diff options
Diffstat (limited to 'js/src/tests/ecma/Expressions/11.5.3.js')
-rw-r--r-- | js/src/tests/ecma/Expressions/11.5.3.js | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/js/src/tests/ecma/Expressions/11.5.3.js b/js/src/tests/ecma/Expressions/11.5.3.js new file mode 100644 index 000000000..1bbf94efd --- /dev/null +++ b/js/src/tests/ecma/Expressions/11.5.3.js @@ -0,0 +1,127 @@ +/* -*- indent-tabs-mode: nil; js-indent-level: 2 -*- */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + + +/** + File Name: 11.5.3.js + ECMA Section: 11.5.3 Applying the % operator + Description: + + The binary % operator is said to yield the remainder of its operands from + an implied division; the left operand is the dividend and the right operand + is the divisor. In C and C++, the remainder operator accepts only integral + operands, but in ECMAScript, it also accepts floating-point operands. + + The result of a floating-point remainder operation as computed by the % + operator is not the same as the "remainder" operation defined by IEEE 754. + The IEEE 754 "remainder" operation computes the remainder from a rounding + division, not a truncating division, and so its behavior is not analogous + to that of the usual integer remainder operator. Instead the ECMAScript + language defines % on floating-point operations to behave in a manner + analogous to that of the Java integer remainder operator; this may be + compared with the C library function fmod. + + The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: + + If either operand is NaN, the result is NaN. + The sign of the result equals the sign of the dividend. + If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. + If the dividend is finite and the divisor is an infinity, the result equals the dividend. + If the dividend is a zero and the divisor is finite, the result is the same as the dividend. + In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r + from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that + is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as + possible without exceeding the magnitude of the true mathematical quotient of n and d. + + Author: christine@netscape.com + Date: 12 november 1997 +*/ +var SECTION = "11.5.3"; +var VERSION = "ECMA_1"; +var BUGNUMBER="111202"; +startTest(); + + +writeHeaderToLog( SECTION + " Applying the % operator"); + +// if either operand is NaN, the result is NaN. + +new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); +new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); +new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); + +new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); + +// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. +// dividend is an infinity + +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); + +new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); + +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); + +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); +new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); +new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); + +// divisor is 0 +new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); +new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); +new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); +new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); + +new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); +new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); +new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); +new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); + +new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); +new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); +new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); +new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); + +// If the dividend is finite and the divisor is an infinity, the result equals the dividend. + +new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); +new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); + +new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); +new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); + +new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); +new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); +new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); + +// If the dividend is a zero and the divisor is finite, the result is the same as the dividend. + +new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); +new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); +new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); +new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); + +// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r +// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that +// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as +// possible without exceeding the magnitude of the true mathematical quotient of n and d. + +test(); + |