summaryrefslogtreecommitdiffstats
path: root/js/src/tests/ecma/Expressions/11.5.3.js
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/tests/ecma/Expressions/11.5.3.js')
-rw-r--r--js/src/tests/ecma/Expressions/11.5.3.js127
1 files changed, 127 insertions, 0 deletions
diff --git a/js/src/tests/ecma/Expressions/11.5.3.js b/js/src/tests/ecma/Expressions/11.5.3.js
new file mode 100644
index 000000000..1bbf94efd
--- /dev/null
+++ b/js/src/tests/ecma/Expressions/11.5.3.js
@@ -0,0 +1,127 @@
+/* -*- indent-tabs-mode: nil; js-indent-level: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+
+/**
+ File Name: 11.5.3.js
+ ECMA Section: 11.5.3 Applying the % operator
+ Description:
+
+ The binary % operator is said to yield the remainder of its operands from
+ an implied division; the left operand is the dividend and the right operand
+ is the divisor. In C and C++, the remainder operator accepts only integral
+ operands, but in ECMAScript, it also accepts floating-point operands.
+
+ The result of a floating-point remainder operation as computed by the %
+ operator is not the same as the "remainder" operation defined by IEEE 754.
+ The IEEE 754 "remainder" operation computes the remainder from a rounding
+ division, not a truncating division, and so its behavior is not analogous
+ to that of the usual integer remainder operator. Instead the ECMAScript
+ language defines % on floating-point operations to behave in a manner
+ analogous to that of the Java integer remainder operator; this may be
+ compared with the C library function fmod.
+
+ The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
+
+ If either operand is NaN, the result is NaN.
+ The sign of the result equals the sign of the dividend.
+ If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
+ If the dividend is finite and the divisor is an infinity, the result equals the dividend.
+ If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
+ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
+ from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
+ is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
+ possible without exceeding the magnitude of the true mathematical quotient of n and d.
+
+ Author: christine@netscape.com
+ Date: 12 november 1997
+*/
+var SECTION = "11.5.3";
+var VERSION = "ECMA_1";
+var BUGNUMBER="111202";
+startTest();
+
+
+writeHeaderToLog( SECTION + " Applying the % operator");
+
+// if either operand is NaN, the result is NaN.
+
+new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
+new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
+new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
+
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
+
+// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
+// dividend is an infinity
+
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
+
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
+
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
+
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
+new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
+new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
+
+// divisor is 0
+new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
+new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
+new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
+new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
+
+new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
+new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
+new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
+new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
+
+new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
+new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
+new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
+new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
+
+// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
+
+new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
+new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
+
+new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
+new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
+
+new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
+new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
+new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
+
+// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
+
+new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
+new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
+new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
+new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
+
+// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
+// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
+// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
+// possible without exceeding the magnitude of the true mathematical quotient of n and d.
+
+test();
+