile_cols = i; + cm->tile_col_start_sb[i] = start_sb + width_sb; + } + av1_calculate_tile_cols(cm); + + // Read tile rows + if (cm->uniform_tile_spacing_flag) { + cm->log2_tile_rows = cm->min_log2_tile_rows; + while (cm->log2_tile_rows < cm->max_log2_tile_rows) { + if (!aom_rb_read_bit(rb)) { + break; + } + cm->log2_tile_rows++; + } + } else { + int i; + int start_sb; + for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { + const int size_sb = + 1 + rb_read_uniform(rb, AOMMIN(height_sb, cm->max_tile_height_sb)); + cm->tile_row_start_sb[i] = start_sb; + start_sb += size_sb; + height_sb -= size_sb; + } + cm->tile_rows = i; + cm->tile_row_start_sb[i] = start_sb + height_sb; + } + av1_calculate_tile_rows(cm); +} + +void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { + cm->single_tile_decoding = 0; + if (cm->large_scale_tile) { + struct loopfilter *lf = &cm->lf; + + // Figure out single_tile_decoding by loopfilter_level. + const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); + const int no_cdef = cm->cdef_bits == 0 && cm->cdef_strengths[0] == 0 && + cm->cdef_uv_strengths[0] == 0; + const int no_restoration = + cm->rst_info[0].frame_restoration_type == RESTORE_NONE && + cm->rst_info[1].frame_restoration_type == RESTORE_NONE && + cm->rst_info[2].frame_restoration_type == RESTORE_NONE; + assert(IMPLIES(cm->coded_lossless, no_loopfilter && no_cdef)); + assert(IMPLIES(cm->all_lossless, no_restoration)); + cm->single_tile_decoding = no_loopfilter && no_cdef && no_restoration; + } +} + +static void read_tile_info(AV1Decoder *const pbi, + struct aom_read_bit_buffer *const rb) { + AV1_COMMON *const cm = &pbi->common; + + read_tile_info_max_tile(cm, rb); + + cm->context_update_tile_id = 0; + if (cm->tile_rows * cm->tile_cols > 1) { + // tile to use for cdf update + cm->context_update_tile_id = + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); + if (cm->context_update_tile_id >= cm->tile_rows * cm->tile_cols) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid context_update_tile_id"); + } + // tile size magnitude + pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; + } +} + +#if EXT_TILE_DEBUG +static void read_ext_tile_info(AV1Decoder *const pbi, + struct aom_read_bit_buffer *const rb) { + AV1_COMMON *const cm = &pbi->common; + + // This information is stored as a separate byte. + int mod = rb->bit_offset % CHAR_BIT; + if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); + assert(rb->bit_offset % CHAR_BIT == 0); + + if (cm->tile_cols * cm->tile_rows > 1) { + // Read the number of bytes used to store tile size + pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; + pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; + } +} +#endif // EXT_TILE_DEBUG + +static size_t mem_get_varsize(const uint8_t *src, int sz) { + switch (sz) { + case 1: return src[0]; + case 2: return mem_get_le16(src); + case 3: return mem_get_le24(src); + case 4: return mem_get_le32(src); + default: assert(0 && "Invalid size"); return -1; + } +} + +#if EXT_TILE_DEBUG +// Reads the next tile returning its size and adjusting '*data' accordingly +// based on 'is_last'. On return, '*data' is updated to point to the end of the +// raw tile buffer in the bit stream. +static void get_ls_tile_buffer( + const uint8_t *const data_end, struct aom_internal_error_info *error_info, + const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], + int tile_size_bytes, int col, int row, int tile_copy_mode) { + size_t size; + + size_t copy_size = 0; + const uint8_t *copy_data = NULL; + + if (!read_is_valid(*data, tile_size_bytes, data_end)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + size = mem_get_varsize(*data, tile_size_bytes); + + // If tile_copy_mode = 1, then the top bit of the tile header indicates copy + // mode. + if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { + // The remaining bits in the top byte signal the row offset + int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; + + // Currently, only use tiles in same column as reference tiles. + copy_data = tile_buffers[row - offset][col].data; + copy_size = tile_buffers[row - offset][col].size; + size = 0; + } else { + size += AV1_MIN_TILE_SIZE_BYTES; + } + + *data += tile_size_bytes; + + if (size > (size_t)(data_end - *data)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile size"); + + if (size > 0) { + tile_buffers[row][col].data = *data; + tile_buffers[row][col].size = size; + } else { + tile_buffers[row][col].data = copy_data; + tile_buffers[row][col].size = copy_size; + } + + *data += size; +} + +// Returns the end of the last tile buffer +// (tile_buffers[cm->tile_rows - 1][cm->tile_cols - 1]). +static const uint8_t *get_ls_tile_buffers( + AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + const int have_tiles = tile_cols * tile_rows > 1; + const uint8_t *raw_data_end; // The end of the last tile buffer + + if (!have_tiles) { + const size_t tile_size = data_end - data; + tile_buffers[0][0].data = data; + tile_buffers[0][0].size = tile_size; + raw_data_end = NULL; + } else { + // We locate only the tile buffers that are required, which are the ones + // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always + // need the last (bottom right) tile buffer, as we need to know where the + // end of the compressed frame buffer is for proper superframe decoding. + + const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; + const uint8_t *const data_start = data; + + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int tile_rows_start = single_row ? dec_tile_row : 0; + const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + const int tile_cols_start = single_col ? dec_tile_col : 0; + const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + + const int tile_col_size_bytes = pbi->tile_col_size_bytes; + const int tile_size_bytes = pbi->tile_size_bytes; + const int tile_copy_mode = + ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) ? 1 + : 0; + // Read tile column sizes for all columns (we need the last tile buffer) + for (int c = 0; c < tile_cols; ++c) { + const int is_last = c == tile_cols - 1; + size_t tile_col_size; + + if (!is_last) { + tile_col_size = mem_get_varsize(data, tile_col_size_bytes); + data += tile_col_size_bytes; + tile_col_data_end[c] = data + tile_col_size; + } else { + tile_col_size = data_end - data; + tile_col_data_end[c] = data_end; + } + data += tile_col_size; + } + + data = data_start; + + // Read the required tile sizes. + for (int c = tile_cols_start; c < tile_cols_end; ++c) { + const int is_last = c == tile_cols - 1; + + if (c > 0) data = tile_col_data_end[c - 1]; + + if (!is_last) data += tile_col_size_bytes; + + // Get the whole of the last column, otherwise stop at the required tile. + for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { + get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, + tile_buffers, tile_size_bytes, c, r, tile_copy_mode); + } + } + + // If we have not read the last column, then read it to get the last tile. + if (tile_cols_end != tile_cols) { + const int c = tile_cols - 1; + + data = tile_col_data_end[c - 1]; + + for (int r = 0; r < tile_rows; ++r) { + get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, + tile_buffers, tile_size_bytes, c, r, tile_copy_mode); + } + } + raw_data_end = data; + } + return raw_data_end; +} +#endif // EXT_TILE_DEBUG + +static const uint8_t *get_ls_single_tile_buffer( + AV1Decoder *pbi, const uint8_t *data, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { + assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0); + tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data; + tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size = + (size_t)pbi->coded_tile_data_size; + return data + pbi->coded_tile_data_size; +} + +// Reads the next tile returning its size and adjusting '*data' accordingly +// based on 'is_last'. +static void get_tile_buffer(const uint8_t *const data_end, + const int tile_size_bytes, int is_last, + struct aom_internal_error_info *error_info, + const uint8_t **data, TileBufferDec *const buf) { + size_t size; + + if (!is_last) { + if (!read_is_valid(*data, tile_size_bytes, data_end)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + + size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; + *data += tile_size_bytes; + + if (size > (size_t)(data_end - *data)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile size"); + } else { + size = data_end - *data; + } + + buf->data = *data; + buf->size = size; + + *data += size; +} + +static void get_tile_buffers(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], + int start_tile, int end_tile) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int tc = 0; + int first_tile_in_tg = 0; + + for (int r = 0; r < tile_rows; ++r) { + for (int c = 0; c < tile_cols; ++c, ++tc) { + TileBufferDec *const buf = &tile_buffers[r][c]; + + const int is_last = (tc == end_tile); + const size_t hdr_offset = 0; + + if (tc < start_tile || tc > end_tile) continue; + + if (data + hdr_offset >= data_end) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Data ended before all tiles were read."); + first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0; + data += hdr_offset; + get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, + &pbi->common.error, &data, buf); + } + } +} + +static void set_cb_buffer(AV1Decoder *pbi, MACROBLOCKD *const xd, + CB_BUFFER *cb_buffer_base, const int num_planes, + int mi_row, int mi_col) { + AV1_COMMON *const cm = &pbi->common; + int mib_size_log2 = cm->seq_params.mib_size_log2; + int stride = (cm->mi_cols >> mib_size_log2) + 1; + int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); + CB_BUFFER *cb_buffer = cb_buffer_base + offset; + + for (int plane = 0; plane < num_planes; ++plane) { + xd->plane[plane].dqcoeff_block = cb_buffer->dqcoeff[plane]; + xd->plane[plane].eob_data = cb_buffer->eob_data[plane]; + xd->cb_offset[plane] = 0; + xd->txb_offset[plane] = 0; + } + xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; + xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; + xd->color_index_map_offset[0] = 0; + xd->color_index_map_offset[1] = 0; +} + +static void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) { + AV1_COMMON *const cm = &pbi->common; + aom_free(pbi->tile_data); + CHECK_MEM_ERROR(cm, pbi->tile_data, + aom_memalign(32, n_tiles * sizeof(*pbi->tile_data))); + pbi->allocated_tiles = n_tiles; + for (int i = 0; i < n_tiles; i++) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_zero(tile_data->dec_row_mt_sync); + } + pbi->allocated_row_mt_sync_rows = 0; +} + +// Set up nsync by width. +static INLINE int get_sync_range(int width) { +// nsync numbers are picked by testing. +#if 0 + if (width < 640) + return 1; + else if (width <= 1280) + return 2; + else if (width <= 4096) + return 4; + else + return 8; +#else + (void)width; +#endif + return 1; +} + +// Allocate memory for decoder row synchronization +static void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync, AV1_COMMON *cm, + int rows) { + dec_row_mt_sync->allocated_sb_rows = rows; +#if CONFIG_MULTITHREAD + { + int i; + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_, + aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows)); + if (dec_row_mt_sync->mutex_) { + for (i = 0; i < rows; ++i) { + pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL); + } + } + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_, + aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows)); + if (dec_row_mt_sync->cond_) { + for (i = 0; i < rows; ++i) { + pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL); + } + } + } +#endif // CONFIG_MULTITHREAD + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col, + aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows)); + + // Set up nsync. + dec_row_mt_sync->sync_range = get_sync_range(cm->width); +} + +// Deallocate decoder row synchronization related mutex and data +void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { + if (dec_row_mt_sync != NULL) { +#if CONFIG_MULTITHREAD + int i; + if (dec_row_mt_sync->mutex_ != NULL) { + for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { + pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); + } + aom_free(dec_row_mt_sync->mutex_); + } + if (dec_row_mt_sync->cond_ != NULL) { + for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { + pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); + } + aom_free(dec_row_mt_sync->cond_); + } +#endif // CONFIG_MULTITHREAD + aom_free(dec_row_mt_sync->cur_sb_col); + + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + av1_zero(*dec_row_mt_sync); + } +} + +static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r, + int c) { +#if CONFIG_MULTITHREAD + const int nsync = dec_row_mt_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1]; + pthread_mutex_lock(mutex); + + while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync) { + pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)dec_row_mt_sync; + (void)r; + (void)c; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r, + int c, const int sb_cols) { +#if CONFIG_MULTITHREAD + const int nsync = dec_row_mt_sync->sync_range; + int cur; + int sig = 1; + + if (c < sb_cols - 1) { + cur = c; + if (c % nsync) sig = 0; + } else { + cur = sb_cols + nsync; + } + + if (sig) { + pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]); + + dec_row_mt_sync->cur_sb_col[r] = cur; + + pthread_cond_signal(&dec_row_mt_sync->cond_[r]); + pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]); + } +#else + (void)dec_row_mt_sync; + (void)r; + (void)c; + (void)sb_cols; +#endif // CONFIG_MULTITHREAD +} + +static void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td, + TileInfo tile_info, const int mi_row) { + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + TileDataDec *const tile_data = + pbi->tile_data + tile_info.tile_row * cm->tile_cols + tile_info.tile_col; + const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); + const int sb_row_in_tile = + (mi_row - tile_info.mi_row_start) >> cm->seq_params.mib_size_log2; + int sb_col_in_tile = 0; + + for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; + mi_col += cm->seq_params.mib_size, sb_col_in_tile++) { + set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row, + mi_col); + + sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile); + + // Decoding of the super-block + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params.sb_size, 0x2); + + sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile, + sb_cols_in_tile); + } +} + +static int check_trailing_bits_after_symbol_coder(aom_reader *r) { + if (aom_reader_has_overflowed(r)) return -1; + + uint32_t nb_bits = aom_reader_tell(r); + uint32_t nb_bytes = (nb_bits + 7) >> 3; + const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; + + // aom_reader_tell() returns 1 for a newly initialized decoder, and the + // return value only increases as values are decoded. So nb_bits > 0, and + // thus p > p_begin. Therefore accessing p[-1] is safe. + uint8_t last_byte = p[-1]; + uint8_t pattern = 128 >> ((nb_bits - 1) & 7); + if ((last_byte & (2 * pattern - 1)) != pattern) return -1; + + // Make sure that all padding bytes are zero as required by the spec. + const uint8_t *p_end = aom_reader_find_end(r); + while (p < p_end) { + if (*p != 0) return -1; + p++; + } + return 0; +} + +static void set_decode_func_pointers(ThreadData *td, int parse_decode_flag) { + td->read_coeffs_tx_intra_block_visit = decode_block_void; + td->predict_and_recon_intra_block_visit = decode_block_void; + td->read_coeffs_tx_inter_block_visit = decode_block_void; + td->inverse_tx_inter_block_visit = decode_block_void; + td->predict_inter_block_visit = predict_inter_block_void; + td->cfl_store_inter_block_visit = cfl_store_inter_block_void; + + if (parse_decode_flag & 0x1) { + td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; + td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; + } + if (parse_decode_flag & 0x2) { + td->predict_and_recon_intra_block_visit = + predict_and_reconstruct_intra_block; + td->inverse_tx_inter_block_visit = inverse_transform_inter_block; + td->predict_inter_block_visit = predict_inter_block; + td->cfl_store_inter_block_visit = cfl_store_inter_block; + } +} + +static void decode_tile(AV1Decoder *pbi, ThreadData *const td, int tile_row, + int tile_col) { + TileInfo tile_info; + + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + + av1_tile_set_row(&tile_info, cm, tile_row); + av1_tile_set_col(&tile_info, cm, tile_col); + av1_zero_above_context(cm, &td->xd, tile_info.mi_col_start, + tile_info.mi_col_end, tile_row); + av1_reset_loop_filter_delta(&td->xd, num_planes); + av1_reset_loop_restoration(&td->xd, num_planes); + + for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; + mi_row += cm->seq_params.mib_size) { + av1_zero_left_context(&td->xd); + + for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; + mi_col += cm->seq_params.mib_size) { + set_cb_buffer(pbi, &td->xd, &td->cb_buffer_base, num_planes, 0, 0); + + // Bit-stream parsing and decoding of the superblock + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params.sb_size, 0x3); + + if (aom_reader_has_overflowed(td->bit_reader)) { + aom_merge_corrupted_flag(&td->xd.corrupted, 1); + return; + } + } + } + + int corrupted = + (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; + aom_merge_corrupted_flag(&td->xd.corrupted, corrupted); +} + +static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + ThreadData *const td = &pbi->td; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int inv_col_order; + int inv_row_order; + int tile_row, tile_col; + uint8_t allow_update_cdf; + const uint8_t *raw_data_end = NULL; + + if (cm->large_scale_tile) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + inv_col_order = pbi->inv_tile_order && !single_col; + inv_row_order = pbi->inv_tile_order && !single_row; + allow_update_cdf = 0; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + inv_col_order = pbi->inv_tile_order; + inv_row_order = pbi->inv_tile_order; + allow_update_cdf = 1; + } + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * cm->tile_cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * cm->tile_cols + tile_cols_end - 1 < start_tile) + return data; + + allow_update_cdf = allow_update_cdf && !cm->disable_cdf_update; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + +#if EXT_TILE_DEBUG + if (cm->large_scale_tile && !pbi->ext_tile_debug) + raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers); + else if (cm->large_scale_tile && pbi->ext_tile_debug) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + decoder_alloc_tile_data(pbi, n_tiles); + } +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + aom_accounting_reset(&pbi->accounting); + } +#endif + + set_decode_func_pointers(&pbi->td, 0x3); + + // Load all tile information into thread_data. + td->xd = pbi->mb; + td->xd.corrupted = 0; + td->xd.mc_buf[0] = td->mc_buf[0]; + td->xd.mc_buf[1] = td->mc_buf[1]; + td->xd.tmp_conv_dst = td->tmp_conv_dst; + for (int j = 0; j < 2; ++j) { + td->xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j]; + } + + for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { + const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; + + for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { + const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; + TileDataDec *const tile_data = pbi->tile_data + row * cm->tile_cols + col; + const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col]; + + if (row * cm->tile_cols + col < start_tile || + row * cm->tile_cols + col > end_tile) + continue; + + td->bit_reader = &tile_data->bit_reader; + av1_zero(td->dqcoeff); + av1_tile_init(&td->xd.tile, cm, row, col); + td->xd.current_qindex = cm->base_qindex; + setup_bool_decoder(tile_bs_buf->data, data_end, tile_bs_buf->size, + &cm->error, td->bit_reader, allow_update_cdf); +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + td->bit_reader->accounting = &pbi->accounting; + td->bit_reader->accounting->last_tell_frac = + aom_reader_tell_frac(td->bit_reader); + } else { + td->bit_reader->accounting = NULL; + } +#endif + av1_init_macroblockd(cm, &td->xd, td->dqcoeff); + av1_init_above_context(cm, &td->xd, row); + + // Initialise the tile context from the frame context + tile_data->tctx = *cm->fc; + td->xd.tile_ctx = &tile_data->tctx; + + // decode tile + decode_tile(pbi, td, row, col); + aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted); + if (pbi->mb.corrupted) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + } + } + + if (cm->large_scale_tile) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { + TileJobsDec *cur_job_info = NULL; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(tile_mt_info->job_mutex); + + if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { + cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; + tile_mt_info->jobs_dequeued++; + } + + pthread_mutex_unlock(tile_mt_info->job_mutex); +#else + (void)tile_mt_info; +#endif + return cur_job_info; +} + +static void tile_worker_hook_init(AV1Decoder *const pbi, + DecWorkerData *const thread_data, + const TileBufferDec *const tile_buffer, + TileDataDec *const tile_data, + uint8_t allow_update_cdf) { + AV1_COMMON *cm = &pbi->common; + ThreadData *const td = thread_data->td; + int tile_row = tile_data->tile_info.tile_row; + int tile_col = tile_data->tile_info.tile_col; + + td->bit_reader = &tile_data->bit_reader; + av1_zero(td->dqcoeff); + av1_tile_init(&td->xd.tile, cm, tile_row, tile_col); + td->xd.current_qindex = cm->base_qindex; + setup_bool_decoder(tile_buffer->data, thread_data->data_end, + tile_buffer->size, &thread_data->error_info, + td->bit_reader, allow_update_cdf); +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + td->bit_reader->accounting = &pbi->accounting; + td->bit_reader->accounting->last_tell_frac = + aom_reader_tell_frac(td->bit_reader); + } else { + td->bit_reader->accounting = NULL; + } +#endif + av1_init_macroblockd(cm, &td->xd, td->dqcoeff); + td->xd.error_info = &thread_data->error_info; + av1_init_above_context(cm, &td->xd, tile_row); + + // Initialise the tile context from the frame context + tile_data->tctx = *cm->fc; + td->xd.tile_ctx = &tile_data->tctx; +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + tile_data->bit_reader.accounting->last_tell_frac = + aom_reader_tell_frac(&tile_data->bit_reader); + } +#endif +} + +static int tile_worker_hook(void *arg1, void *arg2) { + DecWorkerData *const thread_data = (DecWorkerData *)arg1; + AV1Decoder *const pbi = (AV1Decoder *)arg2; + AV1_COMMON *cm = &pbi->common; + ThreadData *const td = thread_data->td; + uint8_t allow_update_cdf; + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(thread_data->error_info.jmp)) { + thread_data->error_info.setjmp = 0; + thread_data->td->xd.corrupted = 1; + return 0; + } + thread_data->error_info.setjmp = 1; + + allow_update_cdf = cm->large_scale_tile ? 0 : 1; + allow_update_cdf = allow_update_cdf && !cm->disable_cdf_update; + + set_decode_func_pointers(td, 0x3); + + assert(cm->tile_cols > 0); + while (1) { + TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); + + if (cur_job_info != NULL && !td->xd.corrupted) { + const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; + TileDataDec *const tile_data = cur_job_info->tile_data; + tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, + allow_update_cdf); + // decode tile + int tile_row = tile_data->tile_info.tile_row; + int tile_col = tile_data->tile_info.tile_col; + decode_tile(pbi, td, tile_row, tile_col); + } else { + break; + } + } + thread_data->error_info.setjmp = 0; + return !td->xd.corrupted; +} + +static int get_next_job_info(AV1Decoder *const pbi, + AV1DecRowMTJobInfo *next_job_info, + int *end_of_frame) { + AV1_COMMON *cm = &pbi->common; + TileDataDec *tile_data; + AV1DecRowMTSync *dec_row_mt_sync; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + TileInfo tile_info; + const int tile_rows_start = frame_row_mt_info->tile_rows_start; + const int tile_rows_end = frame_row_mt_info->tile_rows_end; + const int tile_cols_start = frame_row_mt_info->tile_cols_start; + const int tile_cols_end = frame_row_mt_info->tile_cols_end; + const int start_tile = frame_row_mt_info->start_tile; + const int end_tile = frame_row_mt_info->end_tile; + const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size]; + int num_mis_to_decode, num_threads_working; + int num_mis_waiting_for_decode; + int min_threads_working = INT_MAX; + int max_mis_to_decode = 0; + int tile_row_idx, tile_col_idx; + int tile_row = 0; + int tile_col = 0; + + memset(next_job_info, 0, sizeof(*next_job_info)); + + // Frame decode is completed or error is encountered. + *end_of_frame = (frame_row_mt_info->mi_rows_decode_started == + frame_row_mt_info->mi_rows_to_decode) || + (frame_row_mt_info->row_mt_exit == 1); + if (*end_of_frame) { + return 1; + } + + // Decoding cannot start as bit-stream parsing is not complete. + if (frame_row_mt_info->mi_rows_parse_done - + frame_row_mt_info->mi_rows_decode_started == + 0) + return 0; + + // Choose the tile to decode. + for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end; + ++tile_row_idx) { + for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end; + ++tile_col_idx) { + if (tile_row_idx * cm->tile_cols + tile_col_idx < start_tile || + tile_row_idx * cm->tile_cols + tile_col_idx > end_tile) + continue; + + tile_data = pbi->tile_data + tile_row_idx * cm->tile_cols + tile_col_idx; + dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + num_threads_working = dec_row_mt_sync->num_threads_working; + num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done - + dec_row_mt_sync->mi_rows_decode_started) * + dec_row_mt_sync->mi_cols; + num_mis_to_decode = + (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) * + dec_row_mt_sync->mi_cols; + + assert(num_mis_to_decode >= num_mis_waiting_for_decode); + + // Pick the tile which has minimum number of threads working on it. + if (num_mis_waiting_for_decode > 0) { + if (num_threads_working < min_threads_working) { + min_threads_working = num_threads_working; + max_mis_to_decode = 0; + } + if (num_threads_working == min_threads_working && + num_mis_to_decode > max_mis_to_decode) { + max_mis_to_decode = num_mis_to_decode; + tile_row = tile_row_idx; + tile_col = tile_col_idx; + } + } + } + } + + tile_data = pbi->tile_data + tile_row * cm->tile_cols + tile_col; + tile_info = tile_data->tile_info; + dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + next_job_info->tile_row = tile_row; + next_job_info->tile_col = tile_col; + next_job_info->mi_row = + dec_row_mt_sync->mi_rows_decode_started + tile_info.mi_row_start; + + dec_row_mt_sync->num_threads_working++; + dec_row_mt_sync->mi_rows_decode_started += sb_mi_size; + frame_row_mt_info->mi_rows_decode_started += sb_mi_size; + + return 1; +} + +static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi, + TileDataDec *const tile_data, + const int sb_mi_size) { + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size; + frame_row_mt_info->mi_rows_parse_done += sb_mi_size; +#if CONFIG_MULTITHREAD + pthread_cond_broadcast(pbi->row_mt_cond_); + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif +} + +static int row_mt_worker_hook(void *arg1, void *arg2) { + DecWorkerData *const thread_data = (DecWorkerData *)arg1; + AV1Decoder *const pbi = (AV1Decoder *)arg2; + AV1_COMMON *cm = &pbi->common; + ThreadData *const td = thread_data->td; + uint8_t allow_update_cdf; + const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size]; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + td->xd.corrupted = 0; + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(thread_data->error_info.jmp)) { + thread_data->error_info.setjmp = 0; + thread_data->td->xd.corrupted = 1; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + frame_row_mt_info->row_mt_exit = 1; +#if CONFIG_MULTITHREAD + pthread_cond_broadcast(pbi->row_mt_cond_); + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + return 0; + } + thread_data->error_info.setjmp = 1; + + const int num_planes = av1_num_planes(cm); + allow_update_cdf = cm->large_scale_tile ? 0 : 1; + allow_update_cdf = allow_update_cdf && !cm->disable_cdf_update; + + assert(cm->tile_cols > 0); + while (1) { + TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); + + if (cur_job_info != NULL && !td->xd.corrupted) { + const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; + TileDataDec *const tile_data = cur_job_info->tile_data; + tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, + allow_update_cdf); + + set_decode_func_pointers(td, 0x1); + + // decode tile + TileInfo tile_info = tile_data->tile_info; + int tile_row = tile_info.tile_row; + + av1_zero_above_context(cm, &td->xd, tile_info.mi_col_start, + tile_info.mi_col_end, tile_row); + av1_reset_loop_filter_delta(&td->xd, num_planes); + av1_reset_loop_restoration(&td->xd, num_planes); + + for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; + mi_row += cm->seq_params.mib_size) { + av1_zero_left_context(&td->xd); + + for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; + mi_col += cm->seq_params.mib_size) { + set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row, + mi_col); + + // Bit-stream parsing of the superblock + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params.sb_size, 0x1); + } + signal_parse_sb_row_done(pbi, tile_data, sb_mi_size); + } + + int corrupted = + (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; + aom_merge_corrupted_flag(&td->xd.corrupted, corrupted); + } else { + break; + } + } + + set_decode_func_pointers(td, 0x2); + + while (1) { + AV1DecRowMTJobInfo next_job_info; + int end_of_frame = 0; + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) { +#if CONFIG_MULTITHREAD + pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_); +#endif + } +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + + if (end_of_frame) break; + + int tile_row = next_job_info.tile_row; + int tile_col = next_job_info.tile_col; + int mi_row = next_job_info.mi_row; + + TileDataDec *tile_data = + pbi->tile_data + tile_row * cm->tile_cols + tile_col; + AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; + TileInfo tile_info = tile_data->tile_info; + + av1_tile_init(&td->xd.tile, cm, tile_row, tile_col); + av1_init_macroblockd(cm, &td->xd, td->dqcoeff); + td->xd.error_info = &thread_data->error_info; + + decode_tile_sb_row(pbi, td, tile_info, mi_row); + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + dec_row_mt_sync->num_threads_working--; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + } + thread_data->error_info.setjmp = 0; + return !td->xd.corrupted; +} + +// sorts in descending order +static int compare_tile_buffers(const void *a, const void *b) { + const TileJobsDec *const buf1 = (const TileJobsDec *)a; + const TileJobsDec *const buf2 = (const TileJobsDec *)b; + return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); +} + +static void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, + int tile_rows_start, int tile_rows_end, + int tile_cols_start, int tile_cols_end, + int startTile, int endTile) { + AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; + TileJobsDec *tile_job_queue = tile_mt_info->job_queue; + tile_mt_info->jobs_enqueued = 0; + tile_mt_info->jobs_dequeued = 0; + + for (int row = tile_rows_start; row < tile_rows_end; row++) { + for (int col = tile_cols_start; col < tile_cols_end; col++) { + if (row * cm->tile_cols + col < startTile || + row * cm->tile_cols + col > endTile) + continue; + tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; + tile_job_queue->tile_data = pbi->tile_data + row * cm->tile_cols + col; + tile_job_queue++; + tile_mt_info->jobs_enqueued++; + } + } +} + +static void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm, + int tile_rows, int tile_cols) { + tile_mt_info->alloc_tile_rows = tile_rows; + tile_mt_info->alloc_tile_cols = tile_cols; + int num_tiles = tile_rows * tile_cols; +#if CONFIG_MULTITHREAD + { + CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex, + aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles)); + + for (int i = 0; i < num_tiles; i++) { + pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); + } + } +#endif + CHECK_MEM_ERROR(cm, tile_mt_info->job_queue, + aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles)); +} + +void av1_free_mc_tmp_buf(ThreadData *thread_data) { + int ref; + for (ref = 0; ref < 2; ref++) { + if (thread_data->mc_buf_use_highbd) + aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref])); + else + aom_free(thread_data->mc_buf[ref]); + thread_data->mc_buf[ref] = NULL; + } + thread_data->mc_buf_size = 0; + thread_data->mc_buf_use_highbd = 0; + + aom_free(thread_data->tmp_conv_dst); + thread_data->tmp_conv_dst = NULL; + for (int i = 0; i < 2; ++i) { + aom_free(thread_data->tmp_obmc_bufs[i]); + thread_data->tmp_obmc_bufs[i] = NULL; + } +} + +static void allocate_mc_tmp_buf(AV1_COMMON *const cm, ThreadData *thread_data, + int buf_size, int use_highbd) { + for (int ref = 0; ref < 2; ref++) { + if (use_highbd) { + uint16_t *hbd_mc_buf; + CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size)); + thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf); + } else { + CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref], + (uint8_t *)aom_memalign(16, buf_size)); + } + } + thread_data->mc_buf_size = buf_size; + thread_data->mc_buf_use_highbd = use_highbd; + + CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst, + aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * + sizeof(*thread_data->tmp_conv_dst))); + for (int i = 0; i < 2; ++i) { + CHECK_MEM_ERROR( + cm, thread_data->tmp_obmc_bufs[i], + aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*thread_data->tmp_obmc_bufs[i]))); + } +} + +static void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook, + int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + // Reset tile decoding hook + for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + thread_data->td->xd = pbi->mb; + thread_data->td->xd.corrupted = 0; + thread_data->td->xd.mc_buf[0] = thread_data->td->mc_buf[0]; + thread_data->td->xd.mc_buf[1] = thread_data->td->mc_buf[1]; + thread_data->td->xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; + for (int j = 0; j < 2; ++j) { + thread_data->td->xd.tmp_obmc_bufs[j] = thread_data->td->tmp_obmc_bufs[j]; + } + winterface->sync(worker); + + worker->hook = worker_hook; + worker->data1 = thread_data; + worker->data2 = pbi; + } +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + aom_accounting_reset(&pbi->accounting); + } +#endif +} + +static void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end, + int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; + + thread_data->data_end = data_end; + + worker->had_error = 0; + if (worker_idx == num_workers - 1) { + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } +} + +static void sync_dec_workers(AV1Decoder *pbi, int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int corrupted = 0; + + for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; + aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); + } + + pbi->mb.corrupted = corrupted; +} + +static void decode_mt_init(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int worker_idx; + + // Create workers and thread_data + if (pbi->num_workers == 0) { + const int num_threads = pbi->max_threads; + CHECK_MEM_ERROR(cm, pbi->tile_workers, + aom_malloc(num_threads * sizeof(*pbi->tile_workers))); + CHECK_MEM_ERROR(cm, pbi->thread_data, + aom_malloc(num_threads * sizeof(*pbi->thread_data))); + + for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + ++pbi->num_workers; + + winterface->init(worker); + if (worker_idx < num_threads - 1 && !winterface->reset(worker)) { + aom_internal_error(&cm->error, AOM_CODEC_ERROR, + "Tile decoder thread creation failed"); + } + + if (worker_idx < num_threads - 1) { + // Allocate thread data. + CHECK_MEM_ERROR(cm, thread_data->td, + aom_memalign(32, sizeof(*thread_data->td))); + av1_zero(*thread_data->td); + } else { + // Main thread acts as a worker and uses the thread data in pbi + thread_data->td = &pbi->td; + } + thread_data->error_info.error_code = AOM_CODEC_OK; + thread_data->error_info.setjmp = 0; + } + } + const int use_highbd = cm->seq_params.use_highbitdepth ? 1 : 0; + const int buf_size = MC_TEMP_BUF_PELS << use_highbd; + for (worker_idx = 0; worker_idx < pbi->max_threads - 1; ++worker_idx) { + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + if (thread_data->td->mc_buf_size != buf_size) { + av1_free_mc_tmp_buf(thread_data->td); + allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd); + } + } +} + +static void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows, + int tile_rows_start, int tile_rows_end, + int tile_cols_start, int tile_cols_end, + int start_tile, int end_tile) { + AV1_COMMON *const cm = &pbi->common; + if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || + pbi->tile_mt_info.alloc_tile_rows != tile_rows) { + av1_dealloc_dec_jobs(&pbi->tile_mt_info); + alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); + } + enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, + tile_cols_end, start_tile, end_tile); + qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, + sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); +} + +static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int tile_count_tg; + int num_workers; + const uint8_t *raw_data_end = NULL; + + if (cm->large_scale_tile) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + } + tile_count_tg = end_tile - start_tile + 1; + num_workers = AOMMIN(pbi->max_threads, tile_count_tg); + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * tile_cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) + return data; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + assert(tile_count_tg > 0); + assert(num_workers > 0); + assert(start_tile <= end_tile); + assert(start_tile >= 0 && end_tile < n_tiles); + + decode_mt_init(pbi); + + // get tile size in tile group +#if EXT_TILE_DEBUG + if (cm->large_scale_tile) assert(pbi->ext_tile_debug == 1); + if (cm->large_scale_tile) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + decoder_alloc_tile_data(pbi, n_tiles); + } + + for (int row = 0; row < tile_rows; row++) { + for (int col = 0; col < tile_cols; col++) { + TileDataDec *tile_data = pbi->tile_data + row * cm->tile_cols + col; + av1_tile_init(&tile_data->tile_info, cm, row, col); + } + } + + tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, + tile_cols_start, tile_cols_end, start_tile, end_tile); + + reset_dec_workers(pbi, tile_worker_hook, num_workers); + launch_dec_workers(pbi, data_end, num_workers); + sync_dec_workers(pbi, num_workers); + + if (pbi->mb.corrupted) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + + if (cm->large_scale_tile) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static void dec_alloc_cb_buf(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + int size = ((cm->mi_rows >> cm->seq_params.mib_size_log2) + 1) * + ((cm->mi_cols >> cm->seq_params.mib_size_log2) + 1); + + if (pbi->cb_buffer_alloc_size < size) { + av1_dec_free_cb_buf(pbi); + CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, + aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); + pbi->cb_buffer_alloc_size = size; + } +} + +static void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start, + int tile_rows_end, int tile_cols_start, + int tile_cols_end, int start_tile, int end_tile, + int max_sb_rows) { + AV1_COMMON *const cm = &pbi->common; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + + frame_row_mt_info->tile_rows_start = tile_rows_start; + frame_row_mt_info->tile_rows_end = tile_rows_end; + frame_row_mt_info->tile_cols_start = tile_cols_start; + frame_row_mt_info->tile_cols_end = tile_cols_end; + frame_row_mt_info->start_tile = start_tile; + frame_row_mt_info->end_tile = end_tile; + frame_row_mt_info->mi_rows_to_decode = 0; + frame_row_mt_info->mi_rows_parse_done = 0; + frame_row_mt_info->mi_rows_decode_started = 0; + frame_row_mt_info->row_mt_exit = 0; + + for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { + for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { + if (tile_row * cm->tile_cols + tile_col < start_tile || + tile_row * cm->tile_cols + tile_col > end_tile) + continue; + + TileDataDec *const tile_data = + pbi->tile_data + tile_row * cm->tile_cols + tile_col; + TileInfo tile_info = tile_data->tile_info; + + tile_data->dec_row_mt_sync.mi_rows_parse_done = 0; + tile_data->dec_row_mt_sync.mi_rows_decode_started = 0; + tile_data->dec_row_mt_sync.num_threads_working = 0; + tile_data->dec_row_mt_sync.mi_rows = + ALIGN_POWER_OF_TWO(tile_info.mi_row_end - tile_info.mi_row_start, + cm->seq_params.mib_size_log2); + tile_data->dec_row_mt_sync.mi_cols = + ALIGN_POWER_OF_TWO(tile_info.mi_col_end - tile_info.mi_col_start, + cm->seq_params.mib_size_log2); + + frame_row_mt_info->mi_rows_to_decode += + tile_data->dec_row_mt_sync.mi_rows; + + // Initialize cur_sb_col to -1 for all SB rows. + memset(tile_data->dec_row_mt_sync.cur_sb_col, -1, + sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows); + } + } + +#if CONFIG_MULTITHREAD + if (pbi->row_mt_mutex_ == NULL) { + CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_, + aom_malloc(sizeof(*(pbi->row_mt_mutex_)))); + if (pbi->row_mt_mutex_) { + pthread_mutex_init(pbi->row_mt_mutex_, NULL); + } + } + + if (pbi->row_mt_cond_ == NULL) { + CHECK_MEM_ERROR(cm, pbi->row_mt_cond_, + aom_malloc(sizeof(*(pbi->row_mt_cond_)))); + if (pbi->row_mt_cond_) { + pthread_cond_init(pbi->row_mt_cond_, NULL); + } + } +#endif +} + +static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + int start_tile, int end_tile) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int tile_count_tg; + int num_workers; + const uint8_t *raw_data_end = NULL; + int max_sb_rows = 0; + + if (cm->large_scale_tile) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + } + tile_count_tg = end_tile - start_tile + 1; + num_workers = pbi->max_threads; + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * tile_cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) + return data; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + assert(tile_count_tg > 0); + assert(num_workers > 0); + assert(start_tile <= end_tile); + assert(start_tile >= 0 && end_tile < n_tiles); + + (void)tile_count_tg; + + decode_mt_init(pbi); + + // get tile size in tile group +#if EXT_TILE_DEBUG + if (cm->large_scale_tile) assert(pbi->ext_tile_debug == 1); + if (cm->large_scale_tile) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + for (int i = 0; i < pbi->allocated_tiles; i++) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); + } + decoder_alloc_tile_data(pbi, n_tiles); + } + + for (int row = 0; row < tile_rows; row++) { + for (int col = 0; col < tile_cols; col++) { + TileDataDec *tile_data = pbi->tile_data + row * cm->tile_cols + col; + av1_tile_init(&tile_data->tile_info, cm, row, col); + + max_sb_rows = AOMMAX(max_sb_rows, + av1_get_sb_rows_in_tile(cm, tile_data->tile_info)); + } + } + + if (pbi->allocated_row_mt_sync_rows != max_sb_rows) { + for (int i = 0; i < n_tiles; ++i) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); + dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows); + } + pbi->allocated_row_mt_sync_rows = max_sb_rows; + } + + tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, + tile_cols_start, tile_cols_end, start_tile, end_tile); + + dec_alloc_cb_buf(pbi); + + row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start, + tile_cols_end, start_tile, end_tile, max_sb_rows); + + reset_dec_workers(pbi, row_mt_worker_hook, num_workers); + launch_dec_workers(pbi, data_end, num_workers); + sync_dec_workers(pbi, num_workers); + + if (pbi->mb.corrupted) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + + if (cm->large_scale_tile) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static void error_handler(void *data) { + AV1_COMMON *const cm = (AV1_COMMON *)data; + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); +} + +// Reads the high_bitdepth and twelve_bit fields in color_config() and sets +// seq_params->bit_depth based on the values of those fields and +// seq_params->profile. Reports errors by calling rb->error_handler() or +// aom_internal_error(). +static void read_bitdepth(struct aom_read_bit_buffer *rb, + SequenceHeader *seq_params, + struct aom_internal_error_info *error_info) { + const int high_bitdepth = aom_rb_read_bit(rb); + if (seq_params->profile == PROFILE_2 && high_bitdepth) { + const int twelve_bit = aom_rb_read_bit(rb); + seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; + } else if (seq_params->profile <= PROFILE_2) { + seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; + } else { + aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Unsupported profile/bit-depth combination"); + } +} + +void av1_read_film_grain_params(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + aom_film_grain_t *pars = &cm->film_grain_params; + const SequenceHeader *const seq_params = &cm->seq_params; + + pars->apply_grain = aom_rb_read_bit(rb); + if (!pars->apply_grain) { + memset(pars, 0, sizeof(*pars)); + return; + } + + pars->random_seed = aom_rb_read_literal(rb, 16); + if (cm->frame_type == INTER_FRAME) + pars->update_parameters = aom_rb_read_bit(rb); + else + pars->update_parameters = 1; + + pars->bit_depth = seq_params->bit_depth; + + if (!pars->update_parameters) { + // inherit parameters from a previous reference frame + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); + int buf_idx = cm->ref_frame_map[film_grain_params_ref_idx]; + if (buf_idx == INVALID_IDX) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Invalid Film grain reference idx"); + } + if (!frame_bufs[buf_idx].film_grain_params_present) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Film grain reference parameters not available"); + } + uint16_t random_seed = pars->random_seed; + *pars = frame_bufs[buf_idx].film_grain_params; // inherit paramaters + pars->random_seed = random_seed; // with new random seed + return; + } + + // Scaling functions parameters + pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14 + if (pars->num_y_points > 14) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain luma scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_y_points; i++) { + pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); + if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); + } + + if (!seq_params->monochrome) + pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); + else + pars->chroma_scaling_from_luma = 0; + + if (seq_params->monochrome || pars->chroma_scaling_from_luma || + ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && + (pars->num_y_points == 0))) { + pars->num_cb_points = 0; + pars->num_cr_points = 0; + } else { + pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10 + if (pars->num_cb_points > 10) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain cb scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_cb_points; i++) { + pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); + if (i && + pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); + } + + pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10 + if (pars->num_cr_points > 10) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain cr scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_cr_points; i++) { + pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); + if (i && + pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); + } + + if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && + (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || + ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "In YCbCr 4:2:0, film grain shall be applied " + "to both chroma components or neither."); + } + + pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value + + // AR coefficients + // Only sent if the corresponsing scaling function has + // more than 0 points + + pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); + + int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (pars->num_y_points > 0) ++num_pos_chroma; + + if (pars->num_y_points) + for (int i = 0; i < num_pos_luma; i++) + pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; + + if (pars->num_cb_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; + + if (pars->num_cr_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; + + pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value + + pars->grain_scale_shift = aom_rb_read_literal(rb, 2); + + if (pars->num_cb_points) { + pars->cb_mult = aom_rb_read_literal(rb, 8); + pars->cb_luma_mult = aom_rb_read_literal(rb, 8); + pars->cb_offset = aom_rb_read_literal(rb, 9); + } + + if (pars->num_cr_points) { + pars->cr_mult = aom_rb_read_literal(rb, 8); + pars->cr_luma_mult = aom_rb_read_literal(rb, 8); + pars->cr_offset = aom_rb_read_literal(rb, 9); + } + + pars->overlap_flag = aom_rb_read_bit(rb); + + pars->clip_to_restricted_range = aom_rb_read_bit(rb); +} + +static void read_film_grain(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + if (cm->seq_params.film_grain_params_present && + (cm->show_frame || cm->showable_frame)) { + av1_read_film_grain_params(cm, rb); + } else { + memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); + } + cm->film_grain_params.bit_depth = cm->seq_params.bit_depth; + memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, + sizeof(aom_film_grain_t)); +} + +void av1_read_color_config(struct aom_read_bit_buffer *rb, + int allow_lowbitdepth, SequenceHeader *seq_params, + struct aom_internal_error_info *error_info) { + read_bitdepth(rb, seq_params, error_info); + + seq_params->use_highbitdepth = + seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth; + // monochrome bit (not needed for PROFILE_1) + const int is_monochrome = + seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; + seq_params->monochrome = is_monochrome; + int color_description_present_flag = aom_rb_read_bit(rb); + if (color_description_present_flag) { + seq_params->color_primaries = aom_rb_read_literal(rb, 8); + seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); + seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); + } else { + seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; + seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; + seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; + } + if (is_monochrome) { + // [16,235] (including xvycc) vs [0,255] range + seq_params->color_range = aom_rb_read_bit(rb); + seq_params->subsampling_y = seq_params->subsampling_x = 1; + seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; + seq_params->separate_uv_delta_q = 0; + return; + } + if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && + seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && + seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { + // It would be good to remove this dependency. + seq_params->subsampling_y = seq_params->subsampling_x = 0; + seq_params->color_range = 1; // assume full color-range + if (!(seq_params->profile == PROFILE_1 || + (seq_params->profile == PROFILE_2 && + seq_params->bit_depth == AOM_BITS_12))) { + aom_internal_error( + error_info, AOM_CODEC_UNSUP_BITSTREAM, + "sRGB colorspace not compatible with specified profile"); + } + } else { + // [16,235] (including xvycc) vs [0,255] range + seq_params->color_range = aom_rb_read_bit(rb); + if (seq_params->profile == PROFILE_0) { + // 420 only + seq_params->subsampling_x = seq_params->subsampling_y = 1; + } else if (seq_params->profile == PROFILE_1) { + // 444 only + seq_params->subsampling_x = seq_params->subsampling_y = 0; + } else { + assert(seq_params->profile == PROFILE_2); + if (seq_params->bit_depth == AOM_BITS_12) { + seq_params->subsampling_x = aom_rb_read_bit(rb); + if (seq_params->subsampling_x) + seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420 + else + seq_params->subsampling_y = 0; // 444 + } else { + // 422 + seq_params->subsampling_x = 1; + seq_params->subsampling_y = 0; + } + } + if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && + (seq_params->subsampling_x || seq_params->subsampling_y)) { + aom_internal_error( + error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); + } + if (seq_params->subsampling_x && seq_params->subsampling_y) { + seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); + } + } + seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); +} + +void av1_read_timing_info_header(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + cm->timing_info.num_units_in_display_tick = aom_rb_read_unsigned_literal( + rb, 32); // Number of units in a display tick + cm->timing_info.time_scale = + aom_rb_read_unsigned_literal(rb, 32); // Time scale + if (cm->timing_info.num_units_in_display_tick == 0 || + cm->timing_info.time_scale == 0) { + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "num_units_in_display_tick and time_scale must be greater than 0."); + } + cm->timing_info.equal_picture_interval = + aom_rb_read_bit(rb); // Equal picture interval bit + if (cm->timing_info.equal_picture_interval) { + cm->timing_info.num_ticks_per_picture = + aom_rb_read_uvlc(rb) + 1; // ticks per picture + if (cm->timing_info.num_ticks_per_picture == 0) { + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1."); + } + } +} + +void av1_read_decoder_model_info(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + cm->buffer_model.encoder_decoder_buffer_delay_length = + aom_rb_read_literal(rb, 5) + 1; + cm->buffer_model.num_units_in_decoding_tick = aom_rb_read_unsigned_literal( + rb, 32); // Number of units in a decoding tick + cm->buffer_model.buffer_removal_time_length = aom_rb_read_literal(rb, 5) + 1; + cm->buffer_model.frame_presentation_time_length = + aom_rb_read_literal(rb, 5) + 1; +} + +void av1_read_op_parameters_info(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb, int op_num) { + // The cm->op_params array has MAX_NUM_OPERATING_POINTS + 1 elements. + if (op_num > MAX_NUM_OPERATING_POINTS) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "AV1 does not support %d decoder model operating points", + op_num + 1); + } + + cm->op_params[op_num].decoder_buffer_delay = aom_rb_read_unsigned_literal( + rb, cm->buffer_model.encoder_decoder_buffer_delay_length); + + cm->op_params[op_num].encoder_buffer_delay = aom_rb_read_unsigned_literal( + rb, cm->buffer_model.encoder_decoder_buffer_delay_length); + + cm->op_params[op_num].low_delay_mode_flag = aom_rb_read_bit(rb); +} + +static void av1_read_temporal_point_info(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb) { + cm->frame_presentation_time = aom_rb_read_unsigned_literal( + rb, cm->buffer_model.frame_presentation_time_length); +} + +void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, + SequenceHeader *seq_params) { + const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; + const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; + const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; + const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; + + seq_params->num_bits_width = num_bits_width; + seq_params->num_bits_height = num_bits_height; + seq_params->max_frame_width = max_frame_width; + seq_params->max_frame_height = max_frame_height; + + if (seq_params->reduced_still_picture_hdr) { + seq_params->frame_id_numbers_present_flag = 0; + } else { + seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); + } + if (seq_params->frame_id_numbers_present_flag) { + // We must always have delta_frame_id_length < frame_id_length, + // in order for a frame to be referenced with a unique delta. + // Avoid wasting bits by using a coding that enforces this restriction. + seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; + seq_params->frame_id_length = + aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; + if (seq_params->frame_id_length > 16) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid frame_id_length"); + } + + setup_sb_size(seq_params, rb); + + seq_params->enable_filter_intra = aom_rb_read_bit(rb); + seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); + + if (seq_params->reduced_still_picture_hdr) { + seq_params->enable_interintra_compound = 0; + seq_params->enable_masked_compound = 0; + seq_params->enable_warped_motion = 0; + seq_params->enable_dual_filter = 0; + seq_params->enable_order_hint = 0; + seq_params->enable_jnt_comp = 0; + seq_params->enable_ref_frame_mvs = 0; + seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + seq_params->order_hint_bits_minus_1 = -1; + } else { + seq_params->enable_interintra_compound = aom_rb_read_bit(rb); + seq_params->enable_masked_compound = aom_rb_read_bit(rb); + seq_params->enable_warped_motion = aom_rb_read_bit(rb); + seq_params->enable_dual_filter = aom_rb_read_bit(rb); + + seq_params->enable_order_hint = aom_rb_read_bit(rb); + seq_params->enable_jnt_comp = + seq_params->enable_order_hint ? aom_rb_read_bit(rb) : 0; + seq_params->enable_ref_frame_mvs = + seq_params->enable_order_hint ? aom_rb_read_bit(rb) : 0; + + if (aom_rb_read_bit(rb)) { + seq_params->force_screen_content_tools = + 2; // SELECT_SCREEN_CONTENT_TOOLS + } else { + seq_params->force_screen_content_tools = aom_rb_read_bit(rb); + } + + if (seq_params->force_screen_content_tools > 0) { + if (aom_rb_read_bit(rb)) { + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + } else { + seq_params->force_integer_mv = aom_rb_read_bit(rb); + } + } else { + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + } + seq_params->order_hint_bits_minus_1 = + seq_params->enable_order_hint ? aom_rb_read_literal(rb, 3) : -1; + } + + seq_params->enable_superres = aom_rb_read_bit(rb); + seq_params->enable_cdef = aom_rb_read_bit(rb); + seq_params->enable_restoration = aom_rb_read_bit(rb); +} + +static int read_global_motion_params(WarpedMotionParams *params, + const WarpedMotionParams *ref_params, + struct aom_read_bit_buffer *rb, + int allow_hp) { + TransformationType type = aom_rb_read_bit(rb); + if (type != IDENTITY) { + if (aom_rb_read_bit(rb)) + type = ROTZOOM; + else + type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; + } + + *params = default_warp_params; + params->wmtype = type; + + if (type >= ROTZOOM) { + params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS)) * + GM_ALPHA_DECODE_FACTOR + + (1 << WARPEDMODEL_PREC_BITS); + params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * + GM_ALPHA_DECODE_FACTOR; + } + + if (type >= AFFINE) { + params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * + GM_ALPHA_DECODE_FACTOR; + params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS)) * + GM_ALPHA_DECODE_FACTOR + + (1 << WARPEDMODEL_PREC_BITS); + } else { + params->wmmat[4] = -params->wmmat[3]; + params->wmmat[5] = params->wmmat[2]; + } + + if (type >= TRANSLATION) { + const int trans_bits = (type == TRANSLATION) + ? GM_ABS_TRANS_ONLY_BITS - !allow_hp + : GM_ABS_TRANS_BITS; + const int trans_dec_factor = + (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp) + : GM_TRANS_DECODE_FACTOR; + const int trans_prec_diff = (type == TRANSLATION) + ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp + : GM_TRANS_PREC_DIFF; + params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( + rb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[0] >> trans_prec_diff)) * + trans_dec_factor; + params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( + rb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[1] >> trans_prec_diff)) * + trans_dec_factor; + } + + if (params->wmtype <= AFFINE) { + int good_shear_params = get_shear_params(params); + if (!good_shear_params) return 0; + } + + return 1; +} + +static void read_global_motion(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { + const WarpedMotionParams *ref_params = + cm->prev_frame ? &cm->prev_frame->global_motion[frame] + : &default_warp_params; + int good_params = read_global_motion_params( + &cm->global_motion[frame], ref_params, rb, cm->allow_high_precision_mv); + if (!good_params) { +#if WARPED_MOTION_DEBUG + printf("Warning: unexpected global motion shear params from aomenc\n"); +#endif + cm->global_motion[frame].invalid = 1; + } + + // TODO(sarahparker, debargha): The logic in the commented out code below + // does not work currently and causes mismatches when resize is on. Fix it + // before turning the optimization back on. + /* + YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); + if (cm->width == ref_buf->y_crop_width && + cm->height == ref_buf->y_crop_height) { + read_global_motion_params(&cm->global_motion[frame], + &cm->prev_frame->global_motion[frame], rb, + cm->allow_high_precision_mv); + } else { + cm->global_motion[frame] = default_warp_params; + } + */ + /* + printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", + frame, cm->current_video_frame, cm->show_frame, + cm->global_motion[frame].wmmat[0], + cm->global_motion[frame].wmmat[1], + cm->global_motion[frame].wmmat[2], + cm->global_motion[frame].wmmat[3]); + */ + } + memcpy(cm->cur_frame->global_motion, cm->global_motion, + REF_FRAMES * sizeof(WarpedMotionParams)); +} + +static void show_existing_frame_reset(AV1Decoder *const pbi, + int existing_frame_idx) { + AV1_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + RefCntBuffer *const frame_bufs = pool->frame_bufs; + + assert(cm->show_existing_frame); + + cm->frame_type = KEY_FRAME; + + pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + cm->frame_refs[i].idx = INVALID_IDX; + cm->frame_refs[i].buf = NULL; + } + + if (pbi->need_resync) { + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + pbi->need_resync = 0; + } + + cm->cur_frame->intra_only = 1; + + if (cm->seq_params.frame_id_numbers_present_flag) { + /* If bitmask is set, update reference frame id values and + mark frames as valid for reference. + Note that the displayed frame be valid for referencing + in order to have been selected. + */ + int refresh_frame_flags = pbi->refresh_frame_flags; + int display_frame_id = cm->ref_frame_id[existing_frame_idx]; + for (int i = 0; i < REF_FRAMES; i++) { + if ((refresh_frame_flags >> i) & 1) { + cm->ref_frame_id[i] = display_frame_id; + cm->valid_for_referencing[i] = 1; + } + } + } + + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + + // Generate next_ref_frame_map. + lock_buffer_pool(pool); + int ref_index = 0; + for (int mask = pbi->refresh_frame_flags; mask; mask >>= 1) { + if (mask & 1) { + cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; + ++frame_bufs[cm->new_fb_idx].ref_count; + } else { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + } + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + ++ref_index; + } + + for (; ref_index < REF_FRAMES; ++ref_index) { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + } + unlock_buffer_pool(pool); + pbi->hold_ref_buf = 1; + + // Reload the adapted CDFs from when we originally coded this keyframe + *cm->fc = cm->frame_contexts[existing_frame_idx]; +} + +static INLINE void reset_frame_buffers(AV1_COMMON *cm) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int i; + + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + memset(&cm->next_ref_frame_map, -1, sizeof(cm->next_ref_frame_map)); + + lock_buffer_pool(cm->buffer_pool); + for (i = 0; i < FRAME_BUFFERS; ++i) { + if (i != cm->new_fb_idx) { + frame_bufs[i].ref_count = 0; + cm->buffer_pool->release_fb_cb(cm->buffer_pool->cb_priv, + &frame_bufs[i].raw_frame_buffer); + } else { + assert(frame_bufs[i].ref_count == 1); + } + frame_bufs[i].cur_frame_offset = 0; + av1_zero(frame_bufs[i].ref_frame_offset); + } + av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); + unlock_buffer_pool(cm->buffer_pool); +} + +// On success, returns 0. On failure, calls aom_internal_error and does not +// return. +static int read_uncompressed_header(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb) { + AV1_COMMON *const cm = &pbi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + MACROBLOCKD *const xd = &pbi->mb; + BufferPool *const pool = cm->buffer_pool; + RefCntBuffer *const frame_bufs = pool->frame_bufs; + + if (!pbi->sequence_header_ready) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "No sequence header"); + } + + cm->last_frame_type = cm->frame_type; + cm->last_intra_only = cm->intra_only; + + // NOTE: By default all coded frames to be used as a reference + cm->is_reference_frame = 1; + + if (seq_params->reduced_still_picture_hdr) { + cm->show_existing_frame = 0; + cm->show_frame = 1; + cm->frame_type = KEY_FRAME; + cm->error_resilient_mode = 1; + } else { + cm->show_existing_frame = aom_rb_read_bit(rb); + cm->reset_decoder_state = 0; + + if (cm->show_existing_frame) { + if (pbi->sequence_header_changed) { + aom_internal_error( + &cm->error, AOM_CODEC_CORRUPT_FRAME, + "New sequence header starts with a show_existing_frame."); + } + // Show an existing frame directly. + const int existing_frame_idx = aom_rb_read_literal(rb, 3); + const int frame_to_show = cm->ref_frame_map[existing_frame_idx]; + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) { + av1_read_temporal_point_info(cm, rb); + } + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int display_frame_id = aom_rb_read_literal(rb, frame_id_length); + /* Compare display_frame_id with ref_frame_id and check valid for + * referencing */ + if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || + cm->valid_for_referencing[existing_frame_idx] == 0) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Reference buffer frame ID mismatch"); + } + lock_buffer_pool(pool); + if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { + unlock_buffer_pool(pool); + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Buffer %d does not contain a decoded frame", + frame_to_show); + } + ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); + cm->reset_decoder_state = + frame_bufs[frame_to_show].frame_type == KEY_FRAME; + unlock_buffer_pool(pool); + + cm->lf.filter_level[0] = 0; + cm->lf.filter_level[1] = 0; + cm->show_frame = 1; + + if (!frame_bufs[frame_to_show].showable_frame) { + aom_merge_corrupted_flag(&xd->corrupted, 1); + } + if (cm->reset_decoder_state) frame_bufs[frame_to_show].showable_frame = 0; + + cm->film_grain_params = frame_bufs[frame_to_show].film_grain_params; + + if (cm->reset_decoder_state) { + show_existing_frame_reset(pbi, existing_frame_idx); + } else { + pbi->refresh_frame_flags = 0; + } + + return 0; + } + + cm->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); // 2 bits + if (pbi->sequence_header_changed) { + if (pbi->common.frame_type == KEY_FRAME) { + // This is the start of a new coded video sequence. + pbi->sequence_header_changed = 0; + pbi->decoding_first_frame = 1; + reset_frame_buffers(&pbi->common); + } else { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Sequence header has changed without a keyframe."); + } + } + + cm->show_frame = aom_rb_read_bit(rb); + if (seq_params->still_picture && + (cm->frame_type != KEY_FRAME || !cm->show_frame)) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Still pictures must be coded as shown keyframes"); + } + cm->showable_frame = cm->frame_type != KEY_FRAME; + if (cm->show_frame) { + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) + av1_read_temporal_point_info(cm, rb); + } else { + // See if this frame can be used as show_existing_frame in future + cm->showable_frame = aom_rb_read_bit(rb); + } + cm->cur_frame->showable_frame = cm->showable_frame; + cm->intra_only = cm->frame_type == INTRA_ONLY_FRAME; + cm->error_resilient_mode = + frame_is_sframe(cm) || (cm->frame_type == KEY_FRAME && cm->show_frame) + ? 1 + : aom_rb_read_bit(rb); + } + + cm->disable_cdf_update = aom_rb_read_bit(rb); + if (seq_params->force_screen_content_tools == 2) { + cm->allow_screen_content_tools = aom_rb_read_bit(rb); + } else { + cm->allow_screen_content_tools = seq_params->force_screen_content_tools; + } + + if (cm->allow_screen_content_tools) { + if (seq_params->force_integer_mv == 2) { + cm->cur_frame_force_integer_mv = aom_rb_read_bit(rb); + } else { + cm->cur_frame_force_integer_mv = seq_params->force_integer_mv; + } + } else { + cm->cur_frame_force_integer_mv = 0; + } + + cm->frame_refs_short_signaling = 0; + int frame_size_override_flag = 0; + cm->allow_intrabc = 0; + cm->primary_ref_frame = PRIMARY_REF_NONE; + + if (!seq_params->reduced_still_picture_hdr) { + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int prev_frame_id = 0; + int have_prev_frame_id = !pbi->decoding_first_frame && + !(cm->frame_type == KEY_FRAME && cm->show_frame); + if (have_prev_frame_id) { + prev_frame_id = cm->current_frame_id; + } + cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); + + if (have_prev_frame_id) { + int diff_frame_id; + if (cm->current_frame_id > prev_frame_id) { + diff_frame_id = cm->current_frame_id - prev_frame_id; + } else { + diff_frame_id = + (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; + } + /* Check current_frame_id for conformance */ + if (prev_frame_id == cm->current_frame_id || + diff_frame_id >= (1 << (frame_id_length - 1))) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid value of current_frame_id"); + } + } + /* Check if some frames need to be marked as not valid for referencing */ + for (int i = 0; i < REF_FRAMES; i++) { + if (cm->frame_type == KEY_FRAME && cm->show_frame) { + cm->valid_for_referencing[i] = 0; + } else if (cm->current_frame_id - (1 << diff_len) > 0) { + if (cm->ref_frame_id[i] > cm->current_frame_id || + cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) + cm->valid_for_referencing[i] = 0; + } else { + if (cm->ref_frame_id[i] > cm->current_frame_id && + cm->ref_frame_id[i] < (1 << frame_id_length) + + cm->current_frame_id - (1 << diff_len)) + cm->valid_for_referencing[i] = 0; + } + } + } + + frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); + + cm->frame_offset = + aom_rb_read_literal(rb, seq_params->order_hint_bits_minus_1 + 1); + cm->current_video_frame = cm->frame_offset; + + if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { + cm->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); + } + } + + if (seq_params->decoder_model_info_present_flag) { + cm->buffer_removal_time_present = aom_rb_read_bit(rb); + if (cm->buffer_removal_time_present) { + for (int op_num = 0; + op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { + if (cm->op_params[op_num].decoder_model_param_present_flag) { + if ((((seq_params->operating_point_idc[op_num] >> + cm->temporal_layer_id) & + 0x1) && + ((seq_params->operating_point_idc[op_num] >> + (cm->spatial_layer_id + 8)) & + 0x1)) || + seq_params->operating_point_idc[op_num] == 0) { + cm->op_frame_timing[op_num].buffer_removal_time = + aom_rb_read_unsigned_literal( + rb, cm->buffer_model.buffer_removal_time_length); + } else { + cm->op_frame_timing[op_num].buffer_removal_time = 0; + } + } else { + cm->op_frame_timing[op_num].buffer_removal_time = 0; + } + } + } + } + if (cm->frame_type == KEY_FRAME) { + if (!cm->show_frame) // unshown keyframe (forward keyframe) + pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); + else // shown keyframe + pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + cm->frame_refs[i].idx = INVALID_IDX; + cm->frame_refs[i].buf = NULL; + } + if (pbi->need_resync) { + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + pbi->need_resync = 0; + } + } else { + if (cm->intra_only) { + pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); + if (pbi->refresh_frame_flags == 0xFF) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Intra only frames cannot have refresh flags 0xFF"); + } + if (pbi->need_resync) { + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + pbi->need_resync = 0; + } + } else if (pbi->need_resync != 1) { /* Skip if need resync */ + pbi->refresh_frame_flags = + frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES); + if (!pbi->refresh_frame_flags) { + // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame + // will not be used as a reference + cm->is_reference_frame = 0; + } + } + } + + if (!frame_is_intra_only(cm) || pbi->refresh_frame_flags != 0xFF) { + // Read all ref frame order hints if error_resilient_mode == 1 + if (cm->error_resilient_mode && seq_params->enable_order_hint) { + for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { + // Read order hint from bit stream + unsigned int frame_offset = + aom_rb_read_literal(rb, seq_params->order_hint_bits_minus_1 + 1); + // Get buffer index + int buf_idx = cm->ref_frame_map[ref_idx]; + assert(buf_idx < FRAME_BUFFERS); + if (buf_idx == -1 || + frame_offset != frame_bufs[buf_idx].cur_frame_offset) { + if (buf_idx >= 0) { + lock_buffer_pool(pool); + decrease_ref_count(buf_idx, frame_bufs, pool); + unlock_buffer_pool(pool); + } + // If no corresponding buffer exists, allocate a new buffer with all + // pixels set to neutral grey. + buf_idx = get_free_fb(cm); + if (buf_idx == INVALID_IDX) { + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Unable to find free frame buffer"); + } + lock_buffer_pool(pool); + if (aom_realloc_frame_buffer( + &frame_bufs[buf_idx].buf, seq_params->max_frame_width, + seq_params->max_frame_height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_BORDER_IN_PIXELS, cm->byte_alignment, + &pool->frame_bufs[buf_idx].raw_frame_buffer, pool->get_fb_cb, + pool->cb_priv)) { + unlock_buffer_pool(pool); + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + unlock_buffer_pool(pool); + set_planes_to_neutral_grey(seq_params, &frame_bufs[buf_idx].buf, 0); + + cm->ref_frame_map[ref_idx] = buf_idx; + frame_bufs[buf_idx].cur_frame_offset = frame_offset; + } + } + } + } + + if (cm->frame_type == KEY_FRAME) { + setup_frame_size(cm, frame_size_override_flag, rb); + + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + cm->allow_intrabc = aom_rb_read_bit(rb); + cm->allow_ref_frame_mvs = 0; + cm->prev_frame = NULL; + } else { + cm->allow_ref_frame_mvs = 0; + + if (cm->intra_only) { + cm->cur_frame->film_grain_params_present = + seq_params->film_grain_params_present; + setup_frame_size(cm, frame_size_override_flag, rb); + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + cm->allow_intrabc = aom_rb_read_bit(rb); + + } else if (pbi->need_resync != 1) { /* Skip if need resync */ + + // Frame refs short signaling is off when error resilient mode is on. + if (seq_params->enable_order_hint) + cm->frame_refs_short_signaling = aom_rb_read_bit(rb); + + if (cm->frame_refs_short_signaling) { + // == LAST_FRAME == + const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + const int lst_idx = cm->ref_frame_map[lst_ref]; + + // == GOLDEN_FRAME == + const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + const int gld_idx = cm->ref_frame_map[gld_ref]; + + // Most of the time, streams start with a keyframe. In that case, + // ref_frame_map will have been filled in at that point and will not + // contain any -1's. However, streams are explicitly allowed to start + // with an intra-only frame, so long as they don't then signal a + // reference to a slot that hasn't been set yet. That's what we are + // checking here. + if (lst_idx == -1) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + if (gld_idx == -1) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + + av1_set_frame_refs(cm, lst_ref, gld_ref); + } + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + int ref = 0; + if (!cm->frame_refs_short_signaling) { + ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + const int idx = cm->ref_frame_map[ref]; + + // Most of the time, streams start with a keyframe. In that case, + // ref_frame_map will have been filled in at that point and will not + // contain any -1's. However, streams are explicitly allowed to start + // with an intra-only frame, so long as they don't then signal a + // reference to a slot that hasn't been set yet. That's what we are + // checking here. + if (idx == -1) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + + RefBuffer *const ref_frame = &cm->frame_refs[i]; + ref_frame->idx = idx; + ref_frame->buf = &frame_bufs[idx].buf; + ref_frame->map_idx = ref; + } else { + ref = cm->frame_refs[i].map_idx; + } + + cm->ref_frame_sign_bias[LAST_FRAME + i] = 0; + + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); + int ref_frame_id = + ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + + (1 << frame_id_length)) % + (1 << frame_id_length)); + // Compare values derived from delta_frame_id_minus_1 and + // refresh_frame_flags. Also, check valid for referencing + if (ref_frame_id != cm->ref_frame_id[ref] || + cm->valid_for_referencing[ref] == 0) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Reference buffer frame ID mismatch"); + } + } + + if (!cm->error_resilient_mode && frame_size_override_flag) { + setup_frame_size_with_refs(cm, rb); + } else { + setup_frame_size(cm, frame_size_override_flag, rb); + } + + if (cm->cur_frame_force_integer_mv) { + cm->allow_high_precision_mv = 0; + } else { + cm->allow_high_precision_mv = aom_rb_read_bit(rb); + } + cm->interp_filter = read_frame_interp_filter(rb); + cm->switchable_motion_mode = aom_rb_read_bit(rb); + } + + cm->prev_frame = get_prev_frame(cm); + if (cm->primary_ref_frame != PRIMARY_REF_NONE && + cm->frame_refs[cm->primary_ref_frame].idx < 0) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Reference frame containing this frame's initial " + "frame context is unavailable."); + } + + if (!cm->intra_only && pbi->need_resync != 1) { + if (frame_might_allow_ref_frame_mvs(cm)) + cm->allow_ref_frame_mvs = aom_rb_read_bit(rb); + else + cm->allow_ref_frame_mvs = 0; + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + RefBuffer *const ref_buf = &cm->frame_refs[i]; + av1_setup_scale_factors_for_frame( + &ref_buf->sf, ref_buf->buf->y_crop_width, + ref_buf->buf->y_crop_height, cm->width, cm->height); + if ((!av1_is_valid_scale(&ref_buf->sf))) + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + } + } + } + + av1_setup_frame_buf_refs(cm); + + av1_setup_frame_sign_bias(cm); + + cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only; + cm->cur_frame->frame_type = cm->frame_type; + + if (seq_params->frame_id_numbers_present_flag) { + /* If bitmask is set, update reference frame id values and + mark frames as valid for reference */ + int refresh_frame_flags = pbi->refresh_frame_flags; + for (int i = 0; i < REF_FRAMES; i++) { + if ((refresh_frame_flags >> i) & 1) { + cm->ref_frame_id[i] = cm->current_frame_id; + cm->valid_for_referencing[i] = 1; + } + } + } + + const int might_bwd_adapt = + !(seq_params->reduced_still_picture_hdr) && !(cm->disable_cdf_update); + if (might_bwd_adapt) { + cm->refresh_frame_context = aom_rb_read_bit(rb) + ? REFRESH_FRAME_CONTEXT_DISABLED + : REFRESH_FRAME_CONTEXT_BACKWARD; + } else { + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + } + + get_frame_new_buffer(cm)->bit_depth = seq_params->bit_depth; + get_frame_new_buffer(cm)->color_primaries = seq_params->color_primaries; + get_frame_new_buffer(cm)->transfer_characteristics = + seq_params->transfer_characteristics; + get_frame_new_buffer(cm)->matrix_coefficients = + seq_params->matrix_coefficients; + get_frame_new_buffer(cm)->monochrome = seq_params->monochrome; + get_frame_new_buffer(cm)->chroma_sample_position = + seq_params->chroma_sample_position; + get_frame_new_buffer(cm)->color_range = seq_params->color_range; + get_frame_new_buffer(cm)->render_width = cm->render_width; + get_frame_new_buffer(cm)->render_height = cm->render_height; + + if (pbi->need_resync) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Keyframe / intra-only frame required to reset decoder" + " state"); + } + + // Generate next_ref_frame_map. + lock_buffer_pool(pool); + int ref_index = 0; + for (int mask = pbi->refresh_frame_flags; mask; mask >>= 1) { + if (mask & 1) { + cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; + ++frame_bufs[cm->new_fb_idx].ref_count; + } else { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + } + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + ++ref_index; + } + + for (; ref_index < REF_FRAMES; ++ref_index) { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + } + unlock_buffer_pool(pool); + pbi->hold_ref_buf = 1; + + if (cm->allow_intrabc) { + // Set parameters corresponding to no filtering. + struct loopfilter *lf = &cm->lf; + lf->filter_level[0] = 0; + lf->filter_level[1] = 0; + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->nb_cdef_strengths = 1; + cm->cdef_uv_strengths[0] = 0; + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } + + read_tile_info(pbi, rb); + setup_quantization(cm, rb); + xd->bd = (int)seq_params->bit_depth; + + if (cm->num_allocated_above_context_planes < av1_num_planes(cm) || + cm->num_allocated_above_context_mi_col < cm->mi_cols || + cm->num_allocated_above_contexts < cm->tile_rows) { + av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts); + if (av1_alloc_above_context_buffers(cm, cm->tile_rows)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } + + if (cm->primary_ref_frame == PRIMARY_REF_NONE) { + av1_setup_past_independence(cm); + } + + setup_segmentation(cm, rb); + + cm->delta_q_res = 1; + cm->delta_lf_res = 1; + cm->delta_lf_present_flag = 0; + cm->delta_lf_multi = 0; + cm->delta_q_present_flag = cm->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; + if (cm->delta_q_present_flag) { + xd->current_qindex = cm->base_qindex; + cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2); + if (!cm->allow_intrabc) cm->delta_lf_present_flag = aom_rb_read_bit(rb); + if (cm->delta_lf_present_flag) { + cm->delta_lf_res = 1 << aom_rb_read_literal(rb, 2); + cm->delta_lf_multi = aom_rb_read_bit(rb); + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + + xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; + + for (int i = 0; i < MAX_SEGMENTS; ++i) { + const int qindex = cm->seg.enabled + ? av1_get_qindex(&cm->seg, i, cm->base_qindex) + : cm->base_qindex; + xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && + cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && + cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; + xd->qindex[i] = qindex; + } + cm->coded_lossless = is_coded_lossless(cm, xd); + cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); + setup_segmentation_dequant(cm); + if (cm->coded_lossless) { + cm->lf.filter_level[0] = 0; + cm->lf.filter_level[1] = 0; + } + if (cm->coded_lossless || !seq_params->enable_cdef) { + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->cdef_uv_strengths[0] = 0; + } + if (cm->all_lossless || !seq_params->enable_restoration) { + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } + setup_loopfilter(cm, rb); + + if (!cm->coded_lossless && seq_params->enable_cdef) { + setup_cdef(cm, rb); + } + if (!cm->all_lossless && seq_params->enable_restoration) { + decode_restoration_mode(cm, rb); + } + + cm->tx_mode = read_tx_mode(cm, rb); + cm->reference_mode = read_frame_reference_mode(cm, rb); + if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); + + av1_setup_skip_mode_allowed(cm); + cm->skip_mode_flag = cm->is_skip_mode_allowed ? aom_rb_read_bit(rb) : 0; + + if (frame_might_allow_warped_motion(cm)) + cm->allow_warped_motion = aom_rb_read_bit(rb); + else + cm->allow_warped_motion = 0; + + cm->reduced_tx_set_used = aom_rb_read_bit(rb); + + if (cm->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Frame wrongly requests reference frame MVs"); + } + + if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); + + cm->cur_frame->film_grain_params_present = + seq_params->film_grain_params_present; + read_film_grain(cm, rb); + +#if EXT_TILE_DEBUG + if (pbi->ext_tile_debug && cm->large_scale_tile) { + read_ext_tile_info(pbi, rb); + av1_set_single_tile_decoding_mode(cm); + } +#endif // EXT_TILE_DEBUG + return 0; +} + +struct aom_read_bit_buffer *av1_init_read_bit_buffer( + AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, + const uint8_t *data_end) { + rb->bit_offset = 0; + rb->error_handler = error_handler; + rb->error_handler_data = &pbi->common; + rb->bit_buffer = data; + rb->bit_buffer_end = data_end; + return rb; +} + +void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, + int num_bits_height, int *width, int *height) { + *width = aom_rb_read_literal(rb, num_bits_width) + 1; + *height = aom_rb_read_literal(rb, num_bits_height) + 1; +} + +BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { + int profile = aom_rb_read_literal(rb, PROFILE_BITS); + return (BITSTREAM_PROFILE)profile; +} + +void superres_post_decode(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + + if (!av1_superres_scaled(cm)) return; + assert(!cm->all_lossless); + + lock_buffer_pool(pool); + av1_superres_upscale(cm, pool); + unlock_buffer_pool(pool); +} + +uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + const uint8_t *data, + const uint8_t **p_data_end, + int trailing_bits_present) { + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &pbi->mb; + +#if CONFIG_BITSTREAM_DEBUG + bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); +#endif +#if CONFIG_MISMATCH_DEBUG + mismatch_move_frame_idx_r(); +#endif + + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + cm->global_motion[i] = default_warp_params; + cm->cur_frame->global_motion[i] = default_warp_params; + } + xd->global_motion = cm->global_motion; + + read_uncompressed_header(pbi, rb); + + if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); + + // If cm->single_tile_decoding = 0, the independent decoding of a single tile + // or a section of a frame is not allowed. + if (!cm->single_tile_decoding && + (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { + pbi->dec_tile_row = -1; + pbi->dec_tile_col = -1; + } + + const uint32_t uncomp_hdr_size = + (uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header + YV12_BUFFER_CONFIG *new_fb = get_frame_new_buffer(cm); + xd->cur_buf = new_fb; + if (av1_allow_intrabc(cm)) { + av1_setup_scale_factors_for_frame( + &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, + xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); + } + + if (cm->show_existing_frame) { + // showing a frame directly + *p_data_end = data + uncomp_hdr_size; + if (cm->reset_decoder_state) { + // Use the default frame context values. + *cm->fc = cm->frame_contexts[FRAME_CONTEXT_DEFAULTS]; + if (!cm->fc->initialized) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Uninitialized entropy context."); + } + return uncomp_hdr_size; + } + + cm->setup_mi(cm); + + cm->current_frame_seg_map = cm->cur_frame->seg_map; + + av1_setup_motion_field(cm); + + av1_setup_block_planes(xd, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y, num_planes); + if (cm->primary_ref_frame == PRIMARY_REF_NONE) { + // use the default frame context values + *cm->fc = cm->frame_contexts[FRAME_CONTEXT_DEFAULTS]; + } else { + *cm->fc = cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx]; + } + if (!cm->fc->initialized) + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Uninitialized entropy context."); + + xd->corrupted = 0; + return uncomp_hdr_size; +} + +// Once-per-frame initialization +static void setup_frame_info(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + + if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || + cm->rst_info[1].frame_restoration_type != RESTORE_NONE || + cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { + av1_alloc_restoration_buffers(cm); + } + const int use_highbd = cm->seq_params.use_highbitdepth ? 1 : 0; + const int buf_size = MC_TEMP_BUF_PELS << use_highbd; + if (pbi->td.mc_buf_size != buf_size) { + av1_free_mc_tmp_buf(&pbi->td); + allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd); + } +} + +void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end, int start_tile, + int end_tile, int initialize_flag) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + const int tile_count_tg = end_tile - start_tile + 1; + + if (initialize_flag) setup_frame_info(pbi); + const int num_planes = av1_num_planes(cm); +#if LOOP_FILTER_BITMASK + av1_loop_filter_frame_init(cm, 0, num_planes); + av1_zero_array(cm->lf.lfm, cm->lf.lfm_num); +#endif + + if (pbi->max_threads > 1 && !(cm->large_scale_tile && !pbi->ext_tile_debug) && + pbi->row_mt) + *p_data_end = + decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile); + else if (pbi->max_threads > 1 && tile_count_tg > 1 && + !(cm->large_scale_tile && !pbi->ext_tile_debug)) + *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); + else + *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile); + + // If the bit stream is monochrome, set the U and V buffers to a constant. + if (num_planes < 3) { + set_planes_to_neutral_grey(&cm->seq_params, xd->cur_buf, 1); + } + + if (end_tile != cm->tile_rows * cm->tile_cols - 1) { + return; + } + + if (!cm->allow_intrabc && !cm->single_tile_decoding) { + if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) { +#if LOOP_FILTER_BITMASK + av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, 1, 0, + num_planes, 0); +#else + if (pbi->num_workers > 1) { + av1_loop_filter_frame_mt(get_frame_new_buffer(cm), cm, &pbi->mb, 0, + num_planes, 0, pbi->tile_workers, + pbi->num_workers, &pbi->lf_row_sync); + } else { + av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, 0, + num_planes, 0); + } +#endif + } + + const int do_loop_restoration = + cm->rst_info[0].frame_restoration_type != RESTORE_NONE || + cm->rst_info[1].frame_restoration_type != RESTORE_NONE || + cm->rst_info[2].frame_restoration_type != RESTORE_NONE; + const int do_cdef = + !cm->skip_loop_filter && !cm->coded_lossless && + (cm->cdef_bits || cm->cdef_strengths[0] || cm->cdef_uv_strengths[0]); + const int do_superres = av1_superres_scaled(cm); + const int optimized_loop_restoration = !do_cdef && !do_superres; + + if (!optimized_loop_restoration) { + if (do_loop_restoration) + av1_loop_restoration_save_boundary_lines(&pbi->cur_buf->buf, cm, 0); + + if (do_cdef) av1_cdef_frame(&pbi->cur_buf->buf, cm, &pbi->mb); + + superres_post_decode(pbi); + + if (do_loop_restoration) { + av1_loop_restoration_save_boundary_lines(&pbi->cur_buf->buf, cm, 1); + if (pbi->num_workers > 1) { + av1_loop_restoration_filter_frame_mt( + (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, + pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, + &pbi->lr_ctxt); + } else { + av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, + cm, optimized_loop_restoration, + &pbi->lr_ctxt); + } + } + } else { + // In no cdef and no superres case. Provide an optimized version of + // loop_restoration_filter. + if (do_loop_restoration) { + if (pbi->num_workers > 1) { + av1_loop_restoration_filter_frame_mt( + (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, + pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, + &pbi->lr_ctxt); + } else { + av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, + cm, optimized_loop_restoration, + &pbi->lr_ctxt); + } + } + } + } + + if (!xd->corrupted) { + if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { + assert(cm->context_update_tile_id < pbi->allocated_tiles); + *cm->fc = pbi->tile_data[cm->context_update_tile_id].tctx; + av1_reset_cdf_symbol_counters(cm->fc); + } + } else { + aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, + "Decode failed. Frame data is corrupted."); + } + +#if CONFIG_INSPECTION + if (pbi->inspect_cb != NULL) { + (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); + } +#endif + + // Non frame parallel update frame context here. + if (!cm->large_scale_tile) { + cm->frame_contexts[cm->new_fb_idx] = *cm->fc; + } +} |