diff options
Diffstat (limited to 'js/src/regexp')
32 files changed, 16698 insertions, 0 deletions
diff --git a/js/src/regexp/VERSION b/js/src/regexp/VERSION new file mode 100644 index 000000000..3a0935dea --- /dev/null +++ b/js/src/regexp/VERSION @@ -0,0 +1,3 @@ +This code was most recently imported from the following version of V8: + +https://github.com/v8/v8/tree/2599d3cc208a3a4873be517285220abd8416c3d7/src/regexp diff --git a/js/src/regexp/gen-regexp-special-case.cc b/js/src/regexp/gen-regexp-special-case.cc new file mode 100644 index 000000000..337743f53 --- /dev/null +++ b/js/src/regexp/gen-regexp-special-case.cc @@ -0,0 +1,124 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include <fstream> +#include <iomanip> +#include <iostream> +#include <sstream> + +#include "unicode/uchar.h" +#include "unicode/uniset.h" + +namespace v8 { +namespace internal { + +// The following code generates BuildSpecialAddSet() and BuildIgnoreSet() +// functions into "src/regexp/special-case.cc". +// See more details in http://shorturl.at/adfO5 +void PrintSet(std::ofstream& out, const char* func_name, + const icu::UnicodeSet& set) { + out << "icu::UnicodeSet " << func_name << "() {\n" + << " icu::UnicodeSet set;\n"; + for (int32_t i = 0; i < set.getRangeCount(); i++) { + if (set.getRangeStart(i) == set.getRangeEnd(i)) { + out << " set.add(0x" << set.getRangeStart(i) << ");\n"; + } else { + out << " set.add(0x" << set.getRangeStart(i) << ", 0x" + << set.getRangeEnd(i) << ");\n"; + } + } + out << " set.freeze();\n" + << " return set;\n" + << "}\n"; +} + +void PrintSpecial(std::ofstream& out) { + icu::UnicodeSet current; + icu::UnicodeSet processed(0xd800, 0xdbff); // Ignore surrogate range. + icu::UnicodeSet special_add; + icu::UnicodeSet ignore; + UErrorCode status = U_ZERO_ERROR; + icu::UnicodeSet upper("[\\p{Lu}]", status); + CHECK(U_SUCCESS(status)); + // Iterate through all chars in BMP except ASCII and Surrogate. + for (UChar32 i = 0x80; i < 0x010000; i++) { + // Ignore those characters which is already processed. + if (!processed.contains(i)) { + current.set(i, i); + current.closeOver(USET_CASE_INSENSITIVE); + + // Remember we already processed current. + processed.addAll(current); + + // All uppercase characters in current. + icu::UnicodeSet keep_upper(current); + keep_upper.retainAll(upper); + + // Check if we have more than one uppercase character in current. + // If there are more than one uppercase character, then it is a special + // set which need to be added into either "Special Add" set or "Ignore" + // set. + int32_t number_of_upper = 0; + for (int32_t i = 0; i < keep_upper.getRangeCount() && i <= 1; i++) { + number_of_upper += + keep_upper.getRangeEnd(i) - keep_upper.getRangeStart(i) + 1; + } + if (number_of_upper > 1) { + // Add all non uppercase characters (could be Ll or Mn) to special add + // set. + current.removeAll(upper); + special_add.addAll(current); + + // Add the uppercase characters of non uppercase character to + // special add set. + CHECK_GT(current.getRangeCount(), 0); + UChar32 main_upper = u_toupper(current.getRangeStart(0)); + special_add.add(main_upper); + + // Add all uppercase except the main upper to ignore set. + keep_upper.remove(main_upper); + ignore.addAll(keep_upper); + } + } + } + + // Remove any ASCII + special_add.remove(0x0000, 0x007f); + PrintSet(out, "BuildIgnoreSet", ignore); + PrintSet(out, "BuildSpecialAddSet", special_add); +} + +void WriteHeader(const char* header_filename) { + std::ofstream out(header_filename); + out << std::hex << std::setfill('0') << std::setw(4); + + out << "// Automatically generated by regexp/gen-regexp-special-case.cc\n" + << "// The following functions are used to build icu::UnicodeSet\n" + << "// for specical cases different between Unicode and ECMA262.\n" + << "#ifdef V8_INTL_SUPPORT\n" + << "#include \"src/regexp/special-case.h\"\n\n" + << "#include \"unicode/uniset.h\"\n" + << "namespace v8 {\n" + << "namespace internal {\n\n"; + + PrintSpecial(out); + + out << "\n" + << "} // namespace internal\n" + << "} // namespace v8\n" + << "#endif // V8_INTL_SUPPORT\n"; +} + +} // namespace internal +} // namespace v8 + +int main(int argc, const char** argv) { + if (argc != 2) { + std::cerr << "Usage: " << argv[0] << " <output filename>\n"; + std::exit(1); + } + v8::internal::WriteHeader(argv[1]); + + return 0; +} diff --git a/js/src/regexp/property-sequences.cc b/js/src/regexp/property-sequences.cc new file mode 100644 index 000000000..e07d6da53 --- /dev/null +++ b/js/src/regexp/property-sequences.cc @@ -0,0 +1,1246 @@ +// Copyright 2018 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifdef V8_INTL_SUPPORT + +#include "regexp/property-sequences.h" + +namespace v8 { +namespace internal { + +/* +Generated from following Node.js source: + +package.json + +``` +{ + "private": true, + "dependencies": { + "unicode-12.0.0": "^0.7.9" + } +} +``` + +generate-unicode-sequence-property-data.js + +``` +const toHex = (symbol) => { + return '0x' + symbol.codePointAt(0).toString(16) + .toUpperCase().padStart(6, '0'); +}; + +const generateData = (property) => { + const sequences = + require(`unicode-12.0.0/Sequence_Property/${ property }/index.js`); + const id = property.replace(/_/g, '') + 's'; + const buffer = []; + for (const sequence of sequences) { + const symbols = [...sequence]; + const codePoints = symbols.map(symbol => toHex(symbol)); + buffer.push(' ' + codePoints.join(', ') + ', 0,'); + } + const output = + `const uc32 UnicodePropertySequences::k${ id }[] = {\n` + + `${ buffer.join('\n') }\n 0 // null-terminating the list\n};\n`; + return output; +}; + +const properties = [ + 'Emoji_Flag_Sequence', + 'Emoji_Tag_Sequence', + 'Emoji_ZWJ_Sequence', +]; + +for (const property of properties) { + console.log(generateData(property)); +} +``` +*/ + +// clang-format off +const uc32 UnicodePropertySequences::kEmojiFlagSequences[] = { + 0x01F1E6, 0x01F1E8, 0, + 0x01F1FF, 0x01F1FC, 0, + 0x01F1E6, 0x01F1EA, 0, + 0x01F1E6, 0x01F1EB, 0, + 0x01F1E6, 0x01F1EC, 0, + 0x01F1E6, 0x01F1EE, 0, + 0x01F1E6, 0x01F1F1, 0, + 0x01F1E6, 0x01F1F2, 0, + 0x01F1E6, 0x01F1F4, 0, + 0x01F1E6, 0x01F1F6, 0, + 0x01F1E6, 0x01F1F7, 0, + 0x01F1E6, 0x01F1F8, 0, + 0x01F1E6, 0x01F1F9, 0, + 0x01F1E6, 0x01F1FA, 0, + 0x01F1E6, 0x01F1FC, 0, + 0x01F1E6, 0x01F1FD, 0, + 0x01F1E6, 0x01F1FF, 0, + 0x01F1E7, 0x01F1E6, 0, + 0x01F1E7, 0x01F1E7, 0, + 0x01F1E7, 0x01F1E9, 0, + 0x01F1E7, 0x01F1EA, 0, + 0x01F1E7, 0x01F1EB, 0, + 0x01F1E7, 0x01F1EC, 0, + 0x01F1E7, 0x01F1ED, 0, + 0x01F1E7, 0x01F1EE, 0, + 0x01F1E7, 0x01F1EF, 0, + 0x01F1E7, 0x01F1F1, 0, + 0x01F1E7, 0x01F1F2, 0, + 0x01F1E7, 0x01F1F3, 0, + 0x01F1E7, 0x01F1F4, 0, + 0x01F1E7, 0x01F1F6, 0, + 0x01F1E7, 0x01F1F7, 0, + 0x01F1E7, 0x01F1F8, 0, + 0x01F1E7, 0x01F1F9, 0, + 0x01F1E7, 0x01F1FB, 0, + 0x01F1E7, 0x01F1FC, 0, + 0x01F1E7, 0x01F1FE, 0, + 0x01F1E7, 0x01F1FF, 0, + 0x01F1E8, 0x01F1E6, 0, + 0x01F1E8, 0x01F1E8, 0, + 0x01F1E8, 0x01F1E9, 0, + 0x01F1E8, 0x01F1EB, 0, + 0x01F1E8, 0x01F1EC, 0, + 0x01F1E8, 0x01F1ED, 0, + 0x01F1E8, 0x01F1EE, 0, + 0x01F1E8, 0x01F1F0, 0, + 0x01F1E8, 0x01F1F1, 0, + 0x01F1E8, 0x01F1F2, 0, + 0x01F1E8, 0x01F1F3, 0, + 0x01F1E8, 0x01F1F4, 0, + 0x01F1E8, 0x01F1F5, 0, + 0x01F1E8, 0x01F1F7, 0, + 0x01F1E8, 0x01F1FA, 0, + 0x01F1E8, 0x01F1FB, 0, + 0x01F1E8, 0x01F1FC, 0, + 0x01F1E8, 0x01F1FD, 0, + 0x01F1E8, 0x01F1FE, 0, + 0x01F1E8, 0x01F1FF, 0, + 0x01F1E9, 0x01F1EA, 0, + 0x01F1E9, 0x01F1EC, 0, + 0x01F1E9, 0x01F1EF, 0, + 0x01F1E9, 0x01F1F0, 0, + 0x01F1E9, 0x01F1F2, 0, + 0x01F1E9, 0x01F1F4, 0, + 0x01F1E9, 0x01F1FF, 0, + 0x01F1EA, 0x01F1E6, 0, + 0x01F1EA, 0x01F1E8, 0, + 0x01F1EA, 0x01F1EA, 0, + 0x01F1EA, 0x01F1EC, 0, + 0x01F1EA, 0x01F1ED, 0, + 0x01F1EA, 0x01F1F7, 0, + 0x01F1EA, 0x01F1F8, 0, + 0x01F1EA, 0x01F1F9, 0, + 0x01F1EA, 0x01F1FA, 0, + 0x01F1EB, 0x01F1EE, 0, + 0x01F1EB, 0x01F1EF, 0, + 0x01F1EB, 0x01F1F0, 0, + 0x01F1EB, 0x01F1F2, 0, + 0x01F1EB, 0x01F1F4, 0, + 0x01F1EB, 0x01F1F7, 0, + 0x01F1EC, 0x01F1E6, 0, + 0x01F1EC, 0x01F1E7, 0, + 0x01F1EC, 0x01F1E9, 0, + 0x01F1EC, 0x01F1EA, 0, + 0x01F1EC, 0x01F1EB, 0, + 0x01F1EC, 0x01F1EC, 0, + 0x01F1EC, 0x01F1ED, 0, + 0x01F1EC, 0x01F1EE, 0, + 0x01F1EC, 0x01F1F1, 0, + 0x01F1EC, 0x01F1F2, 0, + 0x01F1EC, 0x01F1F3, 0, + 0x01F1EC, 0x01F1F5, 0, + 0x01F1EC, 0x01F1F6, 0, + 0x01F1EC, 0x01F1F7, 0, + 0x01F1EC, 0x01F1F8, 0, + 0x01F1EC, 0x01F1F9, 0, + 0x01F1EC, 0x01F1FA, 0, + 0x01F1EC, 0x01F1FC, 0, + 0x01F1EC, 0x01F1FE, 0, + 0x01F1ED, 0x01F1F0, 0, + 0x01F1ED, 0x01F1F2, 0, + 0x01F1ED, 0x01F1F3, 0, + 0x01F1ED, 0x01F1F7, 0, + 0x01F1ED, 0x01F1F9, 0, + 0x01F1ED, 0x01F1FA, 0, + 0x01F1EE, 0x01F1E8, 0, + 0x01F1EE, 0x01F1E9, 0, + 0x01F1EE, 0x01F1EA, 0, + 0x01F1EE, 0x01F1F1, 0, + 0x01F1EE, 0x01F1F2, 0, + 0x01F1EE, 0x01F1F3, 0, + 0x01F1EE, 0x01F1F4, 0, + 0x01F1EE, 0x01F1F6, 0, + 0x01F1EE, 0x01F1F7, 0, + 0x01F1EE, 0x01F1F8, 0, + 0x01F1EE, 0x01F1F9, 0, + 0x01F1EF, 0x01F1EA, 0, + 0x01F1EF, 0x01F1F2, 0, + 0x01F1EF, 0x01F1F4, 0, + 0x01F1EF, 0x01F1F5, 0, + 0x01F1F0, 0x01F1EA, 0, + 0x01F1F0, 0x01F1EC, 0, + 0x01F1F0, 0x01F1ED, 0, + 0x01F1F0, 0x01F1EE, 0, + 0x01F1F0, 0x01F1F2, 0, + 0x01F1F0, 0x01F1F3, 0, + 0x01F1F0, 0x01F1F5, 0, + 0x01F1F0, 0x01F1F7, 0, + 0x01F1F0, 0x01F1FC, 0, + 0x01F1E6, 0x01F1E9, 0, + 0x01F1F0, 0x01F1FF, 0, + 0x01F1F1, 0x01F1E6, 0, + 0x01F1F1, 0x01F1E7, 0, + 0x01F1F1, 0x01F1E8, 0, + 0x01F1F1, 0x01F1EE, 0, + 0x01F1F1, 0x01F1F0, 0, + 0x01F1F1, 0x01F1F7, 0, + 0x01F1F1, 0x01F1F8, 0, + 0x01F1F1, 0x01F1F9, 0, + 0x01F1F1, 0x01F1FA, 0, + 0x01F1F1, 0x01F1FB, 0, + 0x01F1F1, 0x01F1FE, 0, + 0x01F1F2, 0x01F1E6, 0, + 0x01F1F2, 0x01F1E8, 0, + 0x01F1F2, 0x01F1E9, 0, + 0x01F1F2, 0x01F1EA, 0, + 0x01F1F2, 0x01F1EB, 0, + 0x01F1F2, 0x01F1EC, 0, + 0x01F1F2, 0x01F1ED, 0, + 0x01F1F2, 0x01F1F0, 0, + 0x01F1F2, 0x01F1F1, 0, + 0x01F1F2, 0x01F1F2, 0, + 0x01F1F2, 0x01F1F3, 0, + 0x01F1F2, 0x01F1F4, 0, + 0x01F1F2, 0x01F1F5, 0, + 0x01F1F2, 0x01F1F6, 0, + 0x01F1F2, 0x01F1F7, 0, + 0x01F1F2, 0x01F1F8, 0, + 0x01F1F2, 0x01F1F9, 0, + 0x01F1F2, 0x01F1FA, 0, + 0x01F1F2, 0x01F1FB, 0, + 0x01F1F2, 0x01F1FC, 0, + 0x01F1F2, 0x01F1FD, 0, + 0x01F1F2, 0x01F1FE, 0, + 0x01F1F2, 0x01F1FF, 0, + 0x01F1F3, 0x01F1E6, 0, + 0x01F1F3, 0x01F1E8, 0, + 0x01F1F3, 0x01F1EA, 0, + 0x01F1F3, 0x01F1EB, 0, + 0x01F1F3, 0x01F1EC, 0, + 0x01F1F3, 0x01F1EE, 0, + 0x01F1F3, 0x01F1F1, 0, + 0x01F1F3, 0x01F1F4, 0, + 0x01F1F3, 0x01F1F5, 0, + 0x01F1F3, 0x01F1F7, 0, + 0x01F1F3, 0x01F1FA, 0, + 0x01F1F3, 0x01F1FF, 0, + 0x01F1F4, 0x01F1F2, 0, + 0x01F1F5, 0x01F1E6, 0, + 0x01F1F5, 0x01F1EA, 0, + 0x01F1F5, 0x01F1EB, 0, + 0x01F1F5, 0x01F1EC, 0, + 0x01F1F5, 0x01F1ED, 0, + 0x01F1F5, 0x01F1F0, 0, + 0x01F1F5, 0x01F1F1, 0, + 0x01F1F5, 0x01F1F2, 0, + 0x01F1F5, 0x01F1F3, 0, + 0x01F1F5, 0x01F1F7, 0, + 0x01F1F5, 0x01F1F8, 0, + 0x01F1F5, 0x01F1F9, 0, + 0x01F1F5, 0x01F1FC, 0, + 0x01F1F5, 0x01F1FE, 0, + 0x01F1F6, 0x01F1E6, 0, + 0x01F1F7, 0x01F1EA, 0, + 0x01F1F7, 0x01F1F4, 0, + 0x01F1F7, 0x01F1F8, 0, + 0x01F1F7, 0x01F1FA, 0, + 0x01F1F7, 0x01F1FC, 0, + 0x01F1F8, 0x01F1E6, 0, + 0x01F1F8, 0x01F1E7, 0, + 0x01F1F8, 0x01F1E8, 0, + 0x01F1F8, 0x01F1E9, 0, + 0x01F1F8, 0x01F1EA, 0, + 0x01F1F8, 0x01F1EC, 0, + 0x01F1F8, 0x01F1ED, 0, + 0x01F1F8, 0x01F1EE, 0, + 0x01F1F8, 0x01F1EF, 0, + 0x01F1F8, 0x01F1F0, 0, + 0x01F1F8, 0x01F1F1, 0, + 0x01F1F8, 0x01F1F2, 0, + 0x01F1F8, 0x01F1F3, 0, + 0x01F1F8, 0x01F1F4, 0, + 0x01F1F8, 0x01F1F7, 0, + 0x01F1F8, 0x01F1F8, 0, + 0x01F1F8, 0x01F1F9, 0, + 0x01F1F8, 0x01F1FB, 0, + 0x01F1F8, 0x01F1FD, 0, + 0x01F1F8, 0x01F1FE, 0, + 0x01F1F8, 0x01F1FF, 0, + 0x01F1F9, 0x01F1E6, 0, + 0x01F1F9, 0x01F1E8, 0, + 0x01F1F9, 0x01F1E9, 0, + 0x01F1F9, 0x01F1EB, 0, + 0x01F1F9, 0x01F1EC, 0, + 0x01F1F9, 0x01F1ED, 0, + 0x01F1F9, 0x01F1EF, 0, + 0x01F1F9, 0x01F1F0, 0, + 0x01F1F9, 0x01F1F1, 0, + 0x01F1F9, 0x01F1F2, 0, + 0x01F1F9, 0x01F1F3, 0, + 0x01F1F9, 0x01F1F4, 0, + 0x01F1F9, 0x01F1F7, 0, + 0x01F1F9, 0x01F1F9, 0, + 0x01F1F9, 0x01F1FB, 0, + 0x01F1F9, 0x01F1FC, 0, + 0x01F1F9, 0x01F1FF, 0, + 0x01F1FA, 0x01F1E6, 0, + 0x01F1FA, 0x01F1EC, 0, + 0x01F1FA, 0x01F1F2, 0, + 0x01F1FA, 0x01F1F3, 0, + 0x01F1FA, 0x01F1F8, 0, + 0x01F1FA, 0x01F1FE, 0, + 0x01F1FA, 0x01F1FF, 0, + 0x01F1FB, 0x01F1E6, 0, + 0x01F1FB, 0x01F1E8, 0, + 0x01F1FB, 0x01F1EA, 0, + 0x01F1FB, 0x01F1EC, 0, + 0x01F1FB, 0x01F1EE, 0, + 0x01F1FB, 0x01F1F3, 0, + 0x01F1FB, 0x01F1FA, 0, + 0x01F1FC, 0x01F1EB, 0, + 0x01F1FC, 0x01F1F8, 0, + 0x01F1FD, 0x01F1F0, 0, + 0x01F1FE, 0x01F1EA, 0, + 0x01F1FE, 0x01F1F9, 0, + 0x01F1FF, 0x01F1E6, 0, + 0x01F1FF, 0x01F1F2, 0, + 0x01F1F0, 0x01F1FE, 0, + 0 // null-terminating the list +}; + +const uc32 UnicodePropertySequences::kEmojiTagSequences[] = { + 0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0065, 0x0E006E, 0x0E0067, 0x0E007F, 0, + 0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0073, 0x0E0063, 0x0E0074, 0x0E007F, 0, + 0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0077, 0x0E006C, 0x0E0073, 0x0E007F, 0, + 0 // null-terminating the list +}; + +const uc32 UnicodePropertySequences::kEmojiZWJSequences[] = { + 0x01F468, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F468, 0, + 0x01F441, 0x00FE0F, 0x00200D, 0x01F5E8, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F466, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F467, 0, + 0x01F468, 0x00200D, 0x01F467, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F467, 0x00200D, 0x01F467, 0, + 0x01F468, 0x00200D, 0x01F468, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F468, 0x00200D, 0x01F466, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F468, 0x00200D, 0x01F467, 0, + 0x01F468, 0x00200D, 0x01F468, 0x00200D, 0x01F467, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F468, 0x00200D, 0x01F467, 0x00200D, 0x01F467, 0, + 0x01F468, 0x00200D, 0x01F469, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F469, 0x00200D, 0x01F466, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0, + 0x01F468, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F466, 0, + 0x01F468, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F467, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FE, 0, + 0x01F469, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F468, 0, + 0x01F469, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F469, 0, + 0x01F469, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F48B, 0x00200D, + 0x01F468, 0, + 0x01F469, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F48B, 0x00200D, + 0x01F469, 0, + 0x01F469, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F466, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F467, 0, + 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F467, 0, + 0x01F469, 0x00200D, 0x01F469, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F469, 0x00200D, 0x01F466, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0, + 0x01F469, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F466, 0, + 0x01F469, 0x00200D, 0x01F469, 0x00200D, 0x01F467, 0x00200D, 0x01F467, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FE, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FF, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FE, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FF, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FB, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FE, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FF, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FB, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FC, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FF, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FB, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FC, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FD, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FB, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FC, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FD, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F468, 0x01F3FE, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FB, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FC, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FD, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F469, 0x01F3FE, 0, + 0x01F9D1, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0, + 0x01F9D1, 0x01F3FB, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FB, 0, + 0x01F9D1, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FB, 0, + 0x01F9D1, 0x01F3FC, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FC, 0, + 0x01F9D1, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FB, 0, + 0x01F9D1, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FC, 0, + 0x01F9D1, 0x01F3FD, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FD, 0, + 0x01F9D1, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FB, 0, + 0x01F9D1, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FC, 0, + 0x01F9D1, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FD, 0, + 0x01F9D1, 0x01F3FE, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FE, 0, + 0x01F9D1, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FB, 0, + 0x01F9D1, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FC, 0, + 0x01F9D1, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FD, 0, + 0x01F9D1, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FE, 0, + 0x01F9D1, 0x01F3FF, 0x00200D, 0x01F91D, 0x00200D, 0x01F9D1, 0x01F3FF, 0, + 0x01F468, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x00200D, 0x01F373, 0, + 0x01F468, 0x00200D, 0x01F393, 0, + 0x01F468, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x00200D, 0x01F527, 0, + 0x01F468, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x00200D, 0x01F680, 0, + 0x01F468, 0x00200D, 0x01F692, 0, + 0x01F468, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x00200D, 0x01F9BD, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F373, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F393, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F527, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F680, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F692, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9BD, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F373, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F393, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F527, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F680, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F692, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9BD, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F373, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F393, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F527, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F680, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F692, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9BD, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F373, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F393, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F527, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F680, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F692, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9BD, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F33E, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F373, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F393, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F3A4, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F3A8, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F3EB, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F3ED, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F4BB, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F4BC, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F527, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F52C, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F680, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F692, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9AF, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9BC, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x00200D, 0x01F373, 0, + 0x01F469, 0x00200D, 0x01F393, 0, + 0x01F469, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x00200D, 0x01F527, 0, + 0x01F469, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x00200D, 0x01F680, 0, + 0x01F469, 0x00200D, 0x01F692, 0, + 0x01F469, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F373, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F393, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F527, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F680, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F692, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F373, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F393, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F527, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F680, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F692, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F373, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F393, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F527, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F680, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F692, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F373, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F393, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F527, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F680, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F692, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9BD, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x002695, 0x00FE0F, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x002696, 0x00FE0F, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x002708, 0x00FE0F, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F33E, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F373, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F393, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F3A4, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F3A8, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F3EB, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F3ED, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F4BB, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F4BC, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F527, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F52C, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F680, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F692, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9AF, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9BC, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9BD, 0, + 0x0026F9, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x0026F9, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x0026F9, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x0026F9, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x0026F9, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x0026F9, 0x00FE0F, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x0026F9, 0x00FE0F, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C3, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3C4, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CA, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CB, 0x00FE0F, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CB, 0x00FE0F, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F3CC, 0x00FE0F, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F3CC, 0x00FE0F, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46E, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46E, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F46F, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F46F, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F471, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F471, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F473, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F473, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F477, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F477, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F481, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F481, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F482, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F482, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F48B, 0x00200D, + 0x01F468, 0, + 0x01F482, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F482, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F482, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F482, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F482, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F482, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F482, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F482, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F482, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F486, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F486, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F487, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F487, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F575, 0x00FE0F, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F575, 0x00FE0F, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F645, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F645, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F646, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F646, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F647, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F647, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64B, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64B, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64D, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64D, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F64E, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F64E, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6A3, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B4, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B5, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F6B6, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F926, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F926, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F937, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F937, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F938, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F938, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F939, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F939, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93C, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93C, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93D, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93D, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F93E, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F93E, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B8, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9B9, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CD, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CE, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9CF, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D6, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D7, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D8, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9D9, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DA, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DB, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DC, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FB, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FC, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FC, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FD, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FD, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DD, 0x01F3FF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DE, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DE, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F9DF, 0x00200D, 0x002640, 0x00FE0F, 0, + 0x01F9DF, 0x00200D, 0x002642, 0x00FE0F, 0, + 0x01F468, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x00200D, 0x01F9B3, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x01F3FB, 0x00200D, 0x01F9B3, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x01F3FC, 0x00200D, 0x01F9B3, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x01F3FD, 0x00200D, 0x01F9B3, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x01F3FE, 0x00200D, 0x01F9B3, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9B0, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9B1, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9B2, 0, + 0x01F468, 0x01F3FF, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x01F3FB, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x01F3FC, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x01F3FD, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x01F3FE, 0x00200D, 0x01F9B3, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9B0, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9B1, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9B2, 0, + 0x01F469, 0x01F3FF, 0x00200D, 0x01F9B3, 0, + 0x01F3F3, 0x00FE0F, 0x00200D, 0x01F308, 0, + 0x01F3F4, 0x00200D, 0x002620, 0x00FE0F, 0, + 0x01F415, 0x00200D, 0x01F9BA, 0, + 0x01F482, 0x01F3FB, 0x00200D, 0x002640, 0x00FE0F, 0, + 0 // null-terminating the list +}; +// clang-format on + +} // namespace internal +} // namespace v8 + +#endif // V8_INTL_SUPPORT diff --git a/js/src/regexp/property-sequences.h b/js/src/regexp/property-sequences.h new file mode 100644 index 000000000..cbf2ea1fc --- /dev/null +++ b/js/src/regexp/property-sequences.h @@ -0,0 +1,26 @@ +// Copyright 2018 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_PROPERTY_SEQUENCES_H_ +#define V8_REGEXP_PROPERTY_SEQUENCES_H_ + +#ifdef V8_INTL_SUPPORT + + +namespace v8 { +namespace internal { + +class UnicodePropertySequences : public AllStatic { + public: + static const uc32 kEmojiFlagSequences[]; + static const uc32 kEmojiTagSequences[]; + static const uc32 kEmojiZWJSequences[]; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_INTL_SUPPORT + +#endif // V8_REGEXP_PROPERTY_SEQUENCES_H_ diff --git a/js/src/regexp/regexp-ast.cc b/js/src/regexp/regexp-ast.cc new file mode 100644 index 000000000..8f7dd6947 --- /dev/null +++ b/js/src/regexp/regexp-ast.cc @@ -0,0 +1,342 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-ast.h" + +namespace v8 { +namespace internal { + +#define MAKE_ACCEPT(Name) \ + void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \ + return visitor->Visit##Name(this, data); \ + } +FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT) +#undef MAKE_ACCEPT + +#define MAKE_TYPE_CASE(Name) \ + RegExp##Name* RegExpTree::As##Name() { return nullptr; } \ + bool RegExpTree::Is##Name() { return false; } +FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) +#undef MAKE_TYPE_CASE + +#define MAKE_TYPE_CASE(Name) \ + RegExp##Name* RegExp##Name::As##Name() { return this; } \ + bool RegExp##Name::Is##Name() { return true; } +FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) +#undef MAKE_TYPE_CASE + + +static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) { + Interval result = Interval::Empty(); + for (int i = 0; i < children->length(); i++) + result = result.Union(children->at(i)->CaptureRegisters()); + return result; +} + + +Interval RegExpAlternative::CaptureRegisters() { + return ListCaptureRegisters(nodes()); +} + + +Interval RegExpDisjunction::CaptureRegisters() { + return ListCaptureRegisters(alternatives()); +} + + +Interval RegExpLookaround::CaptureRegisters() { + return body()->CaptureRegisters(); +} + + +Interval RegExpCapture::CaptureRegisters() { + Interval self(StartRegister(index()), EndRegister(index())); + return self.Union(body()->CaptureRegisters()); +} + + +Interval RegExpQuantifier::CaptureRegisters() { + return body()->CaptureRegisters(); +} + + +bool RegExpAssertion::IsAnchoredAtStart() { + return assertion_type() == RegExpAssertion::START_OF_INPUT; +} + + +bool RegExpAssertion::IsAnchoredAtEnd() { + return assertion_type() == RegExpAssertion::END_OF_INPUT; +} + + +bool RegExpAlternative::IsAnchoredAtStart() { + ZoneList<RegExpTree*>* nodes = this->nodes(); + for (int i = 0; i < nodes->length(); i++) { + RegExpTree* node = nodes->at(i); + if (node->IsAnchoredAtStart()) { + return true; + } + if (node->max_match() > 0) { + return false; + } + } + return false; +} + + +bool RegExpAlternative::IsAnchoredAtEnd() { + ZoneList<RegExpTree*>* nodes = this->nodes(); + for (int i = nodes->length() - 1; i >= 0; i--) { + RegExpTree* node = nodes->at(i); + if (node->IsAnchoredAtEnd()) { + return true; + } + if (node->max_match() > 0) { + return false; + } + } + return false; +} + + +bool RegExpDisjunction::IsAnchoredAtStart() { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + for (int i = 0; i < alternatives->length(); i++) { + if (!alternatives->at(i)->IsAnchoredAtStart()) return false; + } + return true; +} + + +bool RegExpDisjunction::IsAnchoredAtEnd() { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + for (int i = 0; i < alternatives->length(); i++) { + if (!alternatives->at(i)->IsAnchoredAtEnd()) return false; + } + return true; +} + + +bool RegExpLookaround::IsAnchoredAtStart() { + return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart(); +} + + +bool RegExpCapture::IsAnchoredAtStart() { return body()->IsAnchoredAtStart(); } + + +bool RegExpCapture::IsAnchoredAtEnd() { return body()->IsAnchoredAtEnd(); } + + +// Convert regular expression trees to a simple sexp representation. +// This representation should be different from the input grammar +// in as many cases as possible, to make it more difficult for incorrect +// parses to look as correct ones which is likely if the input and +// output formats are alike. +class RegExpUnparser final : public RegExpVisitor { + public: + RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {} + void VisitCharacterRange(CharacterRange that); +#define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override; + FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) +#undef MAKE_CASE + private: + std::ostream& os_; + Zone* zone_; +}; + + +void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) { + os_ << "(|"; + for (int i = 0; i < that->alternatives()->length(); i++) { + os_ << " "; + that->alternatives()->at(i)->Accept(this, data); + } + os_ << ")"; + return nullptr; +} + + +void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) { + os_ << "(:"; + for (int i = 0; i < that->nodes()->length(); i++) { + os_ << " "; + that->nodes()->at(i)->Accept(this, data); + } + os_ << ")"; + return nullptr; +} + + +void RegExpUnparser::VisitCharacterRange(CharacterRange that) { + os_ << AsUC32(that.from()); + if (!that.IsSingleton()) { + os_ << "-" << AsUC32(that.to()); + } +} + + +void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that, + void* data) { + if (that->is_negated()) os_ << "^"; + os_ << "["; + for (int i = 0; i < that->ranges(zone_)->length(); i++) { + if (i > 0) os_ << " "; + VisitCharacterRange(that->ranges(zone_)->at(i)); + } + os_ << "]"; + return nullptr; +} + + +void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) { + switch (that->assertion_type()) { + case RegExpAssertion::START_OF_INPUT: + os_ << "@^i"; + break; + case RegExpAssertion::END_OF_INPUT: + os_ << "@$i"; + break; + case RegExpAssertion::START_OF_LINE: + os_ << "@^l"; + break; + case RegExpAssertion::END_OF_LINE: + os_ << "@$l"; + break; + case RegExpAssertion::BOUNDARY: + os_ << "@b"; + break; + case RegExpAssertion::NON_BOUNDARY: + os_ << "@B"; + break; + } + return nullptr; +} + + +void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) { + os_ << "'"; + Vector<const uc16> chardata = that->data(); + for (int i = 0; i < chardata.length(); i++) { + os_ << AsUC16(chardata[i]); + } + os_ << "'"; + return nullptr; +} + + +void* RegExpUnparser::VisitText(RegExpText* that, void* data) { + if (that->elements()->length() == 1) { + that->elements()->at(0).tree()->Accept(this, data); + } else { + os_ << "(!"; + for (int i = 0; i < that->elements()->length(); i++) { + os_ << " "; + that->elements()->at(i).tree()->Accept(this, data); + } + os_ << ")"; + } + return nullptr; +} + + +void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) { + os_ << "(# " << that->min() << " "; + if (that->max() == RegExpTree::kInfinity) { + os_ << "- "; + } else { + os_ << that->max() << " "; + } + os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n "); + that->body()->Accept(this, data); + os_ << ")"; + return nullptr; +} + + +void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) { + os_ << "(^ "; + that->body()->Accept(this, data); + os_ << ")"; + return nullptr; +} + +void* RegExpUnparser::VisitGroup(RegExpGroup* that, void* data) { + os_ << "(?: "; + that->body()->Accept(this, data); + os_ << ")"; + return nullptr; +} + +void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) { + os_ << "("; + os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-"); + os_ << (that->is_positive() ? " + " : " - "); + that->body()->Accept(this, data); + os_ << ")"; + return nullptr; +} + + +void* RegExpUnparser::VisitBackReference(RegExpBackReference* that, + void* data) { + os_ << "(<- " << that->index() << ")"; + return nullptr; +} + + +void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) { + os_ << '%'; + return nullptr; +} + + +std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT + RegExpUnparser unparser(os, zone); + Accept(&unparser, nullptr); + return os; +} + + +RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives) + : alternatives_(alternatives) { + DCHECK_LT(1, alternatives->length()); + RegExpTree* first_alternative = alternatives->at(0); + min_match_ = first_alternative->min_match(); + max_match_ = first_alternative->max_match(); + for (int i = 1; i < alternatives->length(); i++) { + RegExpTree* alternative = alternatives->at(i); + min_match_ = Min(min_match_, alternative->min_match()); + max_match_ = Max(max_match_, alternative->max_match()); + } +} + + +static int IncreaseBy(int previous, int increase) { + if (RegExpTree::kInfinity - previous < increase) { + return RegExpTree::kInfinity; + } else { + return previous + increase; + } +} + + +RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes) + : nodes_(nodes) { + DCHECK_LT(1, nodes->length()); + min_match_ = 0; + max_match_ = 0; + for (int i = 0; i < nodes->length(); i++) { + RegExpTree* node = nodes->at(i); + int node_min_match = node->min_match(); + min_match_ = IncreaseBy(min_match_, node_min_match); + int node_max_match = node->max_match(); + max_match_ = IncreaseBy(max_match_, node_max_match); + } +} + + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-ast.h b/js/src/regexp/regexp-ast.h new file mode 100644 index 000000000..540fdce80 --- /dev/null +++ b/js/src/regexp/regexp-ast.h @@ -0,0 +1,599 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_AST_H_ +#define V8_REGEXP_REGEXP_AST_H_ + + +namespace v8 { +namespace internal { + +#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ + VISIT(Disjunction) \ + VISIT(Alternative) \ + VISIT(Assertion) \ + VISIT(CharacterClass) \ + VISIT(Atom) \ + VISIT(Quantifier) \ + VISIT(Capture) \ + VISIT(Group) \ + VISIT(Lookaround) \ + VISIT(BackReference) \ + VISIT(Empty) \ + VISIT(Text) + +#define FORWARD_DECLARE(Name) class RegExp##Name; +FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) +#undef FORWARD_DECLARE + +class RegExpCompiler; +class RegExpNode; +class RegExpTree; + +class RegExpVisitor { + public: + virtual ~RegExpVisitor() = default; +#define MAKE_CASE(Name) \ + virtual void* Visit##Name(RegExp##Name*, void* data) = 0; + FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) +#undef MAKE_CASE +}; + + +// A simple closed interval. +class Interval { + public: + Interval() : from_(kNone), to_(kNone - 1) {} // '- 1' for branchless size(). + Interval(int from, int to) : from_(from), to_(to) {} + Interval Union(Interval that) { + if (that.from_ == kNone) + return *this; + else if (from_ == kNone) + return that; + else + return Interval(Min(from_, that.from_), Max(to_, that.to_)); + } + + bool Contains(int value) { return (from_ <= value) && (value <= to_); } + bool is_empty() { return from_ == kNone; } + int from() const { return from_; } + int to() const { return to_; } + int size() const { return to_ - from_ + 1; } + + static Interval Empty() { return Interval(); } + + static constexpr int kNone = -1; + + private: + int from_; + int to_; +}; + + +// Represents code units in the range from from_ to to_, both ends are +// inclusive. +class CharacterRange { + public: + CharacterRange() : from_(0), to_(0) {} + // For compatibility with the CHECK_OK macro + CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT + V8_EXPORT_PRIVATE static void AddClassEscape(char type, + ZoneList<CharacterRange>* ranges, + Zone* zone); + // Add class escapes. Add case equivalent closure for \w and \W if necessary. + V8_EXPORT_PRIVATE static void AddClassEscape( + char type, ZoneList<CharacterRange>* ranges, + bool add_unicode_case_equivalents, Zone* zone); + static Vector<const int> GetWordBounds(); + static inline CharacterRange Singleton(uc32 value) { + return CharacterRange(value, value); + } + static inline CharacterRange Range(uc32 from, uc32 to) { + DCHECK(0 <= from && to <= String::kMaxCodePoint); + DCHECK(static_cast<uint32_t>(from) <= static_cast<uint32_t>(to)); + return CharacterRange(from, to); + } + static inline CharacterRange Everything() { + return CharacterRange(0, String::kMaxCodePoint); + } + static inline ZoneList<CharacterRange>* List(Zone* zone, + CharacterRange range) { + ZoneList<CharacterRange>* list = + new (zone) ZoneList<CharacterRange>(1, zone); + list->Add(range, zone); + return list; + } + bool Contains(uc32 i) { return from_ <= i && i <= to_; } + uc32 from() const { return from_; } + void set_from(uc32 value) { from_ = value; } + uc32 to() const { return to_; } + void set_to(uc32 value) { to_ = value; } + bool is_valid() { return from_ <= to_; } + bool IsEverything(uc32 max) { return from_ == 0 && to_ >= max; } + bool IsSingleton() { return (from_ == to_); } + V8_EXPORT_PRIVATE static void AddCaseEquivalents( + Isolate* isolate, Zone* zone, ZoneList<CharacterRange>* ranges, + bool is_one_byte); + // Whether a range list is in canonical form: Ranges ordered by from value, + // and ranges non-overlapping and non-adjacent. + V8_EXPORT_PRIVATE static bool IsCanonical(ZoneList<CharacterRange>* ranges); + // Convert range list to canonical form. The characters covered by the ranges + // will still be the same, but no character is in more than one range, and + // adjacent ranges are merged. The resulting list may be shorter than the + // original, but cannot be longer. + static void Canonicalize(ZoneList<CharacterRange>* ranges); + // Negate the contents of a character range in canonical form. + static void Negate(ZoneList<CharacterRange>* src, + ZoneList<CharacterRange>* dst, Zone* zone); + static const int kStartMarker = (1 << 24); + static const int kPayloadMask = (1 << 24) - 1; + + private: + CharacterRange(uc32 from, uc32 to) : from_(from), to_(to) {} + + uc32 from_; + uc32 to_; +}; + +class CharacterSet final { + public: + explicit CharacterSet(uc16 standard_set_type) + : ranges_(nullptr), standard_set_type_(standard_set_type) {} + explicit CharacterSet(ZoneList<CharacterRange>* ranges) + : ranges_(ranges), standard_set_type_(0) {} + ZoneList<CharacterRange>* ranges(Zone* zone); + uc16 standard_set_type() const { return standard_set_type_; } + void set_standard_set_type(uc16 special_set_type) { + standard_set_type_ = special_set_type; + } + bool is_standard() { return standard_set_type_ != 0; } + V8_EXPORT_PRIVATE void Canonicalize(); + + private: + ZoneList<CharacterRange>* ranges_; + // If non-zero, the value represents a standard set (e.g., all whitespace + // characters) without having to expand the ranges. + uc16 standard_set_type_; +}; + +class TextElement final { + public: + enum TextType { ATOM, CHAR_CLASS }; + + static TextElement Atom(RegExpAtom* atom); + static TextElement CharClass(RegExpCharacterClass* char_class); + + int cp_offset() const { return cp_offset_; } + void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } + int length() const; + + TextType text_type() const { return text_type_; } + + RegExpTree* tree() const { return tree_; } + + RegExpAtom* atom() const { + DCHECK(text_type() == ATOM); + return reinterpret_cast<RegExpAtom*>(tree()); + } + + RegExpCharacterClass* char_class() const { + DCHECK(text_type() == CHAR_CLASS); + return reinterpret_cast<RegExpCharacterClass*>(tree()); + } + + private: + TextElement(TextType text_type, RegExpTree* tree) + : cp_offset_(-1), text_type_(text_type), tree_(tree) {} + + int cp_offset_; + TextType text_type_; + RegExpTree* tree_; +}; + + +class RegExpTree : public ZoneObject { + public: + static const int kInfinity = kMaxInt; + virtual ~RegExpTree() = default; + virtual void* Accept(RegExpVisitor* visitor, void* data) = 0; + virtual RegExpNode* ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) = 0; + virtual bool IsTextElement() { return false; } + virtual bool IsAnchoredAtStart() { return false; } + virtual bool IsAnchoredAtEnd() { return false; } + virtual int min_match() = 0; + virtual int max_match() = 0; + // Returns the interval of registers used for captures within this + // expression. + virtual Interval CaptureRegisters() { return Interval::Empty(); } + virtual void AppendToText(RegExpText* text, Zone* zone); + V8_EXPORT_PRIVATE std::ostream& Print(std::ostream& os, + Zone* zone); // NOLINT +#define MAKE_ASTYPE(Name) \ + virtual RegExp##Name* As##Name(); \ + virtual bool Is##Name(); + FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE) +#undef MAKE_ASTYPE +}; + + +class RegExpDisjunction final : public RegExpTree { + public: + explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives); + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpDisjunction* AsDisjunction() override; + Interval CaptureRegisters() override; + bool IsDisjunction() override; + bool IsAnchoredAtStart() override; + bool IsAnchoredAtEnd() override; + int min_match() override { return min_match_; } + int max_match() override { return max_match_; } + ZoneList<RegExpTree*>* alternatives() { return alternatives_; } + + private: + bool SortConsecutiveAtoms(RegExpCompiler* compiler); + void RationalizeConsecutiveAtoms(RegExpCompiler* compiler); + void FixSingleCharacterDisjunctions(RegExpCompiler* compiler); + ZoneList<RegExpTree*>* alternatives_; + int min_match_; + int max_match_; +}; + + +class RegExpAlternative final : public RegExpTree { + public: + explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes); + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpAlternative* AsAlternative() override; + Interval CaptureRegisters() override; + bool IsAlternative() override; + bool IsAnchoredAtStart() override; + bool IsAnchoredAtEnd() override; + int min_match() override { return min_match_; } + int max_match() override { return max_match_; } + ZoneList<RegExpTree*>* nodes() { return nodes_; } + + private: + ZoneList<RegExpTree*>* nodes_; + int min_match_; + int max_match_; +}; + + +class RegExpAssertion final : public RegExpTree { + public: + enum AssertionType { + START_OF_LINE = 0, + START_OF_INPUT = 1, + END_OF_LINE = 2, + END_OF_INPUT = 3, + BOUNDARY = 4, + NON_BOUNDARY = 5, + LAST_TYPE = NON_BOUNDARY, + }; + RegExpAssertion(AssertionType type, JSRegExp::Flags flags) + : assertion_type_(type), flags_(flags) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpAssertion* AsAssertion() override; + bool IsAssertion() override; + bool IsAnchoredAtStart() override; + bool IsAnchoredAtEnd() override; + int min_match() override { return 0; } + int max_match() override { return 0; } + AssertionType assertion_type() const { return assertion_type_; } + JSRegExp::Flags flags() const { return flags_; } + + private: + const AssertionType assertion_type_; + const JSRegExp::Flags flags_; +}; + + +class RegExpCharacterClass final : public RegExpTree { + public: + // NEGATED: The character class is negated and should match everything but + // the specified ranges. + // CONTAINS_SPLIT_SURROGATE: The character class contains part of a split + // surrogate and should not be unicode-desugared (crbug.com/641091). + enum Flag { + NEGATED = 1 << 0, + CONTAINS_SPLIT_SURROGATE = 1 << 1, + }; + using CharacterClassFlags = base::Flags<Flag>; + + RegExpCharacterClass( + Zone* zone, ZoneList<CharacterRange>* ranges, JSRegExp::Flags flags, + CharacterClassFlags character_class_flags = CharacterClassFlags()) + : set_(ranges), + flags_(flags), + character_class_flags_(character_class_flags) { + // Convert the empty set of ranges to the negated Everything() range. + if (ranges->is_empty()) { + ranges->Add(CharacterRange::Everything(), zone); + character_class_flags_ ^= NEGATED; + } + } + RegExpCharacterClass(uc16 type, JSRegExp::Flags flags) + : set_(type), + flags_(flags), + character_class_flags_(CharacterClassFlags()) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpCharacterClass* AsCharacterClass() override; + bool IsCharacterClass() override; + bool IsTextElement() override { return true; } + int min_match() override { return 1; } + // The character class may match two code units for unicode regexps. + // TODO(yangguo): we should split this class for usage in TextElement, and + // make max_match() dependent on the character class content. + int max_match() override { return 2; } + void AppendToText(RegExpText* text, Zone* zone) override; + CharacterSet character_set() { return set_; } + // TODO(lrn): Remove need for complex version if is_standard that + // recognizes a mangled standard set and just do { return set_.is_special(); } + bool is_standard(Zone* zone); + // Returns a value representing the standard character set if is_standard() + // returns true. + // Currently used values are: + // s : unicode whitespace + // S : unicode non-whitespace + // w : ASCII word character (digit, letter, underscore) + // W : non-ASCII word character + // d : ASCII digit + // D : non-ASCII digit + // . : non-newline + // * : All characters, for advancing unanchored regexp + uc16 standard_type() const { return set_.standard_set_type(); } + ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); } + bool is_negated() const { return (character_class_flags_ & NEGATED) != 0; } + JSRegExp::Flags flags() const { return flags_; } + bool contains_split_surrogate() const { + return (character_class_flags_ & CONTAINS_SPLIT_SURROGATE) != 0; + } + + private: + CharacterSet set_; + const JSRegExp::Flags flags_; + CharacterClassFlags character_class_flags_; +}; + + +class RegExpAtom final : public RegExpTree { + public: + explicit RegExpAtom(Vector<const uc16> data, JSRegExp::Flags flags) + : data_(data), flags_(flags) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpAtom* AsAtom() override; + bool IsAtom() override; + bool IsTextElement() override { return true; } + int min_match() override { return data_.length(); } + int max_match() override { return data_.length(); } + void AppendToText(RegExpText* text, Zone* zone) override; + Vector<const uc16> data() { return data_; } + int length() { return data_.length(); } + JSRegExp::Flags flags() const { return flags_; } + bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; } + + private: + Vector<const uc16> data_; + const JSRegExp::Flags flags_; +}; + + +class RegExpText final : public RegExpTree { + public: + explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpText* AsText() override; + bool IsText() override; + bool IsTextElement() override { return true; } + int min_match() override { return length_; } + int max_match() override { return length_; } + void AppendToText(RegExpText* text, Zone* zone) override; + void AddElement(TextElement elm, Zone* zone) { + elements_.Add(elm, zone); + length_ += elm.length(); + } + ZoneList<TextElement>* elements() { return &elements_; } + + private: + ZoneList<TextElement> elements_; + int length_; +}; + + +class RegExpQuantifier final : public RegExpTree { + public: + enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE }; + RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body) + : body_(body), + min_(min), + max_(max), + quantifier_type_(type) { + if (min > 0 && body->min_match() > kInfinity / min) { + min_match_ = kInfinity; + } else { + min_match_ = min * body->min_match(); + } + if (max > 0 && body->max_match() > kInfinity / max) { + max_match_ = kInfinity; + } else { + max_match_ = max * body->max_match(); + } + } + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + static RegExpNode* ToNode(int min, int max, bool is_greedy, RegExpTree* body, + RegExpCompiler* compiler, RegExpNode* on_success, + bool not_at_start = false); + RegExpQuantifier* AsQuantifier() override; + Interval CaptureRegisters() override; + bool IsQuantifier() override; + int min_match() override { return min_match_; } + int max_match() override { return max_match_; } + int min() { return min_; } + int max() { return max_; } + bool is_possessive() { return quantifier_type_ == POSSESSIVE; } + bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; } + bool is_greedy() { return quantifier_type_ == GREEDY; } + RegExpTree* body() { return body_; } + + private: + RegExpTree* body_; + int min_; + int max_; + int min_match_; + int max_match_; + QuantifierType quantifier_type_; +}; + + +class RegExpCapture final : public RegExpTree { + public: + explicit RegExpCapture(int index) + : body_(nullptr), index_(index), name_(nullptr) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + static RegExpNode* ToNode(RegExpTree* body, int index, + RegExpCompiler* compiler, RegExpNode* on_success); + RegExpCapture* AsCapture() override; + bool IsAnchoredAtStart() override; + bool IsAnchoredAtEnd() override; + Interval CaptureRegisters() override; + bool IsCapture() override; + int min_match() override { return body_->min_match(); } + int max_match() override { return body_->max_match(); } + RegExpTree* body() { return body_; } + void set_body(RegExpTree* body) { body_ = body; } + int index() const { return index_; } + const ZoneVector<uc16>* name() const { return name_; } + void set_name(const ZoneVector<uc16>* name) { name_ = name; } + static int StartRegister(int index) { return index * 2; } + static int EndRegister(int index) { return index * 2 + 1; } + + private: + RegExpTree* body_; + int index_; + const ZoneVector<uc16>* name_; +}; + +class RegExpGroup final : public RegExpTree { + public: + explicit RegExpGroup(RegExpTree* body) : body_(body) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) override { + return body_->ToNode(compiler, on_success); + } + RegExpGroup* AsGroup() override; + bool IsAnchoredAtStart() override { return body_->IsAnchoredAtStart(); } + bool IsAnchoredAtEnd() override { return body_->IsAnchoredAtEnd(); } + bool IsGroup() override; + int min_match() override { return body_->min_match(); } + int max_match() override { return body_->max_match(); } + Interval CaptureRegisters() override { return body_->CaptureRegisters(); } + RegExpTree* body() { return body_; } + + private: + RegExpTree* body_; +}; + +class RegExpLookaround final : public RegExpTree { + public: + enum Type { LOOKAHEAD, LOOKBEHIND }; + + RegExpLookaround(RegExpTree* body, bool is_positive, int capture_count, + int capture_from, Type type) + : body_(body), + is_positive_(is_positive), + capture_count_(capture_count), + capture_from_(capture_from), + type_(type) {} + + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpLookaround* AsLookaround() override; + Interval CaptureRegisters() override; + bool IsLookaround() override; + bool IsAnchoredAtStart() override; + int min_match() override { return 0; } + int max_match() override { return 0; } + RegExpTree* body() { return body_; } + bool is_positive() { return is_positive_; } + int capture_count() { return capture_count_; } + int capture_from() { return capture_from_; } + Type type() { return type_; } + + class Builder { + public: + Builder(bool is_positive, RegExpNode* on_success, + int stack_pointer_register, int position_register, + int capture_register_count = 0, int capture_register_start = 0); + RegExpNode* on_match_success() { return on_match_success_; } + RegExpNode* ForMatch(RegExpNode* match); + + private: + bool is_positive_; + RegExpNode* on_match_success_; + RegExpNode* on_success_; + int stack_pointer_register_; + int position_register_; + }; + + private: + RegExpTree* body_; + bool is_positive_; + int capture_count_; + int capture_from_; + Type type_; +}; + + +class RegExpBackReference final : public RegExpTree { + public: + explicit RegExpBackReference(JSRegExp::Flags flags) + : capture_(nullptr), name_(nullptr), flags_(flags) {} + RegExpBackReference(RegExpCapture* capture, JSRegExp::Flags flags) + : capture_(capture), name_(nullptr), flags_(flags) {} + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpBackReference* AsBackReference() override; + bool IsBackReference() override; + int min_match() override { return 0; } + // The back reference may be recursive, e.g. /(\2)(\1)/. To avoid infinite + // recursion, we give up. Ignorance is bliss. + int max_match() override { return kInfinity; } + int index() { return capture_->index(); } + RegExpCapture* capture() { return capture_; } + void set_capture(RegExpCapture* capture) { capture_ = capture; } + const ZoneVector<uc16>* name() const { return name_; } + void set_name(const ZoneVector<uc16>* name) { name_ = name; } + + private: + RegExpCapture* capture_; + const ZoneVector<uc16>* name_; + const JSRegExp::Flags flags_; +}; + + +class RegExpEmpty final : public RegExpTree { + public: + RegExpEmpty() = default; + void* Accept(RegExpVisitor* visitor, void* data) override; + RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override; + RegExpEmpty* AsEmpty() override; + bool IsEmpty() override; + int min_match() override { return 0; } + int max_match() override { return 0; } +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_AST_H_ diff --git a/js/src/regexp/regexp-bytecode-generator-inl.h b/js/src/regexp/regexp-bytecode-generator-inl.h new file mode 100644 index 000000000..69a054fd2 --- /dev/null +++ b/js/src/regexp/regexp-bytecode-generator-inl.h @@ -0,0 +1,55 @@ +// Copyright 2008-2009 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_BYTECODE_GENERATOR_INL_H_ +#define V8_REGEXP_REGEXP_BYTECODE_GENERATOR_INL_H_ + +#include "regexp/regexp-bytecode-generator.h" + +#include "regexp/regexp-bytecodes.h" + +namespace v8 { +namespace internal { + +void RegExpBytecodeGenerator::Emit(uint32_t byte, uint32_t twenty_four_bits) { + uint32_t word = ((twenty_four_bits << BYTECODE_SHIFT) | byte); + DCHECK(pc_ <= buffer_.length()); + if (pc_ + 3 >= buffer_.length()) { + Expand(); + } + *reinterpret_cast<uint32_t*>(buffer_.begin() + pc_) = word; + pc_ += 4; +} + +void RegExpBytecodeGenerator::Emit16(uint32_t word) { + DCHECK(pc_ <= buffer_.length()); + if (pc_ + 1 >= buffer_.length()) { + Expand(); + } + *reinterpret_cast<uint16_t*>(buffer_.begin() + pc_) = word; + pc_ += 2; +} + +void RegExpBytecodeGenerator::Emit8(uint32_t word) { + DCHECK(pc_ <= buffer_.length()); + if (pc_ == buffer_.length()) { + Expand(); + } + *reinterpret_cast<unsigned char*>(buffer_.begin() + pc_) = word; + pc_ += 1; +} + +void RegExpBytecodeGenerator::Emit32(uint32_t word) { + DCHECK(pc_ <= buffer_.length()); + if (pc_ + 3 >= buffer_.length()) { + Expand(); + } + *reinterpret_cast<uint32_t*>(buffer_.begin() + pc_) = word; + pc_ += 4; +} + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_BYTECODE_GENERATOR_INL_H_ diff --git a/js/src/regexp/regexp-bytecode-generator.cc b/js/src/regexp/regexp-bytecode-generator.cc new file mode 100644 index 000000000..239b27605 --- /dev/null +++ b/js/src/regexp/regexp-bytecode-generator.cc @@ -0,0 +1,397 @@ +// Copyright 2008-2009 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-bytecode-generator.h" + +#include "regexp/regexp-bytecode-generator-inl.h" +#include "regexp/regexp-bytecode-peephole.h" +#include "regexp/regexp-bytecodes.h" +#include "regexp/regexp-macro-assembler.h" + +namespace v8 { +namespace internal { + +RegExpBytecodeGenerator::RegExpBytecodeGenerator(Isolate* isolate, Zone* zone) + : RegExpMacroAssembler(isolate, zone), + buffer_(Vector<byte>::New(1024)), + pc_(0), + advance_current_end_(kInvalidPC), + jump_edges_(zone), + isolate_(isolate) {} + +RegExpBytecodeGenerator::~RegExpBytecodeGenerator() { + if (backtrack_.is_linked()) backtrack_.Unuse(); + buffer_.Dispose(); +} + +RegExpBytecodeGenerator::IrregexpImplementation +RegExpBytecodeGenerator::Implementation() { + return kBytecodeImplementation; +} + +void RegExpBytecodeGenerator::Bind(Label* l) { + advance_current_end_ = kInvalidPC; + DCHECK(!l->is_bound()); + if (l->is_linked()) { + int pos = l->pos(); + while (pos != 0) { + int fixup = pos; + pos = *reinterpret_cast<int32_t*>(buffer_.begin() + fixup); + *reinterpret_cast<uint32_t*>(buffer_.begin() + fixup) = pc_; + jump_edges_.emplace(fixup, pc_); + } + } + l->bind_to(pc_); +} + +void RegExpBytecodeGenerator::EmitOrLink(Label* l) { + if (l == nullptr) l = &backtrack_; + int pos = 0; + if (l->is_bound()) { + pos = l->pos(); + jump_edges_.emplace(pc_, pos); + } else { + if (l->is_linked()) { + pos = l->pos(); + } + l->link_to(pc_); + } + Emit32(pos); +} + +void RegExpBytecodeGenerator::PopRegister(int register_index) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_POP_REGISTER, register_index); +} + +void RegExpBytecodeGenerator::PushRegister(int register_index, + StackCheckFlag check_stack_limit) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_PUSH_REGISTER, register_index); +} + +void RegExpBytecodeGenerator::WriteCurrentPositionToRegister(int register_index, + int cp_offset) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_SET_REGISTER_TO_CP, register_index); + Emit32(cp_offset); // Current position offset. +} + +void RegExpBytecodeGenerator::ClearRegisters(int reg_from, int reg_to) { + DCHECK(reg_from <= reg_to); + for (int reg = reg_from; reg <= reg_to; reg++) { + SetRegister(reg, -1); + } +} + +void RegExpBytecodeGenerator::ReadCurrentPositionFromRegister( + int register_index) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_SET_CP_TO_REGISTER, register_index); +} + +void RegExpBytecodeGenerator::WriteStackPointerToRegister(int register_index) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_SET_REGISTER_TO_SP, register_index); +} + +void RegExpBytecodeGenerator::ReadStackPointerFromRegister(int register_index) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_SET_SP_TO_REGISTER, register_index); +} + +void RegExpBytecodeGenerator::SetCurrentPositionFromEnd(int by) { + DCHECK(is_uint24(by)); + Emit(BC_SET_CURRENT_POSITION_FROM_END, by); +} + +void RegExpBytecodeGenerator::SetRegister(int register_index, int to) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_SET_REGISTER, register_index); + Emit32(to); +} + +void RegExpBytecodeGenerator::AdvanceRegister(int register_index, int by) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_ADVANCE_REGISTER, register_index); + Emit32(by); +} + +void RegExpBytecodeGenerator::PopCurrentPosition() { Emit(BC_POP_CP, 0); } + +void RegExpBytecodeGenerator::PushCurrentPosition() { Emit(BC_PUSH_CP, 0); } + +void RegExpBytecodeGenerator::Backtrack() { Emit(BC_POP_BT, 0); } + +void RegExpBytecodeGenerator::GoTo(Label* l) { + if (advance_current_end_ == pc_) { + // Combine advance current and goto. + pc_ = advance_current_start_; + Emit(BC_ADVANCE_CP_AND_GOTO, advance_current_offset_); + EmitOrLink(l); + advance_current_end_ = kInvalidPC; + } else { + // Regular goto. + Emit(BC_GOTO, 0); + EmitOrLink(l); + } +} + +void RegExpBytecodeGenerator::PushBacktrack(Label* l) { + Emit(BC_PUSH_BT, 0); + EmitOrLink(l); +} + +bool RegExpBytecodeGenerator::Succeed() { + Emit(BC_SUCCEED, 0); + return false; // Restart matching for global regexp not supported. +} + +void RegExpBytecodeGenerator::Fail() { Emit(BC_FAIL, 0); } + +void RegExpBytecodeGenerator::AdvanceCurrentPosition(int by) { + DCHECK_LE(kMinCPOffset, by); + DCHECK_GE(kMaxCPOffset, by); + advance_current_start_ = pc_; + advance_current_offset_ = by; + Emit(BC_ADVANCE_CP, by); + advance_current_end_ = pc_; +} + +void RegExpBytecodeGenerator::CheckGreedyLoop( + Label* on_tos_equals_current_position) { + Emit(BC_CHECK_GREEDY, 0); + EmitOrLink(on_tos_equals_current_position); +} + +void RegExpBytecodeGenerator::LoadCurrentCharacterImpl(int cp_offset, + Label* on_failure, + bool check_bounds, + int characters, + int eats_at_least) { + DCHECK_GE(eats_at_least, characters); + if (eats_at_least > characters && check_bounds) { + DCHECK(is_uint24(cp_offset + eats_at_least)); + Emit(BC_CHECK_CURRENT_POSITION, cp_offset + eats_at_least); + EmitOrLink(on_failure); + check_bounds = false; // Load below doesn't need to check. + } + + DCHECK_LE(kMinCPOffset, cp_offset); + DCHECK_GE(kMaxCPOffset, cp_offset); + int bytecode; + if (check_bounds) { + if (characters == 4) { + bytecode = BC_LOAD_4_CURRENT_CHARS; + } else if (characters == 2) { + bytecode = BC_LOAD_2_CURRENT_CHARS; + } else { + DCHECK_EQ(1, characters); + bytecode = BC_LOAD_CURRENT_CHAR; + } + } else { + if (characters == 4) { + bytecode = BC_LOAD_4_CURRENT_CHARS_UNCHECKED; + } else if (characters == 2) { + bytecode = BC_LOAD_2_CURRENT_CHARS_UNCHECKED; + } else { + DCHECK_EQ(1, characters); + bytecode = BC_LOAD_CURRENT_CHAR_UNCHECKED; + } + } + Emit(bytecode, cp_offset); + if (check_bounds) EmitOrLink(on_failure); +} + +void RegExpBytecodeGenerator::CheckCharacterLT(uc16 limit, Label* on_less) { + Emit(BC_CHECK_LT, limit); + EmitOrLink(on_less); +} + +void RegExpBytecodeGenerator::CheckCharacterGT(uc16 limit, Label* on_greater) { + Emit(BC_CHECK_GT, limit); + EmitOrLink(on_greater); +} + +void RegExpBytecodeGenerator::CheckCharacter(uint32_t c, Label* on_equal) { + if (c > MAX_FIRST_ARG) { + Emit(BC_CHECK_4_CHARS, 0); + Emit32(c); + } else { + Emit(BC_CHECK_CHAR, c); + } + EmitOrLink(on_equal); +} + +void RegExpBytecodeGenerator::CheckAtStart(int cp_offset, Label* on_at_start) { + Emit(BC_CHECK_AT_START, cp_offset); + EmitOrLink(on_at_start); +} + +void RegExpBytecodeGenerator::CheckNotAtStart(int cp_offset, + Label* on_not_at_start) { + Emit(BC_CHECK_NOT_AT_START, cp_offset); + EmitOrLink(on_not_at_start); +} + +void RegExpBytecodeGenerator::CheckNotCharacter(uint32_t c, + Label* on_not_equal) { + if (c > MAX_FIRST_ARG) { + Emit(BC_CHECK_NOT_4_CHARS, 0); + Emit32(c); + } else { + Emit(BC_CHECK_NOT_CHAR, c); + } + EmitOrLink(on_not_equal); +} + +void RegExpBytecodeGenerator::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, + Label* on_equal) { + if (c > MAX_FIRST_ARG) { + Emit(BC_AND_CHECK_4_CHARS, 0); + Emit32(c); + } else { + Emit(BC_AND_CHECK_CHAR, c); + } + Emit32(mask); + EmitOrLink(on_equal); +} + +void RegExpBytecodeGenerator::CheckNotCharacterAfterAnd(uint32_t c, + uint32_t mask, + Label* on_not_equal) { + if (c > MAX_FIRST_ARG) { + Emit(BC_AND_CHECK_NOT_4_CHARS, 0); + Emit32(c); + } else { + Emit(BC_AND_CHECK_NOT_CHAR, c); + } + Emit32(mask); + EmitOrLink(on_not_equal); +} + +void RegExpBytecodeGenerator::CheckNotCharacterAfterMinusAnd( + uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { + Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c); + Emit16(minus); + Emit16(mask); + EmitOrLink(on_not_equal); +} + +void RegExpBytecodeGenerator::CheckCharacterInRange(uc16 from, uc16 to, + Label* on_in_range) { + Emit(BC_CHECK_CHAR_IN_RANGE, 0); + Emit16(from); + Emit16(to); + EmitOrLink(on_in_range); +} + +void RegExpBytecodeGenerator::CheckCharacterNotInRange(uc16 from, uc16 to, + Label* on_not_in_range) { + Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0); + Emit16(from); + Emit16(to); + EmitOrLink(on_not_in_range); +} + +void RegExpBytecodeGenerator::CheckBitInTable(Handle<ByteArray> table, + Label* on_bit_set) { + Emit(BC_CHECK_BIT_IN_TABLE, 0); + EmitOrLink(on_bit_set); + for (int i = 0; i < kTableSize; i += kBitsPerByte) { + int byte = 0; + for (int j = 0; j < kBitsPerByte; j++) { + if (table->get(i + j) != 0) byte |= 1 << j; + } + Emit8(byte); + } +} + +void RegExpBytecodeGenerator::CheckNotBackReference(int start_reg, + bool read_backward, + Label* on_not_equal) { + DCHECK_LE(0, start_reg); + DCHECK_GE(kMaxRegister, start_reg); + Emit(read_backward ? BC_CHECK_NOT_BACK_REF_BACKWARD : BC_CHECK_NOT_BACK_REF, + start_reg); + EmitOrLink(on_not_equal); +} + +void RegExpBytecodeGenerator::CheckNotBackReferenceIgnoreCase( + int start_reg, bool read_backward, bool unicode, Label* on_not_equal) { + DCHECK_LE(0, start_reg); + DCHECK_GE(kMaxRegister, start_reg); + Emit(read_backward ? (unicode ? BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD + : BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) + : (unicode ? BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE + : BC_CHECK_NOT_BACK_REF_NO_CASE), + start_reg); + EmitOrLink(on_not_equal); +} + +void RegExpBytecodeGenerator::IfRegisterLT(int register_index, int comparand, + Label* on_less_than) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_CHECK_REGISTER_LT, register_index); + Emit32(comparand); + EmitOrLink(on_less_than); +} + +void RegExpBytecodeGenerator::IfRegisterGE(int register_index, int comparand, + Label* on_greater_or_equal) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_CHECK_REGISTER_GE, register_index); + Emit32(comparand); + EmitOrLink(on_greater_or_equal); +} + +void RegExpBytecodeGenerator::IfRegisterEqPos(int register_index, + Label* on_eq) { + DCHECK_LE(0, register_index); + DCHECK_GE(kMaxRegister, register_index); + Emit(BC_CHECK_REGISTER_EQ_POS, register_index); + EmitOrLink(on_eq); +} + +Handle<HeapObject> RegExpBytecodeGenerator::GetCode(Handle<String> source) { + Bind(&backtrack_); + Emit(BC_POP_BT, 0); + + Handle<ByteArray> array; + if (FLAG_regexp_peephole_optimization) { + array = RegExpBytecodePeepholeOptimization::OptimizeBytecode( + isolate_, zone(), source, buffer_.begin(), length(), jump_edges_); + } else { + array = isolate_->factory()->NewByteArray(length()); + Copy(array->GetDataStartAddress()); + } + + return array; +} + +int RegExpBytecodeGenerator::length() { return pc_; } + +void RegExpBytecodeGenerator::Copy(byte* a) { + MemCopy(a, buffer_.begin(), length()); +} + +void RegExpBytecodeGenerator::Expand() { + Vector<byte> old_buffer = buffer_; + buffer_ = Vector<byte>::New(old_buffer.length() * 2); + MemCopy(buffer_.begin(), old_buffer.begin(), old_buffer.length()); + old_buffer.Dispose(); +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-bytecode-generator.h b/js/src/regexp/regexp-bytecode-generator.h new file mode 100644 index 000000000..15fbda8ec --- /dev/null +++ b/js/src/regexp/regexp-bytecode-generator.h @@ -0,0 +1,119 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_BYTECODE_GENERATOR_H_ +#define V8_REGEXP_REGEXP_BYTECODE_GENERATOR_H_ + +#include "regexp/regexp-macro-assembler.h" + +namespace v8 { +namespace internal { + +// An assembler/generator for the Irregexp byte code. +class V8_EXPORT_PRIVATE RegExpBytecodeGenerator : public RegExpMacroAssembler { + public: + // Create an assembler. Instructions and relocation information are emitted + // into a buffer, with the instructions starting from the beginning and the + // relocation information starting from the end of the buffer. See CodeDesc + // for a detailed comment on the layout (globals.h). + // + // The assembler allocates and grows its own buffer, and buffer_size + // determines the initial buffer size. The buffer is owned by the assembler + // and deallocated upon destruction of the assembler. + RegExpBytecodeGenerator(Isolate* isolate, Zone* zone); + virtual ~RegExpBytecodeGenerator(); + // The byte-code interpreter checks on each push anyway. + virtual int stack_limit_slack() { return 1; } + virtual bool CanReadUnaligned() { return false; } + virtual void Bind(Label* label); + virtual void AdvanceCurrentPosition(int by); // Signed cp change. + virtual void PopCurrentPosition(); + virtual void PushCurrentPosition(); + virtual void Backtrack(); + virtual void GoTo(Label* label); + virtual void PushBacktrack(Label* label); + virtual bool Succeed(); + virtual void Fail(); + virtual void PopRegister(int register_index); + virtual void PushRegister(int register_index, + StackCheckFlag check_stack_limit); + virtual void AdvanceRegister(int reg, int by); // r[reg] += by. + virtual void SetCurrentPositionFromEnd(int by); + virtual void SetRegister(int register_index, int to); + virtual void WriteCurrentPositionToRegister(int reg, int cp_offset); + virtual void ClearRegisters(int reg_from, int reg_to); + virtual void ReadCurrentPositionFromRegister(int reg); + virtual void WriteStackPointerToRegister(int reg); + virtual void ReadStackPointerFromRegister(int reg); + virtual void LoadCurrentCharacterImpl(int cp_offset, Label* on_end_of_input, + bool check_bounds, int characters, + int eats_at_least); + virtual void CheckCharacter(unsigned c, Label* on_equal); + virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask, + Label* on_equal); + virtual void CheckCharacterGT(uc16 limit, Label* on_greater); + virtual void CheckCharacterLT(uc16 limit, Label* on_less); + virtual void CheckGreedyLoop(Label* on_tos_equals_current_position); + virtual void CheckAtStart(int cp_offset, Label* on_at_start); + virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start); + virtual void CheckNotCharacter(unsigned c, Label* on_not_equal); + virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask, + Label* on_not_equal); + virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask, + Label* on_not_equal); + virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range); + virtual void CheckCharacterNotInRange(uc16 from, uc16 to, + Label* on_not_in_range); + virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set); + virtual void CheckNotBackReference(int start_reg, bool read_backward, + Label* on_no_match); + virtual void CheckNotBackReferenceIgnoreCase(int start_reg, + bool read_backward, bool unicode, + Label* on_no_match); + virtual void IfRegisterLT(int register_index, int comparand, Label* if_lt); + virtual void IfRegisterGE(int register_index, int comparand, Label* if_ge); + virtual void IfRegisterEqPos(int register_index, Label* if_eq); + + virtual IrregexpImplementation Implementation(); + virtual Handle<HeapObject> GetCode(Handle<String> source); + + private: + void Expand(); + // Code and bitmap emission. + inline void EmitOrLink(Label* label); + inline void Emit32(uint32_t x); + inline void Emit16(uint32_t x); + inline void Emit8(uint32_t x); + inline void Emit(uint32_t bc, uint32_t arg); + // Bytecode buffer. + int length(); + void Copy(byte* a); + + // The buffer into which code and relocation info are generated. + Vector<byte> buffer_; + // The program counter. + int pc_; + Label backtrack_; + + int advance_current_start_; + int advance_current_offset_; + int advance_current_end_; + + // Stores jump edges emitted for the bytecode (used by + // RegExpBytecodePeepholeOptimization). + // Key: jump source (offset in buffer_ where jump destination is stored). + // Value: jump destination (offset in buffer_ to jump to). + ZoneUnorderedMap<int, int> jump_edges_; + + Isolate* isolate_; + + static const int kInvalidPC = -1; + + DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpBytecodeGenerator); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_BYTECODE_GENERATOR_H_ diff --git a/js/src/regexp/regexp-bytecode-peephole.cc b/js/src/regexp/regexp-bytecode-peephole.cc new file mode 100644 index 000000000..2bc1b5aa2 --- /dev/null +++ b/js/src/regexp/regexp-bytecode-peephole.cc @@ -0,0 +1,1029 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-bytecode-peephole.h" + +#include "regexp/regexp-bytecodes.h" + +namespace v8 { +namespace internal { + +namespace { + +struct BytecodeArgument { + int offset; + int length; + + BytecodeArgument(int offset, int length) : offset(offset), length(length) {} +}; + +struct BytecodeArgumentMapping : BytecodeArgument { + int new_length; + + BytecodeArgumentMapping(int offset, int length, int new_length) + : BytecodeArgument(offset, length), new_length(new_length) {} +}; + +struct BytecodeArgumentCheck : BytecodeArgument { + enum CheckType { kCheckAddress = 0, kCheckValue }; + CheckType type; + int check_offset; + int check_length; + + BytecodeArgumentCheck(int offset, int length, int check_offset) + : BytecodeArgument(offset, length), + type(kCheckAddress), + check_offset(check_offset) {} + BytecodeArgumentCheck(int offset, int length, int check_offset, + int check_length) + : BytecodeArgument(offset, length), + type(kCheckValue), + check_offset(check_offset), + check_length(check_length) {} +}; + +// Trie-Node for storing bytecode sequences we want to optimize. +class BytecodeSequenceNode { + public: + // Dummy bytecode used when we need to store/return a bytecode but it's not a + // valid bytecode in the current context. + static constexpr int kDummyBytecode = -1; + + BytecodeSequenceNode(int bytecode, Zone* zone); + // Adds a new node as child of the current node if it isn't a child already. + BytecodeSequenceNode& FollowedBy(int bytecode); + // Marks the end of a sequence and sets optimized bytecode to replace all + // bytecodes of the sequence with. + BytecodeSequenceNode& ReplaceWith(int bytecode); + // Maps arguments of bytecodes in the sequence to the optimized bytecode. + // Order of invocation determines order of arguments in the optimized + // bytecode. + // Invoking this method is only allowed on nodes that mark the end of a valid + // sequence (i.e. after ReplaceWith()). + // bytecode_index_in_sequence: Zero-based index of the referred bytecode + // within the sequence (e.g. the bytecode passed to CreateSequence() has + // index 0). + // argument_offset: Zero-based offset to the argument within the bytecode + // (e.g. the first argument that's not packed with the bytecode has offset 4). + // argument_byte_length: Length of the argument. + // new_argument_byte_length: Length of the argument in the new bytecode + // (= argument_byte_length if omitted). + BytecodeSequenceNode& MapArgument(int bytecode_index_in_sequence, + int argument_offset, + int argument_byte_length, + int new_argument_byte_length = 0); + // Adds a check to the sequence node making it only a valid sequence when the + // argument of the current bytecode at the specified offset matches the offset + // to check against. + // argument_offset: Zero-based offset to the argument within the bytecode + // (e.g. the first argument that's not packed with the bytecode has offset 4). + // argument_byte_length: Length of the argument. + // check_byte_offset: Zero-based offset relative to the beginning of the + // sequence that needs to match the value given by argument_offset. (e.g. + // check_byte_offset 0 matches the address of the first bytecode in the + // sequence). + BytecodeSequenceNode& IfArgumentEqualsOffset(int argument_offset, + int argument_byte_length, + int check_byte_offset); + // Adds a check to the sequence node making it only a valid sequence when the + // argument of the current bytecode at the specified offset matches the + // argument of another bytecode in the sequence. + // This is similar to IfArgumentEqualsOffset, except that this method matches + // the values of both arguments. + BytecodeSequenceNode& IfArgumentEqualsValueAtOffset( + int argument_offset, int argument_byte_length, + int other_bytecode_index_in_sequence, int other_argument_offset, + int other_argument_byte_length); + // Marks an argument as unused. + // All arguments that are not mapped explicitly have to be marked as unused. + // bytecode_index_in_sequence: Zero-based index of the referred bytecode + // within the sequence (e.g. the bytecode passed to CreateSequence() has + // index 0). + // argument_offset: Zero-based offset to the argument within the bytecode + // (e.g. the first argument that's not packed with the bytecode has offset 4). + // argument_byte_length: Length of the argument. + BytecodeSequenceNode& IgnoreArgument(int bytecode_index_in_sequence, + int argument_offset, + int argument_byte_length); + // Checks if the current node is valid for the sequence. I.e. all conditions + // set by IfArgumentEqualsOffset and IfArgumentEquals are fulfilled by this + // node for the actual bytecode sequence. + bool CheckArguments(const byte* bytecode, int pc); + // Returns whether this node marks the end of a valid sequence (i.e. can be + // replaced with an optimized bytecode). + bool IsSequence() const; + // Returns the length of the sequence in bytes. + int SequenceLength() const; + // Returns the optimized bytecode for the node or kDummyBytecode if it is not + // the end of a valid sequence. + int OptimizedBytecode() const; + // Returns the child of the current node matching the given bytecode or + // nullptr if no such child is found. + BytecodeSequenceNode* Find(int bytecode) const; + // Returns number of arguments mapped to the current node. + // Invoking this method is only allowed on nodes that mark the end of a valid + // sequence (i.e. if IsSequence()) + size_t ArgumentSize() const; + // Returns the argument-mapping of the argument at index. + // Invoking this method is only allowed on nodes that mark the end of a valid + // sequence (i.e. if IsSequence()) + BytecodeArgumentMapping ArgumentMapping(size_t index) const; + // Returns an iterator to begin of ignored arguments. + // Invoking this method is only allowed on nodes that mark the end of a valid + // sequence (i.e. if IsSequence()) + ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredBegin() const; + // Returns an iterator to end of ignored arguments. + // Invoking this method is only allowed on nodes that mark the end of a valid + // sequence (i.e. if IsSequence()) + ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredEnd() const; + // Returns whether the current node has ignored argument or not. + bool HasIgnoredArguments() const; + + private: + // Returns a node in the sequence specified by its index within the sequence. + BytecodeSequenceNode& GetNodeByIndexInSequence(int index_in_sequence); + Zone* zone() const; + + int bytecode_; + int bytecode_replacement_; + int index_in_sequence_; + int start_offset_; + BytecodeSequenceNode* parent_; + ZoneUnorderedMap<int, BytecodeSequenceNode*> children_; + ZoneVector<BytecodeArgumentMapping>* argument_mapping_; + ZoneLinkedList<BytecodeArgumentCheck>* argument_check_; + ZoneLinkedList<BytecodeArgument>* argument_ignored_; + + Zone* zone_; +}; + +class RegExpBytecodePeephole { + public: + RegExpBytecodePeephole(Zone* zone, size_t buffer_size, + const ZoneUnorderedMap<int, int>& jump_edges); + + // Parses bytecode and fills the internal buffer with the potentially + // optimized bytecode. Returns true when optimizations were performed, false + // otherwise. + bool OptimizeBytecode(const byte* bytecode, int length); + // Copies the internal bytecode buffer to another buffer. The caller is + // responsible for allocating/freeing the memory. + void CopyOptimizedBytecode(byte* to_address) const; + int Length() const; + + private: + // Sets up all sequences that are going to be used. + void DefineStandardSequences(); + // Starts a new bytecode sequence. + BytecodeSequenceNode& CreateSequence(int bytecode); + // Checks for optimization candidates at pc and emits optimized bytecode to + // the internal buffer. Returns the length of replaced bytecodes in bytes. + int TryOptimizeSequence(const byte* bytecode, int start_pc); + // Emits optimized bytecode to the internal buffer. start_pc points to the + // start of the sequence in bytecode and last_node is the last + // BytecodeSequenceNode of the matching sequence found. + void EmitOptimization(int start_pc, const byte* bytecode, + const BytecodeSequenceNode& last_node); + // Adds a relative jump source fixup at pos. + // Jump source fixups are used to find offsets in the new bytecode that + // contain jump sources. + void AddJumpSourceFixup(int fixup, int pos); + // Adds a relative jump destination fixup at pos. + // Jump destination fixups are used to find offsets in the new bytecode that + // can be jumped to. + void AddJumpDestinationFixup(int fixup, int pos); + // Sets an absolute jump destination fixup at pos. + void SetJumpDestinationFixup(int fixup, int pos); + // Prepare internal structures used to fixup jumps. + void PrepareJumpStructures(const ZoneUnorderedMap<int, int>& jump_edges); + // Updates all jump targets in the new bytecode. + void FixJumps(); + // Update a single jump. + void FixJump(int jump_source, int jump_destination); + void AddSentinelFixups(int pos); + template <typename T> + void EmitValue(T value); + template <typename T> + void OverwriteValue(int offset, T value); + void CopyRangeToOutput(const byte* orig_bytecode, int start, int length); + void SetRange(byte value, int count); + void EmitArgument(int start_pc, const byte* bytecode, + BytecodeArgumentMapping arg); + int pc() const; + Zone* zone() const; + + ZoneVector<byte> optimized_bytecode_buffer_; + BytecodeSequenceNode* sequences_; + // Jumps used in old bytecode. + // Key: Jump source (offset where destination is stored in old bytecode) + // Value: Destination + ZoneMap<int, int> jump_edges_; + // Jumps used in new bytecode. + // Key: Jump source (offset where destination is stored in new bytecode) + // Value: Destination + ZoneMap<int, int> jump_edges_mapped_; + // Number of times a jump destination is used within the bytecode. + // Key: Jump destination (offset in old bytecode). + // Value: Number of times jump destination is used. + ZoneMap<int, int> jump_usage_counts_; + // Maps offsets in old bytecode to fixups of sources (delta to new bytecode). + // Key: Offset in old bytecode from where the fixup is valid. + // Value: Delta to map jump source from old bytecode to new bytecode in bytes. + ZoneMap<int, int> jump_source_fixups_; + // Maps offsets in old bytecode to fixups of destinations (delta to new + // bytecode). + // Key: Offset in old bytecode from where the fixup is valid. + // Value: Delta to map jump destinations from old bytecode to new bytecode in + // bytes. + ZoneMap<int, int> jump_destination_fixups_; + + Zone* zone_; + + DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpBytecodePeephole); +}; + +template <typename T> +T GetValue(const byte* buffer, int pos) { + DCHECK(IsAligned(reinterpret_cast<Address>(buffer + pos), alignof(T))); + return *reinterpret_cast<const T*>(buffer + pos); +} + +int32_t GetArgumentValue(const byte* bytecode, int offset, int length) { + switch (length) { + case 1: + return GetValue<byte>(bytecode, offset); + break; + case 2: + return GetValue<int16_t>(bytecode, offset); + break; + case 4: + return GetValue<int32_t>(bytecode, offset); + break; + default: + UNREACHABLE(); + } +} + +BytecodeSequenceNode::BytecodeSequenceNode(int bytecode, Zone* zone) + : bytecode_(bytecode), + bytecode_replacement_(kDummyBytecode), + index_in_sequence_(0), + start_offset_(0), + parent_(nullptr), + children_(ZoneUnorderedMap<int, BytecodeSequenceNode*>(zone)), + argument_mapping_(new (zone->New(sizeof(*argument_mapping_))) + ZoneVector<BytecodeArgumentMapping>(zone)), + argument_check_(new (zone->New(sizeof(*argument_check_))) + ZoneLinkedList<BytecodeArgumentCheck>(zone)), + argument_ignored_(new (zone->New(sizeof(*argument_ignored_))) + ZoneLinkedList<BytecodeArgument>(zone)), + zone_(zone) {} + +BytecodeSequenceNode& BytecodeSequenceNode::FollowedBy(int bytecode) { + DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount); + + if (children_.find(bytecode) == children_.end()) { + BytecodeSequenceNode* new_node = + new (zone()->New(sizeof(BytecodeSequenceNode))) + BytecodeSequenceNode(bytecode, zone()); + // If node is not the first in the sequence, set offsets and parent. + if (bytecode_ != kDummyBytecode) { + new_node->start_offset_ = start_offset_ + RegExpBytecodeLength(bytecode_); + new_node->index_in_sequence_ = index_in_sequence_ + 1; + new_node->parent_ = this; + } + children_[bytecode] = new_node; + } + + return *children_[bytecode]; +} + +BytecodeSequenceNode& BytecodeSequenceNode::ReplaceWith(int bytecode) { + DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount); + + bytecode_replacement_ = bytecode; + + return *this; +} + +BytecodeSequenceNode& BytecodeSequenceNode::MapArgument( + int bytecode_index_in_sequence, int argument_offset, + int argument_byte_length, int new_argument_byte_length) { + DCHECK(IsSequence()); + DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_); + + BytecodeSequenceNode& ref_node = + GetNodeByIndexInSequence(bytecode_index_in_sequence); + DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_)); + + int absolute_offset = ref_node.start_offset_ + argument_offset; + if (new_argument_byte_length == 0) { + new_argument_byte_length = argument_byte_length; + } + + argument_mapping_->push_back(BytecodeArgumentMapping{ + absolute_offset, argument_byte_length, new_argument_byte_length}); + + return *this; +} + +BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsOffset( + int argument_offset, int argument_byte_length, int check_byte_offset) { + DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_)); + DCHECK(argument_byte_length == 1 || argument_byte_length == 2 || + argument_byte_length == 4); + + int absolute_offset = start_offset_ + argument_offset; + + argument_check_->push_back(BytecodeArgumentCheck{ + absolute_offset, argument_byte_length, check_byte_offset}); + + return *this; +} + +BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsValueAtOffset( + int argument_offset, int argument_byte_length, + int other_bytecode_index_in_sequence, int other_argument_offset, + int other_argument_byte_length) { + DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_)); + DCHECK_LE(other_bytecode_index_in_sequence, index_in_sequence_); + DCHECK_EQ(argument_byte_length, other_argument_byte_length); + + BytecodeSequenceNode& ref_node = + GetNodeByIndexInSequence(other_bytecode_index_in_sequence); + DCHECK_LT(other_argument_offset, RegExpBytecodeLength(ref_node.bytecode_)); + + int absolute_offset = start_offset_ + argument_offset; + int other_absolute_offset = ref_node.start_offset_ + other_argument_offset; + + argument_check_->push_back( + BytecodeArgumentCheck{absolute_offset, argument_byte_length, + other_absolute_offset, other_argument_byte_length}); + + return *this; +} + +BytecodeSequenceNode& BytecodeSequenceNode::IgnoreArgument( + int bytecode_index_in_sequence, int argument_offset, + int argument_byte_length) { + DCHECK(IsSequence()); + DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_); + + BytecodeSequenceNode& ref_node = + GetNodeByIndexInSequence(bytecode_index_in_sequence); + DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_)); + + int absolute_offset = ref_node.start_offset_ + argument_offset; + + argument_ignored_->push_back( + BytecodeArgument{absolute_offset, argument_byte_length}); + + return *this; +} + +bool BytecodeSequenceNode::CheckArguments(const byte* bytecode, int pc) { + bool is_valid = true; + for (auto check_iter = argument_check_->begin(); + check_iter != argument_check_->end() && is_valid; check_iter++) { + auto value = + GetArgumentValue(bytecode, pc + check_iter->offset, check_iter->length); + if (check_iter->type == BytecodeArgumentCheck::kCheckAddress) { + is_valid &= value == pc + check_iter->check_offset; + } else if (check_iter->type == BytecodeArgumentCheck::kCheckValue) { + auto other_value = GetArgumentValue( + bytecode, pc + check_iter->check_offset, check_iter->check_length); + is_valid &= value == other_value; + } else { + UNREACHABLE(); + } + } + return is_valid; +} + +bool BytecodeSequenceNode::IsSequence() const { + return bytecode_replacement_ != kDummyBytecode; +} + +int BytecodeSequenceNode::SequenceLength() const { + return start_offset_ + RegExpBytecodeLength(bytecode_); +} + +int BytecodeSequenceNode::OptimizedBytecode() const { + return bytecode_replacement_; +} + +BytecodeSequenceNode* BytecodeSequenceNode::Find(int bytecode) const { + auto found = children_.find(bytecode); + if (found == children_.end()) return nullptr; + return found->second; +} + +size_t BytecodeSequenceNode::ArgumentSize() const { + DCHECK(IsSequence()); + return argument_mapping_->size(); +} + +BytecodeArgumentMapping BytecodeSequenceNode::ArgumentMapping( + size_t index) const { + DCHECK(IsSequence()); + DCHECK(argument_mapping_ != nullptr); + DCHECK_GE(index, 0); + DCHECK_LT(index, argument_mapping_->size()); + + return argument_mapping_->at(index); +} + +ZoneLinkedList<BytecodeArgument>::iterator +BytecodeSequenceNode::ArgumentIgnoredBegin() const { + DCHECK(IsSequence()); + DCHECK(argument_ignored_ != nullptr); + return argument_ignored_->begin(); +} + +ZoneLinkedList<BytecodeArgument>::iterator +BytecodeSequenceNode::ArgumentIgnoredEnd() const { + DCHECK(IsSequence()); + DCHECK(argument_ignored_ != nullptr); + return argument_ignored_->end(); +} + +bool BytecodeSequenceNode::HasIgnoredArguments() const { + return argument_ignored_ != nullptr; +} + +BytecodeSequenceNode& BytecodeSequenceNode::GetNodeByIndexInSequence( + int index_in_sequence) { + DCHECK_LE(index_in_sequence, index_in_sequence_); + + if (index_in_sequence < index_in_sequence_) { + DCHECK(parent_ != nullptr); + return parent_->GetNodeByIndexInSequence(index_in_sequence); + } else { + return *this; + } +} + +Zone* BytecodeSequenceNode::zone() const { return zone_; } + +RegExpBytecodePeephole::RegExpBytecodePeephole( + Zone* zone, size_t buffer_size, + const ZoneUnorderedMap<int, int>& jump_edges) + : optimized_bytecode_buffer_(zone), + sequences_(new (zone->New(sizeof(*sequences_))) BytecodeSequenceNode( + BytecodeSequenceNode::kDummyBytecode, zone)), + jump_edges_(zone), + jump_edges_mapped_(zone), + jump_usage_counts_(zone), + jump_source_fixups_(zone), + jump_destination_fixups_(zone), + zone_(zone) { + optimized_bytecode_buffer_.reserve(buffer_size); + PrepareJumpStructures(jump_edges); + DefineStandardSequences(); + // Sentinel fixups at beginning of bytecode (position -1) so we don't have to + // check for end of iterator inside the fixup loop. + // In general fixups are deltas of original offsets of jump + // sources/destinations (in the old bytecode) to find them in the new + // bytecode. All jump targets are fixed after the new bytecode is fully + // emitted in the internal buffer. + AddSentinelFixups(-1); + // Sentinel fixups at end of (old) bytecode so we don't have to check for + // end of iterator inside the fixup loop. + DCHECK_LE(buffer_size, std::numeric_limits<int>::max()); + AddSentinelFixups(static_cast<int>(buffer_size)); +} + +void RegExpBytecodePeephole::DefineStandardSequences() { + // Commonly used sequences can be found by creating regexp bytecode traces + // (--trace-regexp-bytecodes) and using v8/tools/regexp-sequences.py. + CreateSequence(BC_LOAD_CURRENT_CHAR) + .FollowedBy(BC_CHECK_BIT_IN_TABLE) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_BIT_IN_TABLE) + .MapArgument(0, 1, 3) // load offset + .MapArgument(2, 1, 3, 4) // advance by + .MapArgument(1, 8, 16) // bit table + .MapArgument(1, 4, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(2, 4, 4); // loop jump + + CreateSequence(BC_CHECK_CURRENT_POSITION) + .FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED) + .FollowedBy(BC_CHECK_CHAR) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_CHAR_POS_CHECKED) + .MapArgument(1, 1, 3) // load offset + .MapArgument(3, 1, 3, 2) // advance_by + .MapArgument(2, 1, 3, 2) // c + .MapArgument(0, 1, 3, 4) // eats at least + .MapArgument(2, 4, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(3, 4, 4); // loop jump + + CreateSequence(BC_CHECK_CURRENT_POSITION) + .FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED) + .FollowedBy(BC_AND_CHECK_CHAR) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_CHAR_AND) + .MapArgument(1, 1, 3) // load offset + .MapArgument(3, 1, 3, 2) // advance_by + .MapArgument(2, 1, 3, 2) // c + .MapArgument(2, 4, 4) // mask + .MapArgument(0, 1, 3, 4) // eats at least + .MapArgument(2, 8, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(3, 4, 4); // loop jump + + // TODO(pthier): It might make sense for short sequences like this one to only + // optimize them if the resulting optimization is not longer than the current + // one. This could be the case if there are jumps inside the sequence and we + // have to replicate parts of the sequence. A method to mark such sequences + // might be useful. + CreateSequence(BC_LOAD_CURRENT_CHAR) + .FollowedBy(BC_CHECK_CHAR) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_CHAR) + .MapArgument(0, 1, 3) // load offset + .MapArgument(2, 1, 3, 2) // advance by + .MapArgument(1, 1, 3, 2) // character + .MapArgument(1, 4, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(2, 4, 4); // loop jump + + CreateSequence(BC_LOAD_CURRENT_CHAR) + .FollowedBy(BC_CHECK_CHAR) + .FollowedBy(BC_CHECK_CHAR) + // Sequence is only valid if the jump targets of both CHECK_CHAR bytecodes + // are equal. + .IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_CHAR_OR_CHAR) + .MapArgument(0, 1, 3) // load offset + .MapArgument(3, 1, 3, 4) // advance by + .MapArgument(1, 1, 3, 2) // character 1 + .MapArgument(2, 1, 3, 2) // character 2 + .MapArgument(1, 4, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(2, 4, 4) // goto when match 2 + .IgnoreArgument(3, 4, 4); // loop jump + + CreateSequence(BC_LOAD_CURRENT_CHAR) + .FollowedBy(BC_CHECK_GT) + // Sequence is only valid if the jump target of CHECK_GT is the first + // bytecode AFTER the whole sequence. + .IfArgumentEqualsOffset(4, 4, 56) + .FollowedBy(BC_CHECK_BIT_IN_TABLE) + // Sequence is only valid if the jump target of CHECK_BIT_IN_TABLE is + // the ADVANCE_CP_AND_GOTO bytecode at the end of the sequence. + .IfArgumentEqualsOffset(4, 4, 48) + .FollowedBy(BC_GOTO) + // Sequence is only valid if the jump target of GOTO is the same as the + // jump target of CHECK_GT (i.e. both jump to the first bytecode AFTER the + // whole sequence. + .IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4) + .FollowedBy(BC_ADVANCE_CP_AND_GOTO) + // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the + // first bytecode in this sequence. + .IfArgumentEqualsOffset(4, 4, 0) + .ReplaceWith(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE) + .MapArgument(0, 1, 3) // load offset + .MapArgument(4, 1, 3, 2) // advance by + .MapArgument(1, 1, 3, 2) // character + .MapArgument(2, 8, 16) // bit table + .MapArgument(1, 4, 4) // goto when match + .MapArgument(0, 4, 4) // goto on failure + .IgnoreArgument(2, 4, 4) // indirect loop jump + .IgnoreArgument(3, 4, 4) // jump out of loop + .IgnoreArgument(4, 4, 4); // loop jump +} + +bool RegExpBytecodePeephole::OptimizeBytecode(const byte* bytecode, + int length) { + int old_pc = 0; + bool did_optimize = false; + + while (old_pc < length) { + int replaced_len = TryOptimizeSequence(bytecode, old_pc); + if (replaced_len > 0) { + old_pc += replaced_len; + did_optimize = true; + } else { + int bc = bytecode[old_pc]; + int bc_len = RegExpBytecodeLength(bc); + CopyRangeToOutput(bytecode, old_pc, bc_len); + old_pc += bc_len; + } + } + + if (did_optimize) { + FixJumps(); + } + + return did_optimize; +} + +void RegExpBytecodePeephole::CopyOptimizedBytecode(byte* to_address) const { + MemCopy(to_address, &(*optimized_bytecode_buffer_.begin()), Length()); +} + +int RegExpBytecodePeephole::Length() const { return pc(); } + +BytecodeSequenceNode& RegExpBytecodePeephole::CreateSequence(int bytecode) { + DCHECK(sequences_ != nullptr); + DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount); + + return sequences_->FollowedBy(bytecode); +} + +int RegExpBytecodePeephole::TryOptimizeSequence(const byte* bytecode, + int start_pc) { + BytecodeSequenceNode* seq_node = sequences_; + BytecodeSequenceNode* valid_seq_end = nullptr; + + int current_pc = start_pc; + + // Check for the longest valid sequence matching any of the pre-defined + // sequences in the Trie data structure. + while ((seq_node = seq_node->Find(bytecode[current_pc]))) { + if (!seq_node->CheckArguments(bytecode, start_pc)) { + break; + } + if (seq_node->IsSequence()) { + valid_seq_end = seq_node; + } + current_pc += RegExpBytecodeLength(bytecode[current_pc]); + } + + if (valid_seq_end) { + EmitOptimization(start_pc, bytecode, *valid_seq_end); + return valid_seq_end->SequenceLength(); + } + + return 0; +} + +void RegExpBytecodePeephole::EmitOptimization( + int start_pc, const byte* bytecode, const BytecodeSequenceNode& last_node) { +#ifdef DEBUG + int optimized_start_pc = pc(); +#endif + // Jump sources that are mapped or marked as unused will be deleted at the end + // of this method. We don't delete them immediately as we might need the + // information when we have to preserve bytecodes at the end. + // TODO(pthier): Replace with a stack-allocated data structure. + ZoneLinkedList<int> delete_jumps = ZoneLinkedList<int>(zone()); + + uint32_t bc = last_node.OptimizedBytecode(); + EmitValue(bc); + + for (size_t arg = 0; arg < last_node.ArgumentSize(); arg++) { + BytecodeArgumentMapping arg_map = last_node.ArgumentMapping(arg); + int arg_pos = start_pc + arg_map.offset; + // If we map any jump source we mark the old source for deletion and insert + // a new jump. + auto jump_edge_iter = jump_edges_.find(arg_pos); + if (jump_edge_iter != jump_edges_.end()) { + int jump_source = jump_edge_iter->first; + int jump_destination = jump_edge_iter->second; + // Add new jump edge add current position. + jump_edges_mapped_.emplace(Length(), jump_destination); + // Mark old jump edge for deletion. + delete_jumps.push_back(jump_source); + // Decrement usage count of jump destination. + auto jump_count_iter = jump_usage_counts_.find(jump_destination); + DCHECK(jump_count_iter != jump_usage_counts_.end()); + int& usage_count = jump_count_iter->second; + --usage_count; + } + // TODO(pthier): DCHECK that mapped arguments are never sources of jumps + // to destinations inside the sequence. + EmitArgument(start_pc, bytecode, arg_map); + } + DCHECK_EQ(pc(), optimized_start_pc + + RegExpBytecodeLength(last_node.OptimizedBytecode())); + + // Remove jumps from arguments we ignore. + if (last_node.HasIgnoredArguments()) { + for (auto ignored_arg = last_node.ArgumentIgnoredBegin(); + ignored_arg != last_node.ArgumentIgnoredEnd(); ignored_arg++) { + auto jump_edge_iter = jump_edges_.find(start_pc + ignored_arg->offset); + if (jump_edge_iter != jump_edges_.end()) { + int jump_source = jump_edge_iter->first; + int jump_destination = jump_edge_iter->second; + // Mark old jump edge for deletion. + delete_jumps.push_back(jump_source); + // Decrement usage count of jump destination. + auto jump_count_iter = jump_usage_counts_.find(jump_destination); + DCHECK(jump_count_iter != jump_usage_counts_.end()); + int& usage_count = jump_count_iter->second; + --usage_count; + } + } + } + + int fixup_length = RegExpBytecodeLength(bc) - last_node.SequenceLength(); + + // Check if there are any jumps inside the old sequence. + // If so we have to keep the bytecodes that are jumped to around. + auto jump_destination_candidate = jump_usage_counts_.upper_bound(start_pc); + int jump_candidate_destination = jump_destination_candidate->first; + int jump_candidate_count = jump_destination_candidate->second; + // Jump destinations only jumped to from inside the sequence will be ignored. + while (jump_destination_candidate != jump_usage_counts_.end() && + jump_candidate_count == 0) { + ++jump_destination_candidate; + jump_candidate_destination = jump_destination_candidate->first; + jump_candidate_count = jump_destination_candidate->second; + } + + int preserve_from = start_pc + last_node.SequenceLength(); + if (jump_destination_candidate != jump_usage_counts_.end() && + jump_candidate_destination < start_pc + last_node.SequenceLength()) { + preserve_from = jump_candidate_destination; + // Check if any jump in the sequence we are preserving has a jump + // destination inside the optimized sequence before the current position we + // want to preserve. If so we have to preserve all bytecodes starting at + // this jump destination. + for (auto jump_iter = jump_edges_.lower_bound(preserve_from); + jump_iter != jump_edges_.end() && + jump_iter->first /* jump source */ < + start_pc + last_node.SequenceLength(); + ++jump_iter) { + int jump_destination = jump_iter->second; + if (jump_destination > start_pc && jump_destination < preserve_from) { + preserve_from = jump_destination; + } + } + + // We preserve everything to the end of the sequence. This is conservative + // since it would be enough to preserve all bytecudes up to an unconditional + // jump. + int preserve_length = start_pc + last_node.SequenceLength() - preserve_from; + fixup_length += preserve_length; + // Jumps after the start of the preserved sequence need fixup. + AddJumpSourceFixup(fixup_length, + start_pc + last_node.SequenceLength() - preserve_length); + // All jump targets after the start of the optimized sequence need to be + // fixed relative to the length of the optimized sequence including + // bytecodes we preserved. + AddJumpDestinationFixup(fixup_length, start_pc + 1); + // Jumps to the sequence we preserved need absolute fixup as they could + // occur before or after the sequence. + SetJumpDestinationFixup(pc() - preserve_from, preserve_from); + CopyRangeToOutput(bytecode, preserve_from, preserve_length); + } else { + AddJumpDestinationFixup(fixup_length, start_pc + 1); + // Jumps after the end of the old sequence need fixup. + AddJumpSourceFixup(fixup_length, start_pc + last_node.SequenceLength()); + } + + // Delete jumps we definitely don't need anymore + for (int del : delete_jumps) { + if (del < preserve_from) { + jump_edges_.erase(del); + } + } +} + +void RegExpBytecodePeephole::AddJumpSourceFixup(int fixup, int pos) { + auto previous_fixup = jump_source_fixups_.lower_bound(pos); + DCHECK(previous_fixup != jump_source_fixups_.end()); + DCHECK(previous_fixup != jump_source_fixups_.begin()); + + int previous_fixup_value = (--previous_fixup)->second; + jump_source_fixups_[pos] = previous_fixup_value + fixup; +} + +void RegExpBytecodePeephole::AddJumpDestinationFixup(int fixup, int pos) { + auto previous_fixup = jump_destination_fixups_.lower_bound(pos); + DCHECK(previous_fixup != jump_destination_fixups_.end()); + DCHECK(previous_fixup != jump_destination_fixups_.begin()); + + int previous_fixup_value = (--previous_fixup)->second; + jump_destination_fixups_[pos] = previous_fixup_value + fixup; +} + +void RegExpBytecodePeephole::SetJumpDestinationFixup(int fixup, int pos) { + auto previous_fixup = jump_destination_fixups_.lower_bound(pos); + DCHECK(previous_fixup != jump_destination_fixups_.end()); + DCHECK(previous_fixup != jump_destination_fixups_.begin()); + + int previous_fixup_value = (--previous_fixup)->second; + jump_destination_fixups_.emplace(pos, fixup); + jump_destination_fixups_.emplace(pos + 1, previous_fixup_value); +} + +void RegExpBytecodePeephole::PrepareJumpStructures( + const ZoneUnorderedMap<int, int>& jump_edges) { + for (auto jump_edge : jump_edges) { + int jump_source = jump_edge.first; + int jump_destination = jump_edge.second; + + jump_edges_.emplace(jump_source, jump_destination); + jump_usage_counts_[jump_destination]++; + } +} + +void RegExpBytecodePeephole::FixJumps() { + int position_fixup = 0; + // Next position where fixup changes. + auto next_source_fixup = jump_source_fixups_.lower_bound(0); + int next_source_fixup_offset = next_source_fixup->first; + int next_source_fixup_value = next_source_fixup->second; + + for (auto jump_edge : jump_edges_) { + int jump_source = jump_edge.first; + int jump_destination = jump_edge.second; + while (jump_source >= next_source_fixup_offset) { + position_fixup = next_source_fixup_value; + ++next_source_fixup; + next_source_fixup_offset = next_source_fixup->first; + next_source_fixup_value = next_source_fixup->second; + } + jump_source += position_fixup; + + FixJump(jump_source, jump_destination); + } + + // Mapped jump edges don't need source fixups, as the position already is an + // offset in the new bytecode. + for (auto jump_edge : jump_edges_mapped_) { + int jump_source = jump_edge.first; + int jump_destination = jump_edge.second; + + FixJump(jump_source, jump_destination); + } +} + +void RegExpBytecodePeephole::FixJump(int jump_source, int jump_destination) { + int fixed_jump_destination = + jump_destination + + (--jump_destination_fixups_.upper_bound(jump_destination))->second; + DCHECK_LT(fixed_jump_destination, Length()); +#ifdef DEBUG + // TODO(pthier): This check could be better if we track the bytecodes + // actually used and check if we jump to one of them. + byte jump_bc = optimized_bytecode_buffer_[fixed_jump_destination]; + DCHECK_GT(jump_bc, 0); + DCHECK_LT(jump_bc, kRegExpBytecodeCount); +#endif + + if (jump_destination != fixed_jump_destination) { + OverwriteValue<uint32_t>(jump_source, fixed_jump_destination); + } +} + +void RegExpBytecodePeephole::AddSentinelFixups(int pos) { + jump_source_fixups_.emplace(pos, 0); + jump_destination_fixups_.emplace(pos, 0); +} + +template <typename T> +void RegExpBytecodePeephole::EmitValue(T value) { + DCHECK(optimized_bytecode_buffer_.begin() + pc() == + optimized_bytecode_buffer_.end()); + byte* value_byte_iter = reinterpret_cast<byte*>(&value); + optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(), + value_byte_iter, + value_byte_iter + sizeof(T)); +} + +template <typename T> +void RegExpBytecodePeephole::OverwriteValue(int offset, T value) { + byte* value_byte_iter = reinterpret_cast<byte*>(&value); + byte* value_byte_iter_end = value_byte_iter + sizeof(T); + while (value_byte_iter < value_byte_iter_end) { + optimized_bytecode_buffer_[offset++] = *value_byte_iter++; + } +} + +void RegExpBytecodePeephole::CopyRangeToOutput(const byte* orig_bytecode, + int start, int length) { + DCHECK(optimized_bytecode_buffer_.begin() + pc() == + optimized_bytecode_buffer_.end()); + optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(), + orig_bytecode + start, + orig_bytecode + start + length); +} + +void RegExpBytecodePeephole::SetRange(byte value, int count) { + DCHECK(optimized_bytecode_buffer_.begin() + pc() == + optimized_bytecode_buffer_.end()); + optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(), count, + value); +} + +void RegExpBytecodePeephole::EmitArgument(int start_pc, const byte* bytecode, + BytecodeArgumentMapping arg) { + int arg_pos = start_pc + arg.offset; + switch (arg.length) { + case 1: + DCHECK_EQ(arg.new_length, arg.length); + EmitValue(GetValue<byte>(bytecode, arg_pos)); + break; + case 2: + DCHECK_EQ(arg.new_length, arg.length); + EmitValue(GetValue<uint16_t>(bytecode, arg_pos)); + break; + case 3: { + // Length 3 only occurs in 'packed' arguments where the lowermost byte is + // the current bytecode, and the remaining 3 bytes are the packed value. + // + // We load 4 bytes from position - 1 and shift out the bytecode. +#ifdef V8_TARGET_BIG_ENDIAN + UNIMPLEMENTED(); + int32_t val = 0; +#else + int32_t val = GetValue<int32_t>(bytecode, arg_pos - 1) >> kBitsPerByte; +#endif // V8_TARGET_BIG_ENDIAN + + switch (arg.new_length) { + case 2: + EmitValue<uint16_t>(val); + break; + case 3: { + // Pack with previously emitted value. + auto prev_val = + GetValue<int32_t>(&(*optimized_bytecode_buffer_.begin()), + Length() - sizeof(uint32_t)); +#ifdef V8_TARGET_BIG_ENDIAN + UNIMPLEMENTED(); + USE(prev_val); +#else + DCHECK_EQ(prev_val & 0xFFFFFF00, 0); + OverwriteValue<uint32_t>( + pc() - sizeof(uint32_t), + (static_cast<uint32_t>(val) << 8) | (prev_val & 0xFF)); +#endif // V8_TARGET_BIG_ENDIAN + break; + } + case 4: + EmitValue<uint32_t>(val); + break; + } + break; + } + case 4: + DCHECK_EQ(arg.new_length, arg.length); + EmitValue(GetValue<uint32_t>(bytecode, arg_pos)); + break; + case 8: + DCHECK_EQ(arg.new_length, arg.length); + EmitValue(GetValue<uint64_t>(bytecode, arg_pos)); + break; + default: + CopyRangeToOutput(bytecode, arg_pos, Min(arg.length, arg.new_length)); + if (arg.length < arg.new_length) { + SetRange(0x00, arg.new_length - arg.length); + } + break; + } +} + +int RegExpBytecodePeephole::pc() const { + DCHECK_LE(optimized_bytecode_buffer_.size(), std::numeric_limits<int>::max()); + return static_cast<int>(optimized_bytecode_buffer_.size()); +} + +Zone* RegExpBytecodePeephole::zone() const { return zone_; } + +} // namespace + +// static +Handle<ByteArray> RegExpBytecodePeepholeOptimization::OptimizeBytecode( + Isolate* isolate, Zone* zone, Handle<String> source, const byte* bytecode, + int length, const ZoneUnorderedMap<int, int>& jump_edges) { + RegExpBytecodePeephole peephole(zone, length, jump_edges); + bool did_optimize = peephole.OptimizeBytecode(bytecode, length); + Handle<ByteArray> array = isolate->factory()->NewByteArray(peephole.Length()); + peephole.CopyOptimizedBytecode(array->GetDataStartAddress()); + + if (did_optimize && FLAG_trace_regexp_peephole_optimization) { + PrintF("Original Bytecode:\n"); + RegExpBytecodeDisassemble(bytecode, length, source->ToCString().get()); + PrintF("Optimized Bytecode:\n"); + RegExpBytecodeDisassemble(array->GetDataStartAddress(), peephole.Length(), + source->ToCString().get()); + } + + return array; +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-bytecode-peephole.h b/js/src/regexp/regexp-bytecode-peephole.h new file mode 100644 index 000000000..96349f52c --- /dev/null +++ b/js/src/regexp/regexp-bytecode-peephole.h @@ -0,0 +1,29 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_BYTECODE_PEEPHOLE_H_ +#define V8_REGEXP_REGEXP_BYTECODE_PEEPHOLE_H_ + + +namespace v8 { +namespace internal { + +class ByteArray; + +// Peephole optimization for regexp interpreter bytecode. +// Pre-defined bytecode sequences occuring in the bytecode generated by the +// RegExpBytecodeGenerator can be optimized into a single bytecode. +class RegExpBytecodePeepholeOptimization : public AllStatic { + public: + // Performs peephole optimization on the given bytecode and returns the + // optimized bytecode. + static Handle<ByteArray> OptimizeBytecode( + Isolate* isolate, Zone* zone, Handle<String> source, const byte* bytecode, + int length, const ZoneUnorderedMap<int, int>& jump_edges); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_BYTECODE_PEEPHOLE_H_ diff --git a/js/src/regexp/regexp-bytecodes.cc b/js/src/regexp/regexp-bytecodes.cc new file mode 100644 index 000000000..ae8f93ac9 --- /dev/null +++ b/js/src/regexp/regexp-bytecodes.cc @@ -0,0 +1,45 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-bytecodes.h" + +#include <cctype> + + +namespace v8 { +namespace internal { + +void RegExpBytecodeDisassembleSingle(const byte* code_base, const byte* pc) { + PrintF("%s", RegExpBytecodeName(*pc)); + + // Args and the bytecode as hex. + for (int i = 0; i < RegExpBytecodeLength(*pc); i++) { + PrintF(", %02x", pc[i]); + } + PrintF(" "); + + // Args as ascii. + for (int i = 1; i < RegExpBytecodeLength(*pc); i++) { + unsigned char b = pc[i]; + PrintF("%c", std::isprint(b) ? b : '.'); + } + PrintF("\n"); +} + +void RegExpBytecodeDisassemble(const byte* code_base, int length, + const char* pattern) { + PrintF("[generated bytecode for regexp pattern: '%s']\n", pattern); + + ptrdiff_t offset = 0; + + while (offset < length) { + const byte* const pc = code_base + offset; + PrintF("%p %4" V8PRIxPTRDIFF " ", pc, offset); + RegExpBytecodeDisassembleSingle(code_base, pc); + offset += RegExpBytecodeLength(*pc); + } +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-bytecodes.h b/js/src/regexp/regexp-bytecodes.h new file mode 100644 index 000000000..35f7a30da --- /dev/null +++ b/js/src/regexp/regexp-bytecodes.h @@ -0,0 +1,250 @@ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_BYTECODES_H_ +#define V8_REGEXP_REGEXP_BYTECODES_H_ + + +namespace v8 { +namespace internal { + +// Maximum number of bytecodes that will be used (next power of 2 of actually +// defined bytecodes). +// All slots between the last actually defined bytecode and maximum id will be +// filled with BREAKs, indicating an invalid operation. This way using +// BYTECODE_MASK guarantees no OOB access to the dispatch table. +constexpr int kRegExpPaddedBytecodeCount = 1 << 6; +constexpr int BYTECODE_MASK = kRegExpPaddedBytecodeCount - 1; +// The first argument is packed in with the byte code in one word, but so it +// has 24 bits, but it can be positive and negative so only use 23 bits for +// positive values. +const unsigned int MAX_FIRST_ARG = 0x7fffffu; +const int BYTECODE_SHIFT = 8; +STATIC_ASSERT(1 << BYTECODE_SHIFT > BYTECODE_MASK); + +// TODO(pthier): Argument offsets of bytecodes should be easily accessible by +// name or at least by position. +#define BYTECODE_ITERATOR(V) \ + V(BREAK, 0, 4) /* bc8 */ \ + V(PUSH_CP, 1, 4) /* bc8 pad24 */ \ + V(PUSH_BT, 2, 8) /* bc8 pad24 offset32 */ \ + V(PUSH_REGISTER, 3, 4) /* bc8 reg_idx24 */ \ + V(SET_REGISTER_TO_CP, 4, 8) /* bc8 reg_idx24 offset32 */ \ + V(SET_CP_TO_REGISTER, 5, 4) /* bc8 reg_idx24 */ \ + V(SET_REGISTER_TO_SP, 6, 4) /* bc8 reg_idx24 */ \ + V(SET_SP_TO_REGISTER, 7, 4) /* bc8 reg_idx24 */ \ + V(SET_REGISTER, 8, 8) /* bc8 reg_idx24 value32 */ \ + V(ADVANCE_REGISTER, 9, 8) /* bc8 reg_idx24 value32 */ \ + V(POP_CP, 10, 4) /* bc8 pad24 */ \ + V(POP_BT, 11, 4) /* bc8 pad24 */ \ + V(POP_REGISTER, 12, 4) /* bc8 reg_idx24 */ \ + V(FAIL, 13, 4) /* bc8 pad24 */ \ + V(SUCCEED, 14, 4) /* bc8 pad24 */ \ + V(ADVANCE_CP, 15, 4) /* bc8 offset24 */ \ + /* Jump to another bytecode given its offset. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x10 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: 0x00 (unused) Padding */ \ + /* 0x20 - 0x3F: Address of bytecode to jump to */ \ + V(GOTO, 16, 8) /* bc8 pad24 addr32 */ \ + /* Check if offset is in range and load character at given offset. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x11 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: Offset from current position */ \ + /* 0x20 - 0x3F: Address of bytecode when load is out of range */ \ + V(LOAD_CURRENT_CHAR, 17, 8) /* bc8 offset24 addr32 */ \ + /* Load character at given offset without range checks. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x12 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: Offset from current position */ \ + V(LOAD_CURRENT_CHAR_UNCHECKED, 18, 4) /* bc8 offset24 */ \ + V(LOAD_2_CURRENT_CHARS, 19, 8) /* bc8 offset24 addr32 */ \ + V(LOAD_2_CURRENT_CHARS_UNCHECKED, 20, 4) /* bc8 offset24 */ \ + V(LOAD_4_CURRENT_CHARS, 21, 8) /* bc8 offset24 addr32 */ \ + V(LOAD_4_CURRENT_CHARS_UNCHECKED, 22, 4) /* bc8 offset24 */ \ + V(CHECK_4_CHARS, 23, 12) /* bc8 pad24 uint32 addr32 */ \ + /* Check if current character is equal to a given character */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x19 (fixed) Bytecode */ \ + /* 0x08 - 0x0F: 0x00 (unused) Padding */ \ + /* 0x10 - 0x1F: Character to check */ \ + /* 0x20 - 0x3F: Address of bytecode when matched */ \ + V(CHECK_CHAR, 24, 8) /* bc8 pad8 uint16 addr32 */ \ + V(CHECK_NOT_4_CHARS, 25, 12) /* bc8 pad24 uint32 addr32 */ \ + V(CHECK_NOT_CHAR, 26, 8) /* bc8 pad8 uint16 addr32 */ \ + V(AND_CHECK_4_CHARS, 27, 16) /* bc8 pad24 uint32 uint32 addr32 */ \ + /* Checks if the current character combined with mask (bitwise and) */ \ + /* matches a character (e.g. used when two characters in a disjunction */ \ + /* differ by only a single bit */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x1c (fixed) Bytecode */ \ + /* 0x08 - 0x0F: 0x00 (unused) Padding */ \ + /* 0x10 - 0x1F: Character to match against (after mask aplied) */ \ + /* 0x20 - 0x3F: Bitmask bitwise and combined with current character */ \ + /* 0x40 - 0x5F: Address of bytecode when matched */ \ + V(AND_CHECK_CHAR, 28, 12) /* bc8 pad8 uint16 uint32 addr32 */ \ + V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32 */ \ + V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32 */ \ + V(MINUS_AND_CHECK_NOT_CHAR, 31, 12) /* bc8 pad8 uc16 uc16 uc16 addr32 */ \ + V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 uc16 uc16 addr32 */ \ + V(CHECK_CHAR_NOT_IN_RANGE, 33, 12) /* bc8 pad24 uc16 uc16 addr32 */ \ + /* Checks if the current character matches any of the characters encoded */ \ + /* in a bit table. Similar to/inspired by boyer moore string search */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x22 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: 0x00 (unused) Padding */ \ + /* 0x20 - 0x3F: Address of bytecode when bit is set */ \ + /* 0x40 - 0xBF: Bit table */ \ + V(CHECK_BIT_IN_TABLE, 34, 24) /* bc8 pad24 addr32 bits128 */ \ + V(CHECK_LT, 35, 8) /* bc8 pad8 uc16 addr32 */ \ + V(CHECK_GT, 36, 8) /* bc8 pad8 uc16 addr32 */ \ + V(CHECK_NOT_BACK_REF, 37, 8) /* bc8 reg_idx24 addr32 */ \ + V(CHECK_NOT_BACK_REF_NO_CASE, 38, 8) /* bc8 reg_idx24 addr32 */ \ + V(CHECK_NOT_BACK_REF_NO_CASE_UNICODE, 39, 8) \ + V(CHECK_NOT_BACK_REF_BACKWARD, 40, 8) /* bc8 reg_idx24 addr32 */ \ + V(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD, 41, 8) /* bc8 reg_idx24 addr32 */ \ + V(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD, 42, 8) \ + V(CHECK_NOT_REGS_EQUAL, 43, 12) /* bc8 regidx24 reg_idx32 addr32 */ \ + V(CHECK_REGISTER_LT, 44, 12) /* bc8 reg_idx24 value32 addr32 */ \ + V(CHECK_REGISTER_GE, 45, 12) /* bc8 reg_idx24 value32 addr32 */ \ + V(CHECK_REGISTER_EQ_POS, 46, 8) /* bc8 reg_idx24 addr32 */ \ + V(CHECK_AT_START, 47, 8) /* bc8 pad24 addr32 */ \ + V(CHECK_NOT_AT_START, 48, 8) /* bc8 offset24 addr32 */ \ + /* Checks if the current position matches top of backtrack stack */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x31 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: 0x00 (unused) Padding */ \ + /* 0x20 - 0x3F: Address of bytecode when current matches tos */ \ + V(CHECK_GREEDY, 49, 8) /* bc8 pad24 addr32 */ \ + /* Advance character pointer by given offset and jump to another bytecode.*/ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x32 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: Number of characters to advance */ \ + /* 0x20 - 0x3F: Address of bytecode to jump to */ \ + V(ADVANCE_CP_AND_GOTO, 50, 8) /* bc8 offset24 addr32 */ \ + V(SET_CURRENT_POSITION_FROM_END, 51, 4) /* bc8 idx24 */ \ + /* Checks if current position + given offset is in range. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07: 0x34 (fixed) Bytecode */ \ + /* 0x08 - 0x1F: Offset from current position */ \ + /* 0x20 - 0x3F: Address of bytecode when position is out of range */ \ + V(CHECK_CURRENT_POSITION, 52, 8) /* bc8 idx24 addr32 */ \ + /* Combination of: */ \ + /* LOAD_CURRENT_CHAR, CHECK_BIT_IN_TABLE and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x35 (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x3F Number of characters to advance */ \ + /* 0x40 - 0xBF Bit Table */ \ + /* 0xC0 - 0xDF Address of bytecode when character is matched */ \ + /* 0xE0 - 0xFF Address of bytecode when no match */ \ + V(SKIP_UNTIL_BIT_IN_TABLE, 53, 32) \ + /* Combination of: */ \ + /* CHECK_CURRENT_POSITION, LOAD_CURRENT_CHAR_UNCHECKED, AND_CHECK_CHAR */ \ + /* and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x36 (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x2F Number of characters to advance */ \ + /* 0x30 - 0x3F Character to match against (after mask applied) */ \ + /* 0x40 - 0x5F: Bitmask bitwise and combined with current character */ \ + /* 0x60 - 0x7F Minimum number of characters this pattern consumes */ \ + /* 0x80 - 0x9F Address of bytecode when character is matched */ \ + /* 0xA0 - 0xBF Address of bytecode when no match */ \ + V(SKIP_UNTIL_CHAR_AND, 54, 24) \ + /* Combination of: */ \ + /* LOAD_CURRENT_CHAR, CHECK_CHAR and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x37 (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x2F Number of characters to advance */ \ + /* 0x30 - 0x3F Character to match */ \ + /* 0x40 - 0x5F Address of bytecode when character is matched */ \ + /* 0x60 - 0x7F Address of bytecode when no match */ \ + V(SKIP_UNTIL_CHAR, 55, 16) \ + /* Combination of: */ \ + /* CHECK_CURRENT_POSITION, LOAD_CURRENT_CHAR_UNCHECKED, CHECK_CHAR */ \ + /* and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x38 (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x2F Number of characters to advance */ \ + /* 0x30 - 0x3F Character to match */ \ + /* 0x40 - 0x5F Minimum number of characters this pattern consumes */ \ + /* 0x60 - 0x7F Address of bytecode when character is matched */ \ + /* 0x80 - 0x9F Address of bytecode when no match */ \ + V(SKIP_UNTIL_CHAR_POS_CHECKED, 56, 20) \ + /* Combination of: */ \ + /* LOAD_CURRENT_CHAR, CHECK_CHAR, CHECK_CHAR and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x39 (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x3F Number of characters to advance */ \ + /* 0x40 - 0x4F Character to match */ \ + /* 0x50 - 0x5F Other Character to match */ \ + /* 0x60 - 0x7F Address of bytecode when either character is matched */ \ + /* 0x80 - 0x9F Address of bytecode when no match */ \ + V(SKIP_UNTIL_CHAR_OR_CHAR, 57, 20) \ + /* Combination of: */ \ + /* LOAD_CURRENT_CHAR, CHECK_GT, CHECK_BIT_IN_TABLE, GOTO and */ \ + /* and ADVANCE_CP_AND_GOTO */ \ + /* Emitted by RegExpBytecodePeepholeOptimization. */ \ + /* Bit Layout: */ \ + /* 0x00 - 0x07 0x3A (fixed) Bytecode */ \ + /* 0x08 - 0x1F Load character offset from current position */ \ + /* 0x20 - 0x2F Number of characters to advance */ \ + /* 0x30 - 0x3F Character to check if it is less than current char */ \ + /* 0x40 - 0xBF Bit Table */ \ + /* 0xC0 - 0xDF Address of bytecode when character is matched */ \ + /* 0xE0 - 0xFF Address of bytecode when no match */ \ + V(SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE, 58, 32) + +#define COUNT(...) +1 +static constexpr int kRegExpBytecodeCount = BYTECODE_ITERATOR(COUNT); +#undef COUNT + +// Just making sure we assigned values above properly. They should be +// contiguous, strictly increasing, and start at 0. +// TODO(jgruber): Do not explicitly assign values, instead generate them +// implicitly from the list order. +STATIC_ASSERT(kRegExpBytecodeCount == 59); + +#define DECLARE_BYTECODES(name, code, length) \ + static constexpr int BC_##name = code; +BYTECODE_ITERATOR(DECLARE_BYTECODES) +#undef DECLARE_BYTECODES + +static constexpr int kRegExpBytecodeLengths[] = { +#define DECLARE_BYTECODE_LENGTH(name, code, length) length, + BYTECODE_ITERATOR(DECLARE_BYTECODE_LENGTH) +#undef DECLARE_BYTECODE_LENGTH +}; + +inline constexpr int RegExpBytecodeLength(int bytecode) { + return kRegExpBytecodeLengths[bytecode]; +} + +static const char* const kRegExpBytecodeNames[] = { +#define DECLARE_BYTECODE_NAME(name, ...) #name, + BYTECODE_ITERATOR(DECLARE_BYTECODE_NAME) +#undef DECLARE_BYTECODE_NAME +}; + +inline const char* RegExpBytecodeName(int bytecode) { + return kRegExpBytecodeNames[bytecode]; +} + +void RegExpBytecodeDisassembleSingle(const byte* code_base, const byte* pc); +void RegExpBytecodeDisassemble(const byte* code_base, int length, + const char* pattern); + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_BYTECODES_H_ diff --git a/js/src/regexp/regexp-compiler-tonode.cc b/js/src/regexp/regexp-compiler-tonode.cc new file mode 100644 index 000000000..fc734ac7c --- /dev/null +++ b/js/src/regexp/regexp-compiler-tonode.cc @@ -0,0 +1,1675 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-compiler.h" + +#include "regexp/regexp.h" +#ifdef V8_INTL_SUPPORT +#include "regexp/special-case.h" +#endif // V8_INTL_SUPPORT + +#ifdef V8_INTL_SUPPORT +#include "unicode/locid.h" +#include "unicode/uniset.h" +#include "unicode/utypes.h" +#endif // V8_INTL_SUPPORT + +namespace v8 { +namespace internal { + +using namespace regexp_compiler_constants; // NOLINT(build/namespaces) + +// ------------------------------------------------------------------- +// Tree to graph conversion + +RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<TextElement>* elms = + new (compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); + elms->Add(TextElement::Atom(this), compiler->zone()); + return new (compiler->zone()) + TextNode(elms, compiler->read_backward(), on_success); +} + +RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new (compiler->zone()) + TextNode(elements(), compiler->read_backward(), on_success); +} + +static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, + const int* special_class, int length) { + length--; // Remove final marker. + DCHECK_EQ(kRangeEndMarker, special_class[length]); + DCHECK_NE(0, ranges->length()); + DCHECK_NE(0, length); + DCHECK_NE(0, special_class[0]); + if (ranges->length() != (length >> 1) + 1) { + return false; + } + CharacterRange range = ranges->at(0); + if (range.from() != 0) { + return false; + } + for (int i = 0; i < length; i += 2) { + if (special_class[i] != (range.to() + 1)) { + return false; + } + range = ranges->at((i >> 1) + 1); + if (special_class[i + 1] != range.from()) { + return false; + } + } + if (range.to() != String::kMaxCodePoint) { + return false; + } + return true; +} + +static bool CompareRanges(ZoneList<CharacterRange>* ranges, + const int* special_class, int length) { + length--; // Remove final marker. + DCHECK_EQ(kRangeEndMarker, special_class[length]); + if (ranges->length() * 2 != length) { + return false; + } + for (int i = 0; i < length; i += 2) { + CharacterRange range = ranges->at(i >> 1); + if (range.from() != special_class[i] || + range.to() != special_class[i + 1] - 1) { + return false; + } + } + return true; +} + +bool RegExpCharacterClass::is_standard(Zone* zone) { + // TODO(lrn): Remove need for this function, by not throwing away information + // along the way. + if (is_negated()) { + return false; + } + if (set_.is_standard()) { + return true; + } + if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('s'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('S'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), kLineTerminatorRanges, + kLineTerminatorRangeCount)) { + set_.set_standard_set_type('.'); + return true; + } + if (CompareRanges(set_.ranges(zone), kLineTerminatorRanges, + kLineTerminatorRangeCount)) { + set_.set_standard_set_type('n'); + return true; + } + if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { + set_.set_standard_set_type('w'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { + set_.set_standard_set_type('W'); + return true; + } + return false; +} + +UnicodeRangeSplitter::UnicodeRangeSplitter(ZoneList<CharacterRange>* base) { + // The unicode range splitter categorizes given character ranges into: + // - Code points from the BMP representable by one code unit. + // - Code points outside the BMP that need to be split into surrogate pairs. + // - Lone lead surrogates. + // - Lone trail surrogates. + // Lone surrogates are valid code points, even though no actual characters. + // They require special matching to make sure we do not split surrogate pairs. + + for (int i = 0; i < base->length(); i++) AddRange(base->at(i)); +} + +void UnicodeRangeSplitter::AddRange(CharacterRange range) { + static constexpr uc32 kBmp1Start = 0; + static constexpr uc32 kBmp1End = kLeadSurrogateStart - 1; + static constexpr uc32 kBmp2Start = kTrailSurrogateEnd + 1; + static constexpr uc32 kBmp2End = kNonBmpStart - 1; + + // Ends are all inclusive. + STATIC_ASSERT(kBmp1Start == 0); + STATIC_ASSERT(kBmp1Start < kBmp1End); + STATIC_ASSERT(kBmp1End + 1 == kLeadSurrogateStart); + STATIC_ASSERT(kLeadSurrogateStart < kLeadSurrogateEnd); + STATIC_ASSERT(kLeadSurrogateEnd + 1 == kTrailSurrogateStart); + STATIC_ASSERT(kTrailSurrogateStart < kTrailSurrogateEnd); + STATIC_ASSERT(kTrailSurrogateEnd + 1 == kBmp2Start); + STATIC_ASSERT(kBmp2Start < kBmp2End); + STATIC_ASSERT(kBmp2End + 1 == kNonBmpStart); + STATIC_ASSERT(kNonBmpStart < kNonBmpEnd); + + static constexpr uc32 kStarts[] = { + kBmp1Start, kLeadSurrogateStart, kTrailSurrogateStart, + kBmp2Start, kNonBmpStart, + }; + + static constexpr uc32 kEnds[] = { + kBmp1End, kLeadSurrogateEnd, kTrailSurrogateEnd, kBmp2End, kNonBmpEnd, + }; + + CharacterRangeVector* const kTargets[] = { + &bmp_, &lead_surrogates_, &trail_surrogates_, &bmp_, &non_bmp_, + }; + + static constexpr int kCount = arraysize(kStarts); + STATIC_ASSERT(kCount == arraysize(kEnds)); + STATIC_ASSERT(kCount == arraysize(kTargets)); + + for (int i = 0; i < kCount; i++) { + if (kStarts[i] > range.to()) break; + const uc32 from = std::max(kStarts[i], range.from()); + const uc32 to = std::min(kEnds[i], range.to()); + if (from > to) continue; + kTargets[i]->emplace_back(CharacterRange::Range(from, to)); + } +} + +namespace { + +// Translates between new and old V8-isms (SmallVector, ZoneList). +ZoneList<CharacterRange>* ToCanonicalZoneList( + const UnicodeRangeSplitter::CharacterRangeVector* v, Zone* zone) { + if (v->empty()) return nullptr; + + ZoneList<CharacterRange>* result = + new (zone) ZoneList<CharacterRange>(static_cast<int>(v->size()), zone); + for (size_t i = 0; i < v->size(); i++) { + result->Add(v->at(i), zone); + } + + CharacterRange::Canonicalize(result); + return result; +} + +void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result, + RegExpNode* on_success, UnicodeRangeSplitter* splitter) { + ZoneList<CharacterRange>* bmp = + ToCanonicalZoneList(splitter->bmp(), compiler->zone()); + if (bmp == nullptr) return; + JSRegExp::Flags default_flags = JSRegExp::Flags(); + result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges( + compiler->zone(), bmp, compiler->read_backward(), on_success, + default_flags))); +} + +void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result, + RegExpNode* on_success, + UnicodeRangeSplitter* splitter) { + ZoneList<CharacterRange>* non_bmp = + ToCanonicalZoneList(splitter->non_bmp(), compiler->zone()); + if (non_bmp == nullptr) return; + DCHECK(!compiler->one_byte()); + Zone* zone = compiler->zone(); + JSRegExp::Flags default_flags = JSRegExp::Flags(); + CharacterRange::Canonicalize(non_bmp); + for (int i = 0; i < non_bmp->length(); i++) { + // Match surrogate pair. + // E.g. [\u10005-\u11005] becomes + // \ud800[\udc05-\udfff]| + // [\ud801-\ud803][\udc00-\udfff]| + // \ud804[\udc00-\udc05] + uc32 from = non_bmp->at(i).from(); + uc32 to = non_bmp->at(i).to(); + uc16 from_l = unibrow::Utf16::LeadSurrogate(from); + uc16 from_t = unibrow::Utf16::TrailSurrogate(from); + uc16 to_l = unibrow::Utf16::LeadSurrogate(to); + uc16 to_t = unibrow::Utf16::TrailSurrogate(to); + if (from_l == to_l) { + // The lead surrogate is the same. + result->AddAlternative( + GuardedAlternative(TextNode::CreateForSurrogatePair( + zone, CharacterRange::Singleton(from_l), + CharacterRange::Range(from_t, to_t), compiler->read_backward(), + on_success, default_flags))); + } else { + if (from_t != kTrailSurrogateStart) { + // Add [from_l][from_t-\udfff] + result->AddAlternative( + GuardedAlternative(TextNode::CreateForSurrogatePair( + zone, CharacterRange::Singleton(from_l), + CharacterRange::Range(from_t, kTrailSurrogateEnd), + compiler->read_backward(), on_success, default_flags))); + from_l++; + } + if (to_t != kTrailSurrogateEnd) { + // Add [to_l][\udc00-to_t] + result->AddAlternative( + GuardedAlternative(TextNode::CreateForSurrogatePair( + zone, CharacterRange::Singleton(to_l), + CharacterRange::Range(kTrailSurrogateStart, to_t), + compiler->read_backward(), on_success, default_flags))); + to_l--; + } + if (from_l <= to_l) { + // Add [from_l-to_l][\udc00-\udfff] + result->AddAlternative( + GuardedAlternative(TextNode::CreateForSurrogatePair( + zone, CharacterRange::Range(from_l, to_l), + CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd), + compiler->read_backward(), on_success, default_flags))); + } + } + } +} + +RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch( + RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind, + ZoneList<CharacterRange>* match, RegExpNode* on_success, bool read_backward, + JSRegExp::Flags flags) { + Zone* zone = compiler->zone(); + RegExpNode* match_node = TextNode::CreateForCharacterRanges( + zone, match, read_backward, on_success, flags); + int stack_register = compiler->UnicodeLookaroundStackRegister(); + int position_register = compiler->UnicodeLookaroundPositionRegister(); + RegExpLookaround::Builder lookaround(false, match_node, stack_register, + position_register); + RegExpNode* negative_match = TextNode::CreateForCharacterRanges( + zone, lookbehind, !read_backward, lookaround.on_match_success(), flags); + return lookaround.ForMatch(negative_match); +} + +RegExpNode* MatchAndNegativeLookaroundInReadDirection( + RegExpCompiler* compiler, ZoneList<CharacterRange>* match, + ZoneList<CharacterRange>* lookahead, RegExpNode* on_success, + bool read_backward, JSRegExp::Flags flags) { + Zone* zone = compiler->zone(); + int stack_register = compiler->UnicodeLookaroundStackRegister(); + int position_register = compiler->UnicodeLookaroundPositionRegister(); + RegExpLookaround::Builder lookaround(false, on_success, stack_register, + position_register); + RegExpNode* negative_match = TextNode::CreateForCharacterRanges( + zone, lookahead, read_backward, lookaround.on_match_success(), flags); + return TextNode::CreateForCharacterRanges( + zone, match, read_backward, lookaround.ForMatch(negative_match), flags); +} + +void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result, + RegExpNode* on_success, + UnicodeRangeSplitter* splitter) { + JSRegExp::Flags default_flags = JSRegExp::Flags(); + ZoneList<CharacterRange>* lead_surrogates = + ToCanonicalZoneList(splitter->lead_surrogates(), compiler->zone()); + if (lead_surrogates == nullptr) return; + Zone* zone = compiler->zone(); + // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]). + ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List( + zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd)); + + RegExpNode* match; + if (compiler->read_backward()) { + // Reading backward. Assert that reading forward, there is no trail + // surrogate, and then backward match the lead surrogate. + match = NegativeLookaroundAgainstReadDirectionAndMatch( + compiler, trail_surrogates, lead_surrogates, on_success, true, + default_flags); + } else { + // Reading forward. Forward match the lead surrogate and assert that + // no trail surrogate follows. + match = MatchAndNegativeLookaroundInReadDirection( + compiler, lead_surrogates, trail_surrogates, on_success, false, + default_flags); + } + result->AddAlternative(GuardedAlternative(match)); +} + +void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result, + RegExpNode* on_success, + UnicodeRangeSplitter* splitter) { + JSRegExp::Flags default_flags = JSRegExp::Flags(); + ZoneList<CharacterRange>* trail_surrogates = + ToCanonicalZoneList(splitter->trail_surrogates(), compiler->zone()); + if (trail_surrogates == nullptr) return; + Zone* zone = compiler->zone(); + // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01 + ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List( + zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd)); + + RegExpNode* match; + if (compiler->read_backward()) { + // Reading backward. Backward match the trail surrogate and assert that no + // lead surrogate precedes it. + match = MatchAndNegativeLookaroundInReadDirection( + compiler, trail_surrogates, lead_surrogates, on_success, true, + default_flags); + } else { + // Reading forward. Assert that reading backward, there is no lead + // surrogate, and then forward match the trail surrogate. + match = NegativeLookaroundAgainstReadDirectionAndMatch( + compiler, lead_surrogates, trail_surrogates, on_success, false, + default_flags); + } + result->AddAlternative(GuardedAlternative(match)); +} + +RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler, + RegExpNode* on_success) { + // This implements ES2015 21.2.5.2.3, AdvanceStringIndex. + DCHECK(!compiler->read_backward()); + Zone* zone = compiler->zone(); + // Advance any character. If the character happens to be a lead surrogate and + // we advanced into the middle of a surrogate pair, it will work out, as + // nothing will match from there. We will have to advance again, consuming + // the associated trail surrogate. + ZoneList<CharacterRange>* range = CharacterRange::List( + zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit)); + JSRegExp::Flags default_flags = JSRegExp::Flags(); + return TextNode::CreateForCharacterRanges(zone, range, false, on_success, + default_flags); +} + +void AddUnicodeCaseEquivalents(ZoneList<CharacterRange>* ranges, Zone* zone) { +#ifdef V8_INTL_SUPPORT + DCHECK(CharacterRange::IsCanonical(ranges)); + + // Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver. + // See also https://crbug.com/v8/6727. + // TODO(jgruber): This only covers the special case of the {0,0x10FFFF} range, + // which we use frequently internally. But large ranges can also easily be + // created by the user. We might want to have a more general caching mechanism + // for such ranges. + if (ranges->length() == 1 && ranges->at(0).IsEverything(kNonBmpEnd)) return; + + // Use ICU to compute the case fold closure over the ranges. + icu::UnicodeSet set; + for (int i = 0; i < ranges->length(); i++) { + set.add(ranges->at(i).from(), ranges->at(i).to()); + } + ranges->Clear(); + set.closeOver(USET_CASE_INSENSITIVE); + // Full case mapping map single characters to multiple characters. + // Those are represented as strings in the set. Remove them so that + // we end up with only simple and common case mappings. + set.removeAllStrings(); + for (int i = 0; i < set.getRangeCount(); i++) { + ranges->Add(CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)), + zone); + } + // No errors and everything we collected have been ranges. + CharacterRange::Canonicalize(ranges); +#endif // V8_INTL_SUPPORT +} + +} // namespace + +RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + set_.Canonicalize(); + Zone* zone = compiler->zone(); + ZoneList<CharacterRange>* ranges = this->ranges(zone); + if (NeedsUnicodeCaseEquivalents(flags_)) { + AddUnicodeCaseEquivalents(ranges, zone); + } + if (IsUnicode(flags_) && !compiler->one_byte() && + !contains_split_surrogate()) { + if (is_negated()) { + ZoneList<CharacterRange>* negated = + new (zone) ZoneList<CharacterRange>(2, zone); + CharacterRange::Negate(ranges, negated, zone); + ranges = negated; + } + if (ranges->length() == 0) { + JSRegExp::Flags default_flags; + RegExpCharacterClass* fail = + new (zone) RegExpCharacterClass(zone, ranges, default_flags); + return new (zone) TextNode(fail, compiler->read_backward(), on_success); + } + if (standard_type() == '*') { + return UnanchoredAdvance(compiler, on_success); + } else { + ChoiceNode* result = new (zone) ChoiceNode(2, zone); + UnicodeRangeSplitter splitter(ranges); + AddBmpCharacters(compiler, result, on_success, &splitter); + AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter); + AddLoneLeadSurrogates(compiler, result, on_success, &splitter); + AddLoneTrailSurrogates(compiler, result, on_success, &splitter); + return result; + } + } else { + return new (zone) TextNode(this, compiler->read_backward(), on_success); + } +} + +int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) { + RegExpAtom* atom1 = (*a)->AsAtom(); + RegExpAtom* atom2 = (*b)->AsAtom(); + uc16 character1 = atom1->data().at(0); + uc16 character2 = atom2->data().at(0); + if (character1 < character2) return -1; + if (character1 > character2) return 1; + return 0; +} + +#ifdef V8_INTL_SUPPORT + +// Case Insensitve comparesion +int CompareFirstCharCaseInsensitve(RegExpTree* const* a, RegExpTree* const* b) { + RegExpAtom* atom1 = (*a)->AsAtom(); + RegExpAtom* atom2 = (*b)->AsAtom(); + icu::UnicodeString character1(atom1->data().at(0)); + return character1.caseCompare(atom2->data().at(0), U_FOLD_CASE_DEFAULT); +} + +#else + +static unibrow::uchar Canonical( + unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, + unibrow::uchar c) { + unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth]; + int length = canonicalize->get(c, '\0', chars); + DCHECK_LE(length, 1); + unibrow::uchar canonical = c; + if (length == 1) canonical = chars[0]; + return canonical; +} + +int CompareFirstCharCaseIndependent( + unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, + RegExpTree* const* a, RegExpTree* const* b) { + RegExpAtom* atom1 = (*a)->AsAtom(); + RegExpAtom* atom2 = (*b)->AsAtom(); + unibrow::uchar character1 = atom1->data().at(0); + unibrow::uchar character2 = atom2->data().at(0); + if (character1 == character2) return 0; + if (character1 >= 'a' || character2 >= 'a') { + character1 = Canonical(canonicalize, character1); + character2 = Canonical(canonicalize, character2); + } + return static_cast<int>(character1) - static_cast<int>(character2); +} +#endif // V8_INTL_SUPPORT + +// We can stable sort runs of atoms, since the order does not matter if they +// start with different characters. +// Returns true if any consecutive atoms were found. +bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + int length = alternatives->length(); + bool found_consecutive_atoms = false; + for (int i = 0; i < length; i++) { + while (i < length) { + RegExpTree* alternative = alternatives->at(i); + if (alternative->IsAtom()) break; + i++; + } + // i is length or it is the index of an atom. + if (i == length) break; + int first_atom = i; + JSRegExp::Flags flags = alternatives->at(i)->AsAtom()->flags(); + i++; + while (i < length) { + RegExpTree* alternative = alternatives->at(i); + if (!alternative->IsAtom()) break; + if (alternative->AsAtom()->flags() != flags) break; + i++; + } + // Sort atoms to get ones with common prefixes together. + // This step is more tricky if we are in a case-independent regexp, + // because it would change /is|I/ to /I|is/, and order matters when + // the regexp parts don't match only disjoint starting points. To fix + // this we have a version of CompareFirstChar that uses case- + // independent character classes for comparison. + DCHECK_LT(first_atom, alternatives->length()); + DCHECK_LE(i, alternatives->length()); + DCHECK_LE(first_atom, i); + if (IgnoreCase(flags)) { +#ifdef V8_INTL_SUPPORT + alternatives->StableSort(CompareFirstCharCaseInsensitve, first_atom, + i - first_atom); +#else + unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = + compiler->isolate()->regexp_macro_assembler_canonicalize(); + auto compare_closure = [canonicalize](RegExpTree* const* a, + RegExpTree* const* b) { + return CompareFirstCharCaseIndependent(canonicalize, a, b); + }; + alternatives->StableSort(compare_closure, first_atom, i - first_atom); +#endif // V8_INTL_SUPPORT + } else { + alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom); + } + if (i - first_atom > 1) found_consecutive_atoms = true; + } + return found_consecutive_atoms; +} + +// Optimizes ab|ac|az to a(?:b|c|d). +void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) { + Zone* zone = compiler->zone(); + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + int length = alternatives->length(); + + int write_posn = 0; + int i = 0; + while (i < length) { + RegExpTree* alternative = alternatives->at(i); + if (!alternative->IsAtom()) { + alternatives->at(write_posn++) = alternatives->at(i); + i++; + continue; + } + RegExpAtom* const atom = alternative->AsAtom(); + JSRegExp::Flags flags = atom->flags(); +#ifdef V8_INTL_SUPPORT + icu::UnicodeString common_prefix(atom->data().at(0)); +#else + unibrow::uchar common_prefix = atom->data().at(0); +#endif // V8_INTL_SUPPORT + int first_with_prefix = i; + int prefix_length = atom->length(); + i++; + while (i < length) { + alternative = alternatives->at(i); + if (!alternative->IsAtom()) break; + RegExpAtom* const atom = alternative->AsAtom(); + if (atom->flags() != flags) break; +#ifdef V8_INTL_SUPPORT + icu::UnicodeString new_prefix(atom->data().at(0)); + if (new_prefix != common_prefix) { + if (!IgnoreCase(flags)) break; + if (common_prefix.caseCompare(new_prefix, U_FOLD_CASE_DEFAULT) != 0) + break; + } +#else + unibrow::uchar new_prefix = atom->data().at(0); + if (new_prefix != common_prefix) { + if (!IgnoreCase(flags)) break; + unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = + compiler->isolate()->regexp_macro_assembler_canonicalize(); + new_prefix = Canonical(canonicalize, new_prefix); + common_prefix = Canonical(canonicalize, common_prefix); + if (new_prefix != common_prefix) break; + } +#endif // V8_INTL_SUPPORT + prefix_length = Min(prefix_length, atom->length()); + i++; + } + if (i > first_with_prefix + 2) { + // Found worthwhile run of alternatives with common prefix of at least one + // character. The sorting function above did not sort on more than one + // character for reasons of correctness, but there may still be a longer + // common prefix if the terms were similar or presorted in the input. + // Find out how long the common prefix is. + int run_length = i - first_with_prefix; + RegExpAtom* const atom = alternatives->at(first_with_prefix)->AsAtom(); + for (int j = 1; j < run_length && prefix_length > 1; j++) { + RegExpAtom* old_atom = + alternatives->at(j + first_with_prefix)->AsAtom(); + for (int k = 1; k < prefix_length; k++) { + if (atom->data().at(k) != old_atom->data().at(k)) { + prefix_length = k; + break; + } + } + } + RegExpAtom* prefix = new (zone) + RegExpAtom(atom->data().SubVector(0, prefix_length), flags); + ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone); + pair->Add(prefix, zone); + ZoneList<RegExpTree*>* suffixes = + new (zone) ZoneList<RegExpTree*>(run_length, zone); + for (int j = 0; j < run_length; j++) { + RegExpAtom* old_atom = + alternatives->at(j + first_with_prefix)->AsAtom(); + int len = old_atom->length(); + if (len == prefix_length) { + suffixes->Add(new (zone) RegExpEmpty(), zone); + } else { + RegExpTree* suffix = new (zone) RegExpAtom( + old_atom->data().SubVector(prefix_length, old_atom->length()), + flags); + suffixes->Add(suffix, zone); + } + } + pair->Add(new (zone) RegExpDisjunction(suffixes), zone); + alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair); + } else { + // Just copy any non-worthwhile alternatives. + for (int j = first_with_prefix; j < i; j++) { + alternatives->at(write_posn++) = alternatives->at(j); + } + } + } + alternatives->Rewind(write_posn); // Trim end of array. +} + +// Optimizes b|c|z to [bcz]. +void RegExpDisjunction::FixSingleCharacterDisjunctions( + RegExpCompiler* compiler) { + Zone* zone = compiler->zone(); + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + int length = alternatives->length(); + + int write_posn = 0; + int i = 0; + while (i < length) { + RegExpTree* alternative = alternatives->at(i); + if (!alternative->IsAtom()) { + alternatives->at(write_posn++) = alternatives->at(i); + i++; + continue; + } + RegExpAtom* const atom = alternative->AsAtom(); + if (atom->length() != 1) { + alternatives->at(write_posn++) = alternatives->at(i); + i++; + continue; + } + JSRegExp::Flags flags = atom->flags(); + DCHECK_IMPLIES(IsUnicode(flags), + !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0))); + bool contains_trail_surrogate = + unibrow::Utf16::IsTrailSurrogate(atom->data().at(0)); + int first_in_run = i; + i++; + // Find a run of single-character atom alternatives that have identical + // flags (case independence and unicode-ness). + while (i < length) { + alternative = alternatives->at(i); + if (!alternative->IsAtom()) break; + RegExpAtom* const atom = alternative->AsAtom(); + if (atom->length() != 1) break; + if (atom->flags() != flags) break; + DCHECK_IMPLIES(IsUnicode(flags), + !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0))); + contains_trail_surrogate |= + unibrow::Utf16::IsTrailSurrogate(atom->data().at(0)); + i++; + } + if (i > first_in_run + 1) { + // Found non-trivial run of single-character alternatives. + int run_length = i - first_in_run; + ZoneList<CharacterRange>* ranges = + new (zone) ZoneList<CharacterRange>(2, zone); + for (int j = 0; j < run_length; j++) { + RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom(); + DCHECK_EQ(old_atom->length(), 1); + ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone); + } + RegExpCharacterClass::CharacterClassFlags character_class_flags; + if (IsUnicode(flags) && contains_trail_surrogate) { + character_class_flags = RegExpCharacterClass::CONTAINS_SPLIT_SURROGATE; + } + alternatives->at(write_posn++) = new (zone) + RegExpCharacterClass(zone, ranges, flags, character_class_flags); + } else { + // Just copy any trivial alternatives. + for (int j = first_in_run; j < i; j++) { + alternatives->at(write_posn++) = alternatives->at(j); + } + } + } + alternatives->Rewind(write_posn); // Trim end of array. +} + +RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + + if (alternatives->length() > 2) { + bool found_consecutive_atoms = SortConsecutiveAtoms(compiler); + if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler); + FixSingleCharacterDisjunctions(compiler); + if (alternatives->length() == 1) { + return alternatives->at(0)->ToNode(compiler, on_success); + } + } + + int length = alternatives->length(); + + ChoiceNode* result = + new (compiler->zone()) ChoiceNode(length, compiler->zone()); + for (int i = 0; i < length; i++) { + GuardedAlternative alternative( + alternatives->at(i)->ToNode(compiler, on_success)); + result->AddAlternative(alternative); + } + return result; +} + +RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(min(), max(), is_greedy(), body(), compiler, on_success); +} + +namespace { +// Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and +// \B to (?<=\w)(?=\w)|(?<=\W)(?=\W) +RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler, + RegExpNode* on_success, + RegExpAssertion::AssertionType type, + JSRegExp::Flags flags) { + DCHECK(NeedsUnicodeCaseEquivalents(flags)); + Zone* zone = compiler->zone(); + ZoneList<CharacterRange>* word_range = + new (zone) ZoneList<CharacterRange>(2, zone); + CharacterRange::AddClassEscape('w', word_range, true, zone); + int stack_register = compiler->UnicodeLookaroundStackRegister(); + int position_register = compiler->UnicodeLookaroundPositionRegister(); + ChoiceNode* result = new (zone) ChoiceNode(2, zone); + // Add two choices. The (non-)boundary could start with a word or + // a non-word-character. + for (int i = 0; i < 2; i++) { + bool lookbehind_for_word = i == 0; + bool lookahead_for_word = + (type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word; + // Look to the left. + RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success, + stack_register, position_register); + RegExpNode* backward = TextNode::CreateForCharacterRanges( + zone, word_range, true, lookbehind.on_match_success(), flags); + // Look to the right. + RegExpLookaround::Builder lookahead(lookahead_for_word, + lookbehind.ForMatch(backward), + stack_register, position_register); + RegExpNode* forward = TextNode::CreateForCharacterRanges( + zone, word_range, false, lookahead.on_match_success(), flags); + result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward))); + } + return result; +} +} // anonymous namespace + +RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + NodeInfo info; + Zone* zone = compiler->zone(); + + switch (assertion_type()) { + case START_OF_LINE: + return AssertionNode::AfterNewline(on_success); + case START_OF_INPUT: + return AssertionNode::AtStart(on_success); + case BOUNDARY: + return NeedsUnicodeCaseEquivalents(flags_) + ? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY, + flags_) + : AssertionNode::AtBoundary(on_success); + case NON_BOUNDARY: + return NeedsUnicodeCaseEquivalents(flags_) + ? BoundaryAssertionAsLookaround(compiler, on_success, + NON_BOUNDARY, flags_) + : AssertionNode::AtNonBoundary(on_success); + case END_OF_INPUT: + return AssertionNode::AtEnd(on_success); + case END_OF_LINE: { + // Compile $ in multiline regexps as an alternation with a positive + // lookahead in one side and an end-of-input on the other side. + // We need two registers for the lookahead. + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + // The ChoiceNode to distinguish between a newline and end-of-input. + ChoiceNode* result = new (zone) ChoiceNode(2, zone); + // Create a newline atom. + ZoneList<CharacterRange>* newline_ranges = + new (zone) ZoneList<CharacterRange>(3, zone); + CharacterRange::AddClassEscape('n', newline_ranges, false, zone); + JSRegExp::Flags default_flags = JSRegExp::Flags(); + RegExpCharacterClass* newline_atom = + new (zone) RegExpCharacterClass('n', default_flags); + TextNode* newline_matcher = + new (zone) TextNode(newline_atom, false, + ActionNode::PositiveSubmatchSuccess( + stack_pointer_register, position_register, + 0, // No captures inside. + -1, // Ignored if no captures. + on_success)); + // Create an end-of-input matcher. + RegExpNode* end_of_line = ActionNode::BeginSubmatch( + stack_pointer_register, position_register, newline_matcher); + // Add the two alternatives to the ChoiceNode. + GuardedAlternative eol_alternative(end_of_line); + result->AddAlternative(eol_alternative); + GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); + result->AddAlternative(end_alternative); + return result; + } + default: + UNREACHABLE(); + } + return on_success; +} + +RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new (compiler->zone()) + BackReferenceNode(RegExpCapture::StartRegister(index()), + RegExpCapture::EndRegister(index()), flags_, + compiler->read_backward(), on_success); +} + +RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return on_success; +} + +RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success, + int stack_pointer_register, + int position_register, + int capture_register_count, + int capture_register_start) + : is_positive_(is_positive), + on_success_(on_success), + stack_pointer_register_(stack_pointer_register), + position_register_(position_register) { + if (is_positive_) { + on_match_success_ = ActionNode::PositiveSubmatchSuccess( + stack_pointer_register, position_register, capture_register_count, + capture_register_start, on_success_); + } else { + Zone* zone = on_success_->zone(); + on_match_success_ = new (zone) NegativeSubmatchSuccess( + stack_pointer_register, position_register, capture_register_count, + capture_register_start, zone); + } +} + +RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) { + if (is_positive_) { + return ActionNode::BeginSubmatch(stack_pointer_register_, + position_register_, match); + } else { + Zone* zone = on_success_->zone(); + // We use a ChoiceNode to represent the negative lookaround. The first + // alternative is the negative match. On success, the end node backtracks. + // On failure, the second alternative is tried and leads to success. + // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the + // first exit when calculating quick checks. + ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode( + GuardedAlternative(match), GuardedAlternative(on_success_), zone); + return ActionNode::BeginSubmatch(stack_pointer_register_, + position_register_, choice_node); + } +} + +RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + + const int registers_per_capture = 2; + const int register_of_first_capture = 2; + int register_count = capture_count_ * registers_per_capture; + int register_start = + register_of_first_capture + capture_from_ * registers_per_capture; + + RegExpNode* result; + bool was_reading_backward = compiler->read_backward(); + compiler->set_read_backward(type() == LOOKBEHIND); + Builder builder(is_positive(), on_success, stack_pointer_register, + position_register, register_count, register_start); + RegExpNode* match = body_->ToNode(compiler, builder.on_match_success()); + result = builder.ForMatch(match); + compiler->set_read_backward(was_reading_backward); + return result; +} + +RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(body(), index(), compiler, on_success); +} + +RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index, + RegExpCompiler* compiler, + RegExpNode* on_success) { + DCHECK_NOT_NULL(body); + int start_reg = RegExpCapture::StartRegister(index); + int end_reg = RegExpCapture::EndRegister(index); + if (compiler->read_backward()) std::swap(start_reg, end_reg); + RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); + RegExpNode* body_node = body->ToNode(compiler, store_end); + return ActionNode::StorePosition(start_reg, true, body_node); +} + +namespace { + +class AssertionSequenceRewriter final { + public: + // TODO(jgruber): Consider moving this to a separate AST tree rewriter pass + // instead of sprinkling rewrites into the AST->Node conversion process. + static void MaybeRewrite(ZoneList<RegExpTree*>* terms, Zone* zone) { + AssertionSequenceRewriter rewriter(terms, zone); + + static constexpr int kNoIndex = -1; + int from = kNoIndex; + + for (int i = 0; i < terms->length(); i++) { + RegExpTree* t = terms->at(i); + if (from == kNoIndex && t->IsAssertion()) { + from = i; // Start a sequence. + } else if (from != kNoIndex && !t->IsAssertion()) { + // Terminate and process the sequence. + if (i - from > 1) rewriter.Rewrite(from, i); + from = kNoIndex; + } + } + + if (from != kNoIndex && terms->length() - from > 1) { + rewriter.Rewrite(from, terms->length()); + } + } + + // All assertions are zero width. A consecutive sequence of assertions is + // order-independent. There's two ways we can optimize here: + // 1. fold all identical assertions. + // 2. if any assertion combinations are known to fail (e.g. \b\B), the entire + // sequence fails. + void Rewrite(int from, int to) { + DCHECK_GT(to, from + 1); + + // Bitfield of all seen assertions. + uint32_t seen_assertions = 0; + STATIC_ASSERT(RegExpAssertion::LAST_TYPE < kUInt32Size * kBitsPerByte); + + // Flags must match for folding. + JSRegExp::Flags flags = terms_->at(from)->AsAssertion()->flags(); + bool saw_mismatched_flags = false; + + for (int i = from; i < to; i++) { + RegExpAssertion* t = terms_->at(i)->AsAssertion(); + if (t->flags() != flags) saw_mismatched_flags = true; + const uint32_t bit = 1 << t->assertion_type(); + + if ((seen_assertions & bit) && !saw_mismatched_flags) { + // Fold duplicates. + terms_->Set(i, new (zone_) RegExpEmpty()); + } + + seen_assertions |= bit; + } + + // Collapse failures. + const uint32_t always_fails_mask = + 1 << RegExpAssertion::BOUNDARY | 1 << RegExpAssertion::NON_BOUNDARY; + if ((seen_assertions & always_fails_mask) == always_fails_mask) { + ReplaceSequenceWithFailure(from, to); + } + } + + void ReplaceSequenceWithFailure(int from, int to) { + // Replace the entire sequence with a single node that always fails. + // TODO(jgruber): Consider adding an explicit Fail kind. Until then, the + // negated '*' (everything) range serves the purpose. + ZoneList<CharacterRange>* ranges = + new (zone_) ZoneList<CharacterRange>(0, zone_); + RegExpCharacterClass* cc = + new (zone_) RegExpCharacterClass(zone_, ranges, JSRegExp::Flags()); + terms_->Set(from, cc); + + // Zero out the rest. + RegExpEmpty* empty = new (zone_) RegExpEmpty(); + for (int i = from + 1; i < to; i++) terms_->Set(i, empty); + } + + private: + AssertionSequenceRewriter(ZoneList<RegExpTree*>* terms, Zone* zone) + : zone_(zone), terms_(terms) {} + + Zone* zone_; + ZoneList<RegExpTree*>* terms_; +}; + +} // namespace + +RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* children = nodes(); + + AssertionSequenceRewriter::MaybeRewrite(children, compiler->zone()); + + RegExpNode* current = on_success; + if (compiler->read_backward()) { + for (int i = 0; i < children->length(); i++) { + current = children->at(i)->ToNode(compiler, current); + } + } else { + for (int i = children->length() - 1; i >= 0; i--) { + current = children->at(i)->ToNode(compiler, current); + } + } + return current; +} + +static void AddClass(const int* elmv, int elmc, + ZoneList<CharacterRange>* ranges, Zone* zone) { + elmc--; + DCHECK_EQ(kRangeEndMarker, elmv[elmc]); + for (int i = 0; i < elmc; i += 2) { + DCHECK(elmv[i] < elmv[i + 1]); + ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone); + } +} + +static void AddClassNegated(const int* elmv, int elmc, + ZoneList<CharacterRange>* ranges, Zone* zone) { + elmc--; + DCHECK_EQ(kRangeEndMarker, elmv[elmc]); + DCHECK_NE(0x0000, elmv[0]); + DCHECK_NE(String::kMaxCodePoint, elmv[elmc - 1]); + uc16 last = 0x0000; + for (int i = 0; i < elmc; i += 2) { + DCHECK(last <= elmv[i] - 1); + DCHECK(elmv[i] < elmv[i + 1]); + ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone); + last = elmv[i + 1]; + } + ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone); +} + +void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges, + bool add_unicode_case_equivalents, + Zone* zone) { + if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) { + // See #sec-runtime-semantics-wordcharacters-abstract-operation + // In case of unicode and ignore_case, we need to create the closure over + // case equivalent characters before negating. + ZoneList<CharacterRange>* new_ranges = + new (zone) ZoneList<CharacterRange>(2, zone); + AddClass(kWordRanges, kWordRangeCount, new_ranges, zone); + AddUnicodeCaseEquivalents(new_ranges, zone); + if (type == 'W') { + ZoneList<CharacterRange>* negated = + new (zone) ZoneList<CharacterRange>(2, zone); + CharacterRange::Negate(new_ranges, negated, zone); + new_ranges = negated; + } + ranges->AddAll(*new_ranges, zone); + return; + } + AddClassEscape(type, ranges, zone); +} + +void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges, + Zone* zone) { + switch (type) { + case 's': + AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); + break; + case 'S': + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); + break; + case 'w': + AddClass(kWordRanges, kWordRangeCount, ranges, zone); + break; + case 'W': + AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); + break; + case 'd': + AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); + break; + case 'D': + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); + break; + case '.': + AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, + zone); + break; + // This is not a character range as defined by the spec but a + // convenient shorthand for a character class that matches any + // character. + case '*': + ranges->Add(CharacterRange::Everything(), zone); + break; + // This is the set of characters matched by the $ and ^ symbols + // in multiline mode. + case 'n': + AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone); + break; + default: + UNREACHABLE(); + } +} + +Vector<const int> CharacterRange::GetWordBounds() { + return Vector<const int>(kWordRanges, kWordRangeCount - 1); +} + +#ifdef V8_INTL_SUPPORT +struct IgnoreSet { + IgnoreSet() : set(BuildIgnoreSet()) {} + const icu::UnicodeSet set; +}; + +struct SpecialAddSet { + SpecialAddSet() : set(BuildSpecialAddSet()) {} + const icu::UnicodeSet set; +}; + +icu::UnicodeSet BuildAsciiAToZSet() { + icu::UnicodeSet set('a', 'z'); + set.add('A', 'Z'); + set.freeze(); + return set; +} + +struct AsciiAToZSet { + AsciiAToZSet() : set(BuildAsciiAToZSet()) {} + const icu::UnicodeSet set; +}; + +static base::LazyInstance<IgnoreSet>::type ignore_set = + LAZY_INSTANCE_INITIALIZER; + +static base::LazyInstance<SpecialAddSet>::type special_add_set = + LAZY_INSTANCE_INITIALIZER; + +static base::LazyInstance<AsciiAToZSet>::type ascii_a_to_z_set = + LAZY_INSTANCE_INITIALIZER; +#endif // V8_INTL_SUPPORT + +// static +void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone, + ZoneList<CharacterRange>* ranges, + bool is_one_byte) { + CharacterRange::Canonicalize(ranges); + int range_count = ranges->length(); +#ifdef V8_INTL_SUPPORT + icu::UnicodeSet others; + for (int i = 0; i < range_count; i++) { + CharacterRange range = ranges->at(i); + uc32 from = range.from(); + if (from > String::kMaxUtf16CodeUnit) continue; + uc32 to = Min(range.to(), String::kMaxUtf16CodeUnit); + // Nothing to be done for surrogates. + if (from >= kLeadSurrogateStart && to <= kTrailSurrogateEnd) continue; + if (is_one_byte && !RangeContainsLatin1Equivalents(range)) { + if (from > String::kMaxOneByteCharCode) continue; + if (to > String::kMaxOneByteCharCode) to = String::kMaxOneByteCharCode; + } + others.add(from, to); + } + + // Set of characters already added to ranges that do not need to be added + // again. + icu::UnicodeSet already_added(others); + + // Set of characters in ranges that are in the 52 ASCII characters [a-zA-Z]. + icu::UnicodeSet in_ascii_a_to_z(others); + in_ascii_a_to_z.retainAll(ascii_a_to_z_set.Pointer()->set); + + // Remove all chars in [a-zA-Z] from others. + others.removeAll(in_ascii_a_to_z); + + // Set of characters in ranges that are overlapping with special add set. + icu::UnicodeSet in_special_add(others); + in_special_add.retainAll(special_add_set.Pointer()->set); + + others.removeAll(in_special_add); + + // Ignore all chars in ignore set. + others.removeAll(ignore_set.Pointer()->set); + + // For most of the chars in ranges that is still in others, find the case + // equivlant set by calling closeOver(USET_CASE_INSENSITIVE). + others.closeOver(USET_CASE_INSENSITIVE); + + // Because closeOver(USET_CASE_INSENSITIVE) may add ASCII [a-zA-Z] to others, + // but ECMA262 "i" mode won't consider that, remove them from others. + // Ex: U+017F add 'S' and 's' to others. + others.removeAll(ascii_a_to_z_set.Pointer()->set); + + // Special handling for in_ascii_a_to_z. + for (int32_t i = 0; i < in_ascii_a_to_z.getRangeCount(); i++) { + UChar32 start = in_ascii_a_to_z.getRangeStart(i); + UChar32 end = in_ascii_a_to_z.getRangeEnd(i); + // Check if it is uppercase A-Z by checking bit 6. + if (start & 0x0020) { + // Add the lowercases + others.add(start & 0x005F, end & 0x005F); + } else { + // Add the uppercases + others.add(start | 0x0020, end | 0x0020); + } + } + + // Special handling for chars in "Special Add" set. + for (int32_t i = 0; i < in_special_add.getRangeCount(); i++) { + UChar32 end = in_special_add.getRangeEnd(i); + for (UChar32 ch = in_special_add.getRangeStart(i); ch <= end; ch++) { + // Add the uppercase of this character if itself is not an uppercase + // character. + // Note: The if condiction cannot be u_islower(ch) because ch could be + // neither uppercase nor lowercase but Mn. + if (!u_isupper(ch)) { + others.add(u_toupper(ch)); + } + icu::UnicodeSet candidates(ch, ch); + candidates.closeOver(USET_CASE_INSENSITIVE); + for (int32_t j = 0; j < candidates.getRangeCount(); j++) { + UChar32 end2 = candidates.getRangeEnd(j); + for (UChar32 ch2 = candidates.getRangeStart(j); ch2 <= end2; ch2++) { + // Add character that is not uppercase to others. + if (!u_isupper(ch2)) { + others.add(ch2); + } + } + } + } + } + + // Remove all characters which already in the ranges. + others.removeAll(already_added); + + // Add others to the ranges + for (int32_t i = 0; i < others.getRangeCount(); i++) { + UChar32 from = others.getRangeStart(i); + UChar32 to = others.getRangeEnd(i); + if (from == to) { + ranges->Add(CharacterRange::Singleton(from), zone); + } else { + ranges->Add(CharacterRange::Range(from, to), zone); + } + } +#else + for (int i = 0; i < range_count; i++) { + CharacterRange range = ranges->at(i); + uc32 bottom = range.from(); + if (bottom > String::kMaxUtf16CodeUnit) continue; + uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit); + // Nothing to be done for surrogates. + if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue; + if (is_one_byte && !RangeContainsLatin1Equivalents(range)) { + if (bottom > String::kMaxOneByteCharCode) continue; + if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; + } + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + if (top == bottom) { + // If this is a singleton we just expand the one character. + int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); + for (int i = 0; i < length; i++) { + uc32 chr = chars[i]; + if (chr != bottom) { + ranges->Add(CharacterRange::Singleton(chars[i]), zone); + } + } + } else { + // If this is a range we expand the characters block by block, expanding + // contiguous subranges (blocks) one at a time. The approach is as + // follows. For a given start character we look up the remainder of the + // block that contains it (represented by the end point), for instance we + // find 'z' if the character is 'c'. A block is characterized by the + // property that all characters uncanonicalize in the same way, except + // that each entry in the result is incremented by the distance from the + // first element. So a-z is a block because 'a' uncanonicalizes to ['a', + // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. Once + // we've found the end point we look up its uncanonicalization and + // produce a range for each element. For instance for [c-f] we look up + // ['z', 'Z'] and produce [c-f] and [C-F]. We then only add a range if + // it is not already contained in the input, so [c-f] will be skipped but + // [C-F] will be added. If this range is not completely contained in a + // block we do this for all the blocks covered by the range (handling + // characters that is not in a block as a "singleton block"). + unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int pos = bottom; + while (pos <= top) { + int length = + isolate->jsregexp_canonrange()->get(pos, '\0', equivalents); + uc32 block_end; + if (length == 0) { + block_end = pos; + } else { + DCHECK_EQ(1, length); + block_end = equivalents[0]; + } + int end = (block_end > top) ? top : block_end; + length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', + equivalents); + for (int i = 0; i < length; i++) { + uc32 c = equivalents[i]; + uc32 range_from = c - (block_end - pos); + uc32 range_to = c - (block_end - end); + if (!(bottom <= range_from && range_to <= top)) { + ranges->Add(CharacterRange::Range(range_from, range_to), zone); + } + } + pos = end + 1; + } + } + } +#endif // V8_INTL_SUPPORT +} + +bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { + DCHECK_NOT_NULL(ranges); + int n = ranges->length(); + if (n <= 1) return true; + int max = ranges->at(0).to(); + for (int i = 1; i < n; i++) { + CharacterRange next_range = ranges->at(i); + if (next_range.from() <= max + 1) return false; + max = next_range.to(); + } + return true; +} + +ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { + if (ranges_ == nullptr) { + ranges_ = new (zone) ZoneList<CharacterRange>(2, zone); + CharacterRange::AddClassEscape(standard_set_type_, ranges_, false, zone); + } + return ranges_; +} + +// Move a number of elements in a zonelist to another position +// in the same list. Handles overlapping source and target areas. +static void MoveRanges(ZoneList<CharacterRange>* list, int from, int to, + int count) { + // Ranges are potentially overlapping. + if (from < to) { + for (int i = count - 1; i >= 0; i--) { + list->at(to + i) = list->at(from + i); + } + } else { + for (int i = 0; i < count; i++) { + list->at(to + i) = list->at(from + i); + } + } +} + +static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count, + CharacterRange insert) { + // Inserts a range into list[0..count[, which must be sorted + // by from value and non-overlapping and non-adjacent, using at most + // list[0..count] for the result. Returns the number of resulting + // canonicalized ranges. Inserting a range may collapse existing ranges into + // fewer ranges, so the return value can be anything in the range 1..count+1. + uc32 from = insert.from(); + uc32 to = insert.to(); + int start_pos = 0; + int end_pos = count; + for (int i = count - 1; i >= 0; i--) { + CharacterRange current = list->at(i); + if (current.from() > to + 1) { + end_pos = i; + } else if (current.to() + 1 < from) { + start_pos = i + 1; + break; + } + } + + // Inserted range overlaps, or is adjacent to, ranges at positions + // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are + // not affected by the insertion. + // If start_pos == end_pos, the range must be inserted before start_pos. + // if start_pos < end_pos, the entire range from start_pos to end_pos + // must be merged with the insert range. + + if (start_pos == end_pos) { + // Insert between existing ranges at position start_pos. + if (start_pos < count) { + MoveRanges(list, start_pos, start_pos + 1, count - start_pos); + } + list->at(start_pos) = insert; + return count + 1; + } + if (start_pos + 1 == end_pos) { + // Replace single existing range at position start_pos. + CharacterRange to_replace = list->at(start_pos); + int new_from = Min(to_replace.from(), from); + int new_to = Max(to_replace.to(), to); + list->at(start_pos) = CharacterRange::Range(new_from, new_to); + return count; + } + // Replace a number of existing ranges from start_pos to end_pos - 1. + // Move the remaining ranges down. + + int new_from = Min(list->at(start_pos).from(), from); + int new_to = Max(list->at(end_pos - 1).to(), to); + if (end_pos < count) { + MoveRanges(list, end_pos, start_pos + 1, count - end_pos); + } + list->at(start_pos) = CharacterRange::Range(new_from, new_to); + return count - (end_pos - start_pos) + 1; +} + +void CharacterSet::Canonicalize() { + // Special/default classes are always considered canonical. The result + // of calling ranges() will be sorted. + if (ranges_ == nullptr) return; + CharacterRange::Canonicalize(ranges_); +} + +void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { + if (character_ranges->length() <= 1) return; + // Check whether ranges are already canonical (increasing, non-overlapping, + // non-adjacent). + int n = character_ranges->length(); + int max = character_ranges->at(0).to(); + int i = 1; + while (i < n) { + CharacterRange current = character_ranges->at(i); + if (current.from() <= max + 1) { + break; + } + max = current.to(); + i++; + } + // Canonical until the i'th range. If that's all of them, we are done. + if (i == n) return; + + // The ranges at index i and forward are not canonicalized. Make them so by + // doing the equivalent of insertion sort (inserting each into the previous + // list, in order). + // Notice that inserting a range can reduce the number of ranges in the + // result due to combining of adjacent and overlapping ranges. + int read = i; // Range to insert. + int num_canonical = i; // Length of canonicalized part of list. + do { + num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical, + character_ranges->at(read)); + read++; + } while (read < n); + character_ranges->Rewind(num_canonical); + + DCHECK(CharacterRange::IsCanonical(character_ranges)); +} + +void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, + ZoneList<CharacterRange>* negated_ranges, + Zone* zone) { + DCHECK(CharacterRange::IsCanonical(ranges)); + DCHECK_EQ(0, negated_ranges->length()); + int range_count = ranges->length(); + uc32 from = 0; + int i = 0; + if (range_count > 0 && ranges->at(0).from() == 0) { + from = ranges->at(0).to() + 1; + i = 1; + } + while (i < range_count) { + CharacterRange range = ranges->at(i); + negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone); + from = range.to() + 1; + i++; + } + if (from < String::kMaxCodePoint) { + negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint), + zone); + } +} + +// Scoped object to keep track of how much we unroll quantifier loops in the +// regexp graph generator. +class RegExpExpansionLimiter { + public: + static const int kMaxExpansionFactor = 6; + RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) + : compiler_(compiler), + saved_expansion_factor_(compiler->current_expansion_factor()), + ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { + DCHECK_LT(0, factor); + if (ok_to_expand_) { + if (factor > kMaxExpansionFactor) { + // Avoid integer overflow of the current expansion factor. + ok_to_expand_ = false; + compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); + } else { + int new_factor = saved_expansion_factor_ * factor; + ok_to_expand_ = (new_factor <= kMaxExpansionFactor); + compiler->set_current_expansion_factor(new_factor); + } + } + } + + ~RegExpExpansionLimiter() { + compiler_->set_current_expansion_factor(saved_expansion_factor_); + } + + bool ok_to_expand() { return ok_to_expand_; } + + private: + RegExpCompiler* compiler_; + int saved_expansion_factor_; + bool ok_to_expand_; + + DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); +}; + +RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy, + RegExpTree* body, RegExpCompiler* compiler, + RegExpNode* on_success, + bool not_at_start) { + // x{f, t} becomes this: + // + // (r++)<-. + // | ` + // | (x) + // v ^ + // (r=0)-->(?)---/ [if r < t] + // | + // [if r >= f] \----> ... + // + + // 15.10.2.5 RepeatMatcher algorithm. + // The parser has already eliminated the case where max is 0. In the case + // where max_match is zero the parser has removed the quantifier if min was + // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. + + // If we know that we cannot match zero length then things are a little + // simpler since we don't need to make the special zero length match check + // from step 2.1. If the min and max are small we can unroll a little in + // this case. + static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} + static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} + if (max == 0) return on_success; // This can happen due to recursion. + bool body_can_be_empty = (body->min_match() == 0); + int body_start_reg = RegExpCompiler::kNoRegister; + Interval capture_registers = body->CaptureRegisters(); + bool needs_capture_clearing = !capture_registers.is_empty(); + Zone* zone = compiler->zone(); + + if (body_can_be_empty) { + body_start_reg = compiler->AllocateRegister(); + } else if (compiler->optimize() && !needs_capture_clearing) { + // Only unroll if there are no captures and the body can't be + // empty. + { + RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0)); + if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { + int new_max = (max == kInfinity) ? max : max - min; + // Recurse once to get the loop or optional matches after the fixed + // ones. + RegExpNode* answer = + ToNode(0, new_max, is_greedy, body, compiler, on_success, true); + // Unroll the forced matches from 0 to min. This can cause chains of + // TextNodes (which the parser does not generate). These should be + // combined if it turns out they hinder good code generation. + for (int i = 0; i < min; i++) { + answer = body->ToNode(compiler, answer); + } + return answer; + } + } + if (max <= kMaxUnrolledMaxMatches && min == 0) { + DCHECK_LT(0, max); // Due to the 'if' above. + RegExpExpansionLimiter limiter(compiler, max); + if (limiter.ok_to_expand()) { + // Unroll the optional matches up to max. + RegExpNode* answer = on_success; + for (int i = 0; i < max; i++) { + ChoiceNode* alternation = new (zone) ChoiceNode(2, zone); + if (is_greedy) { + alternation->AddAlternative( + GuardedAlternative(body->ToNode(compiler, answer))); + alternation->AddAlternative(GuardedAlternative(on_success)); + } else { + alternation->AddAlternative(GuardedAlternative(on_success)); + alternation->AddAlternative( + GuardedAlternative(body->ToNode(compiler, answer))); + } + answer = alternation; + if (not_at_start && !compiler->read_backward()) { + alternation->set_not_at_start(); + } + } + return answer; + } + } + } + bool has_min = min > 0; + bool has_max = max < RegExpTree::kInfinity; + bool needs_counter = has_min || has_max; + int reg_ctr = needs_counter ? compiler->AllocateRegister() + : RegExpCompiler::kNoRegister; + LoopChoiceNode* center = new (zone) LoopChoiceNode( + body->min_match() == 0, compiler->read_backward(), min, zone); + if (not_at_start && !compiler->read_backward()) center->set_not_at_start(); + RegExpNode* loop_return = + needs_counter ? static_cast<RegExpNode*>( + ActionNode::IncrementRegister(reg_ctr, center)) + : static_cast<RegExpNode*>(center); + if (body_can_be_empty) { + // If the body can be empty we need to check if it was and then + // backtrack. + loop_return = + ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return); + } + RegExpNode* body_node = body->ToNode(compiler, loop_return); + if (body_can_be_empty) { + // If the body can be empty we need to store the start position + // so we can bail out if it was empty. + body_node = ActionNode::StorePosition(body_start_reg, false, body_node); + } + if (needs_capture_clearing) { + // Before entering the body of this loop we need to clear captures. + body_node = ActionNode::ClearCaptures(capture_registers, body_node); + } + GuardedAlternative body_alt(body_node); + if (has_max) { + Guard* body_guard = new (zone) Guard(reg_ctr, Guard::LT, max); + body_alt.AddGuard(body_guard, zone); + } + GuardedAlternative rest_alt(on_success); + if (has_min) { + Guard* rest_guard = new (compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); + rest_alt.AddGuard(rest_guard, zone); + } + if (is_greedy) { + center->AddLoopAlternative(body_alt); + center->AddContinueAlternative(rest_alt); + } else { + center->AddContinueAlternative(rest_alt); + center->AddLoopAlternative(body_alt); + } + if (needs_counter) { + return ActionNode::SetRegisterForLoop(reg_ctr, 0, center); + } else { + return center; + } +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-compiler.cc b/js/src/regexp/regexp-compiler.cc new file mode 100644 index 000000000..9a2aa30dc --- /dev/null +++ b/js/src/regexp/regexp-compiler.cc @@ -0,0 +1,3834 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-compiler.h" + +#include "regexp/regexp-macro-assembler-arch.h" +#include "regexp/regexp-macro-assembler-tracer.h" + +#ifdef V8_INTL_SUPPORT +#include "unicode/locid.h" +#include "unicode/uniset.h" +#include "unicode/utypes.h" +#endif // V8_INTL_SUPPORT + +namespace v8 { +namespace internal { + +using namespace regexp_compiler_constants; // NOLINT(build/namespaces) + +// ------------------------------------------------------------------- +// Implementation of the Irregexp regular expression engine. +// +// The Irregexp regular expression engine is intended to be a complete +// implementation of ECMAScript regular expressions. It generates either +// bytecodes or native code. + +// The Irregexp regexp engine is structured in three steps. +// 1) The parser generates an abstract syntax tree. See ast.cc. +// 2) From the AST a node network is created. The nodes are all +// subclasses of RegExpNode. The nodes represent states when +// executing a regular expression. Several optimizations are +// performed on the node network. +// 3) From the nodes we generate either byte codes or native code +// that can actually execute the regular expression (perform +// the search). The code generation step is described in more +// detail below. + +// Code generation. +// +// The nodes are divided into four main categories. +// * Choice nodes +// These represent places where the regular expression can +// match in more than one way. For example on entry to an +// alternation (foo|bar) or a repetition (*, +, ? or {}). +// * Action nodes +// These represent places where some action should be +// performed. Examples include recording the current position +// in the input string to a register (in order to implement +// captures) or other actions on register for example in order +// to implement the counters needed for {} repetitions. +// * Matching nodes +// These attempt to match some element part of the input string. +// Examples of elements include character classes, plain strings +// or back references. +// * End nodes +// These are used to implement the actions required on finding +// a successful match or failing to find a match. +// +// The code generated (whether as byte codes or native code) maintains +// some state as it runs. This consists of the following elements: +// +// * The capture registers. Used for string captures. +// * Other registers. Used for counters etc. +// * The current position. +// * The stack of backtracking information. Used when a matching node +// fails to find a match and needs to try an alternative. +// +// Conceptual regular expression execution model: +// +// There is a simple conceptual model of regular expression execution +// which will be presented first. The actual code generated is a more +// efficient simulation of the simple conceptual model: +// +// * Choice nodes are implemented as follows: +// For each choice except the last { +// push current position +// push backtrack code location +// <generate code to test for choice> +// backtrack code location: +// pop current position +// } +// <generate code to test for last choice> +// +// * Actions nodes are generated as follows +// <push affected registers on backtrack stack> +// <generate code to perform action> +// push backtrack code location +// <generate code to test for following nodes> +// backtrack code location: +// <pop affected registers to restore their state> +// <pop backtrack location from stack and go to it> +// +// * Matching nodes are generated as follows: +// if input string matches at current position +// update current position +// <generate code to test for following nodes> +// else +// <pop backtrack location from stack and go to it> +// +// Thus it can be seen that the current position is saved and restored +// by the choice nodes, whereas the registers are saved and restored by +// by the action nodes that manipulate them. +// +// The other interesting aspect of this model is that nodes are generated +// at the point where they are needed by a recursive call to Emit(). If +// the node has already been code generated then the Emit() call will +// generate a jump to the previously generated code instead. In order to +// limit recursion it is possible for the Emit() function to put the node +// on a work list for later generation and instead generate a jump. The +// destination of the jump is resolved later when the code is generated. +// +// Actual regular expression code generation. +// +// Code generation is actually more complicated than the above. In order +// to improve the efficiency of the generated code some optimizations are +// performed +// +// * Choice nodes have 1-character lookahead. +// A choice node looks at the following character and eliminates some of +// the choices immediately based on that character. This is not yet +// implemented. +// * Simple greedy loops store reduced backtracking information. +// A quantifier like /.*foo/m will greedily match the whole input. It will +// then need to backtrack to a point where it can match "foo". The naive +// implementation of this would push each character position onto the +// backtracking stack, then pop them off one by one. This would use space +// proportional to the length of the input string. However since the "." +// can only match in one way and always has a constant length (in this case +// of 1) it suffices to store the current position on the top of the stack +// once. Matching now becomes merely incrementing the current position and +// backtracking becomes decrementing the current position and checking the +// result against the stored current position. This is faster and saves +// space. +// * The current state is virtualized. +// This is used to defer expensive operations until it is clear that they +// are needed and to generate code for a node more than once, allowing +// specialized an efficient versions of the code to be created. This is +// explained in the section below. +// +// Execution state virtualization. +// +// Instead of emitting code, nodes that manipulate the state can record their +// manipulation in an object called the Trace. The Trace object can record a +// current position offset, an optional backtrack code location on the top of +// the virtualized backtrack stack and some register changes. When a node is +// to be emitted it can flush the Trace or update it. Flushing the Trace +// will emit code to bring the actual state into line with the virtual state. +// Avoiding flushing the state can postpone some work (e.g. updates of capture +// registers). Postponing work can save time when executing the regular +// expression since it may be found that the work never has to be done as a +// failure to match can occur. In addition it is much faster to jump to a +// known backtrack code location than it is to pop an unknown backtrack +// location from the stack and jump there. +// +// The virtual state found in the Trace affects code generation. For example +// the virtual state contains the difference between the actual current +// position and the virtual current position, and matching code needs to use +// this offset to attempt a match in the correct location of the input +// string. Therefore code generated for a non-trivial trace is specialized +// to that trace. The code generator therefore has the ability to generate +// code for each node several times. In order to limit the size of the +// generated code there is an arbitrary limit on how many specialized sets of +// code may be generated for a given node. If the limit is reached, the +// trace is flushed and a generic version of the code for a node is emitted. +// This is subsequently used for that node. The code emitted for non-generic +// trace is not recorded in the node and so it cannot currently be reused in +// the event that code generation is requested for an identical trace. + +void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { UNREACHABLE(); } + +void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { + text->AddElement(TextElement::Atom(this), zone); +} + +void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { + text->AddElement(TextElement::CharClass(this), zone); +} + +void RegExpText::AppendToText(RegExpText* text, Zone* zone) { + for (int i = 0; i < elements()->length(); i++) + text->AddElement(elements()->at(i), zone); +} + +TextElement TextElement::Atom(RegExpAtom* atom) { + return TextElement(ATOM, atom); +} + +TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { + return TextElement(CHAR_CLASS, char_class); +} + +int TextElement::length() const { + switch (text_type()) { + case ATOM: + return atom()->length(); + + case CHAR_CLASS: + return 1; + } + UNREACHABLE(); +} + +class RecursionCheck { + public: + explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { + compiler->IncrementRecursionDepth(); + } + ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } + + private: + RegExpCompiler* compiler_; +}; + +// Attempts to compile the regexp using an Irregexp code generator. Returns +// a fixed array or a null handle depending on whether it succeeded. +RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, + bool one_byte) + : next_register_(2 * (capture_count + 1)), + unicode_lookaround_stack_register_(kNoRegister), + unicode_lookaround_position_register_(kNoRegister), + work_list_(nullptr), + recursion_depth_(0), + one_byte_(one_byte), + reg_exp_too_big_(false), + limiting_recursion_(false), + optimize_(FLAG_regexp_optimization), + read_backward_(false), + current_expansion_factor_(1), + frequency_collator_(), + isolate_(isolate), + zone_(zone) { + accept_ = new (zone) EndNode(EndNode::ACCEPT, zone); + DCHECK_GE(RegExpMacroAssembler::kMaxRegister, next_register_ - 1); +} + +RegExpCompiler::CompilationResult RegExpCompiler::Assemble( + Isolate* isolate, RegExpMacroAssembler* macro_assembler, RegExpNode* start, + int capture_count, Handle<String> pattern) { +#ifdef DEBUG + if (FLAG_trace_regexp_assembler) + macro_assembler_ = new RegExpMacroAssemblerTracer(isolate, macro_assembler); + else +#endif + macro_assembler_ = macro_assembler; + + std::vector<RegExpNode*> work_list; + work_list_ = &work_list; + Label fail; + macro_assembler_->PushBacktrack(&fail); + Trace new_trace; + start->Emit(this, &new_trace); + macro_assembler_->Bind(&fail); + macro_assembler_->Fail(); + while (!work_list.empty()) { + RegExpNode* node = work_list.back(); + work_list.pop_back(); + node->set_on_work_list(false); + if (!node->label()->is_bound()) node->Emit(this, &new_trace); + } + if (reg_exp_too_big_) { + macro_assembler_->AbortedCodeGeneration(); + return CompilationResult::RegExpTooBig(); + } + + Handle<HeapObject> code = macro_assembler_->GetCode(pattern); + isolate->IncreaseTotalRegexpCodeGenerated(code->Size()); + work_list_ = nullptr; + +#ifdef DEBUG + if (FLAG_trace_regexp_assembler) { + delete macro_assembler_; + } +#endif + return {*code, next_register_}; +} + +bool Trace::DeferredAction::Mentions(int that) { + if (action_type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(this)->range(); + return range.Contains(that); + } else { + return reg() == that; + } +} + +bool Trace::mentions_reg(int reg) { + for (DeferredAction* action = actions_; action != nullptr; + action = action->next()) { + if (action->Mentions(reg)) return true; + } + return false; +} + +bool Trace::GetStoredPosition(int reg, int* cp_offset) { + DCHECK_EQ(0, *cp_offset); + for (DeferredAction* action = actions_; action != nullptr; + action = action->next()) { + if (action->Mentions(reg)) { + if (action->action_type() == ActionNode::STORE_POSITION) { + *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); + return true; + } else { + return false; + } + } + } + return false; +} + +// A (dynamically-sized) set of unsigned integers that behaves especially well +// on small integers (< kFirstLimit). May do zone-allocation. +class DynamicBitSet : public ZoneObject { + public: + V8_EXPORT_PRIVATE bool Get(unsigned value) const { + if (value < kFirstLimit) { + return (first_ & (1 << value)) != 0; + } else if (remaining_ == nullptr) { + return false; + } else { + return remaining_->Contains(value); + } + } + + // Destructively set a value in this set. + void Set(unsigned value, Zone* zone) { + if (value < kFirstLimit) { + first_ |= (1 << value); + } else { + if (remaining_ == nullptr) + remaining_ = new (zone) ZoneList<unsigned>(1, zone); + if (remaining_->is_empty() || !remaining_->Contains(value)) + remaining_->Add(value, zone); + } + } + + private: + static constexpr unsigned kFirstLimit = 32; + + uint32_t first_ = 0; + ZoneList<unsigned>* remaining_ = nullptr; +}; + +int Trace::FindAffectedRegisters(DynamicBitSet* affected_registers, + Zone* zone) { + int max_register = RegExpCompiler::kNoRegister; + for (DeferredAction* action = actions_; action != nullptr; + action = action->next()) { + if (action->action_type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(action)->range(); + for (int i = range.from(); i <= range.to(); i++) + affected_registers->Set(i, zone); + if (range.to() > max_register) max_register = range.to(); + } else { + affected_registers->Set(action->reg(), zone); + if (action->reg() > max_register) max_register = action->reg(); + } + } + return max_register; +} + +void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, + int max_register, + const DynamicBitSet& registers_to_pop, + const DynamicBitSet& registers_to_clear) { + for (int reg = max_register; reg >= 0; reg--) { + if (registers_to_pop.Get(reg)) { + assembler->PopRegister(reg); + } else if (registers_to_clear.Get(reg)) { + int clear_to = reg; + while (reg > 0 && registers_to_clear.Get(reg - 1)) { + reg--; + } + assembler->ClearRegisters(reg, clear_to); + } + } +} + +void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, + int max_register, + const DynamicBitSet& affected_registers, + DynamicBitSet* registers_to_pop, + DynamicBitSet* registers_to_clear, + Zone* zone) { + // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. + const int push_limit = (assembler->stack_limit_slack() + 1) / 2; + + // Count pushes performed to force a stack limit check occasionally. + int pushes = 0; + + for (int reg = 0; reg <= max_register; reg++) { + if (!affected_registers.Get(reg)) { + continue; + } + + // The chronologically first deferred action in the trace + // is used to infer the action needed to restore a register + // to its previous state (or not, if it's safe to ignore it). + enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; + DeferredActionUndoType undo_action = IGNORE; + + int value = 0; + bool absolute = false; + bool clear = false; + static const int kNoStore = kMinInt; + int store_position = kNoStore; + // This is a little tricky because we are scanning the actions in reverse + // historical order (newest first). + for (DeferredAction* action = actions_; action != nullptr; + action = action->next()) { + if (action->Mentions(reg)) { + switch (action->action_type()) { + case ActionNode::SET_REGISTER_FOR_LOOP: { + Trace::DeferredSetRegisterForLoop* psr = + static_cast<Trace::DeferredSetRegisterForLoop*>(action); + if (!absolute) { + value += psr->value(); + absolute = true; + } + // SET_REGISTER_FOR_LOOP is only used for newly introduced loop + // counters. They can have a significant previous value if they + // occur in a loop. TODO(lrn): Propagate this information, so + // we can set undo_action to IGNORE if we know there is no value to + // restore. + undo_action = RESTORE; + DCHECK_EQ(store_position, kNoStore); + DCHECK(!clear); + break; + } + case ActionNode::INCREMENT_REGISTER: + if (!absolute) { + value++; + } + DCHECK_EQ(store_position, kNoStore); + DCHECK(!clear); + undo_action = RESTORE; + break; + case ActionNode::STORE_POSITION: { + Trace::DeferredCapture* pc = + static_cast<Trace::DeferredCapture*>(action); + if (!clear && store_position == kNoStore) { + store_position = pc->cp_offset(); + } + + // For captures we know that stores and clears alternate. + // Other register, are never cleared, and if the occur + // inside a loop, they might be assigned more than once. + if (reg <= 1) { + // Registers zero and one, aka "capture zero", is + // always set correctly if we succeed. There is no + // need to undo a setting on backtrack, because we + // will set it again or fail. + undo_action = IGNORE; + } else { + undo_action = pc->is_capture() ? CLEAR : RESTORE; + } + DCHECK(!absolute); + DCHECK_EQ(value, 0); + break; + } + case ActionNode::CLEAR_CAPTURES: { + // Since we're scanning in reverse order, if we've already + // set the position we have to ignore historically earlier + // clearing operations. + if (store_position == kNoStore) { + clear = true; + } + undo_action = RESTORE; + DCHECK(!absolute); + DCHECK_EQ(value, 0); + break; + } + default: + UNREACHABLE(); + break; + } + } + } + // Prepare for the undo-action (e.g., push if it's going to be popped). + if (undo_action == RESTORE) { + pushes++; + RegExpMacroAssembler::StackCheckFlag stack_check = + RegExpMacroAssembler::kNoStackLimitCheck; + if (pushes == push_limit) { + stack_check = RegExpMacroAssembler::kCheckStackLimit; + pushes = 0; + } + + assembler->PushRegister(reg, stack_check); + registers_to_pop->Set(reg, zone); + } else if (undo_action == CLEAR) { + registers_to_clear->Set(reg, zone); + } + // Perform the chronologically last action (or accumulated increment) + // for the register. + if (store_position != kNoStore) { + assembler->WriteCurrentPositionToRegister(reg, store_position); + } else if (clear) { + assembler->ClearRegisters(reg, reg); + } else if (absolute) { + assembler->SetRegister(reg, value); + } else if (value != 0) { + assembler->AdvanceRegister(reg, value); + } + } +} + +// This is called as we come into a loop choice node and some other tricky +// nodes. It normalizes the state of the code generator to ensure we can +// generate generic code. +void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + DCHECK(!is_trivial()); + + if (actions_ == nullptr && backtrack() == nullptr) { + // Here we just have some deferred cp advances to fix and we are back to + // a normal situation. We may also have to forget some information gained + // through a quick check that was already performed. + if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); + // Create a new trivial state and generate the node with that. + Trace new_state; + successor->Emit(compiler, &new_state); + return; + } + + // Generate deferred actions here along with code to undo them again. + DynamicBitSet affected_registers; + + if (backtrack() != nullptr) { + // Here we have a concrete backtrack location. These are set up by choice + // nodes and so they indicate that we have a deferred save of the current + // position which we may need to emit here. + assembler->PushCurrentPosition(); + } + + int max_register = + FindAffectedRegisters(&affected_registers, compiler->zone()); + DynamicBitSet registers_to_pop; + DynamicBitSet registers_to_clear; + PerformDeferredActions(assembler, max_register, affected_registers, + ®isters_to_pop, ®isters_to_clear, + compiler->zone()); + if (cp_offset_ != 0) { + assembler->AdvanceCurrentPosition(cp_offset_); + } + + // Create a new trivial state and generate the node with that. + Label undo; + assembler->PushBacktrack(&undo); + if (successor->KeepRecursing(compiler)) { + Trace new_state; + successor->Emit(compiler, &new_state); + } else { + compiler->AddWork(successor); + assembler->GoTo(successor->label()); + } + + // On backtrack we need to restore state. + assembler->Bind(&undo); + RestoreAffectedRegisters(assembler, max_register, registers_to_pop, + registers_to_clear); + if (backtrack() == nullptr) { + assembler->Backtrack(); + } else { + assembler->PopCurrentPosition(); + assembler->GoTo(backtrack()); + } +} + +void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + // Omit flushing the trace. We discard the entire stack frame anyway. + + if (!label()->is_bound()) { + // We are completely independent of the trace, since we ignore it, + // so this code can be used as the generic version. + assembler->Bind(label()); + } + + // Throw away everything on the backtrack stack since the start + // of the negative submatch and restore the character position. + assembler->ReadCurrentPositionFromRegister(current_position_register_); + assembler->ReadStackPointerFromRegister(stack_pointer_register_); + if (clear_capture_count_ > 0) { + // Clear any captures that might have been performed during the success + // of the body of the negative look-ahead. + int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; + assembler->ClearRegisters(clear_capture_start_, clear_capture_end); + } + // Now that we have unwound the stack we find at the top of the stack the + // backtrack that the BeginSubmatch node got. + assembler->Backtrack(); +} + +void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!label()->is_bound()) { + assembler->Bind(label()); + } + switch (action_) { + case ACCEPT: + assembler->Succeed(); + return; + case BACKTRACK: + assembler->GoTo(trace->backtrack()); + return; + case NEGATIVE_SUBMATCH_SUCCESS: + // This case is handled in a different virtual method. + UNREACHABLE(); + } + UNIMPLEMENTED(); +} + +void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { + if (guards_ == nullptr) guards_ = new (zone) ZoneList<Guard*>(1, zone); + guards_->Add(guard, zone); +} + +ActionNode* ActionNode::SetRegisterForLoop(int reg, int val, + RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(SET_REGISTER_FOR_LOOP, on_success); + result->data_.u_store_register.reg = reg; + result->data_.u_store_register.value = val; + return result; +} + +ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); + result->data_.u_increment_register.reg = reg; + return result; +} + +ActionNode* ActionNode::StorePosition(int reg, bool is_capture, + RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(STORE_POSITION, on_success); + result->data_.u_position_register.reg = reg; + result->data_.u_position_register.is_capture = is_capture; + return result; +} + +ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); + result->data_.u_clear_captures.range_from = range.from(); + result->data_.u_clear_captures.range_to = range.to(); + return result; +} + +ActionNode* ActionNode::BeginSubmatch(int stack_reg, int position_reg, + RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + return result; +} + +ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, int position_reg, + int clear_register_count, + int clear_register_from, + RegExpNode* on_success) { + ActionNode* result = new (on_success->zone()) + ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + result->data_.u_submatch.clear_register_count = clear_register_count; + result->data_.u_submatch.clear_register_from = clear_register_from; + return result; +} + +ActionNode* ActionNode::EmptyMatchCheck(int start_register, + int repetition_register, + int repetition_limit, + RegExpNode* on_success) { + ActionNode* result = + new (on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); + result->data_.u_empty_match_check.start_register = start_register; + result->data_.u_empty_match_check.repetition_register = repetition_register; + result->data_.u_empty_match_check.repetition_limit = repetition_limit; + return result; +} + +#define DEFINE_ACCEPT(Type) \ + void Type##Node::Accept(NodeVisitor* visitor) { visitor->Visit##Type(this); } +FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) +#undef DEFINE_ACCEPT + +// ------------------------------------------------------------------- +// Emit code. + +void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, + Guard* guard, Trace* trace) { + switch (guard->op()) { + case Guard::LT: + DCHECK(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterGE(guard->reg(), guard->value(), + trace->backtrack()); + break; + case Guard::GEQ: + DCHECK(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterLT(guard->reg(), guard->value(), + trace->backtrack()); + break; + } +} + +// Returns the number of characters in the equivalence class, omitting those +// that cannot occur in the source string because it is Latin1. +static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, + bool one_byte_subject, + unibrow::uchar* letters, + int letter_length) { +#ifdef V8_INTL_SUPPORT + // Special case for U+017F which has upper case in ASCII range. + if (character == 0x017f) { + letters[0] = character; + return 1; + } + icu::UnicodeSet set; + set.add(character); + set = set.closeOver(USET_CASE_INSENSITIVE); + int32_t range_count = set.getRangeCount(); + int items = 0; + for (int32_t i = 0; i < range_count; i++) { + UChar32 start = set.getRangeStart(i); + UChar32 end = set.getRangeEnd(i); + CHECK(end - start + items <= letter_length); + // Only add to the output if character is not in ASCII range + // or the case equivalent character is in ASCII range. + // #sec-runtime-semantics-canonicalize-ch + // 3.g If the numeric value of ch ≥ 128 and the numeric value of cu < 128, + // return ch. + if (!((start >= 128) && (character < 128))) { + // No range have start and end span across code point 128. + DCHECK((start >= 128) == (end >= 128)); + for (UChar32 cu = start; cu <= end; cu++) { + if (one_byte_subject && cu > String::kMaxOneByteCharCode) break; + letters[items++] = (unibrow::uchar)(cu); + } + } + } + return items; +#else + int length = + isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); + // Unibrow returns 0 or 1 for characters where case independence is + // trivial. + if (length == 0) { + letters[0] = character; + length = 1; + } + + if (one_byte_subject) { + int new_length = 0; + for (int i = 0; i < length; i++) { + if (letters[i] <= String::kMaxOneByteCharCode) { + letters[new_length++] = letters[i]; + } + } + length = new_length; + } + + return length; +#endif // V8_INTL_SUPPORT +} + +static inline bool EmitSimpleCharacter(Isolate* isolate, + RegExpCompiler* compiler, uc16 c, + Label* on_failure, int cp_offset, + bool check, bool preloaded) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + bool bound_checked = false; + if (!preloaded) { + assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + bound_checked = true; + } + assembler->CheckNotCharacter(c, on_failure); + return bound_checked; +} + +// Only emits non-letters (things that don't have case). Only used for case +// independent matches. +static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler, + uc16 c, Label* on_failure, int cp_offset, + bool check, bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool one_byte = compiler->one_byte(); + unibrow::uchar chars[4]; + int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4); + if (length < 1) { + // This can't match. Must be an one-byte subject and a non-one-byte + // character. We do not need to do anything since the one-byte pass + // already handled this. + return false; // Bounds not checked. + } + bool checked = false; + // We handle the length > 1 case in a later pass. + if (length == 1) { + if (one_byte && c > String::kMaxOneByteCharCodeU) { + // Can't match - see above. + return false; // Bounds not checked. + } + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + checked = check; + } + macro_assembler->CheckNotCharacter(c, on_failure); + } + return checked; +} + +static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, + bool one_byte, uc16 c1, uc16 c2, + Label* on_failure) { + uc16 char_mask; + if (one_byte) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + uc16 exor = c1 ^ c2; + // Check whether exor has only one bit set. + if (((exor - 1) & exor) == 0) { + // If c1 and c2 differ only by one bit. + // Ecma262UnCanonicalize always gives the highest number last. + DCHECK(c2 > c1); + uc16 mask = char_mask ^ exor; + macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); + return true; + } + DCHECK(c2 > c1); + uc16 diff = c2 - c1; + if (((diff - 1) & diff) == 0 && c1 >= diff) { + // If the characters differ by 2^n but don't differ by one bit then + // subtract the difference from the found character, then do the or + // trick. We avoid the theoretical case where negative numbers are + // involved in order to simplify code generation. + uc16 mask = char_mask ^ diff; + macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask, + on_failure); + return true; + } + return false; +} + +using EmitCharacterFunction = bool(Isolate* isolate, RegExpCompiler* compiler, + uc16 c, Label* on_failure, int cp_offset, + bool check, bool preloaded); + +// Only emits letters (things that have case). Only used for case independent +// matches. +static inline bool EmitAtomLetter(Isolate* isolate, RegExpCompiler* compiler, + uc16 c, Label* on_failure, int cp_offset, + bool check, bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool one_byte = compiler->one_byte(); + unibrow::uchar chars[4]; + int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4); + if (length <= 1) return false; + // We may not need to check against the end of the input string + // if this character lies before a character that matched. + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + } + Label ok; + switch (length) { + case 2: { + if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], + chars[1], on_failure)) { + } else { + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckNotCharacter(chars[1], on_failure); + macro_assembler->Bind(&ok); + } + break; + } + case 4: + macro_assembler->CheckCharacter(chars[3], &ok); + V8_FALLTHROUGH; + case 3: + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckCharacter(chars[1], &ok); + macro_assembler->CheckNotCharacter(chars[2], on_failure); + macro_assembler->Bind(&ok); + break; + default: + UNREACHABLE(); + } + return true; +} + +static void EmitBoundaryTest(RegExpMacroAssembler* masm, int border, + Label* fall_through, Label* above_or_equal, + Label* below) { + if (below != fall_through) { + masm->CheckCharacterLT(border, below); + if (above_or_equal != fall_through) masm->GoTo(above_or_equal); + } else { + masm->CheckCharacterGT(border - 1, above_or_equal); + } +} + +static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first, + int last, Label* fall_through, + Label* in_range, Label* out_of_range) { + if (in_range == fall_through) { + if (first == last) { + masm->CheckNotCharacter(first, out_of_range); + } else { + masm->CheckCharacterNotInRange(first, last, out_of_range); + } + } else { + if (first == last) { + masm->CheckCharacter(first, in_range); + } else { + masm->CheckCharacterInRange(first, last, in_range); + } + if (out_of_range != fall_through) masm->GoTo(out_of_range); + } +} + +// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. +// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. +static void EmitUseLookupTable(RegExpMacroAssembler* masm, + ZoneList<int>* ranges, int start_index, + int end_index, int min_char, Label* fall_through, + Label* even_label, Label* odd_label) { + static const int kSize = RegExpMacroAssembler::kTableSize; + static const int kMask = RegExpMacroAssembler::kTableMask; + + int base = (min_char & ~kMask); + USE(base); + + // Assert that everything is on one kTableSize page. + for (int i = start_index; i <= end_index; i++) { + DCHECK_EQ(ranges->at(i) & ~kMask, base); + } + DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); + + char templ[kSize]; + Label* on_bit_set; + Label* on_bit_clear; + int bit; + if (even_label == fall_through) { + on_bit_set = odd_label; + on_bit_clear = even_label; + bit = 1; + } else { + on_bit_set = even_label; + on_bit_clear = odd_label; + bit = 0; + } + for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { + templ[i] = bit; + } + int j = 0; + bit ^= 1; + for (int i = start_index; i < end_index; i++) { + for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { + templ[j] = bit; + } + bit ^= 1; + } + for (int i = j; i < kSize; i++) { + templ[i] = bit; + } + Factory* factory = masm->isolate()->factory(); + // TODO(erikcorry): Cache these. + Handle<ByteArray> ba = factory->NewByteArray(kSize, AllocationType::kOld); + for (int i = 0; i < kSize; i++) { + ba->set(i, templ[i]); + } + masm->CheckBitInTable(ba, on_bit_set); + if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); +} + +static void CutOutRange(RegExpMacroAssembler* masm, ZoneList<int>* ranges, + int start_index, int end_index, int cut_index, + Label* even_label, Label* odd_label) { + bool odd = (((cut_index - start_index) & 1) == 1); + Label* in_range_label = odd ? odd_label : even_label; + Label dummy; + EmitDoubleBoundaryTest(masm, ranges->at(cut_index), + ranges->at(cut_index + 1) - 1, &dummy, in_range_label, + &dummy); + DCHECK(!dummy.is_linked()); + // Cut out the single range by rewriting the array. This creates a new + // range that is a merger of the two ranges on either side of the one we + // are cutting out. The oddity of the labels is preserved. + for (int j = cut_index; j > start_index; j--) { + ranges->at(j) = ranges->at(j - 1); + } + for (int j = cut_index + 1; j < end_index; j++) { + ranges->at(j) = ranges->at(j + 1); + } +} + +// Unicode case. Split the search space into kSize spaces that are handled +// with recursion. +static void SplitSearchSpace(ZoneList<int>* ranges, int start_index, + int end_index, int* new_start_index, + int* new_end_index, int* border) { + static const int kSize = RegExpMacroAssembler::kTableSize; + static const int kMask = RegExpMacroAssembler::kTableMask; + + int first = ranges->at(start_index); + int last = ranges->at(end_index) - 1; + + *new_start_index = start_index; + *border = (ranges->at(start_index) & ~kMask) + kSize; + while (*new_start_index < end_index) { + if (ranges->at(*new_start_index) > *border) break; + (*new_start_index)++; + } + // new_start_index is the index of the first edge that is beyond the + // current kSize space. + + // For very large search spaces we do a binary chop search of the non-Latin1 + // space instead of just going to the end of the current kSize space. The + // heuristics are complicated a little by the fact that any 128-character + // encoding space can be quickly tested with a table lookup, so we don't + // wish to do binary chop search at a smaller granularity than that. A + // 128-character space can take up a lot of space in the ranges array if, + // for example, we only want to match every second character (eg. the lower + // case characters on some Unicode pages). + int binary_chop_index = (end_index + start_index) / 2; + // The first test ensures that we get to the code that handles the Latin1 + // range with a single not-taken branch, speeding up this important + // character range (even non-Latin1 charset-based text has spaces and + // punctuation). + if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. + end_index - start_index > (*new_start_index - start_index) * 2 && + last - first > kSize * 2 && binary_chop_index > *new_start_index && + ranges->at(binary_chop_index) >= first + 2 * kSize) { + int scan_forward_for_section_border = binary_chop_index; + int new_border = (ranges->at(binary_chop_index) | kMask) + 1; + + while (scan_forward_for_section_border < end_index) { + if (ranges->at(scan_forward_for_section_border) > new_border) { + *new_start_index = scan_forward_for_section_border; + *border = new_border; + break; + } + scan_forward_for_section_border++; + } + } + + DCHECK(*new_start_index > start_index); + *new_end_index = *new_start_index - 1; + if (ranges->at(*new_end_index) == *border) { + (*new_end_index)--; + } + if (*border >= ranges->at(end_index)) { + *border = ranges->at(end_index); + *new_start_index = end_index; // Won't be used. + *new_end_index = end_index - 1; + } +} + +// Gets a series of segment boundaries representing a character class. If the +// character is in the range between an even and an odd boundary (counting from +// start_index) then go to even_label, otherwise go to odd_label. We already +// know that the character is in the range of min_char to max_char inclusive. +// Either label can be nullptr indicating backtracking. Either label can also +// be equal to the fall_through label. +static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges, + int start_index, int end_index, uc32 min_char, + uc32 max_char, Label* fall_through, + Label* even_label, Label* odd_label) { + DCHECK_LE(min_char, String::kMaxUtf16CodeUnit); + DCHECK_LE(max_char, String::kMaxUtf16CodeUnit); + + int first = ranges->at(start_index); + int last = ranges->at(end_index) - 1; + + DCHECK_LT(min_char, first); + + // Just need to test if the character is before or on-or-after + // a particular character. + if (start_index == end_index) { + EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); + return; + } + + // Another almost trivial case: There is one interval in the middle that is + // different from the end intervals. + if (start_index + 1 == end_index) { + EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label, + odd_label); + return; + } + + // It's not worth using table lookup if there are very few intervals in the + // character class. + if (end_index - start_index <= 6) { + // It is faster to test for individual characters, so we look for those + // first, then try arbitrary ranges in the second round. + static int kNoCutIndex = -1; + int cut = kNoCutIndex; + for (int i = start_index; i < end_index; i++) { + if (ranges->at(i) == ranges->at(i + 1) - 1) { + cut = i; + break; + } + } + if (cut == kNoCutIndex) cut = start_index; + CutOutRange(masm, ranges, start_index, end_index, cut, even_label, + odd_label); + DCHECK_GE(end_index - start_index, 2); + GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char, + max_char, fall_through, even_label, odd_label); + return; + } + + // If there are a lot of intervals in the regexp, then we will use tables to + // determine whether the character is inside or outside the character class. + static const int kBits = RegExpMacroAssembler::kTableSizeBits; + + if ((max_char >> kBits) == (min_char >> kBits)) { + EmitUseLookupTable(masm, ranges, start_index, end_index, min_char, + fall_through, even_label, odd_label); + return; + } + + if ((min_char >> kBits) != (first >> kBits)) { + masm->CheckCharacterLT(first, odd_label); + GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char, + fall_through, odd_label, even_label); + return; + } + + int new_start_index = 0; + int new_end_index = 0; + int border = 0; + + SplitSearchSpace(ranges, start_index, end_index, &new_start_index, + &new_end_index, &border); + + Label handle_rest; + Label* above = &handle_rest; + if (border == last + 1) { + // We didn't find any section that started after the limit, so everything + // above the border is one of the terminal labels. + above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; + DCHECK(new_end_index == end_index - 1); + } + + DCHECK_LE(start_index, new_end_index); + DCHECK_LE(new_start_index, end_index); + DCHECK_LT(start_index, new_start_index); + DCHECK_LT(new_end_index, end_index); + DCHECK(new_end_index + 1 == new_start_index || + (new_end_index + 2 == new_start_index && + border == ranges->at(new_end_index + 1))); + DCHECK_LT(min_char, border - 1); + DCHECK_LT(border, max_char); + DCHECK_LT(ranges->at(new_end_index), border); + DCHECK(border < ranges->at(new_start_index) || + (border == ranges->at(new_start_index) && + new_start_index == end_index && new_end_index == end_index - 1 && + border == last + 1)); + DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); + + masm->CheckCharacterGT(border - 1, above); + Label dummy; + GenerateBranches(masm, ranges, start_index, new_end_index, min_char, + border - 1, &dummy, even_label, odd_label); + if (handle_rest.is_linked()) { + masm->Bind(&handle_rest); + bool flip = (new_start_index & 1) != (start_index & 1); + GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char, + &dummy, flip ? odd_label : even_label, + flip ? even_label : odd_label); + } +} + +static void EmitCharClass(RegExpMacroAssembler* macro_assembler, + RegExpCharacterClass* cc, bool one_byte, + Label* on_failure, int cp_offset, bool check_offset, + bool preloaded, Zone* zone) { + ZoneList<CharacterRange>* ranges = cc->ranges(zone); + CharacterRange::Canonicalize(ranges); + + int max_char; + if (one_byte) { + max_char = String::kMaxOneByteCharCode; + } else { + max_char = String::kMaxUtf16CodeUnit; + } + + int range_count = ranges->length(); + + int last_valid_range = range_count - 1; + while (last_valid_range >= 0) { + CharacterRange& range = ranges->at(last_valid_range); + if (range.from() <= max_char) { + break; + } + last_valid_range--; + } + + if (last_valid_range < 0) { + if (!cc->is_negated()) { + macro_assembler->GoTo(on_failure); + } + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + return; + } + + if (last_valid_range == 0 && ranges->at(0).IsEverything(max_char)) { + if (cc->is_negated()) { + macro_assembler->GoTo(on_failure); + } else { + // This is a common case hit by non-anchored expressions. + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + } + return; + } + + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); + } + + if (cc->is_standard(zone) && macro_assembler->CheckSpecialCharacterClass( + cc->standard_type(), on_failure)) { + return; + } + + // A new list with ascending entries. Each entry is a code unit + // where there is a boundary between code units that are part of + // the class and code units that are not. Normally we insert an + // entry at zero which goes to the failure label, but if there + // was already one there we fall through for success on that entry. + // Subsequent entries have alternating meaning (success/failure). + ZoneList<int>* range_boundaries = + new (zone) ZoneList<int>(last_valid_range, zone); + + bool zeroth_entry_is_failure = !cc->is_negated(); + + for (int i = 0; i <= last_valid_range; i++) { + CharacterRange& range = ranges->at(i); + if (range.from() == 0) { + DCHECK_EQ(i, 0); + zeroth_entry_is_failure = !zeroth_entry_is_failure; + } else { + range_boundaries->Add(range.from(), zone); + } + range_boundaries->Add(range.to() + 1, zone); + } + int end_index = range_boundaries->length() - 1; + if (range_boundaries->at(end_index) > max_char) { + end_index--; + } + + Label fall_through; + GenerateBranches(macro_assembler, range_boundaries, + 0, // start_index. + end_index, + 0, // min_char. + max_char, &fall_through, + zeroth_entry_is_failure ? &fall_through : on_failure, + zeroth_entry_is_failure ? on_failure : &fall_through); + macro_assembler->Bind(&fall_through); +} + +RegExpNode::~RegExpNode() = default; + +RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, + Trace* trace) { + // If we are generating a greedy loop then don't stop and don't reuse code. + if (trace->stop_node() != nullptr) { + return CONTINUE; + } + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->is_trivial()) { + if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) { + // If a generic version is already scheduled to be generated or we have + // recursed too deeply then just generate a jump to that code. + macro_assembler->GoTo(&label_); + // This will queue it up for generation of a generic version if it hasn't + // already been queued. + compiler->AddWork(this); + return DONE; + } + // Generate generic version of the node and bind the label for later use. + macro_assembler->Bind(&label_); + return CONTINUE; + } + + // We are being asked to make a non-generic version. Keep track of how many + // non-generic versions we generate so as not to overdo it. + trace_count_++; + if (KeepRecursing(compiler) && compiler->optimize() && + trace_count_ < kMaxCopiesCodeGenerated) { + return CONTINUE; + } + + // If we get here code has been generated for this node too many times or + // recursion is too deep. Time to switch to a generic version. The code for + // generic versions above can handle deep recursion properly. + bool was_limiting = compiler->limiting_recursion(); + compiler->set_limiting_recursion(true); + trace->Flush(compiler, this); + compiler->set_limiting_recursion(was_limiting); + return DONE; +} + +bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) { + return !compiler->limiting_recursion() && + compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion; +} + +void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) { + // Anything may follow a positive submatch success, thus we need to accept + // all characters from this position onwards. + bm->SetRest(offset); + } else { + on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); + } + SaveBMInfo(bm, not_at_start, offset); +} + +void ActionNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int filled_in, + bool not_at_start) { + if (action_type_ == SET_REGISTER_FOR_LOOP) { + on_success()->GetQuickCheckDetailsFromLoopEntry(details, compiler, + filled_in, not_at_start); + } else { + on_success()->GetQuickCheckDetails(details, compiler, filled_in, + not_at_start); + } +} + +void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + // Match the behaviour of EatsAtLeast on this node. + if (assertion_type() == AT_START && not_at_start) return; + on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); + SaveBMInfo(bm, not_at_start, offset); +} + +void NegativeLookaroundChoiceNode::GetQuickCheckDetails( + QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, + bool not_at_start) { + RegExpNode* node = continue_node(); + return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); +} + +// Takes the left-most 1-bit and smears it out, setting all bits to its right. +static inline uint32_t SmearBitsRight(uint32_t v) { + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return v; +} + +bool QuickCheckDetails::Rationalize(bool asc) { + bool found_useful_op = false; + uint32_t char_mask; + if (asc) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + mask_ = 0; + value_ = 0; + int char_shift = 0; + for (int i = 0; i < characters_; i++) { + Position* pos = &positions_[i]; + if ((pos->mask & String::kMaxOneByteCharCode) != 0) { + found_useful_op = true; + } + mask_ |= (pos->mask & char_mask) << char_shift; + value_ |= (pos->value & char_mask) << char_shift; + char_shift += asc ? 8 : 16; + } + return found_useful_op; +} + +int RegExpNode::EatsAtLeast(bool not_at_start) { + return not_at_start ? eats_at_least_.eats_at_least_from_not_start + : eats_at_least_.eats_at_least_from_possibly_start; +} + +EatsAtLeastInfo RegExpNode::EatsAtLeastFromLoopEntry() { + // SET_REGISTER_FOR_LOOP is only used to initialize loop counters, and it + // implies that the following node must be a LoopChoiceNode. If we need to + // set registers to constant values for other reasons, we could introduce a + // new action type SET_REGISTER that doesn't imply anything about its + // successor. + UNREACHABLE(); +} + +void RegExpNode::GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + // See comment in RegExpNode::EatsAtLeastFromLoopEntry. + UNREACHABLE(); +} + +EatsAtLeastInfo LoopChoiceNode::EatsAtLeastFromLoopEntry() { + DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue. + + if (read_backward()) { + // Can't do anything special for a backward loop, so return the basic values + // that we got during analysis. + return *eats_at_least_info(); + } + + // Figure out how much the loop body itself eats, not including anything in + // the continuation case. In general, the nodes in the loop body should report + // that they eat at least the number eaten by the continuation node, since any + // successful match in the loop body must also include the continuation node. + // However, in some cases involving positive lookaround, the loop body under- + // reports its appetite, so use saturated math here to avoid negative numbers. + uint8_t loop_body_from_not_start = base::saturated_cast<uint8_t>( + loop_node_->EatsAtLeast(true) - continue_node_->EatsAtLeast(true)); + uint8_t loop_body_from_possibly_start = base::saturated_cast<uint8_t>( + loop_node_->EatsAtLeast(false) - continue_node_->EatsAtLeast(true)); + + // Limit the number of loop iterations to avoid overflow in subsequent steps. + int loop_iterations = base::saturated_cast<uint8_t>(min_loop_iterations()); + + EatsAtLeastInfo result; + result.eats_at_least_from_not_start = + base::saturated_cast<uint8_t>(loop_iterations * loop_body_from_not_start + + continue_node_->EatsAtLeast(true)); + if (loop_iterations > 0 && loop_body_from_possibly_start > 0) { + // First loop iteration eats at least one, so all subsequent iterations + // and the after-loop chunk are guaranteed to not be at the start. + result.eats_at_least_from_possibly_start = base::saturated_cast<uint8_t>( + loop_body_from_possibly_start + + (loop_iterations - 1) * loop_body_from_not_start + + continue_node_->EatsAtLeast(true)); + } else { + // Loop body might eat nothing, so only continue node contributes. + result.eats_at_least_from_possibly_start = + continue_node_->EatsAtLeast(false); + } + return result; +} + +bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, + Trace* bounds_check_trace, Trace* trace, + bool preload_has_checked_bounds, + Label* on_possible_success, + QuickCheckDetails* details, + bool fall_through_on_failure, + ChoiceNode* predecessor) { + DCHECK_NOT_NULL(predecessor); + if (details->characters() == 0) return false; + GetQuickCheckDetails(details, compiler, 0, + trace->at_start() == Trace::FALSE_VALUE); + if (details->cannot_match()) return false; + if (!details->Rationalize(compiler->one_byte())) return false; + DCHECK(details->characters() == 1 || + compiler->macro_assembler()->CanReadUnaligned()); + uint32_t mask = details->mask(); + uint32_t value = details->value(); + + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + if (trace->characters_preloaded() != details->characters()) { + DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); + // The bounds check is performed using the minimum number of characters + // any choice would eat, so if the bounds check fails, then none of the + // choices can succeed, so we can just immediately backtrack, rather + // than go to the next choice. The number of characters preloaded may be + // less than the number used for the bounds check. + int eats_at_least = predecessor->EatsAtLeast( + bounds_check_trace->at_start() == Trace::FALSE_VALUE); + DCHECK_GE(eats_at_least, details->characters()); + assembler->LoadCurrentCharacter( + trace->cp_offset(), bounds_check_trace->backtrack(), + !preload_has_checked_bounds, details->characters(), eats_at_least); + } + + bool need_mask = true; + + if (details->characters() == 1) { + // If number of characters preloaded is 1 then we used a byte or 16 bit + // load so the value is already masked down. + uint32_t char_mask; + if (compiler->one_byte()) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + if ((mask & char_mask) == char_mask) need_mask = false; + mask &= char_mask; + } else { + // For 2-character preloads in one-byte mode or 1-character preloads in + // two-byte mode we also use a 16 bit load with zero extend. + static const uint32_t kTwoByteMask = 0xFFFF; + static const uint32_t kFourByteMask = 0xFFFFFFFF; + if (details->characters() == 2 && compiler->one_byte()) { + if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; + } else if (details->characters() == 1 && !compiler->one_byte()) { + if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; + } else { + if (mask == kFourByteMask) need_mask = false; + } + } + + if (fall_through_on_failure) { + if (need_mask) { + assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); + } else { + assembler->CheckCharacter(value, on_possible_success); + } + } else { + if (need_mask) { + assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); + } else { + assembler->CheckNotCharacter(value, trace->backtrack()); + } + } + return true; +} + +// Here is the meat of GetQuickCheckDetails (see also the comment on the +// super-class in the .h file). +// +// We iterate along the text object, building up for each character a +// mask and value that can be used to test for a quick failure to match. +// The masks and values for the positions will be combined into a single +// machine word for the current character width in order to be used in +// generating a quick check. +void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + // Do not collect any quick check details if the text node reads backward, + // since it reads in the opposite direction than we use for quick checks. + if (read_backward()) return; + Isolate* isolate = compiler->macro_assembler()->isolate(); + DCHECK(characters_filled_in < details->characters()); + int characters = details->characters(); + int char_mask; + if (compiler->one_byte()) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + for (int k = 0; k < elements()->length(); k++) { + TextElement elm = elements()->at(k); + if (elm.text_type() == TextElement::ATOM) { + Vector<const uc16> quarks = elm.atom()->data(); + for (int i = 0; i < characters && i < quarks.length(); i++) { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + uc16 c = quarks[i]; + if (elm.atom()->ignore_case()) { + unibrow::uchar chars[4]; + int length = GetCaseIndependentLetters( + isolate, c, compiler->one_byte(), chars, 4); + if (length == 0) { + // This can happen because all case variants are non-Latin1, but we + // know the input is Latin1. + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + if (length == 1) { + // This letter has no case equivalents, so it's nice and simple + // and the mask-compare will determine definitely whether we have + // a match at this character position. + pos->mask = char_mask; + pos->value = chars[0]; + pos->determines_perfectly = true; + } else { + uint32_t common_bits = char_mask; + uint32_t bits = chars[0]; + for (int j = 1; j < length; j++) { + uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); + common_bits ^= differing_bits; + bits &= common_bits; + } + // If length is 2 and common bits has only one zero in it then + // our mask and compare instruction will determine definitely + // whether we have a match at this character position. Otherwise + // it can only be an approximate check. + uint32_t one_zero = (common_bits | ~char_mask); + if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { + pos->determines_perfectly = true; + } + pos->mask = common_bits; + pos->value = bits; + } + } else { + // Don't ignore case. Nice simple case where the mask-compare will + // determine definitely whether we have a match at this character + // position. + if (c > char_mask) { + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + pos->mask = char_mask; + pos->value = c; + pos->determines_perfectly = true; + } + characters_filled_in++; + DCHECK(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } else { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + RegExpCharacterClass* tree = elm.char_class(); + ZoneList<CharacterRange>* ranges = tree->ranges(zone()); + DCHECK(!ranges->is_empty()); + if (tree->is_negated()) { + // A quick check uses multi-character mask and compare. There is no + // useful way to incorporate a negative char class into this scheme + // so we just conservatively create a mask and value that will always + // succeed. + pos->mask = 0; + pos->value = 0; + } else { + int first_range = 0; + while (ranges->at(first_range).from() > char_mask) { + first_range++; + if (first_range == ranges->length()) { + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + } + CharacterRange range = ranges->at(first_range); + uc16 from = range.from(); + uc16 to = range.to(); + if (to > char_mask) { + to = char_mask; + } + uint32_t differing_bits = (from ^ to); + // A mask and compare is only perfect if the differing bits form a + // number like 00011111 with one single block of trailing 1s. + if ((differing_bits & (differing_bits + 1)) == 0 && + from + differing_bits == to) { + pos->determines_perfectly = true; + } + uint32_t common_bits = ~SmearBitsRight(differing_bits); + uint32_t bits = (from & common_bits); + for (int i = first_range + 1; i < ranges->length(); i++) { + CharacterRange range = ranges->at(i); + uc16 from = range.from(); + uc16 to = range.to(); + if (from > char_mask) continue; + if (to > char_mask) to = char_mask; + // Here we are combining more ranges into the mask and compare + // value. With each new range the mask becomes more sparse and + // so the chances of a false positive rise. A character class + // with multiple ranges is assumed never to be equivalent to a + // mask and compare operation. + pos->determines_perfectly = false; + uint32_t new_common_bits = (from ^ to); + new_common_bits = ~SmearBitsRight(new_common_bits); + common_bits &= new_common_bits; + bits &= new_common_bits; + uint32_t differing_bits = (from & common_bits) ^ bits; + common_bits ^= differing_bits; + bits &= common_bits; + } + pos->mask = common_bits; + pos->value = bits; + } + characters_filled_in++; + DCHECK(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } + DCHECK(characters_filled_in != details->characters()); + if (!details->cannot_match()) { + on_success()->GetQuickCheckDetails(details, compiler, characters_filled_in, + true); + } +} + +void QuickCheckDetails::Clear() { + for (int i = 0; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ = 0; +} + +void QuickCheckDetails::Advance(int by, bool one_byte) { + if (by >= characters_ || by < 0) { + DCHECK_IMPLIES(by < 0, characters_ == 0); + Clear(); + return; + } + DCHECK_LE(characters_ - by, 4); + DCHECK_LE(characters_, 4); + for (int i = 0; i < characters_ - by; i++) { + positions_[i] = positions_[by + i]; + } + for (int i = characters_ - by; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ -= by; + // We could change mask_ and value_ here but we would never advance unless + // they had already been used in a check and they won't be used again because + // it would gain us nothing. So there's no point. +} + +void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { + DCHECK(characters_ == other->characters_); + if (other->cannot_match_) { + return; + } + if (cannot_match_) { + *this = *other; + return; + } + for (int i = from_index; i < characters_; i++) { + QuickCheckDetails::Position* pos = positions(i); + QuickCheckDetails::Position* other_pos = other->positions(i); + if (pos->mask != other_pos->mask || pos->value != other_pos->value || + !other_pos->determines_perfectly) { + // Our mask-compare operation will be approximate unless we have the + // exact same operation on both sides of the alternation. + pos->determines_perfectly = false; + } + pos->mask &= other_pos->mask; + pos->value &= pos->mask; + other_pos->value &= pos->mask; + uc16 differing_bits = (pos->value ^ other_pos->value); + pos->mask &= ~differing_bits; + pos->value &= pos->mask; + } +} + +class VisitMarker { + public: + explicit VisitMarker(NodeInfo* info) : info_(info) { + DCHECK(!info->visited); + info->visited = true; + } + ~VisitMarker() { info_->visited = false; } + + private: + NodeInfo* info_; +}; + +// Temporarily sets traversed_loop_initialization_node_. +class LoopInitializationMarker { + public: + explicit LoopInitializationMarker(LoopChoiceNode* node) : node_(node) { + DCHECK(!node_->traversed_loop_initialization_node_); + node_->traversed_loop_initialization_node_ = true; + } + ~LoopInitializationMarker() { + DCHECK(node_->traversed_loop_initialization_node_); + node_->traversed_loop_initialization_node_ = false; + } + + private: + LoopChoiceNode* node_; + DISALLOW_COPY_AND_ASSIGN(LoopInitializationMarker); +}; + +// Temporarily decrements min_loop_iterations_. +class IterationDecrementer { + public: + explicit IterationDecrementer(LoopChoiceNode* node) : node_(node) { + DCHECK_GT(node_->min_loop_iterations_, 0); + --node_->min_loop_iterations_; + } + ~IterationDecrementer() { ++node_->min_loop_iterations_; } + + private: + LoopChoiceNode* node_; + DISALLOW_COPY_AND_ASSIGN(IterationDecrementer); +}; + +RegExpNode* SeqRegExpNode::FilterOneByte(int depth) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + DCHECK(!info()->visited); + VisitMarker marker(info()); + return FilterSuccessor(depth - 1); +} + +RegExpNode* SeqRegExpNode::FilterSuccessor(int depth) { + RegExpNode* next = on_success_->FilterOneByte(depth - 1); + if (next == nullptr) return set_replacement(nullptr); + on_success_ = next; + return set_replacement(this); +} + +// We need to check for the following characters: 0x39C 0x3BC 0x178. +bool RangeContainsLatin1Equivalents(CharacterRange range) { + // TODO(dcarney): this could be a lot more efficient. + return range.Contains(0x039C) || range.Contains(0x03BC) || + range.Contains(0x0178); +} + +static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { + for (int i = 0; i < ranges->length(); i++) { + // TODO(dcarney): this could be a lot more efficient. + if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; + } + return false; +} + +RegExpNode* TextNode::FilterOneByte(int depth) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + DCHECK(!info()->visited); + VisitMarker marker(info()); + int element_count = elements()->length(); + for (int i = 0; i < element_count; i++) { + TextElement elm = elements()->at(i); + if (elm.text_type() == TextElement::ATOM) { + Vector<const uc16> quarks = elm.atom()->data(); + for (int j = 0; j < quarks.length(); j++) { + uint16_t c = quarks[j]; + if (elm.atom()->ignore_case()) { + c = unibrow::Latin1::TryConvertToLatin1(c); + } + if (c > unibrow::Latin1::kMaxChar) return set_replacement(nullptr); + // Replace quark in case we converted to Latin-1. + uint16_t* writable_quarks = const_cast<uint16_t*>(quarks.begin()); + writable_quarks[j] = c; + } + } else { + DCHECK(elm.text_type() == TextElement::CHAR_CLASS); + RegExpCharacterClass* cc = elm.char_class(); + ZoneList<CharacterRange>* ranges = cc->ranges(zone()); + CharacterRange::Canonicalize(ranges); + // Now they are in order so we only need to look at the first. + int range_count = ranges->length(); + if (cc->is_negated()) { + if (range_count != 0 && ranges->at(0).from() == 0 && + ranges->at(0).to() >= String::kMaxOneByteCharCode) { + // This will be handled in a later filter. + if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges)) + continue; + return set_replacement(nullptr); + } + } else { + if (range_count == 0 || + ranges->at(0).from() > String::kMaxOneByteCharCode) { + // This will be handled in a later filter. + if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges)) + continue; + return set_replacement(nullptr); + } + } + } + } + return FilterSuccessor(depth - 1); +} + +RegExpNode* LoopChoiceNode::FilterOneByte(int depth) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + { + VisitMarker marker(info()); + + RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1); + // If we can't continue after the loop then there is no sense in doing the + // loop. + if (continue_replacement == nullptr) return set_replacement(nullptr); + } + + return ChoiceNode::FilterOneByte(depth - 1); +} + +RegExpNode* ChoiceNode::FilterOneByte(int depth) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + VisitMarker marker(info()); + int choice_count = alternatives_->length(); + + for (int i = 0; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + if (alternative.guards() != nullptr && + alternative.guards()->length() != 0) { + set_replacement(this); + return this; + } + } + + int surviving = 0; + RegExpNode* survivor = nullptr; + for (int i = 0; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1); + DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. + if (replacement != nullptr) { + alternatives_->at(i).set_node(replacement); + surviving++; + survivor = replacement; + } + } + if (surviving < 2) return set_replacement(survivor); + + set_replacement(this); + if (surviving == choice_count) { + return this; + } + // Only some of the nodes survived the filtering. We need to rebuild the + // alternatives list. + ZoneList<GuardedAlternative>* new_alternatives = + new (zone()) ZoneList<GuardedAlternative>(surviving, zone()); + for (int i = 0; i < choice_count; i++) { + RegExpNode* replacement = + alternatives_->at(i).node()->FilterOneByte(depth - 1); + if (replacement != nullptr) { + alternatives_->at(i).set_node(replacement); + new_alternatives->Add(alternatives_->at(i), zone()); + } + } + alternatives_ = new_alternatives; + return this; +} + +RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + VisitMarker marker(info()); + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = continue_node(); + RegExpNode* replacement = node->FilterOneByte(depth - 1); + if (replacement == nullptr) return set_replacement(nullptr); + alternatives_->at(kContinueIndex).set_node(replacement); + + RegExpNode* neg_node = lookaround_node(); + RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1); + // If the negative lookahead is always going to fail then + // we don't need to check it. + if (neg_replacement == nullptr) return set_replacement(replacement); + alternatives_->at(kLookaroundIndex).set_node(neg_replacement); + return set_replacement(this); +} + +void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + if (body_can_be_zero_length_ || info()->visited) return; + not_at_start = not_at_start || this->not_at_start(); + DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue. + if (traversed_loop_initialization_node_ && min_loop_iterations_ > 0 && + loop_node_->EatsAtLeast(not_at_start) > + continue_node_->EatsAtLeast(true)) { + // Loop body is guaranteed to execute at least once, and consume characters + // when it does, meaning the only possible quick checks from this point + // begin with the loop body. We may recursively visit this LoopChoiceNode, + // but we temporarily decrease its minimum iteration counter so we know when + // to check the continue case. + IterationDecrementer next_iteration(this); + loop_node_->GetQuickCheckDetails(details, compiler, characters_filled_in, + not_at_start); + } else { + // Might not consume anything in the loop body, so treat it like a normal + // ChoiceNode (and don't recursively visit this node again). + VisitMarker marker(info()); + ChoiceNode::GetQuickCheckDetails(details, compiler, characters_filled_in, + not_at_start); + } +} + +void LoopChoiceNode::GetQuickCheckDetailsFromLoopEntry( + QuickCheckDetails* details, RegExpCompiler* compiler, + int characters_filled_in, bool not_at_start) { + if (traversed_loop_initialization_node_) { + // We already entered this loop once, exited via its continuation node, and + // followed an outer loop's back-edge to before the loop entry point. We + // could try to reset the minimum iteration count to its starting value at + // this point, but that seems like more trouble than it's worth. It's safe + // to keep going with the current (possibly reduced) minimum iteration + // count. + GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); + } else { + // We are entering a loop via its counter initialization action, meaning we + // are guaranteed to run the loop body at least some minimum number of times + // before running the continuation node. Set a flag so that this node knows + // (now and any times we visit it again recursively) that it was entered + // from the top. + LoopInitializationMarker marker(this); + GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); + } +} + +void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + if (body_can_be_zero_length_ || budget <= 0) { + bm->SetRest(offset); + SaveBMInfo(bm, not_at_start, offset); + return; + } + ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); + SaveBMInfo(bm, not_at_start, offset); +} + +void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + not_at_start = (not_at_start || not_at_start_); + int choice_count = alternatives_->length(); + DCHECK_LT(0, choice_count); + alternatives_->at(0).node()->GetQuickCheckDetails( + details, compiler, characters_filled_in, not_at_start); + for (int i = 1; i < choice_count; i++) { + QuickCheckDetails new_details(details->characters()); + RegExpNode* node = alternatives_->at(i).node(); + node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in, + not_at_start); + // Here we merge the quick match details of the two branches. + details->Merge(&new_details, characters_filled_in); + } +} + +namespace { + +// Check for [0-9A-Z_a-z]. +void EmitWordCheck(RegExpMacroAssembler* assembler, Label* word, + Label* non_word, bool fall_through_on_word) { + if (assembler->CheckSpecialCharacterClass( + fall_through_on_word ? 'w' : 'W', + fall_through_on_word ? non_word : word)) { + // Optimized implementation available. + return; + } + assembler->CheckCharacterGT('z', non_word); + assembler->CheckCharacterLT('0', non_word); + assembler->CheckCharacterGT('a' - 1, word); + assembler->CheckCharacterLT('9' + 1, word); + assembler->CheckCharacterLT('A', non_word); + assembler->CheckCharacterLT('Z' + 1, word); + if (fall_through_on_word) { + assembler->CheckNotCharacter('_', non_word); + } else { + assembler->CheckCharacter('_', word); + } +} + +// Emit the code to check for a ^ in multiline mode (1-character lookbehind +// that matches newline or the start of input). +void EmitHat(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + // We will load the previous character into the current character register. + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + // A positive (> 0) cp_offset means we've already successfully matched a + // non-empty-width part of the pattern, and thus cannot be at or before the + // start of the subject string. We can thus skip both at-start and + // bounds-checks when loading the one-character lookbehind. + const bool may_be_at_or_before_subject_string_start = + new_trace.cp_offset() <= 0; + + Label ok; + if (may_be_at_or_before_subject_string_start) { + // The start of input counts as a newline in this context, so skip to ok if + // we are at the start. + assembler->CheckAtStart(new_trace.cp_offset(), &ok); + } + + // If we've already checked that we are not at the start of input, it's okay + // to load the previous character without bounds checks. + const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start; + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, + new_trace.backtrack(), can_skip_bounds_check); + if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) { + // Newline means \n, \r, 0x2028 or 0x2029. + if (!compiler->one_byte()) { + assembler->CheckCharacterAfterAnd(0x2028, 0xFFFE, &ok); + } + assembler->CheckCharacter('\n', &ok); + assembler->CheckNotCharacter('\r', new_trace.backtrack()); + } + assembler->Bind(&ok); + on_success->Emit(compiler, &new_trace); +} + +} // namespace + +// Emit the code to handle \b and \B (word-boundary or non-word-boundary). +void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Isolate* isolate = assembler->isolate(); + Trace::TriBool next_is_word_character = Trace::UNKNOWN; + bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); + BoyerMooreLookahead* lookahead = bm_info(not_at_start); + if (lookahead == nullptr) { + int eats_at_least = + Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(not_at_start)); + if (eats_at_least >= 1) { + BoyerMooreLookahead* bm = + new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); + FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start); + if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; + if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; + } + } else { + if (lookahead->at(0)->is_non_word()) + next_is_word_character = Trace::FALSE_VALUE; + if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; + } + bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); + if (next_is_word_character == Trace::UNKNOWN) { + Label before_non_word; + Label before_word; + if (trace->characters_preloaded() != 1) { + assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); + } + // Fall through on non-word. + EmitWordCheck(assembler, &before_word, &before_non_word, false); + // Next character is not a word character. + assembler->Bind(&before_non_word); + Label ok; + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); + assembler->GoTo(&ok); + + assembler->Bind(&before_word); + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); + assembler->Bind(&ok); + } else if (next_is_word_character == Trace::TRUE_VALUE) { + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); + } else { + DCHECK(next_is_word_character == Trace::FALSE_VALUE); + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); + } +} + +void AssertionNode::BacktrackIfPrevious( + RegExpCompiler* compiler, Trace* trace, + AssertionNode::IfPrevious backtrack_if_previous) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + Label fall_through; + Label* non_word = backtrack_if_previous == kIsNonWord ? new_trace.backtrack() + : &fall_through; + Label* word = backtrack_if_previous == kIsNonWord ? &fall_through + : new_trace.backtrack(); + + // A positive (> 0) cp_offset means we've already successfully matched a + // non-empty-width part of the pattern, and thus cannot be at or before the + // start of the subject string. We can thus skip both at-start and + // bounds-checks when loading the one-character lookbehind. + const bool may_be_at_or_before_subject_string_start = + new_trace.cp_offset() <= 0; + + if (may_be_at_or_before_subject_string_start) { + // The start of input counts as a non-word character, so the question is + // decided if we are at the start. + assembler->CheckAtStart(new_trace.cp_offset(), non_word); + } + + // If we've already checked that we are not at the start of input, it's okay + // to load the previous character without bounds checks. + const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start; + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, non_word, + can_skip_bounds_check); + EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); + + assembler->Bind(&fall_through); + on_success()->Emit(compiler, &new_trace); +} + +void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int filled_in, bool not_at_start) { + if (assertion_type_ == AT_START && not_at_start) { + details->set_cannot_match(); + return; + } + return on_success()->GetQuickCheckDetails(details, compiler, filled_in, + not_at_start); +} + +void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + switch (assertion_type_) { + case AT_END: { + Label ok; + assembler->CheckPosition(trace->cp_offset(), &ok); + assembler->GoTo(trace->backtrack()); + assembler->Bind(&ok); + break; + } + case AT_START: { + if (trace->at_start() == Trace::FALSE_VALUE) { + assembler->GoTo(trace->backtrack()); + return; + } + if (trace->at_start() == Trace::UNKNOWN) { + assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack()); + Trace at_start_trace = *trace; + at_start_trace.set_at_start(Trace::TRUE_VALUE); + on_success()->Emit(compiler, &at_start_trace); + return; + } + } break; + case AFTER_NEWLINE: + EmitHat(compiler, on_success(), trace); + return; + case AT_BOUNDARY: + case AT_NON_BOUNDARY: { + EmitBoundaryCheck(compiler, trace); + return; + } + } + on_success()->Emit(compiler, trace); +} + +static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { + if (quick_check == nullptr) return false; + if (offset >= quick_check->characters()) return false; + return quick_check->positions(offset)->determines_perfectly; +} + +static void UpdateBoundsCheck(int index, int* checked_up_to) { + if (index > *checked_up_to) { + *checked_up_to = index; + } +} + +// We call this repeatedly to generate code for each pass over the text node. +// The passes are in increasing order of difficulty because we hope one +// of the first passes will fail in which case we are saved the work of the +// later passes. for example for the case independent regexp /%[asdfghjkl]a/ +// we will check the '%' in the first pass, the case independent 'a' in the +// second pass and the character class in the last pass. +// +// The passes are done from right to left, so for example to test for /bar/ +// we will first test for an 'r' with offset 2, then an 'a' with offset 1 +// and then a 'b' with offset 0. This means we can avoid the end-of-input +// bounds check most of the time. In the example we only need to check for +// end-of-input when loading the putative 'r'. +// +// A slight complication involves the fact that the first character may already +// be fetched into a register by the previous node. In this case we want to +// do the test for that character first. We do this in separate passes. The +// 'preloaded' argument indicates that we are doing such a 'pass'. If such a +// pass has been performed then subsequent passes will have true in +// first_element_checked to indicate that that character does not need to be +// checked again. +// +// In addition to all this we are passed a Trace, which can +// contain an AlternativeGeneration object. In this AlternativeGeneration +// object we can see details of any quick check that was already passed in +// order to get to the code we are now generating. The quick check can involve +// loading characters, which means we do not need to recheck the bounds +// up to the limit the quick check already checked. In addition the quick +// check can have involved a mask and compare operation which may simplify +// or obviate the need for further checks at some character positions. +void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, + bool preloaded, Trace* trace, + bool first_element_checked, int* checked_up_to) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Isolate* isolate = assembler->isolate(); + bool one_byte = compiler->one_byte(); + Label* backtrack = trace->backtrack(); + QuickCheckDetails* quick_check = trace->quick_check_performed(); + int element_count = elements()->length(); + int backward_offset = read_backward() ? -Length() : 0; + for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { + TextElement elm = elements()->at(i); + int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset; + if (elm.text_type() == TextElement::ATOM) { + if (SkipPass(pass, elm.atom()->ignore_case())) continue; + Vector<const uc16> quarks = elm.atom()->data(); + for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { + if (first_element_checked && i == 0 && j == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; + EmitCharacterFunction* emit_function = nullptr; + uc16 quark = quarks[j]; + if (elm.atom()->ignore_case()) { + // Everywhere else we assume that a non-Latin-1 character cannot match + // a Latin-1 character. Avoid the cases where this is assumption is + // invalid by using the Latin1 equivalent instead. + quark = unibrow::Latin1::TryConvertToLatin1(quark); + } + switch (pass) { + case NON_LATIN1_MATCH: + DCHECK(one_byte); + if (quark > String::kMaxOneByteCharCode) { + assembler->GoTo(backtrack); + return; + } + break; + case NON_LETTER_CHARACTER_MATCH: + emit_function = &EmitAtomNonLetter; + break; + case SIMPLE_CHARACTER_MATCH: + emit_function = &EmitSimpleCharacter; + break; + case CASE_CHARACTER_MATCH: + emit_function = &EmitAtomLetter; + break; + default: + break; + } + if (emit_function != nullptr) { + bool bounds_check = *checked_up_to < cp_offset + j || read_backward(); + bool bound_checked = + emit_function(isolate, compiler, quark, backtrack, cp_offset + j, + bounds_check, preloaded); + if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); + } + } + } else { + DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); + if (pass == CHARACTER_CLASS_MATCH) { + if (first_element_checked && i == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset())) continue; + RegExpCharacterClass* cc = elm.char_class(); + bool bounds_check = *checked_up_to < cp_offset || read_backward(); + EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, + bounds_check, preloaded, zone()); + UpdateBoundsCheck(cp_offset, checked_up_to); + } + } + } +} + +int TextNode::Length() { + TextElement elm = elements()->last(); + DCHECK_LE(0, elm.cp_offset()); + return elm.cp_offset() + elm.length(); +} + +bool TextNode::SkipPass(TextEmitPassType pass, bool ignore_case) { + if (ignore_case) { + return pass == SIMPLE_CHARACTER_MATCH; + } else { + return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; + } +} + +TextNode* TextNode::CreateForCharacterRanges(Zone* zone, + ZoneList<CharacterRange>* ranges, + bool read_backward, + RegExpNode* on_success, + JSRegExp::Flags flags) { + DCHECK_NOT_NULL(ranges); + ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone); + elms->Add(TextElement::CharClass( + new (zone) RegExpCharacterClass(zone, ranges, flags)), + zone); + return new (zone) TextNode(elms, read_backward, on_success); +} + +TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead, + CharacterRange trail, + bool read_backward, + RegExpNode* on_success, + JSRegExp::Flags flags) { + ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead); + ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail); + ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone); + elms->Add(TextElement::CharClass( + new (zone) RegExpCharacterClass(zone, lead_ranges, flags)), + zone); + elms->Add(TextElement::CharClass( + new (zone) RegExpCharacterClass(zone, trail_ranges, flags)), + zone); + return new (zone) TextNode(elms, read_backward, on_success); +} + +// This generates the code to match a text node. A text node can contain +// straight character sequences (possibly to be matched in a case-independent +// way) and character classes. For efficiency we do not do this in a single +// pass from left to right. Instead we pass over the text node several times, +// emitting code for some character positions every time. See the comment on +// TextEmitPass for details. +void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + DCHECK(limit_result == CONTINUE); + + if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + return; + } + + if (compiler->one_byte()) { + int dummy = 0; + TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); + } + + bool first_elt_done = false; + int bound_checked_to = trace->cp_offset() - 1; + bound_checked_to += trace->bound_checked_up_to(); + + // If a character is preloaded into the current character register then + // check that now. + if (trace->characters_preloaded() == 1) { + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace, + false, &bound_checked_to); + } + first_elt_done = true; + } + + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace, + first_elt_done, &bound_checked_to); + } + + Trace successor_trace(*trace); + // If we advance backward, we may end up at the start. + successor_trace.AdvanceCurrentPositionInTrace( + read_backward() ? -Length() : Length(), compiler); + successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN + : Trace::FALSE_VALUE); + RecursionCheck rc(compiler); + on_success()->Emit(compiler, &successor_trace); +} + +void Trace::InvalidateCurrentCharacter() { characters_preloaded_ = 0; } + +void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { + // We don't have an instruction for shifting the current character register + // down or for using a shifted value for anything so lets just forget that + // we preloaded any characters into it. + characters_preloaded_ = 0; + // Adjust the offsets of the quick check performed information. This + // information is used to find out what we already determined about the + // characters by means of mask and compare. + quick_check_performed_.Advance(by, compiler->one_byte()); + cp_offset_ += by; + if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + cp_offset_ = 0; + } + bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); +} + +void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) { + int element_count = elements()->length(); + for (int i = 0; i < element_count; i++) { + TextElement elm = elements()->at(i); + if (elm.text_type() == TextElement::CHAR_CLASS) { + RegExpCharacterClass* cc = elm.char_class(); +#ifdef V8_INTL_SUPPORT + bool case_equivalents_already_added = + NeedsUnicodeCaseEquivalents(cc->flags()); +#else + bool case_equivalents_already_added = false; +#endif + if (IgnoreCase(cc->flags()) && !case_equivalents_already_added) { + // None of the standard character classes is different in the case + // independent case and it slows us down if we don't know that. + if (cc->is_standard(zone())) continue; + ZoneList<CharacterRange>* ranges = cc->ranges(zone()); + CharacterRange::AddCaseEquivalents(isolate, zone(), ranges, + is_one_byte); + } + } + } +} + +int TextNode::GreedyLoopTextLength() { return Length(); } + +RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( + RegExpCompiler* compiler) { + if (read_backward()) return nullptr; + if (elements()->length() != 1) return nullptr; + TextElement elm = elements()->at(0); + if (elm.text_type() != TextElement::CHAR_CLASS) return nullptr; + RegExpCharacterClass* node = elm.char_class(); + ZoneList<CharacterRange>* ranges = node->ranges(zone()); + CharacterRange::Canonicalize(ranges); + if (node->is_negated()) { + return ranges->length() == 0 ? on_success() : nullptr; + } + if (ranges->length() != 1) return nullptr; + uint32_t max_char; + if (compiler->one_byte()) { + max_char = String::kMaxOneByteCharCode; + } else { + max_char = String::kMaxUtf16CodeUnit; + } + return ranges->at(0).IsEverything(max_char) ? on_success() : nullptr; +} + +// Finds the fixed match length of a sequence of nodes that goes from +// this alternative and back to this choice node. If there are variable +// length nodes or other complications in the way then return a sentinel +// value indicating that a greedy loop cannot be constructed. +int ChoiceNode::GreedyLoopTextLengthForAlternative( + GuardedAlternative* alternative) { + int length = 0; + RegExpNode* node = alternative->node(); + // Later we will generate code for all these text nodes using recursion + // so we have to limit the max number. + int recursion_depth = 0; + while (node != this) { + if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { + return kNodeIsTooComplexForGreedyLoops; + } + int node_length = node->GreedyLoopTextLength(); + if (node_length == kNodeIsTooComplexForGreedyLoops) { + return kNodeIsTooComplexForGreedyLoops; + } + length += node_length; + SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); + node = seq_node->on_success(); + } + return read_backward() ? -length : length; +} + +void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { + DCHECK_NULL(loop_node_); + AddAlternative(alt); + loop_node_ = alt.node(); +} + +void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { + DCHECK_NULL(continue_node_); + AddAlternative(alt); + continue_node_ = alt.node(); +} + +void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->stop_node() == this) { + // Back edge of greedy optimized loop node graph. + int text_length = + GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); + DCHECK_NE(kNodeIsTooComplexForGreedyLoops, text_length); + // Update the counter-based backtracking info on the stack. This is an + // optimization for greedy loops (see below). + DCHECK(trace->cp_offset() == text_length); + macro_assembler->AdvanceCurrentPosition(text_length); + macro_assembler->GoTo(trace->loop_label()); + return; + } + DCHECK_NULL(trace->stop_node()); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + ChoiceNode::Emit(compiler, trace); +} + +int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, + int eats_at_least) { + int preload_characters = Min(4, eats_at_least); + DCHECK_LE(preload_characters, 4); + if (compiler->macro_assembler()->CanReadUnaligned()) { + bool one_byte = compiler->one_byte(); + if (one_byte) { + // We can't preload 3 characters because there is no machine instruction + // to do that. We can't just load 4 because we could be reading + // beyond the end of the string, which could cause a memory fault. + if (preload_characters == 3) preload_characters = 2; + } else { + if (preload_characters > 2) preload_characters = 2; + } + } else { + if (preload_characters > 1) preload_characters = 1; + } + return preload_characters; +} + +// This class is used when generating the alternatives in a choice node. It +// records the way the alternative is being code generated. +class AlternativeGeneration : public Malloced { + public: + AlternativeGeneration() + : possible_success(), + expects_preload(false), + after(), + quick_check_details() {} + Label possible_success; + bool expects_preload; + Label after; + QuickCheckDetails quick_check_details; +}; + +// Creates a list of AlternativeGenerations. If the list has a reasonable +// size then it is on the stack, otherwise the excess is on the heap. +class AlternativeGenerationList { + public: + AlternativeGenerationList(int count, Zone* zone) : alt_gens_(count, zone) { + for (int i = 0; i < count && i < kAFew; i++) { + alt_gens_.Add(a_few_alt_gens_ + i, zone); + } + for (int i = kAFew; i < count; i++) { + alt_gens_.Add(new AlternativeGeneration(), zone); + } + } + ~AlternativeGenerationList() { + for (int i = kAFew; i < alt_gens_.length(); i++) { + delete alt_gens_[i]; + alt_gens_[i] = nullptr; + } + } + + AlternativeGeneration* at(int i) { return alt_gens_[i]; } + + private: + static const int kAFew = 10; + ZoneList<AlternativeGeneration*> alt_gens_; + AlternativeGeneration a_few_alt_gens_[kAFew]; +}; + +void BoyerMoorePositionInfo::Set(int character) { + SetInterval(Interval(character, character)); +} + +namespace { + +ContainedInLattice AddRange(ContainedInLattice containment, const int* ranges, + int ranges_length, Interval new_range) { + DCHECK_EQ(1, ranges_length & 1); + DCHECK_EQ(String::kMaxCodePoint + 1, ranges[ranges_length - 1]); + if (containment == kLatticeUnknown) return containment; + bool inside = false; + int last = 0; + for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { + // Consider the range from last to ranges[i]. + // We haven't got to the new range yet. + if (ranges[i] <= new_range.from()) continue; + // New range is wholly inside last-ranges[i]. Note that new_range.to() is + // inclusive, but the values in ranges are not. + if (last <= new_range.from() && new_range.to() < ranges[i]) { + return Combine(containment, inside ? kLatticeIn : kLatticeOut); + } + return kLatticeUnknown; + } + return containment; +} + +int BitsetFirstSetBit(BoyerMoorePositionInfo::Bitset bitset) { + STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == + 2 * kInt64Size * kBitsPerByte); + + // Slight fiddling is needed here, since the bitset is of length 128 while + // CountTrailingZeros requires an integral type and std::bitset can only + // convert to unsigned long long. So we handle the most- and least-significant + // bits separately. + + { + static constexpr BoyerMoorePositionInfo::Bitset mask(~uint64_t{0}); + BoyerMoorePositionInfo::Bitset masked_bitset = bitset & mask; + STATIC_ASSERT(kInt64Size >= sizeof(decltype(masked_bitset.to_ullong()))); + uint64_t lsb = masked_bitset.to_ullong(); + if (lsb != 0) return base::bits::CountTrailingZeros(lsb); + } + + { + BoyerMoorePositionInfo::Bitset masked_bitset = bitset >> 64; + uint64_t msb = masked_bitset.to_ullong(); + if (msb != 0) return 64 + base::bits::CountTrailingZeros(msb); + } + + return -1; +} + +} // namespace + +void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { + w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); + + if (interval.size() >= kMapSize) { + map_count_ = kMapSize; + map_.set(); + return; + } + + for (int i = interval.from(); i <= interval.to(); i++) { + int mod_character = (i & kMask); + if (!map_[mod_character]) { + map_count_++; + map_.set(mod_character); + } + if (map_count_ == kMapSize) return; + } +} + +void BoyerMoorePositionInfo::SetAll() { + w_ = kLatticeUnknown; + if (map_count_ != kMapSize) { + map_count_ = kMapSize; + map_.set(); + } +} + +BoyerMooreLookahead::BoyerMooreLookahead(int length, RegExpCompiler* compiler, + Zone* zone) + : length_(length), compiler_(compiler) { + if (compiler->one_byte()) { + max_char_ = String::kMaxOneByteCharCode; + } else { + max_char_ = String::kMaxUtf16CodeUnit; + } + bitmaps_ = new (zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); + for (int i = 0; i < length; i++) { + bitmaps_->Add(new (zone) BoyerMoorePositionInfo(), zone); + } +} + +// Find the longest range of lookahead that has the fewest number of different +// characters that can occur at a given position. Since we are optimizing two +// different parameters at once this is a tradeoff. +bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { + int biggest_points = 0; + // If more than 32 characters out of 128 can occur it is unlikely that we can + // be lucky enough to step forwards much of the time. + const int kMaxMax = 32; + for (int max_number_of_chars = 4; max_number_of_chars < kMaxMax; + max_number_of_chars *= 2) { + biggest_points = + FindBestInterval(max_number_of_chars, biggest_points, from, to); + } + if (biggest_points == 0) return false; + return true; +} + +// Find the highest-points range between 0 and length_ where the character +// information is not too vague. 'Too vague' means that there are more than +// max_number_of_chars that can occur at this position. Calculates the number +// of points as the product of width-of-the-range and +// probability-of-finding-one-of-the-characters, where the probability is +// calculated using the frequency distribution of the sample subject string. +int BoyerMooreLookahead::FindBestInterval(int max_number_of_chars, + int old_biggest_points, int* from, + int* to) { + int biggest_points = old_biggest_points; + static const int kSize = RegExpMacroAssembler::kTableSize; + for (int i = 0; i < length_;) { + while (i < length_ && Count(i) > max_number_of_chars) i++; + if (i == length_) break; + int remembered_from = i; + + BoyerMoorePositionInfo::Bitset union_bitset; + for (; i < length_ && Count(i) <= max_number_of_chars; i++) { + union_bitset |= bitmaps_->at(i)->raw_bitset(); + } + + int frequency = 0; + + // Iterate only over set bits. + int j; + while ((j = BitsetFirstSetBit(union_bitset)) != -1) { + DCHECK(union_bitset[j]); // Sanity check. + // Add 1 to the frequency to give a small per-character boost for + // the cases where our sampling is not good enough and many + // characters have a frequency of zero. This means the frequency + // can theoretically be up to 2*kSize though we treat it mostly as + // a fraction of kSize. + frequency += compiler_->frequency_collator()->Frequency(j) + 1; + union_bitset.reset(j); + } + + // We use the probability of skipping times the distance we are skipping to + // judge the effectiveness of this. Actually we have a cut-off: By + // dividing by 2 we switch off the skipping if the probability of skipping + // is less than 50%. This is because the multibyte mask-and-compare + // skipping in quickcheck is more likely to do well on this case. + bool in_quickcheck_range = + ((i - remembered_from < 4) || + (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); + // Called 'probability' but it is only a rough estimate and can actually + // be outside the 0-kSize range. + int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; + int points = (i - remembered_from) * probability; + if (points > biggest_points) { + *from = remembered_from; + *to = i - 1; + biggest_points = points; + } + } + return biggest_points; +} + +// Take all the characters that will not prevent a successful match if they +// occur in the subject string in the range between min_lookahead and +// max_lookahead (inclusive) measured from the current position. If the +// character at max_lookahead offset is not one of these characters, then we +// can safely skip forwards by the number of characters in the range. +int BoyerMooreLookahead::GetSkipTable(int min_lookahead, int max_lookahead, + Handle<ByteArray> boolean_skip_table) { + const int kSkipArrayEntry = 0; + const int kDontSkipArrayEntry = 1; + + std::memset(boolean_skip_table->GetDataStartAddress(), kSkipArrayEntry, + boolean_skip_table->length()); + + for (int i = max_lookahead; i >= min_lookahead; i--) { + BoyerMoorePositionInfo::Bitset bitset = bitmaps_->at(i)->raw_bitset(); + + // Iterate only over set bits. + int j; + while ((j = BitsetFirstSetBit(bitset)) != -1) { + DCHECK(bitset[j]); // Sanity check. + boolean_skip_table->set(j, kDontSkipArrayEntry); + bitset.reset(j); + } + } + + const int skip = max_lookahead + 1 - min_lookahead; + return skip; +} + +// See comment above on the implementation of GetSkipTable. +void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { + const int kSize = RegExpMacroAssembler::kTableSize; + + int min_lookahead = 0; + int max_lookahead = 0; + + if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; + + // Check if we only have a single non-empty position info, and that info + // contains precisely one character. + bool found_single_character = false; + int single_character = 0; + for (int i = max_lookahead; i >= min_lookahead; i--) { + BoyerMoorePositionInfo* map = bitmaps_->at(i); + if (map->map_count() == 0) continue; + + if (found_single_character || map->map_count() > 1) { + found_single_character = false; + break; + } + + DCHECK(!found_single_character); + DCHECK_EQ(map->map_count(), 1); + + found_single_character = true; + single_character = BitsetFirstSetBit(map->raw_bitset()); + + DCHECK_NE(single_character, -1); + } + + int lookahead_width = max_lookahead + 1 - min_lookahead; + + if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { + // The mask-compare can probably handle this better. + return; + } + + if (found_single_character) { + Label cont, again; + masm->Bind(&again); + masm->LoadCurrentCharacter(max_lookahead, &cont, true); + if (max_char_ > kSize) { + masm->CheckCharacterAfterAnd(single_character, + RegExpMacroAssembler::kTableMask, &cont); + } else { + masm->CheckCharacter(single_character, &cont); + } + masm->AdvanceCurrentPosition(lookahead_width); + masm->GoTo(&again); + masm->Bind(&cont); + return; + } + + Factory* factory = masm->isolate()->factory(); + Handle<ByteArray> boolean_skip_table = + factory->NewByteArray(kSize, AllocationType::kOld); + int skip_distance = + GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table); + DCHECK_NE(0, skip_distance); + + Label cont, again; + masm->Bind(&again); + masm->LoadCurrentCharacter(max_lookahead, &cont, true); + masm->CheckBitInTable(boolean_skip_table, &cont); + masm->AdvanceCurrentPosition(skip_distance); + masm->GoTo(&again); + masm->Bind(&cont); +} + +/* Code generation for choice nodes. + * + * We generate quick checks that do a mask and compare to eliminate a + * choice. If the quick check succeeds then it jumps to the continuation to + * do slow checks and check subsequent nodes. If it fails (the common case) + * it falls through to the next choice. + * + * Here is the desired flow graph. Nodes directly below each other imply + * fallthrough. Alternatives 1 and 2 have quick checks. Alternative + * 3 doesn't have a quick check so we have to call the slow check. + * Nodes are marked Qn for quick checks and Sn for slow checks. The entire + * regexp continuation is generated directly after the Sn node, up to the + * next GoTo if we decide to reuse some already generated code. Some + * nodes expect preload_characters to be preloaded into the current + * character register. R nodes do this preloading. Vertices are marked + * F for failures and S for success (possible success in the case of quick + * nodes). L, V, < and > are used as arrow heads. + * + * ----------> R + * | + * V + * Q1 -----> S1 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * Q2 -----> S2 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * S3 + * | + * F| + * | + * R + * | + * backtrack V + * <----------Q4 + * \ F | + * \ |S + * \ F V + * \-----S4 + * + * For greedy loops we push the current position, then generate the code that + * eats the input specially in EmitGreedyLoop. The other choice (the + * continuation) is generated by the normal code in EmitChoices, and steps back + * in the input to the starting position when it fails to match. The loop code + * looks like this (U is the unwind code that steps back in the greedy loop). + * + * _____ + * / \ + * V | + * ----------> S1 | + * /| | + * / |S | + * F/ \_____/ + * / + * |<----- + * | \ + * V |S + * Q2 ---> U----->backtrack + * | F / + * S| / + * V F / + * S2--/ + */ + +GreedyLoopState::GreedyLoopState(bool not_at_start) { + counter_backtrack_trace_.set_backtrack(&label_); + if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE); +} + +void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { +#ifdef DEBUG + int choice_count = alternatives_->length(); + for (int i = 0; i < choice_count - 1; i++) { + GuardedAlternative alternative = alternatives_->at(i); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == nullptr) ? 0 : guards->length(); + for (int j = 0; j < guard_count; j++) { + DCHECK(!trace->mentions_reg(guards->at(j)->reg())); + } + } +#endif +} + +void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, + PreloadState* state) { + if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) { + // Save some time by looking at most one machine word ahead. + state->eats_at_least_ = + EatsAtLeast(current_trace->at_start() == Trace::FALSE_VALUE); + } + state->preload_characters_ = + CalculatePreloadCharacters(compiler, state->eats_at_least_); + + state->preload_is_current_ = + (current_trace->characters_preloaded() == state->preload_characters_); + state->preload_has_checked_bounds_ = state->preload_is_current_; +} + +void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + int choice_count = alternatives_->length(); + + if (choice_count == 1 && alternatives_->at(0).guards() == nullptr) { + alternatives_->at(0).node()->Emit(compiler, trace); + return; + } + + AssertGuardsMentionRegisters(trace); + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + DCHECK(limit_result == CONTINUE); + + // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for + // other choice nodes we only flush if we are out of code size budget. + if (trace->flush_budget() == 0 && trace->actions() != nullptr) { + trace->Flush(compiler, this); + return; + } + + RecursionCheck rc(compiler); + + PreloadState preload; + preload.init(); + GreedyLoopState greedy_loop_state(not_at_start()); + + int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); + AlternativeGenerationList alt_gens(choice_count, zone()); + + if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { + trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload, + &greedy_loop_state, text_length); + } else { + // TODO(erikcorry): Delete this. We don't need this label, but it makes us + // match the traces produced pre-cleanup. + Label second_choice; + compiler->macro_assembler()->Bind(&second_choice); + + preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); + + EmitChoices(compiler, &alt_gens, 0, trace, &preload); + } + + // At this point we need to generate slow checks for the alternatives where + // the quick check was inlined. We can recognize these because the associated + // label was bound. + int new_flush_budget = trace->flush_budget() / choice_count; + for (int i = 0; i < choice_count; i++) { + AlternativeGeneration* alt_gen = alt_gens.at(i); + Trace new_trace(*trace); + // If there are actions to be flushed we have to limit how many times + // they are flushed. Take the budget of the parent trace and distribute + // it fairly amongst the children. + if (new_trace.actions() != nullptr) { + new_trace.set_flush_budget(new_flush_budget); + } + bool next_expects_preload = + i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; + EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->at(i), + alt_gen, preload.preload_characters_, + next_expects_preload); + } +} + +Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, + AlternativeGenerationList* alt_gens, + PreloadState* preload, + GreedyLoopState* greedy_loop_state, + int text_length) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + // Here we have special handling for greedy loops containing only text nodes + // and other simple nodes. These are handled by pushing the current + // position on the stack and then incrementing the current position each + // time around the switch. On backtrack we decrement the current position + // and check it against the pushed value. This avoids pushing backtrack + // information for each iteration of the loop, which could take up a lot of + // space. + DCHECK(trace->stop_node() == nullptr); + macro_assembler->PushCurrentPosition(); + Label greedy_match_failed; + Trace greedy_match_trace; + if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE); + greedy_match_trace.set_backtrack(&greedy_match_failed); + Label loop_label; + macro_assembler->Bind(&loop_label); + greedy_match_trace.set_stop_node(this); + greedy_match_trace.set_loop_label(&loop_label); + alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); + macro_assembler->Bind(&greedy_match_failed); + + Label second_choice; // For use in greedy matches. + macro_assembler->Bind(&second_choice); + + Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); + + EmitChoices(compiler, alt_gens, 1, new_trace, preload); + + macro_assembler->Bind(greedy_loop_state->label()); + // If we have unwound to the bottom then backtrack. + macro_assembler->CheckGreedyLoop(trace->backtrack()); + // Otherwise try the second priority at an earlier position. + macro_assembler->AdvanceCurrentPosition(-text_length); + macro_assembler->GoTo(&second_choice); + return new_trace; +} + +int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, + Trace* trace) { + int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; + if (alternatives_->length() != 2) return eats_at_least; + + GuardedAlternative alt1 = alternatives_->at(1); + if (alt1.guards() != nullptr && alt1.guards()->length() != 0) { + return eats_at_least; + } + RegExpNode* eats_anything_node = alt1.node(); + if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) { + return eats_at_least; + } + + // Really we should be creating a new trace when we execute this function, + // but there is no need, because the code it generates cannot backtrack, and + // we always arrive here with a trivial trace (since it's the entry to a + // loop. That also implies that there are no preloaded characters, which is + // good, because it means we won't be violating any assumptions by + // overwriting those characters with new load instructions. + DCHECK(trace->is_trivial()); + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + Isolate* isolate = macro_assembler->isolate(); + // At this point we know that we are at a non-greedy loop that will eat + // any character one at a time. Any non-anchored regexp has such a + // loop prepended to it in order to find where it starts. We look for + // a pattern of the form ...abc... where we can look 6 characters ahead + // and step forwards 3 if the character is not one of abc. Abc need + // not be atoms, they can be any reasonably limited character class or + // small alternation. + BoyerMooreLookahead* bm = bm_info(false); + if (bm == nullptr) { + eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(false)); + if (eats_at_least >= 1) { + bm = new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); + GuardedAlternative alt0 = alternatives_->at(0); + alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false); + } + } + if (bm != nullptr) { + bm->EmitSkipInstructions(macro_assembler); + } + return eats_at_least; +} + +void ChoiceNode::EmitChoices(RegExpCompiler* compiler, + AlternativeGenerationList* alt_gens, + int first_choice, Trace* trace, + PreloadState* preload) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + SetUpPreLoad(compiler, trace, preload); + + // For now we just call all choices one after the other. The idea ultimately + // is to use the Dispatch table to try only the relevant ones. + int choice_count = alternatives_->length(); + + int new_flush_budget = trace->flush_budget() / choice_count; + + for (int i = first_choice; i < choice_count; i++) { + bool is_last = i == choice_count - 1; + bool fall_through_on_failure = !is_last; + GuardedAlternative alternative = alternatives_->at(i); + AlternativeGeneration* alt_gen = alt_gens->at(i); + alt_gen->quick_check_details.set_characters(preload->preload_characters_); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == nullptr) ? 0 : guards->length(); + Trace new_trace(*trace); + new_trace.set_characters_preloaded( + preload->preload_is_current_ ? preload->preload_characters_ : 0); + if (preload->preload_has_checked_bounds_) { + new_trace.set_bound_checked_up_to(preload->preload_characters_); + } + new_trace.quick_check_performed()->Clear(); + if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); + if (!is_last) { + new_trace.set_backtrack(&alt_gen->after); + } + alt_gen->expects_preload = preload->preload_is_current_; + bool generate_full_check_inline = false; + if (compiler->optimize() && + try_to_emit_quick_check_for_alternative(i == 0) && + alternative.node()->EmitQuickCheck( + compiler, trace, &new_trace, preload->preload_has_checked_bounds_, + &alt_gen->possible_success, &alt_gen->quick_check_details, + fall_through_on_failure, this)) { + // Quick check was generated for this choice. + preload->preload_is_current_ = true; + preload->preload_has_checked_bounds_ = true; + // If we generated the quick check to fall through on possible success, + // we now need to generate the full check inline. + if (!fall_through_on_failure) { + macro_assembler->Bind(&alt_gen->possible_success); + new_trace.set_quick_check_performed(&alt_gen->quick_check_details); + new_trace.set_characters_preloaded(preload->preload_characters_); + new_trace.set_bound_checked_up_to(preload->preload_characters_); + generate_full_check_inline = true; + } + } else if (alt_gen->quick_check_details.cannot_match()) { + if (!fall_through_on_failure) { + macro_assembler->GoTo(trace->backtrack()); + } + continue; + } else { + // No quick check was generated. Put the full code here. + // If this is not the first choice then there could be slow checks from + // previous cases that go here when they fail. There's no reason to + // insist that they preload characters since the slow check we are about + // to generate probably can't use it. + if (i != first_choice) { + alt_gen->expects_preload = false; + new_trace.InvalidateCurrentCharacter(); + } + generate_full_check_inline = true; + } + if (generate_full_check_inline) { + if (new_trace.actions() != nullptr) { + new_trace.set_flush_budget(new_flush_budget); + } + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &new_trace); + } + alternative.node()->Emit(compiler, &new_trace); + preload->preload_is_current_ = false; + } + macro_assembler->Bind(&alt_gen->after); + } +} + +void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, + Trace* trace, + GuardedAlternative alternative, + AlternativeGeneration* alt_gen, + int preload_characters, + bool next_expects_preload) { + if (!alt_gen->possible_success.is_linked()) return; + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + macro_assembler->Bind(&alt_gen->possible_success); + Trace out_of_line_trace(*trace); + out_of_line_trace.set_characters_preloaded(preload_characters); + out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); + if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == nullptr) ? 0 : guards->length(); + if (next_expects_preload) { + Label reload_current_char; + out_of_line_trace.set_backtrack(&reload_current_char); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + macro_assembler->Bind(&reload_current_char); + // Reload the current character, since the next quick check expects that. + // We don't need to check bounds here because we only get into this + // code through a quick check which already did the checked load. + macro_assembler->LoadCurrentCharacter(trace->cp_offset(), nullptr, false, + preload_characters); + macro_assembler->GoTo(&(alt_gen->after)); + } else { + out_of_line_trace.set_backtrack(&(alt_gen->after)); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + } +} + +void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + DCHECK(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + switch (action_type_) { + case STORE_POSITION: { + Trace::DeferredCapture new_capture(data_.u_position_register.reg, + data_.u_position_register.is_capture, + trace); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case INCREMENT_REGISTER: { + Trace::DeferredIncrementRegister new_increment( + data_.u_increment_register.reg); + Trace new_trace = *trace; + new_trace.add_action(&new_increment); + on_success()->Emit(compiler, &new_trace); + break; + } + case SET_REGISTER_FOR_LOOP: { + Trace::DeferredSetRegisterForLoop new_set(data_.u_store_register.reg, + data_.u_store_register.value); + Trace new_trace = *trace; + new_trace.add_action(&new_set); + on_success()->Emit(compiler, &new_trace); + break; + } + case CLEAR_CAPTURES: { + Trace::DeferredClearCaptures new_capture(Interval( + data_.u_clear_captures.range_from, data_.u_clear_captures.range_to)); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case BEGIN_SUBMATCH: + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + assembler->WriteCurrentPositionToRegister( + data_.u_submatch.current_position_register, 0); + assembler->WriteStackPointerToRegister( + data_.u_submatch.stack_pointer_register); + on_success()->Emit(compiler, trace); + } + break; + case EMPTY_MATCH_CHECK: { + int start_pos_reg = data_.u_empty_match_check.start_register; + int stored_pos = 0; + int rep_reg = data_.u_empty_match_check.repetition_register; + bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); + bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); + if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { + // If we know we haven't advanced and there is no minimum we + // can just backtrack immediately. + assembler->GoTo(trace->backtrack()); + } else if (know_dist && stored_pos < trace->cp_offset()) { + // If we know we've advanced we can generate the continuation + // immediately. + on_success()->Emit(compiler, trace); + } else if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + Label skip_empty_check; + // If we have a minimum number of repetitions we check the current + // number first and skip the empty check if it's not enough. + if (has_minimum) { + int limit = data_.u_empty_match_check.repetition_limit; + assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); + } + // If the match is empty we bail out, otherwise we fall through + // to the on-success continuation. + assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, + trace->backtrack()); + assembler->Bind(&skip_empty_check); + on_success()->Emit(compiler, trace); + } + break; + } + case POSITIVE_SUBMATCH_SUCCESS: { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + assembler->ReadCurrentPositionFromRegister( + data_.u_submatch.current_position_register); + assembler->ReadStackPointerFromRegister( + data_.u_submatch.stack_pointer_register); + int clear_register_count = data_.u_submatch.clear_register_count; + if (clear_register_count == 0) { + on_success()->Emit(compiler, trace); + return; + } + int clear_registers_from = data_.u_submatch.clear_register_from; + Label clear_registers_backtrack; + Trace new_trace = *trace; + new_trace.set_backtrack(&clear_registers_backtrack); + on_success()->Emit(compiler, &new_trace); + + assembler->Bind(&clear_registers_backtrack); + int clear_registers_to = clear_registers_from + clear_register_count - 1; + assembler->ClearRegisters(clear_registers_from, clear_registers_to); + + DCHECK(trace->backtrack() == nullptr); + assembler->Backtrack(); + return; + } + default: + UNREACHABLE(); + } +} + +void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + DCHECK(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + DCHECK_EQ(start_reg_ + 1, end_reg_); + if (IgnoreCase(flags_)) { + assembler->CheckNotBackReferenceIgnoreCase( + start_reg_, read_backward(), IsUnicode(flags_), trace->backtrack()); + } else { + assembler->CheckNotBackReference(start_reg_, read_backward(), + trace->backtrack()); + } + // We are going to advance backward, so we may end up at the start. + if (read_backward()) trace->set_at_start(Trace::UNKNOWN); + + // Check that the back reference does not end inside a surrogate pair. + if (IsUnicode(flags_) && !compiler->one_byte()) { + assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack()); + } + on_success()->Emit(compiler, trace); +} + +void TextNode::CalculateOffsets() { + int element_count = elements()->length(); + // Set up the offsets of the elements relative to the start. This is a fixed + // quantity since a TextNode can only contain fixed-width things. + int cp_offset = 0; + for (int i = 0; i < element_count; i++) { + TextElement& elm = elements()->at(i); + elm.set_cp_offset(cp_offset); + cp_offset += elm.length(); + } +} + +namespace { + +// Assertion propagation moves information about assertions such as +// \b to the affected nodes. For instance, in /.\b./ information must +// be propagated to the first '.' that whatever follows needs to know +// if it matched a word or a non-word, and to the second '.' that it +// has to check if it succeeds a word or non-word. In this case the +// result will be something like: +// +// +-------+ +------------+ +// | . | | . | +// +-------+ ---> +------------+ +// | word? | | check word | +// +-------+ +------------+ +class AssertionPropagator : public AllStatic { + public: + static void VisitText(TextNode* that) {} + + static void VisitAction(ActionNode* that) { + // If the next node is interested in what it follows then this node + // has to be interested too so it can pass the information on. + that->info()->AddFromFollowing(that->on_success()->info()); + } + + static void VisitChoice(ChoiceNode* that, int i) { + // Anything the following nodes need to know has to be known by + // this node also, so it can pass it on. + that->info()->AddFromFollowing(that->alternatives()->at(i).node()->info()); + } + + static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) { + that->info()->AddFromFollowing(that->continue_node()->info()); + } + + static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) { + that->info()->AddFromFollowing(that->loop_node()->info()); + } + + static void VisitNegativeLookaroundChoiceLookaroundNode( + NegativeLookaroundChoiceNode* that) { + VisitChoice(that, NegativeLookaroundChoiceNode::kLookaroundIndex); + } + + static void VisitNegativeLookaroundChoiceContinueNode( + NegativeLookaroundChoiceNode* that) { + VisitChoice(that, NegativeLookaroundChoiceNode::kContinueIndex); + } + + static void VisitBackReference(BackReferenceNode* that) {} + + static void VisitAssertion(AssertionNode* that) {} +}; + +// Propagates information about the minimum size of successful matches from +// successor nodes to their predecessors. Note that all eats_at_least values +// are initialized to zero before analysis. +class EatsAtLeastPropagator : public AllStatic { + public: + static void VisitText(TextNode* that) { + // The eats_at_least value is not used if reading backward. + if (!that->read_backward()) { + // We are not at the start after this node, and thus we can use the + // successor's eats_at_least_from_not_start value. + uint8_t eats_at_least = base::saturated_cast<uint8_t>( + that->Length() + that->on_success() + ->eats_at_least_info() + ->eats_at_least_from_not_start); + that->set_eats_at_least_info(EatsAtLeastInfo(eats_at_least)); + } + } + + static void VisitAction(ActionNode* that) { + // POSITIVE_SUBMATCH_SUCCESS rewinds input, so we must not consider + // successor nodes for eats_at_least. SET_REGISTER_FOR_LOOP indicates a loop + // entry point, which means the loop body will run at least the minimum + // number of times before the continuation case can run. Otherwise the + // current node eats at least as much as its successor. + switch (that->action_type()) { + case ActionNode::POSITIVE_SUBMATCH_SUCCESS: + break; // Was already initialized to zero. + case ActionNode::SET_REGISTER_FOR_LOOP: + that->set_eats_at_least_info( + that->on_success()->EatsAtLeastFromLoopEntry()); + break; + default: + that->set_eats_at_least_info(*that->on_success()->eats_at_least_info()); + break; + } + } + + static void VisitChoice(ChoiceNode* that, int i) { + // The minimum possible match from a choice node is the minimum of its + // successors. + EatsAtLeastInfo eats_at_least = + i == 0 ? EatsAtLeastInfo(UINT8_MAX) : *that->eats_at_least_info(); + eats_at_least.SetMin( + *that->alternatives()->at(i).node()->eats_at_least_info()); + that->set_eats_at_least_info(eats_at_least); + } + + static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) { + that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info()); + } + + static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) {} + + static void VisitNegativeLookaroundChoiceLookaroundNode( + NegativeLookaroundChoiceNode* that) {} + + static void VisitNegativeLookaroundChoiceContinueNode( + NegativeLookaroundChoiceNode* that) { + that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info()); + } + + static void VisitBackReference(BackReferenceNode* that) { + if (!that->read_backward()) { + that->set_eats_at_least_info(*that->on_success()->eats_at_least_info()); + } + } + + static void VisitAssertion(AssertionNode* that) { + EatsAtLeastInfo eats_at_least = *that->on_success()->eats_at_least_info(); + if (that->assertion_type() == AssertionNode::AT_START) { + // If we know we are not at the start and we are asked "how many + // characters will you match if you succeed?" then we can answer anything + // since false implies false. So let's just set the max answer + // (UINT8_MAX) since that won't prevent us from preloading a lot of + // characters for the other branches in the node graph. + eats_at_least.eats_at_least_from_not_start = UINT8_MAX; + } + that->set_eats_at_least_info(eats_at_least); + } +}; + +} // namespace + +// ------------------------------------------------------------------- +// Analysis + +// Iterates the node graph and provides the opportunity for propagators to set +// values that depend on successor nodes. +template <typename... Propagators> +class Analysis : public NodeVisitor { + public: + Analysis(Isolate* isolate, bool is_one_byte) + : isolate_(isolate), is_one_byte_(is_one_byte), error_message_(nullptr) {} + + void EnsureAnalyzed(RegExpNode* that) { + StackLimitCheck check(isolate()); + if (check.HasOverflowed()) { + fail("Stack overflow"); + return; + } + if (that->info()->been_analyzed || that->info()->being_analyzed) return; + that->info()->being_analyzed = true; + that->Accept(this); + that->info()->being_analyzed = false; + that->info()->been_analyzed = true; + } + + bool has_failed() { return error_message_ != nullptr; } + const char* error_message() { + DCHECK(error_message_ != nullptr); + return error_message_; + } + void fail(const char* error_message) { error_message_ = error_message; } + + Isolate* isolate() const { return isolate_; } + + void VisitEnd(EndNode* that) override { + // nothing to do + } + +// Used to call the given static function on each propagator / variadic template +// argument. +#define STATIC_FOR_EACH(expr) \ + do { \ + int dummy[] = {((expr), 0)...}; \ + USE(dummy); \ + } while (false) + + void VisitText(TextNode* that) override { + that->MakeCaseIndependent(isolate(), is_one_byte_); + EnsureAnalyzed(that->on_success()); + if (has_failed()) return; + that->CalculateOffsets(); + STATIC_FOR_EACH(Propagators::VisitText(that)); + } + + void VisitAction(ActionNode* that) override { + EnsureAnalyzed(that->on_success()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitAction(that)); + } + + void VisitChoice(ChoiceNode* that) override { + for (int i = 0; i < that->alternatives()->length(); i++) { + EnsureAnalyzed(that->alternatives()->at(i).node()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitChoice(that, i)); + } + } + + void VisitLoopChoice(LoopChoiceNode* that) override { + DCHECK_EQ(that->alternatives()->length(), 2); // Just loop and continue. + + // First propagate all information from the continuation node. + EnsureAnalyzed(that->continue_node()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitLoopChoiceContinueNode(that)); + + // Check the loop last since it may need the value of this node + // to get a correct result. + EnsureAnalyzed(that->loop_node()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitLoopChoiceLoopNode(that)); + } + + void VisitNegativeLookaroundChoice( + NegativeLookaroundChoiceNode* that) override { + DCHECK_EQ(that->alternatives()->length(), 2); // Lookaround and continue. + + EnsureAnalyzed(that->lookaround_node()); + if (has_failed()) return; + STATIC_FOR_EACH( + Propagators::VisitNegativeLookaroundChoiceLookaroundNode(that)); + + EnsureAnalyzed(that->continue_node()); + if (has_failed()) return; + STATIC_FOR_EACH( + Propagators::VisitNegativeLookaroundChoiceContinueNode(that)); + } + + void VisitBackReference(BackReferenceNode* that) override { + EnsureAnalyzed(that->on_success()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitBackReference(that)); + } + + void VisitAssertion(AssertionNode* that) override { + EnsureAnalyzed(that->on_success()); + if (has_failed()) return; + STATIC_FOR_EACH(Propagators::VisitAssertion(that)); + } + +#undef STATIC_FOR_EACH + + private: + Isolate* isolate_; + bool is_one_byte_; + const char* error_message_; + + DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); +}; + +const char* AnalyzeRegExp(Isolate* isolate, bool is_one_byte, + RegExpNode* node) { + Analysis<AssertionPropagator, EatsAtLeastPropagator> analysis(isolate, + is_one_byte); + DCHECK_EQ(node->info()->been_analyzed, false); + analysis.EnsureAnalyzed(node); + DCHECK_IMPLIES(analysis.has_failed(), analysis.error_message() != nullptr); + return analysis.has_failed() ? analysis.error_message() : nullptr; +} + +void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + // Working out the set of characters that a backreference can match is too + // hard, so we just say that any character can match. + bm->SetRest(offset); + SaveBMInfo(bm, not_at_start, offset); +} + +STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == + RegExpMacroAssembler::kTableSize); + +void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + ZoneList<GuardedAlternative>* alts = alternatives(); + budget = (budget - 1) / alts->length(); + for (int i = 0; i < alts->length(); i++) { + GuardedAlternative& alt = alts->at(i); + if (alt.guards() != nullptr && alt.guards()->length() != 0) { + bm->SetRest(offset); // Give up trying to fill in info. + SaveBMInfo(bm, not_at_start, offset); + return; + } + alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start); + } + SaveBMInfo(bm, not_at_start, offset); +} + +void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + if (initial_offset >= bm->length()) return; + int offset = initial_offset; + int max_char = bm->max_char(); + for (int i = 0; i < elements()->length(); i++) { + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + TextElement text = elements()->at(i); + if (text.text_type() == TextElement::ATOM) { + RegExpAtom* atom = text.atom(); + for (int j = 0; j < atom->length(); j++, offset++) { + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + uc16 character = atom->data()[j]; + if (IgnoreCase(atom->flags())) { + unibrow::uchar chars[4]; + int length = GetCaseIndependentLetters( + isolate, character, bm->max_char() == String::kMaxOneByteCharCode, + chars, 4); + for (int j = 0; j < length; j++) { + bm->Set(offset, chars[j]); + } + } else { + if (character <= max_char) bm->Set(offset, character); + } + } + } else { + DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); + RegExpCharacterClass* char_class = text.char_class(); + ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); + if (char_class->is_negated()) { + bm->SetAll(offset); + } else { + for (int k = 0; k < ranges->length(); k++) { + CharacterRange& range = ranges->at(k); + if (range.from() > max_char) continue; + int to = Min(max_char, static_cast<int>(range.to())); + bm->SetInterval(offset, Interval(range.from(), to)); + } + } + offset++; + } + } + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, + true); // Not at start after a text node. + if (initial_offset == 0) set_bm_info(not_at_start, bm); +} + +// static +RegExpNode* RegExpCompiler::OptionallyStepBackToLeadSurrogate( + RegExpCompiler* compiler, RegExpNode* on_success, JSRegExp::Flags flags) { + DCHECK(!compiler->read_backward()); + Zone* zone = compiler->zone(); + ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List( + zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd)); + ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List( + zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd)); + + ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone); + + int stack_register = compiler->UnicodeLookaroundStackRegister(); + int position_register = compiler->UnicodeLookaroundPositionRegister(); + RegExpNode* step_back = TextNode::CreateForCharacterRanges( + zone, lead_surrogates, true, on_success, flags); + RegExpLookaround::Builder builder(true, step_back, stack_register, + position_register); + RegExpNode* match_trail = TextNode::CreateForCharacterRanges( + zone, trail_surrogates, false, builder.on_match_success(), flags); + + optional_step_back->AddAlternative( + GuardedAlternative(builder.ForMatch(match_trail))); + optional_step_back->AddAlternative(GuardedAlternative(on_success)); + + return optional_step_back; +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-compiler.h b/js/src/regexp/regexp-compiler.h new file mode 100644 index 000000000..192b3284d --- /dev/null +++ b/js/src/regexp/regexp-compiler.h @@ -0,0 +1,625 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_COMPILER_H_ +#define V8_REGEXP_REGEXP_COMPILER_H_ + +#include <bitset> + +#include "regexp/regexp-nodes.h" + +namespace v8 { +namespace internal { + +class DynamicBitSet; +class Isolate; + +namespace regexp_compiler_constants { + +// The '2' variant is has inclusive from and exclusive to. +// This covers \s as defined in ECMA-262 5.1, 15.10.2.12, +// which include WhiteSpace (7.2) or LineTerminator (7.3) values. +constexpr uc32 kRangeEndMarker = 0x110000; +constexpr int kSpaceRanges[] = { + '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, + 0x1681, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030, + 0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, kRangeEndMarker}; +constexpr int kSpaceRangeCount = arraysize(kSpaceRanges); + +constexpr int kWordRanges[] = {'0', '9' + 1, 'A', 'Z' + 1, '_', + '_' + 1, 'a', 'z' + 1, kRangeEndMarker}; +constexpr int kWordRangeCount = arraysize(kWordRanges); +constexpr int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker}; +constexpr int kDigitRangeCount = arraysize(kDigitRanges); +constexpr int kSurrogateRanges[] = {kLeadSurrogateStart, + kLeadSurrogateStart + 1, kRangeEndMarker}; +constexpr int kSurrogateRangeCount = arraysize(kSurrogateRanges); +constexpr int kLineTerminatorRanges[] = {0x000A, 0x000B, 0x000D, 0x000E, + 0x2028, 0x202A, kRangeEndMarker}; +constexpr int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges); + +// More makes code generation slower, less makes V8 benchmark score lower. +constexpr int kMaxLookaheadForBoyerMoore = 8; +// In a 3-character pattern you can maximally step forwards 3 characters +// at a time, which is not always enough to pay for the extra logic. +constexpr int kPatternTooShortForBoyerMoore = 2; + +} // namespace regexp_compiler_constants + +inline bool IgnoreCase(JSRegExp::Flags flags) { + return (flags & JSRegExp::kIgnoreCase) != 0; +} + +inline bool IsUnicode(JSRegExp::Flags flags) { + return (flags & JSRegExp::kUnicode) != 0; +} + +inline bool IsSticky(JSRegExp::Flags flags) { + return (flags & JSRegExp::kSticky) != 0; +} + +inline bool IsGlobal(JSRegExp::Flags flags) { + return (flags & JSRegExp::kGlobal) != 0; +} + +inline bool DotAll(JSRegExp::Flags flags) { + return (flags & JSRegExp::kDotAll) != 0; +} + +inline bool Multiline(JSRegExp::Flags flags) { + return (flags & JSRegExp::kMultiline) != 0; +} + +inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) { + // Both unicode and ignore_case flags are set. We need to use ICU to find + // the closure over case equivalents. + return IsUnicode(flags) && IgnoreCase(flags); +} + +// Details of a quick mask-compare check that can look ahead in the +// input stream. +class QuickCheckDetails { + public: + QuickCheckDetails() + : characters_(0), mask_(0), value_(0), cannot_match_(false) {} + explicit QuickCheckDetails(int characters) + : characters_(characters), mask_(0), value_(0), cannot_match_(false) {} + bool Rationalize(bool one_byte); + // Merge in the information from another branch of an alternation. + void Merge(QuickCheckDetails* other, int from_index); + // Advance the current position by some amount. + void Advance(int by, bool one_byte); + void Clear(); + bool cannot_match() { return cannot_match_; } + void set_cannot_match() { cannot_match_ = true; } + struct Position { + Position() : mask(0), value(0), determines_perfectly(false) {} + uc16 mask; + uc16 value; + bool determines_perfectly; + }; + int characters() { return characters_; } + void set_characters(int characters) { characters_ = characters; } + Position* positions(int index) { + DCHECK_LE(0, index); + DCHECK_GT(characters_, index); + return positions_ + index; + } + uint32_t mask() { return mask_; } + uint32_t value() { return value_; } + + private: + // How many characters do we have quick check information from. This is + // the same for all branches of a choice node. + int characters_; + Position positions_[4]; + // These values are the condensate of the above array after Rationalize(). + uint32_t mask_; + uint32_t value_; + // If set to true, there is no way this quick check can match at all. + // E.g., if it requires to be at the start of the input, and isn't. + bool cannot_match_; +}; + +// Improve the speed that we scan for an initial point where a non-anchored +// regexp can match by using a Boyer-Moore-like table. This is done by +// identifying non-greedy non-capturing loops in the nodes that eat any +// character one at a time. For example in the middle of the regexp +// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly +// inserted at the start of any non-anchored regexp. +// +// When we have found such a loop we look ahead in the nodes to find the set of +// characters that can come at given distances. For example for the regexp +// /.?foo/ we know that there are at least 3 characters ahead of us, and the +// sets of characters that can occur are [any, [f, o], [o]]. We find a range in +// the lookahead info where the set of characters is reasonably constrained. In +// our example this is from index 1 to 2 (0 is not constrained). We can now +// look 3 characters ahead and if we don't find one of [f, o] (the union of +// [f, o] and [o]) then we can skip forwards by the range size (in this case 2). +// +// For Unicode input strings we do the same, but modulo 128. +// +// We also look at the first string fed to the regexp and use that to get a hint +// of the character frequencies in the inputs. This affects the assessment of +// whether the set of characters is 'reasonably constrained'. +// +// We also have another lookahead mechanism (called quick check in the code), +// which uses a wide load of multiple characters followed by a mask and compare +// to determine whether a match is possible at this point. +enum ContainedInLattice { + kNotYet = 0, + kLatticeIn = 1, + kLatticeOut = 2, + kLatticeUnknown = 3 // Can also mean both in and out. +}; + +inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { + return static_cast<ContainedInLattice>(a | b); +} + +class BoyerMoorePositionInfo : public ZoneObject { + public: + bool at(int i) const { return map_[i]; } + + static constexpr int kMapSize = 128; + static constexpr int kMask = kMapSize - 1; + + int map_count() const { return map_count_; } + + void Set(int character); + void SetInterval(const Interval& interval); + void SetAll(); + + bool is_non_word() { return w_ == kLatticeOut; } + bool is_word() { return w_ == kLatticeIn; } + + using Bitset = std::bitset<kMapSize>; + Bitset raw_bitset() const { return map_; } + + private: + Bitset map_; + int map_count_ = 0; // Number of set bits in the map. + ContainedInLattice w_ = kNotYet; // The \w character class. +}; + +class BoyerMooreLookahead : public ZoneObject { + public: + BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); + + int length() { return length_; } + int max_char() { return max_char_; } + RegExpCompiler* compiler() { return compiler_; } + + int Count(int map_number) { return bitmaps_->at(map_number)->map_count(); } + + BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } + + void Set(int map_number, int character) { + if (character > max_char_) return; + BoyerMoorePositionInfo* info = bitmaps_->at(map_number); + info->Set(character); + } + + void SetInterval(int map_number, const Interval& interval) { + if (interval.from() > max_char_) return; + BoyerMoorePositionInfo* info = bitmaps_->at(map_number); + if (interval.to() > max_char_) { + info->SetInterval(Interval(interval.from(), max_char_)); + } else { + info->SetInterval(interval); + } + } + + void SetAll(int map_number) { bitmaps_->at(map_number)->SetAll(); } + + void SetRest(int from_map) { + for (int i = from_map; i < length_; i++) SetAll(i); + } + void EmitSkipInstructions(RegExpMacroAssembler* masm); + + private: + // This is the value obtained by EatsAtLeast. If we do not have at least this + // many characters left in the sample string then the match is bound to fail. + // Therefore it is OK to read a character this far ahead of the current match + // point. + int length_; + RegExpCompiler* compiler_; + // 0xff for Latin1, 0xffff for UTF-16. + int max_char_; + ZoneList<BoyerMoorePositionInfo*>* bitmaps_; + + int GetSkipTable(int min_lookahead, int max_lookahead, + Handle<ByteArray> boolean_skip_table); + bool FindWorthwhileInterval(int* from, int* to); + int FindBestInterval(int max_number_of_chars, int old_biggest_points, + int* from, int* to); +}; + +// There are many ways to generate code for a node. This class encapsulates +// the current way we should be generating. In other words it encapsulates +// the current state of the code generator. The effect of this is that we +// generate code for paths that the matcher can take through the regular +// expression. A given node in the regexp can be code-generated several times +// as it can be part of several traces. For example for the regexp: +// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part +// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code +// to match foo is generated only once (the traces have a common prefix). The +// code to store the capture is deferred and generated (twice) after the places +// where baz has been matched. +class Trace { + public: + // A value for a property that is either known to be true, know to be false, + // or not known. + enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 }; + + class DeferredAction { + public: + DeferredAction(ActionNode::ActionType action_type, int reg) + : action_type_(action_type), reg_(reg), next_(nullptr) {} + DeferredAction* next() { return next_; } + bool Mentions(int reg); + int reg() { return reg_; } + ActionNode::ActionType action_type() { return action_type_; } + + private: + ActionNode::ActionType action_type_; + int reg_; + DeferredAction* next_; + friend class Trace; + }; + + class DeferredCapture : public DeferredAction { + public: + DeferredCapture(int reg, bool is_capture, Trace* trace) + : DeferredAction(ActionNode::STORE_POSITION, reg), + cp_offset_(trace->cp_offset()), + is_capture_(is_capture) {} + int cp_offset() { return cp_offset_; } + bool is_capture() { return is_capture_; } + + private: + int cp_offset_; + bool is_capture_; + void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } + }; + + class DeferredSetRegisterForLoop : public DeferredAction { + public: + DeferredSetRegisterForLoop(int reg, int value) + : DeferredAction(ActionNode::SET_REGISTER_FOR_LOOP, reg), + value_(value) {} + int value() { return value_; } + + private: + int value_; + }; + + class DeferredClearCaptures : public DeferredAction { + public: + explicit DeferredClearCaptures(Interval range) + : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {} + Interval range() { return range_; } + + private: + Interval range_; + }; + + class DeferredIncrementRegister : public DeferredAction { + public: + explicit DeferredIncrementRegister(int reg) + : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {} + }; + + Trace() + : cp_offset_(0), + actions_(nullptr), + backtrack_(nullptr), + stop_node_(nullptr), + loop_label_(nullptr), + characters_preloaded_(0), + bound_checked_up_to_(0), + flush_budget_(100), + at_start_(UNKNOWN) {} + + // End the trace. This involves flushing the deferred actions in the trace + // and pushing a backtrack location onto the backtrack stack. Once this is + // done we can start a new trace or go to one that has already been + // generated. + void Flush(RegExpCompiler* compiler, RegExpNode* successor); + int cp_offset() { return cp_offset_; } + DeferredAction* actions() { return actions_; } + // A trivial trace is one that has no deferred actions or other state that + // affects the assumptions used when generating code. There is no recorded + // backtrack location in a trivial trace, so with a trivial trace we will + // generate code that, on a failure to match, gets the backtrack location + // from the backtrack stack rather than using a direct jump instruction. We + // always start code generation with a trivial trace and non-trivial traces + // are created as we emit code for nodes or add to the list of deferred + // actions in the trace. The location of the code generated for a node using + // a trivial trace is recorded in a label in the node so that gotos can be + // generated to that code. + bool is_trivial() { + return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 && + characters_preloaded_ == 0 && bound_checked_up_to_ == 0 && + quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN; + } + TriBool at_start() { return at_start_; } + void set_at_start(TriBool at_start) { at_start_ = at_start; } + Label* backtrack() { return backtrack_; } + Label* loop_label() { return loop_label_; } + RegExpNode* stop_node() { return stop_node_; } + int characters_preloaded() { return characters_preloaded_; } + int bound_checked_up_to() { return bound_checked_up_to_; } + int flush_budget() { return flush_budget_; } + QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } + bool mentions_reg(int reg); + // Returns true if a deferred position store exists to the specified + // register and stores the offset in the out-parameter. Otherwise + // returns false. + bool GetStoredPosition(int reg, int* cp_offset); + // These set methods and AdvanceCurrentPositionInTrace should be used only on + // new traces - the intention is that traces are immutable after creation. + void add_action(DeferredAction* new_action) { + DCHECK(new_action->next_ == nullptr); + new_action->next_ = actions_; + actions_ = new_action; + } + void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } + void set_stop_node(RegExpNode* node) { stop_node_ = node; } + void set_loop_label(Label* label) { loop_label_ = label; } + void set_characters_preloaded(int count) { characters_preloaded_ = count; } + void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } + void set_flush_budget(int to) { flush_budget_ = to; } + void set_quick_check_performed(QuickCheckDetails* d) { + quick_check_performed_ = *d; + } + void InvalidateCurrentCharacter(); + void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); + + private: + int FindAffectedRegisters(DynamicBitSet* affected_registers, Zone* zone); + void PerformDeferredActions(RegExpMacroAssembler* macro, int max_register, + const DynamicBitSet& affected_registers, + DynamicBitSet* registers_to_pop, + DynamicBitSet* registers_to_clear, Zone* zone); + void RestoreAffectedRegisters(RegExpMacroAssembler* macro, int max_register, + const DynamicBitSet& registers_to_pop, + const DynamicBitSet& registers_to_clear); + int cp_offset_; + DeferredAction* actions_; + Label* backtrack_; + RegExpNode* stop_node_; + Label* loop_label_; + int characters_preloaded_; + int bound_checked_up_to_; + QuickCheckDetails quick_check_performed_; + int flush_budget_; + TriBool at_start_; +}; + +class GreedyLoopState { + public: + explicit GreedyLoopState(bool not_at_start); + + Label* label() { return &label_; } + Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } + + private: + Label label_; + Trace counter_backtrack_trace_; +}; + +struct PreloadState { + static const int kEatsAtLeastNotYetInitialized = -1; + bool preload_is_current_; + bool preload_has_checked_bounds_; + int preload_characters_; + int eats_at_least_; + void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; } +}; + +// Analysis performs assertion propagation and computes eats_at_least_ values. +// See the comments on AssertionPropagator and EatsAtLeastPropagator for more +// details. +// +// This method returns nullptr on success or a null-terminated failure message +// on failure. +const char* AnalyzeRegExp(Isolate* isolate, bool is_one_byte, RegExpNode* node); + +class FrequencyCollator { + public: + FrequencyCollator() : total_samples_(0) { + for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { + frequencies_[i] = CharacterFrequency(i); + } + } + + void CountCharacter(int character) { + int index = (character & RegExpMacroAssembler::kTableMask); + frequencies_[index].Increment(); + total_samples_++; + } + + // Does not measure in percent, but rather per-128 (the table size from the + // regexp macro assembler). + int Frequency(int in_character) { + DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character); + if (total_samples_ < 1) return 1; // Division by zero. + int freq_in_per128 = + (frequencies_[in_character].counter() * 128) / total_samples_; + return freq_in_per128; + } + + private: + class CharacterFrequency { + public: + CharacterFrequency() : counter_(0), character_(-1) {} + explicit CharacterFrequency(int character) + : counter_(0), character_(character) {} + + void Increment() { counter_++; } + int counter() { return counter_; } + int character() { return character_; } + + private: + int counter_; + int character_; + }; + + private: + CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; + int total_samples_; +}; + +class RegExpCompiler { + public: + RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, + bool is_one_byte); + + int AllocateRegister() { + if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { + reg_exp_too_big_ = true; + return next_register_; + } + return next_register_++; + } + + // Lookarounds to match lone surrogates for unicode character class matches + // are never nested. We can therefore reuse registers. + int UnicodeLookaroundStackRegister() { + if (unicode_lookaround_stack_register_ == kNoRegister) { + unicode_lookaround_stack_register_ = AllocateRegister(); + } + return unicode_lookaround_stack_register_; + } + + int UnicodeLookaroundPositionRegister() { + if (unicode_lookaround_position_register_ == kNoRegister) { + unicode_lookaround_position_register_ = AllocateRegister(); + } + return unicode_lookaround_position_register_; + } + + struct CompilationResult final { + explicit CompilationResult(const char* error_message) + : error_message(error_message) {} + CompilationResult(Object code, int registers) + : code(code), num_registers(registers) {} + + static CompilationResult RegExpTooBig() { + return CompilationResult("RegExp too big"); + } + + bool Succeeded() const { return error_message == nullptr; } + + const char* const error_message = nullptr; + Object code; + int num_registers = 0; + }; + + CompilationResult Assemble(Isolate* isolate, RegExpMacroAssembler* assembler, + RegExpNode* start, int capture_count, + Handle<String> pattern); + + // If the regexp matching starts within a surrogate pair, step back to the + // lead surrogate and start matching from there. + static RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler, + RegExpNode* on_success, + JSRegExp::Flags flags); + + inline void AddWork(RegExpNode* node) { + if (!node->on_work_list() && !node->label()->is_bound()) { + node->set_on_work_list(true); + work_list_->push_back(node); + } + } + + static const int kImplementationOffset = 0; + static const int kNumberOfRegistersOffset = 0; + static const int kCodeOffset = 1; + + RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } + EndNode* accept() { return accept_; } + + static const int kMaxRecursion = 100; + inline int recursion_depth() { return recursion_depth_; } + inline void IncrementRecursionDepth() { recursion_depth_++; } + inline void DecrementRecursionDepth() { recursion_depth_--; } + + void SetRegExpTooBig() { reg_exp_too_big_ = true; } + + inline bool one_byte() { return one_byte_; } + inline bool optimize() { return optimize_; } + inline void set_optimize(bool value) { optimize_ = value; } + inline bool limiting_recursion() { return limiting_recursion_; } + inline void set_limiting_recursion(bool value) { + limiting_recursion_ = value; + } + bool read_backward() { return read_backward_; } + void set_read_backward(bool value) { read_backward_ = value; } + FrequencyCollator* frequency_collator() { return &frequency_collator_; } + + int current_expansion_factor() { return current_expansion_factor_; } + void set_current_expansion_factor(int value) { + current_expansion_factor_ = value; + } + + Isolate* isolate() const { return isolate_; } + Zone* zone() const { return zone_; } + + static const int kNoRegister = -1; + + private: + EndNode* accept_; + int next_register_; + int unicode_lookaround_stack_register_; + int unicode_lookaround_position_register_; + std::vector<RegExpNode*>* work_list_; + int recursion_depth_; + RegExpMacroAssembler* macro_assembler_; + bool one_byte_; + bool reg_exp_too_big_; + bool limiting_recursion_; + bool optimize_; + bool read_backward_; + int current_expansion_factor_; + FrequencyCollator frequency_collator_; + Isolate* isolate_; + Zone* zone_; +}; + +// Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates. +class UnicodeRangeSplitter { + public: + V8_EXPORT_PRIVATE UnicodeRangeSplitter(ZoneList<CharacterRange>* base); + + static constexpr int kInitialSize = 8; + using CharacterRangeVector = base::SmallVector<CharacterRange, kInitialSize>; + + const CharacterRangeVector* bmp() const { return &bmp_; } + const CharacterRangeVector* lead_surrogates() const { + return &lead_surrogates_; + } + const CharacterRangeVector* trail_surrogates() const { + return &trail_surrogates_; + } + const CharacterRangeVector* non_bmp() const { return &non_bmp_; } + + private: + void AddRange(CharacterRange range); + + CharacterRangeVector bmp_; + CharacterRangeVector lead_surrogates_; + CharacterRangeVector trail_surrogates_; + CharacterRangeVector non_bmp_; +}; + +// We need to check for the following characters: 0x39C 0x3BC 0x178. +// TODO(jgruber): Move to CharacterRange. +bool RangeContainsLatin1Equivalents(CharacterRange range); + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_COMPILER_H_ diff --git a/js/src/regexp/regexp-dotprinter.cc b/js/src/regexp/regexp-dotprinter.cc new file mode 100644 index 000000000..9bf800dfc --- /dev/null +++ b/js/src/regexp/regexp-dotprinter.cc @@ -0,0 +1,252 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-dotprinter.h" + +#include "regexp/regexp-compiler.h" + +namespace v8 { +namespace internal { + +// ------------------------------------------------------------------- +// Dot/dotty output + +#ifdef DEBUG + +class DotPrinterImpl : public NodeVisitor { + public: + explicit DotPrinterImpl(std::ostream& os) : os_(os) {} + void PrintNode(const char* label, RegExpNode* node); + void Visit(RegExpNode* node); + void PrintAttributes(RegExpNode* from); + void PrintOnFailure(RegExpNode* from, RegExpNode* to); +#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that); + FOR_EACH_NODE_TYPE(DECLARE_VISIT) +#undef DECLARE_VISIT + private: + std::ostream& os_; +}; + +void DotPrinterImpl::PrintNode(const char* label, RegExpNode* node) { + os_ << "digraph G {\n graph [label=\""; + for (int i = 0; label[i]; i++) { + switch (label[i]) { + case '\\': + os_ << "\\\\"; + break; + case '"': + os_ << "\""; + break; + default: + os_ << label[i]; + break; + } + } + os_ << "\"];\n"; + Visit(node); + os_ << "}" << std::endl; +} + +void DotPrinterImpl::Visit(RegExpNode* node) { + if (node->info()->visited) return; + node->info()->visited = true; + node->Accept(this); +} + +void DotPrinterImpl::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { + os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n"; + Visit(on_failure); +} + +class AttributePrinter { + public: + explicit AttributePrinter(std::ostream& os) // NOLINT + : os_(os), first_(true) {} + void PrintSeparator() { + if (first_) { + first_ = false; + } else { + os_ << "|"; + } + } + void PrintBit(const char* name, bool value) { + if (!value) return; + PrintSeparator(); + os_ << "{" << name << "}"; + } + void PrintPositive(const char* name, int value) { + if (value < 0) return; + PrintSeparator(); + os_ << "{" << name << "|" << value << "}"; + } + + private: + std::ostream& os_; + bool first_; +}; + +void DotPrinterImpl::PrintAttributes(RegExpNode* that) { + os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, " + << "margin=0.1, fontsize=10, label=\"{"; + AttributePrinter printer(os_); + NodeInfo* info = that->info(); + printer.PrintBit("NI", info->follows_newline_interest); + printer.PrintBit("WI", info->follows_word_interest); + printer.PrintBit("SI", info->follows_start_interest); + Label* label = that->label(); + if (label->is_bound()) printer.PrintPositive("@", label->pos()); + os_ << "}\"];\n" + << " a" << that << " -> n" << that + << " [style=dashed, color=grey, arrowhead=none];\n"; +} + +void DotPrinterImpl::VisitChoice(ChoiceNode* that) { + os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n"; + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + os_ << " n" << that << " -> n" << alt.node(); + } + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + alt.node()->Accept(this); + } +} + +void DotPrinterImpl::VisitLoopChoice(LoopChoiceNode* that) { + VisitChoice(that); +} + +void DotPrinterImpl::VisitNegativeLookaroundChoice( + NegativeLookaroundChoiceNode* that) { + VisitChoice(that); +} + +void DotPrinterImpl::VisitText(TextNode* that) { + Zone* zone = that->zone(); + os_ << " n" << that << " [label=\""; + for (int i = 0; i < that->elements()->length(); i++) { + if (i > 0) os_ << " "; + TextElement elm = that->elements()->at(i); + switch (elm.text_type()) { + case TextElement::ATOM: { + Vector<const uc16> data = elm.atom()->data(); + for (int i = 0; i < data.length(); i++) { + os_ << static_cast<char>(data[i]); + } + break; + } + case TextElement::CHAR_CLASS: { + RegExpCharacterClass* node = elm.char_class(); + os_ << "["; + if (node->is_negated()) os_ << "^"; + for (int j = 0; j < node->ranges(zone)->length(); j++) { + CharacterRange range = node->ranges(zone)->at(j); + os_ << AsUC16(range.from()) << "-" << AsUC16(range.to()); + } + os_ << "]"; + break; + } + default: + UNREACHABLE(); + } + } + os_ << "\", shape=box, peripheries=2];\n"; + PrintAttributes(that); + os_ << " n" << that << " -> n" << that->on_success() << ";\n"; + Visit(that->on_success()); +} + +void DotPrinterImpl::VisitBackReference(BackReferenceNode* that) { + os_ << " n" << that << " [label=\"$" << that->start_register() << "..$" + << that->end_register() << "\", shape=doubleoctagon];\n"; + PrintAttributes(that); + os_ << " n" << that << " -> n" << that->on_success() << ";\n"; + Visit(that->on_success()); +} + +void DotPrinterImpl::VisitEnd(EndNode* that) { + os_ << " n" << that << " [style=bold, shape=point];\n"; + PrintAttributes(that); +} + +void DotPrinterImpl::VisitAssertion(AssertionNode* that) { + os_ << " n" << that << " ["; + switch (that->assertion_type()) { + case AssertionNode::AT_END: + os_ << "label=\"$\", shape=septagon"; + break; + case AssertionNode::AT_START: + os_ << "label=\"^\", shape=septagon"; + break; + case AssertionNode::AT_BOUNDARY: + os_ << "label=\"\\b\", shape=septagon"; + break; + case AssertionNode::AT_NON_BOUNDARY: + os_ << "label=\"\\B\", shape=septagon"; + break; + case AssertionNode::AFTER_NEWLINE: + os_ << "label=\"(?<=\\n)\", shape=septagon"; + break; + } + os_ << "];\n"; + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + os_ << " n" << that << " -> n" << successor << ";\n"; + Visit(successor); +} + +void DotPrinterImpl::VisitAction(ActionNode* that) { + os_ << " n" << that << " ["; + switch (that->action_type_) { + case ActionNode::SET_REGISTER_FOR_LOOP: + os_ << "label=\"$" << that->data_.u_store_register.reg + << ":=" << that->data_.u_store_register.value << "\", shape=octagon"; + break; + case ActionNode::INCREMENT_REGISTER: + os_ << "label=\"$" << that->data_.u_increment_register.reg + << "++\", shape=octagon"; + break; + case ActionNode::STORE_POSITION: + os_ << "label=\"$" << that->data_.u_position_register.reg + << ":=$pos\", shape=octagon"; + break; + case ActionNode::BEGIN_SUBMATCH: + os_ << "label=\"$" << that->data_.u_submatch.current_position_register + << ":=$pos,begin\", shape=septagon"; + break; + case ActionNode::POSITIVE_SUBMATCH_SUCCESS: + os_ << "label=\"escape\", shape=septagon"; + break; + case ActionNode::EMPTY_MATCH_CHECK: + os_ << "label=\"$" << that->data_.u_empty_match_check.start_register + << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register + << "<" << that->data_.u_empty_match_check.repetition_limit + << "?\", shape=septagon"; + break; + case ActionNode::CLEAR_CAPTURES: { + os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from + << " to $" << that->data_.u_clear_captures.range_to + << "\", shape=septagon"; + break; + } + } + os_ << "];\n"; + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + os_ << " n" << that << " -> n" << successor << ";\n"; + Visit(successor); +} + +#endif // DEBUG + +void DotPrinter::DotPrint(const char* label, RegExpNode* node) { +#ifdef DEBUG + StdoutStream os; + DotPrinterImpl printer(os); + printer.PrintNode(label, node); +#endif // DEBUG +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-dotprinter.h b/js/src/regexp/regexp-dotprinter.h new file mode 100644 index 000000000..b3b268f53 --- /dev/null +++ b/js/src/regexp/regexp-dotprinter.h @@ -0,0 +1,22 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_DOTPRINTER_H_ +#define V8_REGEXP_REGEXP_DOTPRINTER_H_ + + +namespace v8 { +namespace internal { + +class RegExpNode; + +class DotPrinter final : public AllStatic { + public: + static void DotPrint(const char* label, RegExpNode* node); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_DOTPRINTER_H_ diff --git a/js/src/regexp/regexp-interpreter.cc b/js/src/regexp/regexp-interpreter.cc new file mode 100644 index 000000000..6632cd729 --- /dev/null +++ b/js/src/regexp/regexp-interpreter.cc @@ -0,0 +1,1053 @@ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// A simple interpreter for the Irregexp byte code. + +#include "regexp/regexp-interpreter.h" + +#include "regexp/regexp-bytecodes.h" +#include "regexp/regexp-macro-assembler.h" +#include "regexp/regexp-stack.h" // For kMaximumStackSize. +#include "regexp/regexp.h" + +#ifdef V8_INTL_SUPPORT +#include "unicode/uchar.h" +#endif // V8_INTL_SUPPORT + +// Use token threaded dispatch iff the compiler supports computed gotos and the +// build argument v8_enable_regexp_interpreter_threaded_dispatch was set. +#if V8_HAS_COMPUTED_GOTO && \ + defined(V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH) +#define V8_USE_COMPUTED_GOTO 1 +#endif // V8_HAS_COMPUTED_GOTO + +namespace v8 { +namespace internal { + +namespace { + +bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len, + Vector<const uc16> subject, bool unicode) { + Address offset_a = + reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(from))); + Address offset_b = + reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(current))); + size_t length = len * kUC16Size; + return RegExpMacroAssembler::CaseInsensitiveCompareUC16( + offset_a, offset_b, length, unicode ? nullptr : isolate) == 1; +} + +bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len, + Vector<const uint8_t> subject, bool unicode) { + // For Latin1 characters the unicode flag makes no difference. + for (int i = 0; i < len; i++) { + unsigned int old_char = subject[from++]; + unsigned int new_char = subject[current++]; + if (old_char == new_char) continue; + // Convert both characters to lower case. + old_char |= 0x20; + new_char |= 0x20; + if (old_char != new_char) return false; + // Not letters in the ASCII range and Latin-1 range. + if (!(old_char - 'a' <= 'z' - 'a') && + !(old_char - 224 <= 254 - 224 && old_char != 247)) { + return false; + } + } + return true; +} + +#ifdef DEBUG +void MaybeTraceInterpreter(const byte* code_base, const byte* pc, + int stack_depth, int current_position, + uint32_t current_char, int bytecode_length, + const char* bytecode_name) { + if (FLAG_trace_regexp_bytecodes) { + const bool printable = std::isprint(current_char); + const char* format = + printable + ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = " + : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = "; + PrintF(format, pc - code_base, stack_depth, current_position, current_char, + printable ? current_char : '.'); + + RegExpBytecodeDisassembleSingle(code_base, pc); + } +} +#endif // DEBUG + +int32_t Load32Aligned(const byte* pc) { + DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 3); + return *reinterpret_cast<const int32_t*>(pc); +} + +int32_t Load16Aligned(const byte* pc) { + DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 1); + return *reinterpret_cast<const uint16_t*>(pc); +} + +// A simple abstraction over the backtracking stack used by the interpreter. +// +// Despite the name 'backtracking' stack, it's actually used as a generic stack +// that stores both program counters (= offsets into the bytecode) and generic +// integer values. +class BacktrackStack { + public: + BacktrackStack() = default; + + V8_WARN_UNUSED_RESULT bool push(int v) { + data_.emplace_back(v); + return (static_cast<int>(data_.size()) <= kMaxSize); + } + int peek() const { + DCHECK(!data_.empty()); + return data_.back(); + } + int pop() { + int v = peek(); + data_.pop_back(); + return v; + } + + // The 'sp' is the index of the first empty element in the stack. + int sp() const { return static_cast<int>(data_.size()); } + void set_sp(int new_sp) { + DCHECK_LE(new_sp, sp()); + data_.resize_no_init(new_sp); + } + + private: + // Semi-arbitrary. Should be large enough for common cases to remain in the + // static stack-allocated backing store, but small enough not to waste space. + static constexpr int kStaticCapacity = 64; + + using ValueT = int; + base::SmallVector<ValueT, kStaticCapacity> data_; + + static constexpr int kMaxSize = + RegExpStack::kMaximumStackSize / sizeof(ValueT); + + DISALLOW_COPY_AND_ASSIGN(BacktrackStack); +}; + +IrregexpInterpreter::Result ThrowStackOverflow(Isolate* isolate, + RegExp::CallOrigin call_origin) { + CHECK(call_origin == RegExp::CallOrigin::kFromRuntime); + // We abort interpreter execution after the stack overflow is thrown, and thus + // allow allocation here despite the outer DisallowHeapAllocationScope. + AllowHeapAllocation yes_gc; + isolate->StackOverflow(); + return IrregexpInterpreter::EXCEPTION; +} + +// Only throws if called from the runtime, otherwise just returns the EXCEPTION +// status code. +IrregexpInterpreter::Result MaybeThrowStackOverflow( + Isolate* isolate, RegExp::CallOrigin call_origin) { + if (call_origin == RegExp::CallOrigin::kFromRuntime) { + return ThrowStackOverflow(isolate, call_origin); + } else { + return IrregexpInterpreter::EXCEPTION; + } +} + +template <typename Char> +void UpdateCodeAndSubjectReferences( + Isolate* isolate, Handle<ByteArray> code_array, + Handle<String> subject_string, ByteArray* code_array_out, + const byte** code_base_out, const byte** pc_out, String* subject_string_out, + Vector<const Char>* subject_string_vector_out) { + DisallowHeapAllocation no_gc; + + if (*code_base_out != code_array->GetDataStartAddress()) { + *code_array_out = *code_array; + const intptr_t pc_offset = *pc_out - *code_base_out; + DCHECK_GT(pc_offset, 0); + *code_base_out = code_array->GetDataStartAddress(); + *pc_out = *code_base_out + pc_offset; + } + + DCHECK(subject_string->IsFlat()); + *subject_string_out = *subject_string; + *subject_string_vector_out = subject_string->GetCharVector<Char>(no_gc); +} + +// Runs all pending interrupts and updates unhandlified object references if +// necessary. +template <typename Char> +IrregexpInterpreter::Result HandleInterrupts( + Isolate* isolate, RegExp::CallOrigin call_origin, ByteArray* code_array_out, + String* subject_string_out, const byte** code_base_out, + Vector<const Char>* subject_string_vector_out, const byte** pc_out) { + DisallowHeapAllocation no_gc; + + StackLimitCheck check(isolate); + bool js_has_overflowed = check.JsHasOverflowed(); + + if (call_origin == RegExp::CallOrigin::kFromJs) { + // Direct calls from JavaScript can be interrupted in two ways: + // 1. A real stack overflow, in which case we let the caller throw the + // exception. + // 2. The stack guard was used to interrupt execution for another purpose, + // forcing the call through the runtime system. + if (js_has_overflowed) { + return IrregexpInterpreter::EXCEPTION; + } else if (check.InterruptRequested()) { + return IrregexpInterpreter::RETRY; + } + } else { + DCHECK(call_origin == RegExp::CallOrigin::kFromRuntime); + // Prepare for possible GC. + HandleScope handles(isolate); + Handle<ByteArray> code_handle(*code_array_out, isolate); + Handle<String> subject_handle(*subject_string_out, isolate); + + if (js_has_overflowed) { + return ThrowStackOverflow(isolate, call_origin); + } else if (check.InterruptRequested()) { + const bool was_one_byte = + String::IsOneByteRepresentationUnderneath(*subject_string_out); + Object result; + { + AllowHeapAllocation yes_gc; + result = isolate->stack_guard()->HandleInterrupts(); + } + if (result.IsException(isolate)) { + return IrregexpInterpreter::EXCEPTION; + } + + // If we changed between a LATIN1 and a UC16 string, we need to restart + // regexp matching with the appropriate template instantiation of + // RawMatch. + if (String::IsOneByteRepresentationUnderneath(*subject_handle) != + was_one_byte) { + return IrregexpInterpreter::RETRY; + } + + UpdateCodeAndSubjectReferences( + isolate, code_handle, subject_handle, code_array_out, code_base_out, + pc_out, subject_string_out, subject_string_vector_out); + } + } + + return IrregexpInterpreter::SUCCESS; +} + +bool CheckBitInTable(const uint32_t current_char, const byte* const table) { + int mask = RegExpMacroAssembler::kTableMask; + int b = table[(current_char & mask) >> kBitsPerByteLog2]; + int bit = (current_char & (kBitsPerByte - 1)); + return (b & (1 << bit)) != 0; +} + +// If computed gotos are supported by the compiler, we can get addresses to +// labels directly in C/C++. Every bytecode handler has its own label and we +// store the addresses in a dispatch table indexed by bytecode. To execute the +// next handler we simply jump (goto) directly to its address. +#if V8_USE_COMPUTED_GOTO +#define BC_LABEL(name) BC_##name: +#define DECODE() \ + do { \ + next_insn = Load32Aligned(next_pc); \ + next_handler_addr = dispatch_table[next_insn & BYTECODE_MASK]; \ + } while (false) +#define DISPATCH() \ + pc = next_pc; \ + insn = next_insn; \ + goto* next_handler_addr +// Without computed goto support, we fall back to a simple switch-based +// dispatch (A large switch statement inside a loop with a case for every +// bytecode). +#else // V8_USE_COMPUTED_GOTO +#define BC_LABEL(name) case BC_##name: +#define DECODE() next_insn = Load32Aligned(next_pc) +#define DISPATCH() \ + pc = next_pc; \ + insn = next_insn; \ + goto switch_dispatch_continuation +#endif // V8_USE_COMPUTED_GOTO + +// ADVANCE/SET_PC_FROM_OFFSET are separated from DISPATCH, because ideally some +// instructions can be executed between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH. +// We want those two macros as far apart as possible, because the goto in +// DISPATCH is dependent on a memory load in ADVANCE/SET_PC_FROM_OFFSET. If we +// don't hit the cache and have to fetch the next handler address from physical +// memory, instructions between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH can +// potentially be executed unconditionally, reducing memory stall. +#define ADVANCE(name) \ + next_pc = pc + RegExpBytecodeLength(BC_##name); \ + DECODE() +#define SET_PC_FROM_OFFSET(offset) \ + next_pc = code_base + offset; \ + DECODE() + +#ifdef DEBUG +#define BYTECODE(name) \ + BC_LABEL(name) \ + MaybeTraceInterpreter(code_base, pc, backtrack_stack.sp(), current, \ + current_char, RegExpBytecodeLength(BC_##name), #name); +#else +#define BYTECODE(name) BC_LABEL(name) +#endif // DEBUG + +template <typename Char> +IrregexpInterpreter::Result RawMatch(Isolate* isolate, ByteArray code_array, + String subject_string, + Vector<const Char> subject, int* registers, + int current, uint32_t current_char, + RegExp::CallOrigin call_origin, + const uint32_t backtrack_limit) { + DisallowHeapAllocation no_gc; + +#if V8_USE_COMPUTED_GOTO + +// We have to make sure that no OOB access to the dispatch table is possible and +// all values are valid label addresses. +// Otherwise jumps to arbitrary addresses could potentially happen. +// This is ensured as follows: +// Every index to the dispatch table gets masked using BYTECODE_MASK in +// DECODE(). This way we can only get values between 0 (only the least +// significant byte of an integer is used) and kRegExpPaddedBytecodeCount - 1 +// (BYTECODE_MASK is defined to be exactly this value). +// All entries from kRegExpBytecodeCount to kRegExpPaddedBytecodeCount have to +// be filled with BREAKs (invalid operation). + +// Fill dispatch table from last defined bytecode up to the next power of two +// with BREAK (invalid operation). +// TODO(pthier): Find a way to fill up automatically (at compile time) +// 59 real bytecodes -> 5 fillers +#define BYTECODE_FILLER_ITERATOR(V) \ + V(BREAK) /* 1 */ \ + V(BREAK) /* 2 */ \ + V(BREAK) /* 3 */ \ + V(BREAK) /* 4 */ \ + V(BREAK) /* 5 */ + +#define COUNT(...) +1 + static constexpr int kRegExpBytecodeFillerCount = + BYTECODE_FILLER_ITERATOR(COUNT); +#undef COUNT + + // Make sure kRegExpPaddedBytecodeCount is actually the closest possible power + // of two. + DCHECK_EQ(kRegExpPaddedBytecodeCount, + base::bits::RoundUpToPowerOfTwo32(kRegExpBytecodeCount)); + + // Make sure every bytecode we get by using BYTECODE_MASK is well defined. + STATIC_ASSERT(kRegExpBytecodeCount <= kRegExpPaddedBytecodeCount); + STATIC_ASSERT(kRegExpBytecodeCount + kRegExpBytecodeFillerCount == + kRegExpPaddedBytecodeCount); + +#define DECLARE_DISPATCH_TABLE_ENTRY(name, ...) &&BC_##name, + static const void* const dispatch_table[kRegExpPaddedBytecodeCount] = { + BYTECODE_ITERATOR(DECLARE_DISPATCH_TABLE_ENTRY) + BYTECODE_FILLER_ITERATOR(DECLARE_DISPATCH_TABLE_ENTRY)}; +#undef DECLARE_DISPATCH_TABLE_ENTRY +#undef BYTECODE_FILLER_ITERATOR + +#endif // V8_USE_COMPUTED_GOTO + + const byte* pc = code_array.GetDataStartAddress(); + const byte* code_base = pc; + + BacktrackStack backtrack_stack; + + uint32_t backtrack_count = 0; + +#ifdef DEBUG + if (FLAG_trace_regexp_bytecodes) { + PrintF("\n\nStart bytecode interpreter\n\n"); + } +#endif + + while (true) { + const byte* next_pc = pc; + int32_t insn; + int32_t next_insn; +#if V8_USE_COMPUTED_GOTO + const void* next_handler_addr; + DECODE(); + DISPATCH(); +#else + insn = Load32Aligned(pc); + switch (insn & BYTECODE_MASK) { +#endif // V8_USE_COMPUTED_GOTO + BYTECODE(BREAK) { UNREACHABLE(); } + BYTECODE(PUSH_CP) { + ADVANCE(PUSH_CP); + if (!backtrack_stack.push(current)) { + return MaybeThrowStackOverflow(isolate, call_origin); + } + DISPATCH(); + } + BYTECODE(PUSH_BT) { + ADVANCE(PUSH_BT); + if (!backtrack_stack.push(Load32Aligned(pc + 4))) { + return MaybeThrowStackOverflow(isolate, call_origin); + } + DISPATCH(); + } + BYTECODE(PUSH_REGISTER) { + ADVANCE(PUSH_REGISTER); + if (!backtrack_stack.push(registers[insn >> BYTECODE_SHIFT])) { + return MaybeThrowStackOverflow(isolate, call_origin); + } + DISPATCH(); + } + BYTECODE(SET_REGISTER) { + ADVANCE(SET_REGISTER); + registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4); + DISPATCH(); + } + BYTECODE(ADVANCE_REGISTER) { + ADVANCE(ADVANCE_REGISTER); + registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4); + DISPATCH(); + } + BYTECODE(SET_REGISTER_TO_CP) { + ADVANCE(SET_REGISTER_TO_CP); + registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4); + DISPATCH(); + } + BYTECODE(SET_CP_TO_REGISTER) { + ADVANCE(SET_CP_TO_REGISTER); + current = registers[insn >> BYTECODE_SHIFT]; + DISPATCH(); + } + BYTECODE(SET_REGISTER_TO_SP) { + ADVANCE(SET_REGISTER_TO_SP); + registers[insn >> BYTECODE_SHIFT] = backtrack_stack.sp(); + DISPATCH(); + } + BYTECODE(SET_SP_TO_REGISTER) { + ADVANCE(SET_SP_TO_REGISTER); + backtrack_stack.set_sp(registers[insn >> BYTECODE_SHIFT]); + DISPATCH(); + } + BYTECODE(POP_CP) { + ADVANCE(POP_CP); + current = backtrack_stack.pop(); + DISPATCH(); + } + BYTECODE(POP_BT) { + STATIC_ASSERT(JSRegExp::kNoBacktrackLimit == 0); + if (++backtrack_count == backtrack_limit) { + // Exceeded limits are treated as a failed match. + return IrregexpInterpreter::FAILURE; + } + + IrregexpInterpreter::Result return_code = + HandleInterrupts(isolate, call_origin, &code_array, &subject_string, + &code_base, &subject, &pc); + if (return_code != IrregexpInterpreter::SUCCESS) return return_code; + + SET_PC_FROM_OFFSET(backtrack_stack.pop()); + DISPATCH(); + } + BYTECODE(POP_REGISTER) { + ADVANCE(POP_REGISTER); + registers[insn >> BYTECODE_SHIFT] = backtrack_stack.pop(); + DISPATCH(); + } + BYTECODE(FAIL) { + isolate->counters()->regexp_backtracks()->AddSample( + static_cast<int>(backtrack_count)); + return IrregexpInterpreter::FAILURE; + } + BYTECODE(SUCCEED) { + isolate->counters()->regexp_backtracks()->AddSample( + static_cast<int>(backtrack_count)); + return IrregexpInterpreter::SUCCESS; + } + BYTECODE(ADVANCE_CP) { + ADVANCE(ADVANCE_CP); + current += insn >> BYTECODE_SHIFT; + DISPATCH(); + } + BYTECODE(GOTO) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + BYTECODE(ADVANCE_CP_AND_GOTO) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + current += insn >> BYTECODE_SHIFT; + DISPATCH(); + } + BYTECODE(CHECK_GREEDY) { + if (current == backtrack_stack.peek()) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + backtrack_stack.pop(); + } else { + ADVANCE(CHECK_GREEDY); + } + DISPATCH(); + } + BYTECODE(LOAD_CURRENT_CHAR) { + int pos = current + (insn >> BYTECODE_SHIFT); + if (pos >= subject.length() || pos < 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(LOAD_CURRENT_CHAR); + current_char = subject[pos]; + } + DISPATCH(); + } + BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) { + ADVANCE(LOAD_CURRENT_CHAR_UNCHECKED); + int pos = current + (insn >> BYTECODE_SHIFT); + current_char = subject[pos]; + DISPATCH(); + } + BYTECODE(LOAD_2_CURRENT_CHARS) { + int pos = current + (insn >> BYTECODE_SHIFT); + if (pos + 2 > subject.length() || pos < 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(LOAD_2_CURRENT_CHARS); + Char next = subject[pos + 1]; + current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); + } + DISPATCH(); + } + BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) { + ADVANCE(LOAD_2_CURRENT_CHARS_UNCHECKED); + int pos = current + (insn >> BYTECODE_SHIFT); + Char next = subject[pos + 1]; + current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); + DISPATCH(); + } + BYTECODE(LOAD_4_CURRENT_CHARS) { + DCHECK_EQ(1, sizeof(Char)); + int pos = current + (insn >> BYTECODE_SHIFT); + if (pos + 4 > subject.length() || pos < 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(LOAD_4_CURRENT_CHARS); + Char next1 = subject[pos + 1]; + Char next2 = subject[pos + 2]; + Char next3 = subject[pos + 3]; + current_char = + (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); + } + DISPATCH(); + } + BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) { + ADVANCE(LOAD_4_CURRENT_CHARS_UNCHECKED); + DCHECK_EQ(1, sizeof(Char)); + int pos = current + (insn >> BYTECODE_SHIFT); + Char next1 = subject[pos + 1]; + Char next2 = subject[pos + 2]; + Char next3 = subject[pos + 3]; + current_char = + (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); + DISPATCH(); + } + BYTECODE(CHECK_4_CHARS) { + uint32_t c = Load32Aligned(pc + 4); + if (c == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_4_CHARS); + } + DISPATCH(); + } + BYTECODE(CHECK_CHAR) { + uint32_t c = (insn >> BYTECODE_SHIFT); + if (c == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_CHAR); + } + DISPATCH(); + } + BYTECODE(CHECK_NOT_4_CHARS) { + uint32_t c = Load32Aligned(pc + 4); + if (c != current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_NOT_4_CHARS); + } + DISPATCH(); + } + BYTECODE(CHECK_NOT_CHAR) { + uint32_t c = (insn >> BYTECODE_SHIFT); + if (c != current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_NOT_CHAR); + } + DISPATCH(); + } + BYTECODE(AND_CHECK_4_CHARS) { + uint32_t c = Load32Aligned(pc + 4); + if (c == (current_char & Load32Aligned(pc + 8))) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + } else { + ADVANCE(AND_CHECK_4_CHARS); + } + DISPATCH(); + } + BYTECODE(AND_CHECK_CHAR) { + uint32_t c = (insn >> BYTECODE_SHIFT); + if (c == (current_char & Load32Aligned(pc + 4))) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(AND_CHECK_CHAR); + } + DISPATCH(); + } + BYTECODE(AND_CHECK_NOT_4_CHARS) { + uint32_t c = Load32Aligned(pc + 4); + if (c != (current_char & Load32Aligned(pc + 8))) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + } else { + ADVANCE(AND_CHECK_NOT_4_CHARS); + } + DISPATCH(); + } + BYTECODE(AND_CHECK_NOT_CHAR) { + uint32_t c = (insn >> BYTECODE_SHIFT); + if (c != (current_char & Load32Aligned(pc + 4))) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(AND_CHECK_NOT_CHAR); + } + DISPATCH(); + } + BYTECODE(MINUS_AND_CHECK_NOT_CHAR) { + uint32_t c = (insn >> BYTECODE_SHIFT); + uint32_t minus = Load16Aligned(pc + 4); + uint32_t mask = Load16Aligned(pc + 6); + if (c != ((current_char - minus) & mask)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(MINUS_AND_CHECK_NOT_CHAR); + } + DISPATCH(); + } + BYTECODE(CHECK_CHAR_IN_RANGE) { + uint32_t from = Load16Aligned(pc + 4); + uint32_t to = Load16Aligned(pc + 6); + if (from <= current_char && current_char <= to) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_CHAR_IN_RANGE); + } + DISPATCH(); + } + BYTECODE(CHECK_CHAR_NOT_IN_RANGE) { + uint32_t from = Load16Aligned(pc + 4); + uint32_t to = Load16Aligned(pc + 6); + if (from > current_char || current_char > to) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_CHAR_NOT_IN_RANGE); + } + DISPATCH(); + } + BYTECODE(CHECK_BIT_IN_TABLE) { + if (CheckBitInTable(current_char, pc + 8)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_BIT_IN_TABLE); + } + DISPATCH(); + } + BYTECODE(CHECK_LT) { + uint32_t limit = (insn >> BYTECODE_SHIFT); + if (current_char < limit) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_LT); + } + DISPATCH(); + } + BYTECODE(CHECK_GT) { + uint32_t limit = (insn >> BYTECODE_SHIFT); + if (current_char > limit) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_GT); + } + DISPATCH(); + } + BYTECODE(CHECK_REGISTER_LT) { + if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_REGISTER_LT); + } + DISPATCH(); + } + BYTECODE(CHECK_REGISTER_GE) { + if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } else { + ADVANCE(CHECK_REGISTER_GE); + } + DISPATCH(); + } + BYTECODE(CHECK_REGISTER_EQ_POS) { + if (registers[insn >> BYTECODE_SHIFT] == current) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_REGISTER_EQ_POS); + } + DISPATCH(); + } + BYTECODE(CHECK_NOT_REGS_EQUAL) { + if (registers[insn >> BYTECODE_SHIFT] == + registers[Load32Aligned(pc + 4)]) { + ADVANCE(CHECK_NOT_REGS_EQUAL); + } else { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + } + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current + len > subject.length() || + CompareChars(&subject[from], &subject[current], len) != 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current += len; + } + ADVANCE(CHECK_NOT_BACK_REF); + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current - len < 0 || + CompareChars(&subject[from], &subject[current - len], len) != 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current -= len; + } + ADVANCE(CHECK_NOT_BACK_REF_BACKWARD); + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current + len > subject.length() || + !BackRefMatchesNoCase(isolate, from, current, len, subject, true)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current += len; + } + ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE); + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current + len > subject.length() || + !BackRefMatchesNoCase(isolate, from, current, len, subject, + false)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current += len; + } + ADVANCE(CHECK_NOT_BACK_REF_NO_CASE); + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current - len < 0 || + !BackRefMatchesNoCase(isolate, from, current - len, len, subject, + true)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current -= len; + } + ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD); + DISPATCH(); + } + BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) { + int from = registers[insn >> BYTECODE_SHIFT]; + int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; + if (from >= 0 && len > 0) { + if (current - len < 0 || + !BackRefMatchesNoCase(isolate, from, current - len, len, subject, + false)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + DISPATCH(); + } + current -= len; + } + ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD); + DISPATCH(); + } + BYTECODE(CHECK_AT_START) { + if (current + (insn >> BYTECODE_SHIFT) == 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_AT_START); + } + DISPATCH(); + } + BYTECODE(CHECK_NOT_AT_START) { + if (current + (insn >> BYTECODE_SHIFT) == 0) { + ADVANCE(CHECK_NOT_AT_START); + } else { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } + DISPATCH(); + } + BYTECODE(SET_CURRENT_POSITION_FROM_END) { + ADVANCE(SET_CURRENT_POSITION_FROM_END); + int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT; + if (subject.length() - current > by) { + current = subject.length() - by; + current_char = subject[current - 1]; + } + DISPATCH(); + } + BYTECODE(CHECK_CURRENT_POSITION) { + int pos = current + (insn >> BYTECODE_SHIFT); + if (pos > subject.length() || pos < 0) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 4)); + } else { + ADVANCE(CHECK_CURRENT_POSITION); + } + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_CHAR) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint32_t advance = Load16Aligned(pc + 4); + uint32_t c = Load16Aligned(pc + 6); + while (static_cast<uintptr_t>(current + load_offset) < + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + if (c == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 8)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_CHAR_AND) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint16_t advance = Load16Aligned(pc + 4); + uint16_t c = Load16Aligned(pc + 6); + uint32_t mask = Load32Aligned(pc + 8); + int32_t maximum_offset = Load32Aligned(pc + 12); + while (static_cast<uintptr_t>(current + maximum_offset) <= + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + if (c == (current_char & mask)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 16)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 20)); + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_CHAR_POS_CHECKED) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint16_t advance = Load16Aligned(pc + 4); + uint16_t c = Load16Aligned(pc + 6); + int32_t maximum_offset = Load32Aligned(pc + 8); + while (static_cast<uintptr_t>(current + maximum_offset) <= + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + if (c == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 16)); + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_BIT_IN_TABLE) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint32_t advance = Load16Aligned(pc + 4); + const byte* table = pc + 8; + while (static_cast<uintptr_t>(current + load_offset) < + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + if (CheckBitInTable(current_char, table)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 24)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 28)); + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint16_t advance = Load16Aligned(pc + 4); + uint16_t limit = Load16Aligned(pc + 6); + const byte* table = pc + 8; + while (static_cast<uintptr_t>(current + load_offset) < + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + if (current_char > limit) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 24)); + DISPATCH(); + } + if (!CheckBitInTable(current_char, table)) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 24)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 28)); + DISPATCH(); + } + BYTECODE(SKIP_UNTIL_CHAR_OR_CHAR) { + int load_offset = (insn >> BYTECODE_SHIFT); + uint32_t advance = Load32Aligned(pc + 4); + uint16_t c = Load16Aligned(pc + 8); + uint16_t c2 = Load16Aligned(pc + 10); + while (static_cast<uintptr_t>(current + load_offset) < + static_cast<uintptr_t>(subject.length())) { + current_char = subject[current + load_offset]; + // The two if-statements below are split up intentionally, as combining + // them seems to result in register allocation behaving quite + // differently and slowing down the resulting code. + if (c == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + DISPATCH(); + } + if (c2 == current_char) { + SET_PC_FROM_OFFSET(Load32Aligned(pc + 12)); + DISPATCH(); + } + current += advance; + } + SET_PC_FROM_OFFSET(Load32Aligned(pc + 16)); + DISPATCH(); + } +#if V8_USE_COMPUTED_GOTO +// Lint gets confused a lot if we just use !V8_USE_COMPUTED_GOTO or ifndef +// V8_USE_COMPUTED_GOTO here. +#else + default: + UNREACHABLE(); + } + // Label we jump to in DISPATCH(). There must be no instructions between the + // end of the switch, this label and the end of the loop. + switch_dispatch_continuation : {} +#endif // V8_USE_COMPUTED_GOTO + } +} + +#undef BYTECODE +#undef DISPATCH +#undef DECODE +#undef SET_PC_FROM_OFFSET +#undef ADVANCE +#undef BC_LABEL +#undef V8_USE_COMPUTED_GOTO + +} // namespace + +// static +IrregexpInterpreter::Result IrregexpInterpreter::Match( + Isolate* isolate, JSRegExp regexp, String subject_string, int* registers, + int registers_length, int start_position, RegExp::CallOrigin call_origin) { + if (FLAG_regexp_tier_up) { + regexp.TierUpTick(); + } + + bool is_one_byte = String::IsOneByteRepresentationUnderneath(subject_string); + ByteArray code_array = ByteArray::cast(regexp.Bytecode(is_one_byte)); + + return MatchInternal(isolate, code_array, subject_string, registers, + registers_length, start_position, call_origin, + regexp.BacktrackLimit()); +} + +IrregexpInterpreter::Result IrregexpInterpreter::MatchInternal( + Isolate* isolate, ByteArray code_array, String subject_string, + int* registers, int registers_length, int start_position, + RegExp::CallOrigin call_origin, uint32_t backtrack_limit) { + DCHECK(subject_string.IsFlat()); + + // Note: Heap allocation *is* allowed in two situations if calling from + // Runtime: + // 1. When creating & throwing a stack overflow exception. The interpreter + // aborts afterwards, and thus possible-moved objects are never used. + // 2. When handling interrupts. We manually relocate unhandlified references + // after interrupts have run. + DisallowHeapAllocation no_gc; + + // Reset registers to -1 (=undefined). + // This is necessary because registers are only written when a + // capture group matched. + // Resetting them ensures that previous matches are cleared. + memset(registers, -1, sizeof(registers[0]) * registers_length); + + uc16 previous_char = '\n'; + String::FlatContent subject_content = subject_string.GetFlatContent(no_gc); + if (subject_content.IsOneByte()) { + Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector(); + if (start_position != 0) previous_char = subject_vector[start_position - 1]; + return RawMatch(isolate, code_array, subject_string, subject_vector, + registers, start_position, previous_char, call_origin, + backtrack_limit); + } else { + DCHECK(subject_content.IsTwoByte()); + Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); + if (start_position != 0) previous_char = subject_vector[start_position - 1]; + return RawMatch(isolate, code_array, subject_string, subject_vector, + registers, start_position, previous_char, call_origin, + backtrack_limit); + } +} + +// This method is called through an external reference from RegExpExecInternal +// builtin. +IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromJs( + Address subject, int32_t start_position, Address, Address, int* registers, + int32_t registers_length, Address, RegExp::CallOrigin call_origin, + Isolate* isolate, Address regexp) { + DCHECK_NOT_NULL(isolate); + DCHECK_NOT_NULL(registers); + DCHECK(call_origin == RegExp::CallOrigin::kFromJs); + + DisallowHeapAllocation no_gc; + DisallowJavascriptExecution no_js(isolate); + + String subject_string = String::cast(Object(subject)); + JSRegExp regexp_obj = JSRegExp::cast(Object(regexp)); + + if (regexp_obj.MarkedForTierUp()) { + // Returning RETRY will re-enter through runtime, where actual recompilation + // for tier-up takes place. + return IrregexpInterpreter::RETRY; + } + + return Match(isolate, regexp_obj, subject_string, registers, registers_length, + start_position, call_origin); +} + +IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromRuntime( + Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject_string, + int* registers, int registers_length, int start_position) { + return Match(isolate, *regexp, *subject_string, registers, registers_length, + start_position, RegExp::CallOrigin::kFromRuntime); +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-interpreter.h b/js/src/regexp/regexp-interpreter.h new file mode 100644 index 000000000..c3f6c119e --- /dev/null +++ b/js/src/regexp/regexp-interpreter.h @@ -0,0 +1,61 @@ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// A simple interpreter for the Irregexp byte code. + +#ifndef V8_REGEXP_REGEXP_INTERPRETER_H_ +#define V8_REGEXP_REGEXP_INTERPRETER_H_ + +#include "regexp/regexp.h" + +namespace v8 { +namespace internal { + +class V8_EXPORT_PRIVATE IrregexpInterpreter : public AllStatic { + public: + enum Result { + FAILURE = RegExp::kInternalRegExpFailure, + SUCCESS = RegExp::kInternalRegExpSuccess, + EXCEPTION = RegExp::kInternalRegExpException, + RETRY = RegExp::kInternalRegExpRetry, + }; + + // In case a StackOverflow occurs, a StackOverflowException is created and + // EXCEPTION is returned. + static Result MatchForCallFromRuntime(Isolate* isolate, + Handle<JSRegExp> regexp, + Handle<String> subject_string, + int* registers, int registers_length, + int start_position); + + // In case a StackOverflow occurs, EXCEPTION is returned. The caller is + // responsible for creating the exception. + // RETRY is returned if a retry through the runtime is needed (e.g. when + // interrupts have been scheduled or the regexp is marked for tier-up). + // Arguments input_start, input_end and backtrack_stack are + // unused. They are only passed to match the signature of the native irregex + // code. + static Result MatchForCallFromJs(Address subject, int32_t start_position, + Address input_start, Address input_end, + int* registers, int32_t registers_length, + Address backtrack_stack, + RegExp::CallOrigin call_origin, + Isolate* isolate, Address regexp); + + static Result MatchInternal(Isolate* isolate, ByteArray code_array, + String subject_string, int* registers, + int registers_length, int start_position, + RegExp::CallOrigin call_origin, + uint32_t backtrack_limit); + + private: + static Result Match(Isolate* isolate, JSRegExp regexp, String subject_string, + int* registers, int registers_length, int start_position, + RegExp::CallOrigin call_origin); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_INTERPRETER_H_ diff --git a/js/src/regexp/regexp-macro-assembler-tracer.cc b/js/src/regexp/regexp-macro-assembler-tracer.cc new file mode 100644 index 000000000..331c57d1a --- /dev/null +++ b/js/src/regexp/regexp-macro-assembler-tracer.cc @@ -0,0 +1,420 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-macro-assembler-tracer.h" + + +namespace v8 { +namespace internal { + +RegExpMacroAssemblerTracer::RegExpMacroAssemblerTracer( + Isolate* isolate, RegExpMacroAssembler* assembler) + : RegExpMacroAssembler(isolate, assembler->zone()), assembler_(assembler) { + IrregexpImplementation type = assembler->Implementation(); + DCHECK_LT(type, 9); + const char* impl_names[] = {"IA32", "ARM", "ARM64", "MIPS", "S390", + "PPC", "X64", "X87", "Bytecode"}; + PrintF("RegExpMacroAssembler%s();\n", impl_names[type]); +} + +RegExpMacroAssemblerTracer::~RegExpMacroAssemblerTracer() = default; + +void RegExpMacroAssemblerTracer::AbortedCodeGeneration() { + PrintF(" AbortedCodeGeneration\n"); + assembler_->AbortedCodeGeneration(); +} + + +// This is used for printing out debugging information. It makes an integer +// that is closely related to the address of an object. +static int LabelToInt(Label* label) { + return static_cast<int>(reinterpret_cast<intptr_t>(label)); +} + + +void RegExpMacroAssemblerTracer::Bind(Label* label) { + PrintF("label[%08x]: (Bind)\n", LabelToInt(label)); + assembler_->Bind(label); +} + + +void RegExpMacroAssemblerTracer::AdvanceCurrentPosition(int by) { + PrintF(" AdvanceCurrentPosition(by=%d);\n", by); + assembler_->AdvanceCurrentPosition(by); +} + + +void RegExpMacroAssemblerTracer::CheckGreedyLoop(Label* label) { + PrintF(" CheckGreedyLoop(label[%08x]);\n\n", LabelToInt(label)); + assembler_->CheckGreedyLoop(label); +} + + +void RegExpMacroAssemblerTracer::PopCurrentPosition() { + PrintF(" PopCurrentPosition();\n"); + assembler_->PopCurrentPosition(); +} + + +void RegExpMacroAssemblerTracer::PushCurrentPosition() { + PrintF(" PushCurrentPosition();\n"); + assembler_->PushCurrentPosition(); +} + + +void RegExpMacroAssemblerTracer::Backtrack() { + PrintF(" Backtrack();\n"); + assembler_->Backtrack(); +} + + +void RegExpMacroAssemblerTracer::GoTo(Label* label) { + PrintF(" GoTo(label[%08x]);\n\n", LabelToInt(label)); + assembler_->GoTo(label); +} + + +void RegExpMacroAssemblerTracer::PushBacktrack(Label* label) { + PrintF(" PushBacktrack(label[%08x]);\n", LabelToInt(label)); + assembler_->PushBacktrack(label); +} + + +bool RegExpMacroAssemblerTracer::Succeed() { + bool restart = assembler_->Succeed(); + PrintF(" Succeed();%s\n", restart ? " [restart for global match]" : ""); + return restart; +} + + +void RegExpMacroAssemblerTracer::Fail() { + PrintF(" Fail();"); + assembler_->Fail(); +} + + +void RegExpMacroAssemblerTracer::PopRegister(int register_index) { + PrintF(" PopRegister(register=%d);\n", register_index); + assembler_->PopRegister(register_index); +} + + +void RegExpMacroAssemblerTracer::PushRegister( + int register_index, + StackCheckFlag check_stack_limit) { + PrintF(" PushRegister(register=%d, %s);\n", + register_index, + check_stack_limit ? "check stack limit" : ""); + assembler_->PushRegister(register_index, check_stack_limit); +} + + +void RegExpMacroAssemblerTracer::AdvanceRegister(int reg, int by) { + PrintF(" AdvanceRegister(register=%d, by=%d);\n", reg, by); + assembler_->AdvanceRegister(reg, by); +} + + +void RegExpMacroAssemblerTracer::SetCurrentPositionFromEnd(int by) { + PrintF(" SetCurrentPositionFromEnd(by=%d);\n", by); + assembler_->SetCurrentPositionFromEnd(by); +} + + +void RegExpMacroAssemblerTracer::SetRegister(int register_index, int to) { + PrintF(" SetRegister(register=%d, to=%d);\n", register_index, to); + assembler_->SetRegister(register_index, to); +} + + +void RegExpMacroAssemblerTracer::WriteCurrentPositionToRegister(int reg, + int cp_offset) { + PrintF(" WriteCurrentPositionToRegister(register=%d,cp_offset=%d);\n", + reg, + cp_offset); + assembler_->WriteCurrentPositionToRegister(reg, cp_offset); +} + + +void RegExpMacroAssemblerTracer::ClearRegisters(int reg_from, int reg_to) { + PrintF(" ClearRegister(from=%d, to=%d);\n", reg_from, reg_to); + assembler_->ClearRegisters(reg_from, reg_to); +} + + +void RegExpMacroAssemblerTracer::ReadCurrentPositionFromRegister(int reg) { + PrintF(" ReadCurrentPositionFromRegister(register=%d);\n", reg); + assembler_->ReadCurrentPositionFromRegister(reg); +} + + +void RegExpMacroAssemblerTracer::WriteStackPointerToRegister(int reg) { + PrintF(" WriteStackPointerToRegister(register=%d);\n", reg); + assembler_->WriteStackPointerToRegister(reg); +} + + +void RegExpMacroAssemblerTracer::ReadStackPointerFromRegister(int reg) { + PrintF(" ReadStackPointerFromRegister(register=%d);\n", reg); + assembler_->ReadStackPointerFromRegister(reg); +} + +void RegExpMacroAssemblerTracer::LoadCurrentCharacterImpl( + int cp_offset, Label* on_end_of_input, bool check_bounds, int characters, + int eats_at_least) { + const char* check_msg = check_bounds ? "" : " (unchecked)"; + PrintF( + " LoadCurrentCharacter(cp_offset=%d, label[%08x]%s (%d chars) (eats at " + "least %d));\n", + cp_offset, LabelToInt(on_end_of_input), check_msg, characters, + eats_at_least); + assembler_->LoadCurrentCharacter(cp_offset, on_end_of_input, check_bounds, + characters, eats_at_least); +} + +class PrintablePrinter { + public: + explicit PrintablePrinter(uc16 character) : character_(character) { } + + const char* operator*() { + if (character_ >= ' ' && character_ <= '~') { + buffer_[0] = '('; + buffer_[1] = static_cast<char>(character_); + buffer_[2] = ')'; + buffer_[3] = '\0'; + } else { + buffer_[0] = '\0'; + } + return &buffer_[0]; + } + + private: + uc16 character_; + char buffer_[4]; +}; + + +void RegExpMacroAssemblerTracer::CheckCharacterLT(uc16 limit, Label* on_less) { + PrintablePrinter printable(limit); + PrintF(" CheckCharacterLT(c=0x%04x%s, label[%08x]);\n", + limit, + *printable, + LabelToInt(on_less)); + assembler_->CheckCharacterLT(limit, on_less); +} + + +void RegExpMacroAssemblerTracer::CheckCharacterGT(uc16 limit, + Label* on_greater) { + PrintablePrinter printable(limit); + PrintF(" CheckCharacterGT(c=0x%04x%s, label[%08x]);\n", + limit, + *printable, + LabelToInt(on_greater)); + assembler_->CheckCharacterGT(limit, on_greater); +} + + +void RegExpMacroAssemblerTracer::CheckCharacter(unsigned c, Label* on_equal) { + PrintablePrinter printable(c); + PrintF(" CheckCharacter(c=0x%04x%s, label[%08x]);\n", + c, + *printable, + LabelToInt(on_equal)); + assembler_->CheckCharacter(c, on_equal); +} + +void RegExpMacroAssemblerTracer::CheckAtStart(int cp_offset, + Label* on_at_start) { + PrintF(" CheckAtStart(cp_offset=%d, label[%08x]);\n", cp_offset, + LabelToInt(on_at_start)); + assembler_->CheckAtStart(cp_offset, on_at_start); +} + +void RegExpMacroAssemblerTracer::CheckNotAtStart(int cp_offset, + Label* on_not_at_start) { + PrintF(" CheckNotAtStart(cp_offset=%d, label[%08x]);\n", cp_offset, + LabelToInt(on_not_at_start)); + assembler_->CheckNotAtStart(cp_offset, on_not_at_start); +} + + +void RegExpMacroAssemblerTracer::CheckNotCharacter(unsigned c, + Label* on_not_equal) { + PrintablePrinter printable(c); + PrintF(" CheckNotCharacter(c=0x%04x%s, label[%08x]);\n", + c, + *printable, + LabelToInt(on_not_equal)); + assembler_->CheckNotCharacter(c, on_not_equal); +} + + +void RegExpMacroAssemblerTracer::CheckCharacterAfterAnd( + unsigned c, + unsigned mask, + Label* on_equal) { + PrintablePrinter printable(c); + PrintF(" CheckCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n", + c, + *printable, + mask, + LabelToInt(on_equal)); + assembler_->CheckCharacterAfterAnd(c, mask, on_equal); +} + + +void RegExpMacroAssemblerTracer::CheckNotCharacterAfterAnd( + unsigned c, + unsigned mask, + Label* on_not_equal) { + PrintablePrinter printable(c); + PrintF(" CheckNotCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n", + c, + *printable, + mask, + LabelToInt(on_not_equal)); + assembler_->CheckNotCharacterAfterAnd(c, mask, on_not_equal); +} + + +void RegExpMacroAssemblerTracer::CheckNotCharacterAfterMinusAnd( + uc16 c, + uc16 minus, + uc16 mask, + Label* on_not_equal) { + PrintF(" CheckNotCharacterAfterMinusAnd(c=0x%04x, minus=%04x, mask=0x%04x, " + "label[%08x]);\n", + c, + minus, + mask, + LabelToInt(on_not_equal)); + assembler_->CheckNotCharacterAfterMinusAnd(c, minus, mask, on_not_equal); +} + + +void RegExpMacroAssemblerTracer::CheckCharacterInRange( + uc16 from, + uc16 to, + Label* on_not_in_range) { + PrintablePrinter printable_from(from); + PrintablePrinter printable_to(to); + PrintF(" CheckCharacterInRange(from=0x%04x%s, to=0x%04x%s, label[%08x]);\n", + from, + *printable_from, + to, + *printable_to, + LabelToInt(on_not_in_range)); + assembler_->CheckCharacterInRange(from, to, on_not_in_range); +} + + +void RegExpMacroAssemblerTracer::CheckCharacterNotInRange( + uc16 from, + uc16 to, + Label* on_in_range) { + PrintablePrinter printable_from(from); + PrintablePrinter printable_to(to); + PrintF( + " CheckCharacterNotInRange(from=0x%04x%s," " to=%04x%s, label[%08x]);\n", + from, + *printable_from, + to, + *printable_to, + LabelToInt(on_in_range)); + assembler_->CheckCharacterNotInRange(from, to, on_in_range); +} + + +void RegExpMacroAssemblerTracer::CheckBitInTable( + Handle<ByteArray> table, Label* on_bit_set) { + PrintF(" CheckBitInTable(label[%08x] ", LabelToInt(on_bit_set)); + for (int i = 0; i < kTableSize; i++) { + PrintF("%c", table->get(i) != 0 ? 'X' : '.'); + if (i % 32 == 31 && i != kTableMask) { + PrintF("\n "); + } + } + PrintF(");\n"); + assembler_->CheckBitInTable(table, on_bit_set); +} + + +void RegExpMacroAssemblerTracer::CheckNotBackReference(int start_reg, + bool read_backward, + Label* on_no_match) { + PrintF(" CheckNotBackReference(register=%d, %s, label[%08x]);\n", start_reg, + read_backward ? "backward" : "forward", LabelToInt(on_no_match)); + assembler_->CheckNotBackReference(start_reg, read_backward, on_no_match); +} + + +void RegExpMacroAssemblerTracer::CheckNotBackReferenceIgnoreCase( + int start_reg, bool read_backward, bool unicode, Label* on_no_match) { + PrintF(" CheckNotBackReferenceIgnoreCase(register=%d, %s %s, label[%08x]);\n", + start_reg, read_backward ? "backward" : "forward", + unicode ? "unicode" : "non-unicode", LabelToInt(on_no_match)); + assembler_->CheckNotBackReferenceIgnoreCase(start_reg, read_backward, unicode, + on_no_match); +} + + +void RegExpMacroAssemblerTracer::CheckPosition(int cp_offset, + Label* on_outside_input) { + PrintF(" CheckPosition(cp_offset=%d, label[%08x]);\n", cp_offset, + LabelToInt(on_outside_input)); + assembler_->CheckPosition(cp_offset, on_outside_input); +} + + +bool RegExpMacroAssemblerTracer::CheckSpecialCharacterClass( + uc16 type, + Label* on_no_match) { + bool supported = assembler_->CheckSpecialCharacterClass(type, + on_no_match); + PrintF(" CheckSpecialCharacterClass(type='%c', label[%08x]): %s;\n", + type, + LabelToInt(on_no_match), + supported ? "true" : "false"); + return supported; +} + + +void RegExpMacroAssemblerTracer::IfRegisterLT(int register_index, + int comparand, Label* if_lt) { + PrintF(" IfRegisterLT(register=%d, number=%d, label[%08x]);\n", + register_index, comparand, LabelToInt(if_lt)); + assembler_->IfRegisterLT(register_index, comparand, if_lt); +} + + +void RegExpMacroAssemblerTracer::IfRegisterEqPos(int register_index, + Label* if_eq) { + PrintF(" IfRegisterEqPos(register=%d, label[%08x]);\n", + register_index, LabelToInt(if_eq)); + assembler_->IfRegisterEqPos(register_index, if_eq); +} + + +void RegExpMacroAssemblerTracer::IfRegisterGE(int register_index, + int comparand, Label* if_ge) { + PrintF(" IfRegisterGE(register=%d, number=%d, label[%08x]);\n", + register_index, comparand, LabelToInt(if_ge)); + assembler_->IfRegisterGE(register_index, comparand, if_ge); +} + + +RegExpMacroAssembler::IrregexpImplementation + RegExpMacroAssemblerTracer::Implementation() { + return assembler_->Implementation(); +} + + +Handle<HeapObject> RegExpMacroAssemblerTracer::GetCode(Handle<String> source) { + PrintF(" GetCode(%s);\n", source->ToCString().get()); + return assembler_->GetCode(source); +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-macro-assembler-tracer.h b/js/src/regexp/regexp-macro-assembler-tracer.h new file mode 100644 index 000000000..938f84796 --- /dev/null +++ b/js/src/regexp/regexp-macro-assembler-tracer.h @@ -0,0 +1,81 @@ +// Copyright 2008 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_ +#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_ + +#include "regexp/regexp-macro-assembler.h" + +namespace v8 { +namespace internal { + +// Decorator on a RegExpMacroAssembler that write all calls. +class RegExpMacroAssemblerTracer: public RegExpMacroAssembler { + public: + RegExpMacroAssemblerTracer(Isolate* isolate, RegExpMacroAssembler* assembler); + ~RegExpMacroAssemblerTracer() override; + void AbortedCodeGeneration() override; + int stack_limit_slack() override { return assembler_->stack_limit_slack(); } + bool CanReadUnaligned() override { return assembler_->CanReadUnaligned(); } + void AdvanceCurrentPosition(int by) override; // Signed cp change. + void AdvanceRegister(int reg, int by) override; // r[reg] += by. + void Backtrack() override; + void Bind(Label* label) override; + void CheckCharacter(unsigned c, Label* on_equal) override; + void CheckCharacterAfterAnd(unsigned c, unsigned and_with, + Label* on_equal) override; + void CheckCharacterGT(uc16 limit, Label* on_greater) override; + void CheckCharacterLT(uc16 limit, Label* on_less) override; + void CheckGreedyLoop(Label* on_tos_equals_current_position) override; + void CheckAtStart(int cp_offset, Label* on_at_start) override; + void CheckNotAtStart(int cp_offset, Label* on_not_at_start) override; + void CheckNotBackReference(int start_reg, bool read_backward, + Label* on_no_match) override; + void CheckNotBackReferenceIgnoreCase(int start_reg, bool read_backward, + bool unicode, + Label* on_no_match) override; + void CheckNotCharacter(unsigned c, Label* on_not_equal) override; + void CheckNotCharacterAfterAnd(unsigned c, unsigned and_with, + Label* on_not_equal) override; + void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 and_with, + Label* on_not_equal) override; + void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range) override; + void CheckCharacterNotInRange(uc16 from, uc16 to, + Label* on_not_in_range) override; + void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) override; + void CheckPosition(int cp_offset, Label* on_outside_input) override; + bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match) override; + void Fail() override; + Handle<HeapObject> GetCode(Handle<String> source) override; + void GoTo(Label* label) override; + void IfRegisterGE(int reg, int comparand, Label* if_ge) override; + void IfRegisterLT(int reg, int comparand, Label* if_lt) override; + void IfRegisterEqPos(int reg, Label* if_eq) override; + IrregexpImplementation Implementation() override; + void LoadCurrentCharacterImpl(int cp_offset, Label* on_end_of_input, + bool check_bounds, int characters, + int eats_at_least) override; + void PopCurrentPosition() override; + void PopRegister(int register_index) override; + void PushBacktrack(Label* label) override; + void PushCurrentPosition() override; + void PushRegister(int register_index, + StackCheckFlag check_stack_limit) override; + void ReadCurrentPositionFromRegister(int reg) override; + void ReadStackPointerFromRegister(int reg) override; + void SetCurrentPositionFromEnd(int by) override; + void SetRegister(int register_index, int to) override; + bool Succeed() override; + void WriteCurrentPositionToRegister(int reg, int cp_offset) override; + void ClearRegisters(int reg_from, int reg_to) override; + void WriteStackPointerToRegister(int reg) override; + + private: + RegExpMacroAssembler* assembler_; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_ diff --git a/js/src/regexp/regexp-macro-assembler.cc b/js/src/regexp/regexp-macro-assembler.cc new file mode 100644 index 000000000..4a8dcd3ce --- /dev/null +++ b/js/src/regexp/regexp-macro-assembler.cc @@ -0,0 +1,367 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-macro-assembler.h" + +#include "regexp/regexp-stack.h" + +#ifdef V8_INTL_SUPPORT +#include "unicode/uchar.h" +#include "unicode/unistr.h" +#endif // V8_INTL_SUPPORT + +namespace v8 { +namespace internal { + +RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone) + : slow_safe_compiler_(false), + global_mode_(NOT_GLOBAL), + isolate_(isolate), + zone_(zone) {} + +RegExpMacroAssembler::~RegExpMacroAssembler() = default; + +int RegExpMacroAssembler::CaseInsensitiveCompareUC16(Address byte_offset1, + Address byte_offset2, + size_t byte_length, + Isolate* isolate) { + // This function is not allowed to cause a garbage collection. + // A GC might move the calling generated code and invalidate the + // return address on the stack. + DCHECK_EQ(0, byte_length % 2); + +#ifdef V8_INTL_SUPPORT + int32_t length = (int32_t)(byte_length >> 1); + icu::UnicodeString uni_str_1(reinterpret_cast<const char16_t*>(byte_offset1), + length); + return uni_str_1.caseCompare(reinterpret_cast<const char16_t*>(byte_offset2), + length, U_FOLD_CASE_DEFAULT) == 0; +#else + uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1); + uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2); + size_t length = byte_length >> 1; + DCHECK_NOT_NULL(isolate); + unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = + isolate->regexp_macro_assembler_canonicalize(); + for (size_t i = 0; i < length; i++) { + unibrow::uchar c1 = substring1[i]; + unibrow::uchar c2 = substring2[i]; + if (c1 != c2) { + unibrow::uchar s1[1] = {c1}; + canonicalize->get(c1, '\0', s1); + if (s1[0] != c2) { + unibrow::uchar s2[1] = {c2}; + canonicalize->get(c2, '\0', s2); + if (s1[0] != s2[0]) { + return 0; + } + } + } + } + return 1; +#endif // V8_INTL_SUPPORT +} + + +void RegExpMacroAssembler::CheckNotInSurrogatePair(int cp_offset, + Label* on_failure) { + Label ok; + // Check that current character is not a trail surrogate. + LoadCurrentCharacter(cp_offset, &ok); + CheckCharacterNotInRange(kTrailSurrogateStart, kTrailSurrogateEnd, &ok); + // Check that previous character is not a lead surrogate. + LoadCurrentCharacter(cp_offset - 1, &ok); + CheckCharacterInRange(kLeadSurrogateStart, kLeadSurrogateEnd, on_failure); + Bind(&ok); +} + +void RegExpMacroAssembler::CheckPosition(int cp_offset, + Label* on_outside_input) { + LoadCurrentCharacter(cp_offset, on_outside_input, true); +} + +void RegExpMacroAssembler::LoadCurrentCharacter(int cp_offset, + Label* on_end_of_input, + bool check_bounds, + int characters, + int eats_at_least) { + // By default, eats_at_least = characters. + if (eats_at_least == kUseCharactersValue) { + eats_at_least = characters; + } + + LoadCurrentCharacterImpl(cp_offset, on_end_of_input, check_bounds, characters, + eats_at_least); +} + +bool RegExpMacroAssembler::CheckSpecialCharacterClass(uc16 type, + Label* on_no_match) { + return false; +} + +NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate, + Zone* zone) + : RegExpMacroAssembler(isolate, zone) {} + +NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() = default; + +bool NativeRegExpMacroAssembler::CanReadUnaligned() { + return FLAG_enable_regexp_unaligned_accesses && !slow_safe(); +} + +const byte* NativeRegExpMacroAssembler::StringCharacterPosition( + String subject, int start_index, const DisallowHeapAllocation& no_gc) { + if (subject.IsConsString()) { + subject = ConsString::cast(subject).first(); + } else if (subject.IsSlicedString()) { + start_index += SlicedString::cast(subject).offset(); + subject = SlicedString::cast(subject).parent(); + } + if (subject.IsThinString()) { + subject = ThinString::cast(subject).actual(); + } + DCHECK_LE(0, start_index); + DCHECK_LE(start_index, subject.length()); + if (subject.IsSeqOneByteString()) { + return reinterpret_cast<const byte*>( + SeqOneByteString::cast(subject).GetChars(no_gc) + start_index); + } else if (subject.IsSeqTwoByteString()) { + return reinterpret_cast<const byte*>( + SeqTwoByteString::cast(subject).GetChars(no_gc) + start_index); + } else if (subject.IsExternalOneByteString()) { + return reinterpret_cast<const byte*>( + ExternalOneByteString::cast(subject).GetChars() + start_index); + } else { + DCHECK(subject.IsExternalTwoByteString()); + return reinterpret_cast<const byte*>( + ExternalTwoByteString::cast(subject).GetChars() + start_index); + } +} + +// This method may only be called after an interrupt. +int NativeRegExpMacroAssembler::CheckStackGuardState( + Isolate* isolate, int start_index, RegExp::CallOrigin call_origin, + Address* return_address, Code re_code, Address* subject, + const byte** input_start, const byte** input_end) { + DisallowHeapAllocation no_gc; + + DCHECK(re_code.raw_instruction_start() <= *return_address); + DCHECK(*return_address <= re_code.raw_instruction_end()); + StackLimitCheck check(isolate); + bool js_has_overflowed = check.JsHasOverflowed(); + + if (call_origin == RegExp::CallOrigin::kFromJs) { + // Direct calls from JavaScript can be interrupted in two ways: + // 1. A real stack overflow, in which case we let the caller throw the + // exception. + // 2. The stack guard was used to interrupt execution for another purpose, + // forcing the call through the runtime system. + + // Bug(v8:9540) Investigate why this method is called from JS although no + // stackoverflow or interrupt is pending on ARM64. We return 0 in this case + // to continue execution normally. + if (js_has_overflowed) { + return EXCEPTION; + } else if (check.InterruptRequested()) { + return RETRY; + } else { + return 0; + } + } + DCHECK(call_origin == RegExp::CallOrigin::kFromRuntime); + + // Prepare for possible GC. + HandleScope handles(isolate); + Handle<Code> code_handle(re_code, isolate); + Handle<String> subject_handle(String::cast(Object(*subject)), isolate); + bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject_handle); + int return_value = 0; + + if (js_has_overflowed) { + AllowHeapAllocation yes_gc; + isolate->StackOverflow(); + return_value = EXCEPTION; + } else if (check.InterruptRequested()) { + AllowHeapAllocation yes_gc; + Object result = isolate->stack_guard()->HandleInterrupts(); + if (result.IsException(isolate)) return_value = EXCEPTION; + } + + if (*code_handle != re_code) { // Return address no longer valid + intptr_t delta = code_handle->address() - re_code.address(); + // Overwrite the return address on the stack. + *return_address += delta; + } + + // If we continue, we need to update the subject string addresses. + if (return_value == 0) { + // String encoding might have changed. + if (String::IsOneByteRepresentationUnderneath(*subject_handle) != + is_one_byte) { + // If we changed between an LATIN1 and an UC16 string, the specialized + // code cannot be used, and we need to restart regexp matching from + // scratch (including, potentially, compiling a new version of the code). + return_value = RETRY; + } else { + *subject = subject_handle->ptr(); + intptr_t byte_length = *input_end - *input_start; + *input_start = + StringCharacterPosition(*subject_handle, start_index, no_gc); + *input_end = *input_start + byte_length; + } + } + return return_value; +} + +// Returns a {Result} sentinel, or the number of successful matches. +int NativeRegExpMacroAssembler::Match(Handle<JSRegExp> regexp, + Handle<String> subject, + int* offsets_vector, + int offsets_vector_length, + int previous_index, Isolate* isolate) { + DCHECK(subject->IsFlat()); + DCHECK_LE(0, previous_index); + DCHECK_LE(previous_index, subject->length()); + + // No allocations before calling the regexp, but we can't use + // DisallowHeapAllocation, since regexps might be preempted, and another + // thread might do allocation anyway. + + String subject_ptr = *subject; + // Character offsets into string. + int start_offset = previous_index; + int char_length = subject_ptr.length() - start_offset; + int slice_offset = 0; + + // The string has been flattened, so if it is a cons string it contains the + // full string in the first part. + if (StringShape(subject_ptr).IsCons()) { + DCHECK_EQ(0, ConsString::cast(subject_ptr).second().length()); + subject_ptr = ConsString::cast(subject_ptr).first(); + } else if (StringShape(subject_ptr).IsSliced()) { + SlicedString slice = SlicedString::cast(subject_ptr); + subject_ptr = slice.parent(); + slice_offset = slice.offset(); + } + if (StringShape(subject_ptr).IsThin()) { + subject_ptr = ThinString::cast(subject_ptr).actual(); + } + // Ensure that an underlying string has the same representation. + bool is_one_byte = subject_ptr.IsOneByteRepresentation(); + DCHECK(subject_ptr.IsExternalString() || subject_ptr.IsSeqString()); + // String is now either Sequential or External + int char_size_shift = is_one_byte ? 0 : 1; + + DisallowHeapAllocation no_gc; + const byte* input_start = + StringCharacterPosition(subject_ptr, start_offset + slice_offset, no_gc); + int byte_length = char_length << char_size_shift; + const byte* input_end = input_start + byte_length; + return Execute(*subject, start_offset, input_start, input_end, offsets_vector, + offsets_vector_length, isolate, *regexp); +} + +// Returns a {Result} sentinel, or the number of successful matches. +// TODO(pthier): The JSRegExp object is passed to native irregexp code to match +// the signature of the interpreter. We should get rid of JS objects passed to +// internal methods. +int NativeRegExpMacroAssembler::Execute( + String input, // This needs to be the unpacked (sliced, cons) string. + int start_offset, const byte* input_start, const byte* input_end, + int* output, int output_size, Isolate* isolate, JSRegExp regexp) { + // Ensure that the minimum stack has been allocated. + RegExpStackScope stack_scope(isolate); + Address stack_base = stack_scope.stack()->stack_base(); + + bool is_one_byte = String::IsOneByteRepresentationUnderneath(input); + Code code = Code::cast(regexp.Code(is_one_byte)); + RegExp::CallOrigin call_origin = RegExp::CallOrigin::kFromRuntime; + + using RegexpMatcherSig = int( + Address input_string, int start_offset, // NOLINT(readability/casting) + const byte* input_start, const byte* input_end, int* output, + int output_size, Address stack_base, int call_origin, Isolate* isolate, + Address regexp); + + auto fn = GeneratedCode<RegexpMatcherSig>::FromCode(code); + int result = + fn.Call(input.ptr(), start_offset, input_start, input_end, output, + output_size, stack_base, call_origin, isolate, regexp.ptr()); + DCHECK(result >= RETRY); + + if (result == EXCEPTION && !isolate->has_pending_exception()) { + // We detected a stack overflow (on the backtrack stack) in RegExp code, + // but haven't created the exception yet. Additionally, we allow heap + // allocation because even though it invalidates {input_start} and + // {input_end}, we are about to return anyway. + AllowHeapAllocation allow_allocation; + isolate->StackOverflow(); + } + return result; +} + +// clang-format off +const byte NativeRegExpMacroAssembler::word_character_map[] = { + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // '0' - '7' + 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // '8' - '9' + + 0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'A' - 'G' + 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'H' - 'O' + 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'P' - 'W' + 0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0xFFu, // 'X' - 'Z', '_' + + 0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'a' - 'g' + 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'h' - 'o' + 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'p' - 'w' + 0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // 'x' - 'z' + // Latin-1 range + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, + 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, +}; +// clang-format on + +Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer, + Address* stack_base, + Isolate* isolate) { + RegExpStack* regexp_stack = isolate->regexp_stack(); + size_t size = regexp_stack->stack_capacity(); + Address old_stack_base = regexp_stack->stack_base(); + DCHECK(old_stack_base == *stack_base); + DCHECK(stack_pointer <= old_stack_base); + DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size); + Address new_stack_base = regexp_stack->EnsureCapacity(size * 2); + if (new_stack_base == kNullAddress) { + return kNullAddress; + } + *stack_base = new_stack_base; + intptr_t stack_content_size = old_stack_base - stack_pointer; + return new_stack_base - stack_content_size; +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-macro-assembler.h b/js/src/regexp/regexp-macro-assembler.h new file mode 100644 index 000000000..67d97d122 --- /dev/null +++ b/js/src/regexp/regexp-macro-assembler.h @@ -0,0 +1,277 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_ +#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_ + +#include "regexp/regexp-ast.h" +#include "regexp/regexp.h" + +namespace v8 { +namespace internal { + +static const uc32 kLeadSurrogateStart = 0xd800; +static const uc32 kLeadSurrogateEnd = 0xdbff; +static const uc32 kTrailSurrogateStart = 0xdc00; +static const uc32 kTrailSurrogateEnd = 0xdfff; +static const uc32 kNonBmpStart = 0x10000; +static const uc32 kNonBmpEnd = 0x10ffff; + +struct DisjunctDecisionRow { + RegExpCharacterClass cc; + Label* on_match; +}; + + +class RegExpMacroAssembler { + public: + // The implementation must be able to handle at least: + static const int kMaxRegister = (1 << 16) - 1; + static const int kMaxCPOffset = (1 << 15) - 1; + static const int kMinCPOffset = -(1 << 15); + + static const int kTableSizeBits = 7; + static const int kTableSize = 1 << kTableSizeBits; + static const int kTableMask = kTableSize - 1; + + static constexpr int kUseCharactersValue = -1; + + enum IrregexpImplementation { + kIA32Implementation, + kARMImplementation, + kARM64Implementation, + kMIPSImplementation, + kS390Implementation, + kPPCImplementation, + kX64Implementation, + kX87Implementation, + kBytecodeImplementation + }; + + enum StackCheckFlag { + kNoStackLimitCheck = false, + kCheckStackLimit = true + }; + + RegExpMacroAssembler(Isolate* isolate, Zone* zone); + virtual ~RegExpMacroAssembler(); + // This function is called when code generation is aborted, so that + // the assembler could clean up internal data structures. + virtual void AbortedCodeGeneration() {} + // The maximal number of pushes between stack checks. Users must supply + // kCheckStackLimit flag to push operations (instead of kNoStackLimitCheck) + // at least once for every stack_limit() pushes that are executed. + virtual int stack_limit_slack() = 0; + virtual bool CanReadUnaligned() = 0; + virtual void AdvanceCurrentPosition(int by) = 0; // Signed cp change. + virtual void AdvanceRegister(int reg, int by) = 0; // r[reg] += by. + // Continues execution from the position pushed on the top of the backtrack + // stack by an earlier PushBacktrack(Label*). + virtual void Backtrack() = 0; + virtual void Bind(Label* label) = 0; + // Dispatch after looking the current character up in a 2-bits-per-entry + // map. The destinations vector has up to 4 labels. + virtual void CheckCharacter(unsigned c, Label* on_equal) = 0; + // Bitwise and the current character with the given constant and then + // check for a match with c. + virtual void CheckCharacterAfterAnd(unsigned c, + unsigned and_with, + Label* on_equal) = 0; + virtual void CheckCharacterGT(uc16 limit, Label* on_greater) = 0; + virtual void CheckCharacterLT(uc16 limit, Label* on_less) = 0; + virtual void CheckGreedyLoop(Label* on_tos_equals_current_position) = 0; + virtual void CheckAtStart(int cp_offset, Label* on_at_start) = 0; + virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start) = 0; + virtual void CheckNotBackReference(int start_reg, bool read_backward, + Label* on_no_match) = 0; + virtual void CheckNotBackReferenceIgnoreCase(int start_reg, + bool read_backward, bool unicode, + Label* on_no_match) = 0; + // Check the current character for a match with a literal character. If we + // fail to match then goto the on_failure label. End of input always + // matches. If the label is nullptr then we should pop a backtrack address + // off the stack and go to that. + virtual void CheckNotCharacter(unsigned c, Label* on_not_equal) = 0; + virtual void CheckNotCharacterAfterAnd(unsigned c, + unsigned and_with, + Label* on_not_equal) = 0; + // Subtract a constant from the current character, then and with the given + // constant and then check for a match with c. + virtual void CheckNotCharacterAfterMinusAnd(uc16 c, + uc16 minus, + uc16 and_with, + Label* on_not_equal) = 0; + virtual void CheckCharacterInRange(uc16 from, + uc16 to, // Both inclusive. + Label* on_in_range) = 0; + virtual void CheckCharacterNotInRange(uc16 from, + uc16 to, // Both inclusive. + Label* on_not_in_range) = 0; + + // The current character (modulus the kTableSize) is looked up in the byte + // array, and if the found byte is non-zero, we jump to the on_bit_set label. + virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) = 0; + + // Checks whether the given offset from the current position is before + // the end of the string. May overwrite the current character. + virtual void CheckPosition(int cp_offset, Label* on_outside_input); + // Check whether a standard/default character class matches the current + // character. Returns false if the type of special character class does + // not have custom support. + // May clobber the current loaded character. + virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match); + virtual void Fail() = 0; + virtual Handle<HeapObject> GetCode(Handle<String> source) = 0; + virtual void GoTo(Label* label) = 0; + // Check whether a register is >= a given constant and go to a label if it + // is. Backtracks instead if the label is nullptr. + virtual void IfRegisterGE(int reg, int comparand, Label* if_ge) = 0; + // Check whether a register is < a given constant and go to a label if it is. + // Backtracks instead if the label is nullptr. + virtual void IfRegisterLT(int reg, int comparand, Label* if_lt) = 0; + // Check whether a register is == to the current position and go to a + // label if it is. + virtual void IfRegisterEqPos(int reg, Label* if_eq) = 0; + virtual IrregexpImplementation Implementation() = 0; + V8_EXPORT_PRIVATE void LoadCurrentCharacter( + int cp_offset, Label* on_end_of_input, bool check_bounds = true, + int characters = 1, int eats_at_least = kUseCharactersValue); + virtual void LoadCurrentCharacterImpl(int cp_offset, Label* on_end_of_input, + bool check_bounds, int characters, + int eats_at_least) = 0; + virtual void PopCurrentPosition() = 0; + virtual void PopRegister(int register_index) = 0; + // Pushes the label on the backtrack stack, so that a following Backtrack + // will go to this label. Always checks the backtrack stack limit. + virtual void PushBacktrack(Label* label) = 0; + virtual void PushCurrentPosition() = 0; + virtual void PushRegister(int register_index, + StackCheckFlag check_stack_limit) = 0; + virtual void ReadCurrentPositionFromRegister(int reg) = 0; + virtual void ReadStackPointerFromRegister(int reg) = 0; + virtual void SetCurrentPositionFromEnd(int by) = 0; + virtual void SetRegister(int register_index, int to) = 0; + // Return whether the matching (with a global regexp) will be restarted. + virtual bool Succeed() = 0; + virtual void WriteCurrentPositionToRegister(int reg, int cp_offset) = 0; + virtual void ClearRegisters(int reg_from, int reg_to) = 0; + virtual void WriteStackPointerToRegister(int reg) = 0; + + // Compares two-byte strings case insensitively. + // Called from generated RegExp code. + static int CaseInsensitiveCompareUC16(Address byte_offset1, + Address byte_offset2, + size_t byte_length, Isolate* isolate); + + // Check that we are not in the middle of a surrogate pair. + void CheckNotInSurrogatePair(int cp_offset, Label* on_failure); + + // Controls the generation of large inlined constants in the code. + void set_slow_safe(bool ssc) { slow_safe_compiler_ = ssc; } + bool slow_safe() { return slow_safe_compiler_; } + + void set_backtrack_limit(uint32_t backtrack_limit) { + backtrack_limit_ = backtrack_limit; + } + + enum GlobalMode { + NOT_GLOBAL, + GLOBAL_NO_ZERO_LENGTH_CHECK, + GLOBAL, + GLOBAL_UNICODE + }; + // Set whether the regular expression has the global flag. Exiting due to + // a failure in a global regexp may still mean success overall. + inline void set_global_mode(GlobalMode mode) { global_mode_ = mode; } + inline bool global() { return global_mode_ != NOT_GLOBAL; } + inline bool global_with_zero_length_check() { + return global_mode_ == GLOBAL || global_mode_ == GLOBAL_UNICODE; + } + inline bool global_unicode() { return global_mode_ == GLOBAL_UNICODE; } + + Isolate* isolate() const { return isolate_; } + Zone* zone() const { return zone_; } + + protected: + bool has_backtrack_limit() const { + return backtrack_limit_ != JSRegExp::kNoBacktrackLimit; + } + uint32_t backtrack_limit() const { return backtrack_limit_; } + + private: + bool slow_safe_compiler_; + uint32_t backtrack_limit_ = JSRegExp::kNoBacktrackLimit; + GlobalMode global_mode_; + Isolate* isolate_; + Zone* zone_; +}; + +class NativeRegExpMacroAssembler: public RegExpMacroAssembler { + public: + // Type of input string to generate code for. + enum Mode { LATIN1 = 1, UC16 = 2 }; + + // Result of calling generated native RegExp code. + // RETRY: Something significant changed during execution, and the matching + // should be retried from scratch. + // EXCEPTION: Something failed during execution. If no exception has been + // thrown, it's an internal out-of-memory, and the caller should + // throw the exception. + // FAILURE: Matching failed. + // SUCCESS: Matching succeeded, and the output array has been filled with + // capture positions. + enum Result { + FAILURE = RegExp::kInternalRegExpFailure, + SUCCESS = RegExp::kInternalRegExpSuccess, + EXCEPTION = RegExp::kInternalRegExpException, + RETRY = RegExp::kInternalRegExpRetry, + }; + + NativeRegExpMacroAssembler(Isolate* isolate, Zone* zone); + ~NativeRegExpMacroAssembler() override; + bool CanReadUnaligned() override; + + // Returns a {Result} sentinel, or the number of successful matches. + static int Match(Handle<JSRegExp> regexp, Handle<String> subject, + int* offsets_vector, int offsets_vector_length, + int previous_index, Isolate* isolate); + + // Called from RegExp if the backtrack stack limit is hit. + // Tries to expand the stack. Returns the new stack-pointer if + // successful, and updates the stack_top address, or returns 0 if unable + // to grow the stack. + // This function must not trigger a garbage collection. + static Address GrowStack(Address stack_pointer, Address* stack_top, + Isolate* isolate); + + static const byte* StringCharacterPosition( + String subject, int start_index, const DisallowHeapAllocation& no_gc); + + static int CheckStackGuardState(Isolate* isolate, int start_index, + RegExp::CallOrigin call_origin, + Address* return_address, Code re_code, + Address* subject, const byte** input_start, + const byte** input_end); + + // Byte map of one byte characters with a 0xff if the character is a word + // character (digit, letter or underscore) and 0x00 otherwise. + // Used by generated RegExp code. + static const byte word_character_map[256]; + + static Address word_character_map_address() { + return reinterpret_cast<Address>(&word_character_map[0]); + } + + // Returns a {Result} sentinel, or the number of successful matches. + V8_EXPORT_PRIVATE static int Execute(String input, int start_offset, + const byte* input_start, + const byte* input_end, int* output, + int output_size, Isolate* isolate, + JSRegExp regexp); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_ diff --git a/js/src/regexp/regexp-nodes.h b/js/src/regexp/regexp-nodes.h new file mode 100644 index 000000000..50c843c20 --- /dev/null +++ b/js/src/regexp/regexp-nodes.h @@ -0,0 +1,750 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_NODES_H_ +#define V8_REGEXP_REGEXP_NODES_H_ + +#include "regexp/regexp-macro-assembler.h" + +namespace v8 { +namespace internal { + +class AlternativeGenerationList; +class BoyerMooreLookahead; +class GreedyLoopState; +class Label; +class NodeVisitor; +class QuickCheckDetails; +class RegExpCompiler; +class Trace; +struct PreloadState; +class ChoiceNode; + +#define FOR_EACH_NODE_TYPE(VISIT) \ + VISIT(End) \ + VISIT(Action) \ + VISIT(Choice) \ + VISIT(LoopChoice) \ + VISIT(NegativeLookaroundChoice) \ + VISIT(BackReference) \ + VISIT(Assertion) \ + VISIT(Text) + +struct NodeInfo final { + NodeInfo() + : being_analyzed(false), + been_analyzed(false), + follows_word_interest(false), + follows_newline_interest(false), + follows_start_interest(false), + at_end(false), + visited(false), + replacement_calculated(false) {} + + // Returns true if the interests and assumptions of this node + // matches the given one. + bool Matches(NodeInfo* that) { + return (at_end == that->at_end) && + (follows_word_interest == that->follows_word_interest) && + (follows_newline_interest == that->follows_newline_interest) && + (follows_start_interest == that->follows_start_interest); + } + + // Updates the interests of this node given the interests of the + // node preceding it. + void AddFromPreceding(NodeInfo* that) { + at_end |= that->at_end; + follows_word_interest |= that->follows_word_interest; + follows_newline_interest |= that->follows_newline_interest; + follows_start_interest |= that->follows_start_interest; + } + + bool HasLookbehind() { + return follows_word_interest || follows_newline_interest || + follows_start_interest; + } + + // Sets the interests of this node to include the interests of the + // following node. + void AddFromFollowing(NodeInfo* that) { + follows_word_interest |= that->follows_word_interest; + follows_newline_interest |= that->follows_newline_interest; + follows_start_interest |= that->follows_start_interest; + } + + void ResetCompilationState() { + being_analyzed = false; + been_analyzed = false; + } + + bool being_analyzed : 1; + bool been_analyzed : 1; + + // These bits are set of this node has to know what the preceding + // character was. + bool follows_word_interest : 1; + bool follows_newline_interest : 1; + bool follows_start_interest : 1; + + bool at_end : 1; + bool visited : 1; + bool replacement_calculated : 1; +}; + +struct EatsAtLeastInfo final { + EatsAtLeastInfo() : EatsAtLeastInfo(0) {} + explicit EatsAtLeastInfo(uint8_t eats) + : eats_at_least_from_possibly_start(eats), + eats_at_least_from_not_start(eats) {} + void SetMin(const EatsAtLeastInfo& other) { + if (other.eats_at_least_from_possibly_start < + eats_at_least_from_possibly_start) { + eats_at_least_from_possibly_start = + other.eats_at_least_from_possibly_start; + } + if (other.eats_at_least_from_not_start < eats_at_least_from_not_start) { + eats_at_least_from_not_start = other.eats_at_least_from_not_start; + } + } + + // Any successful match starting from the current node will consume at least + // this many characters. This does not necessarily mean that there is a + // possible match with exactly this many characters, but we generally try to + // get this number as high as possible to allow for early exit on failure. + uint8_t eats_at_least_from_possibly_start; + + // Like eats_at_least_from_possibly_start, but with the additional assumption + // that start-of-string assertions (^) can't match. This value is greater than + // or equal to eats_at_least_from_possibly_start. + uint8_t eats_at_least_from_not_start; +}; + +class RegExpNode : public ZoneObject { + public: + explicit RegExpNode(Zone* zone) + : replacement_(nullptr), + on_work_list_(false), + trace_count_(0), + zone_(zone) { + bm_info_[0] = bm_info_[1] = nullptr; + } + virtual ~RegExpNode(); + virtual void Accept(NodeVisitor* visitor) = 0; + // Generates a goto to this node or actually generates the code at this point. + virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; + // How many characters must this node consume at a minimum in order to + // succeed. The not_at_start argument is used to indicate that we know we are + // not at the start of the input. In this case anchored branches will always + // fail and can be ignored when determining how many characters are consumed + // on success. If this node has not been analyzed yet, EatsAtLeast returns 0. + int EatsAtLeast(bool not_at_start); + // Returns how many characters this node must consume in order to succeed, + // given that this is a LoopChoiceNode whose counter register is in a + // newly-initialized state at the current position in the generated code. For + // example, consider /a{6,8}/. Absent any extra information, the + // LoopChoiceNode for the repetition must report that it consumes at least + // zero characters, because it may have already looped several times. However, + // with a newly-initialized counter, it can report that it consumes at least + // six characters. + virtual EatsAtLeastInfo EatsAtLeastFromLoopEntry(); + // Emits some quick code that checks whether the preloaded characters match. + // Falls through on certain failure, jumps to the label on possible success. + // If the node cannot make a quick check it does nothing and returns false. + bool EmitQuickCheck(RegExpCompiler* compiler, Trace* bounds_check_trace, + Trace* trace, bool preload_has_checked_bounds, + Label* on_possible_success, + QuickCheckDetails* details_return, + bool fall_through_on_failure, ChoiceNode* predecessor); + // For a given number of characters this returns a mask and a value. The + // next n characters are anded with the mask and compared with the value. + // A comparison failure indicates the node cannot match the next n characters. + // A comparison success indicates the node may match. + virtual void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) = 0; + // Fills in quick check details for this node, given that this is a + // LoopChoiceNode whose counter register is in a newly-initialized state at + // the current position in the generated code. For example, consider /a{6,8}/. + // Absent any extra information, the LoopChoiceNode for the repetition cannot + // generate any useful quick check because a match might be the (empty) + // continuation node. However, with a newly-initialized counter, it can + // generate a quick check for several 'a' characters at once. + virtual void GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start); + static const int kNodeIsTooComplexForGreedyLoops = kMinInt; + virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } + // Only returns the successor for a text node of length 1 that matches any + // character and that has no guards on it. + virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( + RegExpCompiler* compiler) { + return nullptr; + } + + // Collects information on the possible code units (mod 128) that can match if + // we look forward. This is used for a Boyer-Moore-like string searching + // implementation. TODO(erikcorry): This should share more code with + // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit + // the number of nodes we are willing to look at in order to create this data. + static const int kRecursionBudget = 200; + bool KeepRecursing(RegExpCompiler* compiler); + virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) { + UNREACHABLE(); + } + + // If we know that the input is one-byte then there are some nodes that can + // never match. This method returns a node that can be substituted for + // itself, or nullptr if the node can never match. + virtual RegExpNode* FilterOneByte(int depth) { return this; } + // Helper for FilterOneByte. + RegExpNode* replacement() { + DCHECK(info()->replacement_calculated); + return replacement_; + } + RegExpNode* set_replacement(RegExpNode* replacement) { + info()->replacement_calculated = true; + replacement_ = replacement; + return replacement; // For convenience. + } + + // We want to avoid recalculating the lookahead info, so we store it on the + // node. Only info that is for this node is stored. We can tell that the + // info is for this node when offset == 0, so the information is calculated + // relative to this node. + void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { + if (offset == 0) set_bm_info(not_at_start, bm); + } + + Label* label() { return &label_; } + // If non-generic code is generated for a node (i.e. the node is not at the + // start of the trace) then it cannot be reused. This variable sets a limit + // on how often we allow that to happen before we insist on starting a new + // trace and generating generic code for a node that can be reused by flushing + // the deferred actions in the current trace and generating a goto. + static const int kMaxCopiesCodeGenerated = 10; + + bool on_work_list() { return on_work_list_; } + void set_on_work_list(bool value) { on_work_list_ = value; } + + NodeInfo* info() { return &info_; } + const EatsAtLeastInfo* eats_at_least_info() const { return &eats_at_least_; } + void set_eats_at_least_info(const EatsAtLeastInfo& eats_at_least) { + eats_at_least_ = eats_at_least; + } + + BoyerMooreLookahead* bm_info(bool not_at_start) { + return bm_info_[not_at_start ? 1 : 0]; + } + + Zone* zone() const { return zone_; } + + protected: + enum LimitResult { DONE, CONTINUE }; + RegExpNode* replacement_; + + LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); + + void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { + bm_info_[not_at_start ? 1 : 0] = bm; + } + + private: + static const int kFirstCharBudget = 10; + Label label_; + bool on_work_list_; + NodeInfo info_; + + // Saved values for EatsAtLeast results, to avoid recomputation. Filled in + // during analysis (valid if info_.been_analyzed is true). + EatsAtLeastInfo eats_at_least_; + + // This variable keeps track of how many times code has been generated for + // this node (in different traces). We don't keep track of where the + // generated code is located unless the code is generated at the start of + // a trace, in which case it is generic and can be reused by flushing the + // deferred operations in the current trace and generating a goto. + int trace_count_; + BoyerMooreLookahead* bm_info_[2]; + + Zone* zone_; +}; + +class SeqRegExpNode : public RegExpNode { + public: + explicit SeqRegExpNode(RegExpNode* on_success) + : RegExpNode(on_success->zone()), on_success_(on_success) {} + RegExpNode* on_success() { return on_success_; } + void set_on_success(RegExpNode* node) { on_success_ = node; } + RegExpNode* FilterOneByte(int depth) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override { + on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); + if (offset == 0) set_bm_info(not_at_start, bm); + } + + protected: + RegExpNode* FilterSuccessor(int depth); + + private: + RegExpNode* on_success_; +}; + +class ActionNode : public SeqRegExpNode { + public: + enum ActionType { + SET_REGISTER_FOR_LOOP, + INCREMENT_REGISTER, + STORE_POSITION, + BEGIN_SUBMATCH, + POSITIVE_SUBMATCH_SUCCESS, + EMPTY_MATCH_CHECK, + CLEAR_CAPTURES + }; + static ActionNode* SetRegisterForLoop(int reg, int val, + RegExpNode* on_success); + static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); + static ActionNode* StorePosition(int reg, bool is_capture, + RegExpNode* on_success); + static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); + static ActionNode* BeginSubmatch(int stack_pointer_reg, int position_reg, + RegExpNode* on_success); + static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, + int restore_reg, + int clear_capture_count, + int clear_capture_from, + RegExpNode* on_success); + static ActionNode* EmptyMatchCheck(int start_register, + int repetition_register, + int repetition_limit, + RegExpNode* on_success); + void Accept(NodeVisitor* visitor) override; + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int filled_in, + bool not_at_start) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + ActionType action_type() { return action_type_; } + // TODO(erikcorry): We should allow some action nodes in greedy loops. + int GreedyLoopTextLength() override { + return kNodeIsTooComplexForGreedyLoops; + } + + private: + union { + struct { + int reg; + int value; + } u_store_register; + struct { + int reg; + } u_increment_register; + struct { + int reg; + bool is_capture; + } u_position_register; + struct { + int stack_pointer_register; + int current_position_register; + int clear_register_count; + int clear_register_from; + } u_submatch; + struct { + int start_register; + int repetition_register; + int repetition_limit; + } u_empty_match_check; + struct { + int range_from; + int range_to; + } u_clear_captures; + } data_; + ActionNode(ActionType action_type, RegExpNode* on_success) + : SeqRegExpNode(on_success), action_type_(action_type) {} + ActionType action_type_; + friend class DotPrinterImpl; +}; + +class TextNode : public SeqRegExpNode { + public: + TextNode(ZoneList<TextElement>* elms, bool read_backward, + RegExpNode* on_success) + : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} + TextNode(RegExpCharacterClass* that, bool read_backward, + RegExpNode* on_success) + : SeqRegExpNode(on_success), + elms_(new (zone()) ZoneList<TextElement>(1, zone())), + read_backward_(read_backward) { + elms_->Add(TextElement::CharClass(that), zone()); + } + // Create TextNode for a single character class for the given ranges. + static TextNode* CreateForCharacterRanges(Zone* zone, + ZoneList<CharacterRange>* ranges, + bool read_backward, + RegExpNode* on_success, + JSRegExp::Flags flags); + // Create TextNode for a surrogate pair with a range given for the + // lead and the trail surrogate each. + static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead, + CharacterRange trail, + bool read_backward, + RegExpNode* on_success, + JSRegExp::Flags flags); + void Accept(NodeVisitor* visitor) override; + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override; + ZoneList<TextElement>* elements() { return elms_; } + bool read_backward() { return read_backward_; } + void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); + int GreedyLoopTextLength() override; + RegExpNode* GetSuccessorOfOmnivorousTextNode( + RegExpCompiler* compiler) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + void CalculateOffsets(); + RegExpNode* FilterOneByte(int depth) override; + int Length(); + + private: + enum TextEmitPassType { + NON_LATIN1_MATCH, // Check for characters that can't match. + SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. + NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. + CASE_CHARACTER_MATCH, // Case-independent single character check. + CHARACTER_CLASS_MATCH // Character class. + }; + static bool SkipPass(TextEmitPassType pass, bool ignore_case); + static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; + static const int kLastPass = CHARACTER_CLASS_MATCH; + void TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, + bool preloaded, Trace* trace, bool first_element_checked, + int* checked_up_to); + ZoneList<TextElement>* elms_; + bool read_backward_; +}; + +class AssertionNode : public SeqRegExpNode { + public: + enum AssertionType { + AT_END, + AT_START, + AT_BOUNDARY, + AT_NON_BOUNDARY, + AFTER_NEWLINE + }; + static AssertionNode* AtEnd(RegExpNode* on_success) { + return new (on_success->zone()) AssertionNode(AT_END, on_success); + } + static AssertionNode* AtStart(RegExpNode* on_success) { + return new (on_success->zone()) AssertionNode(AT_START, on_success); + } + static AssertionNode* AtBoundary(RegExpNode* on_success) { + return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); + } + static AssertionNode* AtNonBoundary(RegExpNode* on_success) { + return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); + } + static AssertionNode* AfterNewline(RegExpNode* on_success) { + return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); + } + void Accept(NodeVisitor* visitor) override; + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int filled_in, + bool not_at_start) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + AssertionType assertion_type() { return assertion_type_; } + + private: + void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); + enum IfPrevious { kIsNonWord, kIsWord }; + void BacktrackIfPrevious(RegExpCompiler* compiler, Trace* trace, + IfPrevious backtrack_if_previous); + AssertionNode(AssertionType t, RegExpNode* on_success) + : SeqRegExpNode(on_success), assertion_type_(t) {} + AssertionType assertion_type_; +}; + +class BackReferenceNode : public SeqRegExpNode { + public: + BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags, + bool read_backward, RegExpNode* on_success) + : SeqRegExpNode(on_success), + start_reg_(start_reg), + end_reg_(end_reg), + flags_(flags), + read_backward_(read_backward) {} + void Accept(NodeVisitor* visitor) override; + int start_register() { return start_reg_; } + int end_register() { return end_reg_; } + bool read_backward() { return read_backward_; } + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override { + return; + } + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + + private: + int start_reg_; + int end_reg_; + JSRegExp::Flags flags_; + bool read_backward_; +}; + +class EndNode : public RegExpNode { + public: + enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; + EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {} + void Accept(NodeVisitor* visitor) override; + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override { + // Returning 0 from EatsAtLeast should ensure we never get here. + UNREACHABLE(); + } + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override { + // Returning 0 from EatsAtLeast should ensure we never get here. + UNREACHABLE(); + } + + private: + Action action_; +}; + +class NegativeSubmatchSuccess : public EndNode { + public: + NegativeSubmatchSuccess(int stack_pointer_reg, int position_reg, + int clear_capture_count, int clear_capture_start, + Zone* zone) + : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), + stack_pointer_register_(stack_pointer_reg), + current_position_register_(position_reg), + clear_capture_count_(clear_capture_count), + clear_capture_start_(clear_capture_start) {} + void Emit(RegExpCompiler* compiler, Trace* trace) override; + + private: + int stack_pointer_register_; + int current_position_register_; + int clear_capture_count_; + int clear_capture_start_; +}; + +class Guard : public ZoneObject { + public: + enum Relation { LT, GEQ }; + Guard(int reg, Relation op, int value) : reg_(reg), op_(op), value_(value) {} + int reg() { return reg_; } + Relation op() { return op_; } + int value() { return value_; } + + private: + int reg_; + Relation op_; + int value_; +}; + +class GuardedAlternative { + public: + explicit GuardedAlternative(RegExpNode* node) + : node_(node), guards_(nullptr) {} + void AddGuard(Guard* guard, Zone* zone); + RegExpNode* node() { return node_; } + void set_node(RegExpNode* node) { node_ = node; } + ZoneList<Guard*>* guards() { return guards_; } + + private: + RegExpNode* node_; + ZoneList<Guard*>* guards_; +}; + +class AlternativeGeneration; + +class ChoiceNode : public RegExpNode { + public: + explicit ChoiceNode(int expected_size, Zone* zone) + : RegExpNode(zone), + alternatives_(new (zone) + ZoneList<GuardedAlternative>(expected_size, zone)), + not_at_start_(false), + being_calculated_(false) {} + void Accept(NodeVisitor* visitor) override; + void AddAlternative(GuardedAlternative node) { + alternatives()->Add(node, zone()); + } + ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + + bool being_calculated() { return being_calculated_; } + bool not_at_start() { return not_at_start_; } + void set_not_at_start() { not_at_start_ = true; } + void set_being_calculated(bool b) { being_calculated_ = b; } + virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { + return true; + } + RegExpNode* FilterOneByte(int depth) override; + virtual bool read_backward() { return false; } + + protected: + int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); + ZoneList<GuardedAlternative>* alternatives_; + + private: + template <typename...> + friend class Analysis; + + void GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, + Trace* trace); + int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); + void EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, + GuardedAlternative alternative, + AlternativeGeneration* alt_gen, + int preload_characters, + bool next_expects_preload); + void SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, + PreloadState* preloads); + void AssertGuardsMentionRegisters(Trace* trace); + int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); + Trace* EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, + AlternativeGenerationList* alt_gens, + PreloadState* preloads, + GreedyLoopState* greedy_loop_state, int text_length); + void EmitChoices(RegExpCompiler* compiler, + AlternativeGenerationList* alt_gens, int first_choice, + Trace* trace, PreloadState* preloads); + + // If true, this node is never checked at the start of the input. + // Allows a new trace to start with at_start() set to false. + bool not_at_start_; + bool being_calculated_; +}; + +class NegativeLookaroundChoiceNode : public ChoiceNode { + public: + explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, + GuardedAlternative then_do_this, + Zone* zone) + : ChoiceNode(2, zone) { + AddAlternative(this_must_fail); + AddAlternative(then_do_this); + } + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override { + continue_node()->FillInBMInfo(isolate, offset, budget - 1, bm, + not_at_start); + if (offset == 0) set_bm_info(not_at_start, bm); + } + static constexpr int kLookaroundIndex = 0; + static constexpr int kContinueIndex = 1; + RegExpNode* lookaround_node() { + return alternatives()->at(kLookaroundIndex).node(); + } + RegExpNode* continue_node() { + return alternatives()->at(kContinueIndex).node(); + } + // For a negative lookahead we don't emit the quick check for the + // alternative that is expected to fail. This is because quick check code + // starts by loading enough characters for the alternative that takes fewest + // characters, but on a negative lookahead the negative branch did not take + // part in that calculation (EatsAtLeast) so the assumptions don't hold. + bool try_to_emit_quick_check_for_alternative(bool is_first) override { + return !is_first; + } + void Accept(NodeVisitor* visitor) override; + RegExpNode* FilterOneByte(int depth) override; +}; + +class LoopChoiceNode : public ChoiceNode { + public: + LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, + int min_loop_iterations, Zone* zone) + : ChoiceNode(2, zone), + loop_node_(nullptr), + continue_node_(nullptr), + body_can_be_zero_length_(body_can_be_zero_length), + read_backward_(read_backward), + traversed_loop_initialization_node_(false), + min_loop_iterations_(min_loop_iterations) {} + void AddLoopAlternative(GuardedAlternative alt); + void AddContinueAlternative(GuardedAlternative alt); + void Emit(RegExpCompiler* compiler, Trace* trace) override; + void GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, int characters_filled_in, + bool not_at_start) override; + void GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) override; + void FillInBMInfo(Isolate* isolate, int offset, int budget, + BoyerMooreLookahead* bm, bool not_at_start) override; + EatsAtLeastInfo EatsAtLeastFromLoopEntry() override; + RegExpNode* loop_node() { return loop_node_; } + RegExpNode* continue_node() { return continue_node_; } + bool body_can_be_zero_length() { return body_can_be_zero_length_; } + int min_loop_iterations() const { return min_loop_iterations_; } + bool read_backward() override { return read_backward_; } + void Accept(NodeVisitor* visitor) override; + RegExpNode* FilterOneByte(int depth) override; + + private: + // AddAlternative is made private for loop nodes because alternatives + // should not be added freely, we need to keep track of which node + // goes back to the node itself. + void AddAlternative(GuardedAlternative node) { + ChoiceNode::AddAlternative(node); + } + + RegExpNode* loop_node_; + RegExpNode* continue_node_; + bool body_can_be_zero_length_; + bool read_backward_; + + // Temporary marker set only while generating quick check details. Represents + // whether GetQuickCheckDetails traversed the initialization node for this + // loop's counter. If so, we may be able to generate stricter quick checks + // because we know the loop node must match at least min_loop_iterations_ + // times before the continuation node can match. + bool traversed_loop_initialization_node_; + + // The minimum number of times the loop_node_ must match before the + // continue_node_ might be considered. This value can be temporarily decreased + // while generating quick check details, to represent the remaining iterations + // after the completed portion of the quick check details. + int min_loop_iterations_; + + friend class IterationDecrementer; + friend class LoopInitializationMarker; +}; + +class NodeVisitor { + public: + virtual ~NodeVisitor() = default; +#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0; + FOR_EACH_NODE_TYPE(DECLARE_VISIT) +#undef DECLARE_VISIT +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_NODES_H_ diff --git a/js/src/regexp/regexp-parser.cc b/js/src/regexp/regexp-parser.cc new file mode 100644 index 000000000..377b94247 --- /dev/null +++ b/js/src/regexp/regexp-parser.cc @@ -0,0 +1,2115 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-parser.h" + +#include <vector> + +#include "regexp/property-sequences.h" +#include "regexp/regexp-macro-assembler.h" +#include "regexp/regexp.h" + +#ifdef V8_INTL_SUPPORT +#include "unicode/uniset.h" +#endif // V8_INTL_SUPPORT + +namespace v8 { +namespace internal { + +RegExpParser::RegExpParser(FlatStringReader* in, Handle<String>* error, + JSRegExp::Flags flags, Isolate* isolate, Zone* zone) + : isolate_(isolate), + zone_(zone), + error_(error), + captures_(nullptr), + named_captures_(nullptr), + named_back_references_(nullptr), + in_(in), + current_(kEndMarker), + top_level_flags_(flags), + next_pos_(0), + captures_started_(0), + capture_count_(0), + has_more_(true), + simple_(false), + contains_anchor_(false), + is_scanned_for_captures_(false), + has_named_captures_(false), + failed_(false) { + Advance(); +} + +template <bool update_position> +inline uc32 RegExpParser::ReadNext() { + int position = next_pos_; + uc32 c0 = in()->Get(position); + position++; + // Read the whole surrogate pair in case of unicode flag, if possible. + if (unicode() && position < in()->length() && + unibrow::Utf16::IsLeadSurrogate(static_cast<uc16>(c0))) { + uc16 c1 = in()->Get(position); + if (unibrow::Utf16::IsTrailSurrogate(c1)) { + c0 = unibrow::Utf16::CombineSurrogatePair(static_cast<uc16>(c0), c1); + position++; + } + } + if (update_position) next_pos_ = position; + return c0; +} + + +uc32 RegExpParser::Next() { + if (has_next()) { + return ReadNext<false>(); + } else { + return kEndMarker; + } +} + +void RegExpParser::Advance() { + if (has_next()) { + StackLimitCheck check(isolate()); + if (check.HasOverflowed()) { + if (FLAG_correctness_fuzzer_suppressions) { + FATAL("Aborting on stack overflow"); + } + ReportError(CStrVector( + MessageFormatter::TemplateString(MessageTemplate::kStackOverflow))); + } else if (zone()->excess_allocation()) { + if (FLAG_correctness_fuzzer_suppressions) { + FATAL("Aborting on excess zone allocation"); + } + ReportError(CStrVector("Regular expression too large")); + } else { + current_ = ReadNext<true>(); + } + } else { + current_ = kEndMarker; + // Advance so that position() points to 1-after-the-last-character. This is + // important so that Reset() to this position works correctly. + next_pos_ = in()->length() + 1; + has_more_ = false; + } +} + + +void RegExpParser::Reset(int pos) { + next_pos_ = pos; + has_more_ = (pos < in()->length()); + Advance(); +} + +void RegExpParser::Advance(int dist) { + next_pos_ += dist - 1; + Advance(); +} + + +bool RegExpParser::simple() { return simple_; } + +bool RegExpParser::IsSyntaxCharacterOrSlash(uc32 c) { + switch (c) { + case '^': + case '$': + case '\\': + case '.': + case '*': + case '+': + case '?': + case '(': + case ')': + case '[': + case ']': + case '{': + case '}': + case '|': + case '/': + return true; + default: + break; + } + return false; +} + + +RegExpTree* RegExpParser::ReportError(Vector<const char> message) { + if (failed_) return nullptr; // Do not overwrite any existing error. + failed_ = true; + *error_ = isolate() + ->factory() + ->NewStringFromOneByte(Vector<const uint8_t>::cast(message)) + .ToHandleChecked(); + // Zip to the end to make sure the no more input is read. + current_ = kEndMarker; + next_pos_ = in()->length(); + return nullptr; +} + +#define CHECK_FAILED /**/); \ + if (failed_) return nullptr; \ + ((void)0 + +// Pattern :: +// Disjunction +RegExpTree* RegExpParser::ParsePattern() { + RegExpTree* result = ParseDisjunction(CHECK_FAILED); + PatchNamedBackReferences(CHECK_FAILED); + DCHECK(!has_more()); + // If the result of parsing is a literal string atom, and it has the + // same length as the input, then the atom is identical to the input. + if (result->IsAtom() && result->AsAtom()->length() == in()->length()) { + simple_ = true; + } + return result; +} + + +// Disjunction :: +// Alternative +// Alternative | Disjunction +// Alternative :: +// [empty] +// Term Alternative +// Term :: +// Assertion +// Atom +// Atom Quantifier +RegExpTree* RegExpParser::ParseDisjunction() { + // Used to store current state while parsing subexpressions. + RegExpParserState initial_state(nullptr, INITIAL, RegExpLookaround::LOOKAHEAD, + 0, nullptr, top_level_flags_, zone()); + RegExpParserState* state = &initial_state; + // Cache the builder in a local variable for quick access. + RegExpBuilder* builder = initial_state.builder(); + while (true) { + switch (current()) { + case kEndMarker: + if (state->IsSubexpression()) { + // Inside a parenthesized group when hitting end of input. + return ReportError(CStrVector("Unterminated group")); + } + DCHECK_EQ(INITIAL, state->group_type()); + // Parsing completed successfully. + return builder->ToRegExp(); + case ')': { + if (!state->IsSubexpression()) { + return ReportError(CStrVector("Unmatched ')'")); + } + DCHECK_NE(INITIAL, state->group_type()); + + Advance(); + // End disjunction parsing and convert builder content to new single + // regexp atom. + RegExpTree* body = builder->ToRegExp(); + + int end_capture_index = captures_started(); + + int capture_index = state->capture_index(); + SubexpressionType group_type = state->group_type(); + + // Build result of subexpression. + if (group_type == CAPTURE) { + if (state->IsNamedCapture()) { + CreateNamedCaptureAtIndex(state->capture_name(), + capture_index CHECK_FAILED); + } + RegExpCapture* capture = GetCapture(capture_index); + capture->set_body(body); + body = capture; + } else if (group_type == GROUPING) { + body = new (zone()) RegExpGroup(body); + } else { + DCHECK(group_type == POSITIVE_LOOKAROUND || + group_type == NEGATIVE_LOOKAROUND); + bool is_positive = (group_type == POSITIVE_LOOKAROUND); + body = new (zone()) RegExpLookaround( + body, is_positive, end_capture_index - capture_index, + capture_index, state->lookaround_type()); + } + + // Restore previous state. + state = state->previous_state(); + builder = state->builder(); + + builder->AddAtom(body); + // For compatibility with JSC and ES3, we allow quantifiers after + // lookaheads, and break in all cases. + break; + } + case '|': { + Advance(); + builder->NewAlternative(); + continue; + } + case '*': + case '+': + case '?': + return ReportError(CStrVector("Nothing to repeat")); + case '^': { + Advance(); + if (builder->multiline()) { + builder->AddAssertion(new (zone()) RegExpAssertion( + RegExpAssertion::START_OF_LINE, builder->flags())); + } else { + builder->AddAssertion(new (zone()) RegExpAssertion( + RegExpAssertion::START_OF_INPUT, builder->flags())); + set_contains_anchor(); + } + continue; + } + case '$': { + Advance(); + RegExpAssertion::AssertionType assertion_type = + builder->multiline() ? RegExpAssertion::END_OF_LINE + : RegExpAssertion::END_OF_INPUT; + builder->AddAssertion( + new (zone()) RegExpAssertion(assertion_type, builder->flags())); + continue; + } + case '.': { + Advance(); + ZoneList<CharacterRange>* ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + + if (builder->dotall()) { + // Everything. + CharacterRange::AddClassEscape('*', ranges, false, zone()); + } else { + // Everything except \x0A, \x0D, \u2028 and \u2029 + CharacterRange::AddClassEscape('.', ranges, false, zone()); + } + + RegExpCharacterClass* cc = + new (zone()) RegExpCharacterClass(zone(), ranges, builder->flags()); + builder->AddCharacterClass(cc); + break; + } + case '(': { + state = ParseOpenParenthesis(state CHECK_FAILED); + builder = state->builder(); + continue; + } + case '[': { + RegExpTree* cc = ParseCharacterClass(builder CHECK_FAILED); + builder->AddCharacterClass(cc->AsCharacterClass()); + break; + } + // Atom :: + // \ AtomEscape + case '\\': + switch (Next()) { + case kEndMarker: + return ReportError(CStrVector("\\ at end of pattern")); + case 'b': + Advance(2); + builder->AddAssertion(new (zone()) RegExpAssertion( + RegExpAssertion::BOUNDARY, builder->flags())); + continue; + case 'B': + Advance(2); + builder->AddAssertion(new (zone()) RegExpAssertion( + RegExpAssertion::NON_BOUNDARY, builder->flags())); + continue; + // AtomEscape :: + // CharacterClassEscape + // + // CharacterClassEscape :: one of + // d D s S w W + case 'd': + case 'D': + case 's': + case 'S': + case 'w': + case 'W': { + uc32 c = Next(); + Advance(2); + ZoneList<CharacterRange>* ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + CharacterRange::AddClassEscape( + c, ranges, unicode() && builder->ignore_case(), zone()); + RegExpCharacterClass* cc = new (zone()) + RegExpCharacterClass(zone(), ranges, builder->flags()); + builder->AddCharacterClass(cc); + break; + } + case 'p': + case 'P': { + uc32 p = Next(); + Advance(2); + if (unicode()) { + ZoneList<CharacterRange>* ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + std::vector<char> name_1, name_2; + if (ParsePropertyClassName(&name_1, &name_2)) { + if (AddPropertyClassRange(ranges, p == 'P', name_1, name_2)) { + RegExpCharacterClass* cc = new (zone()) + RegExpCharacterClass(zone(), ranges, builder->flags()); + builder->AddCharacterClass(cc); + break; + } + if (p == 'p' && name_2.empty()) { + RegExpTree* sequence = GetPropertySequence(name_1); + if (sequence != nullptr) { + builder->AddAtom(sequence); + break; + } + } + } + return ReportError(CStrVector("Invalid property name")); + } else { + builder->AddCharacter(p); + } + break; + } + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': { + int index = 0; + bool is_backref = ParseBackReferenceIndex(&index CHECK_FAILED); + if (is_backref) { + if (state->IsInsideCaptureGroup(index)) { + // The back reference is inside the capture group it refers to. + // Nothing can possibly have been captured yet, so we use empty + // instead. This ensures that, when checking a back reference, + // the capture registers of the referenced capture are either + // both set or both cleared. + builder->AddEmpty(); + } else { + RegExpCapture* capture = GetCapture(index); + RegExpTree* atom = + new (zone()) RegExpBackReference(capture, builder->flags()); + builder->AddAtom(atom); + } + break; + } + // With /u, no identity escapes except for syntax characters + // are allowed. Otherwise, all identity escapes are allowed. + if (unicode()) { + return ReportError(CStrVector("Invalid escape")); + } + uc32 first_digit = Next(); + if (first_digit == '8' || first_digit == '9') { + builder->AddCharacter(first_digit); + Advance(2); + break; + } + V8_FALLTHROUGH; + } + case '0': { + Advance(); + if (unicode() && Next() >= '0' && Next() <= '9') { + // With /u, decimal escape with leading 0 are not parsed as octal. + return ReportError(CStrVector("Invalid decimal escape")); + } + uc32 octal = ParseOctalLiteral(); + builder->AddCharacter(octal); + break; + } + // ControlEscape :: one of + // f n r t v + case 'f': + Advance(2); + builder->AddCharacter('\f'); + break; + case 'n': + Advance(2); + builder->AddCharacter('\n'); + break; + case 'r': + Advance(2); + builder->AddCharacter('\r'); + break; + case 't': + Advance(2); + builder->AddCharacter('\t'); + break; + case 'v': + Advance(2); + builder->AddCharacter('\v'); + break; + case 'c': { + Advance(); + uc32 controlLetter = Next(); + // Special case if it is an ASCII letter. + // Convert lower case letters to uppercase. + uc32 letter = controlLetter & ~('a' ^ 'A'); + if (letter < 'A' || 'Z' < letter) { + // controlLetter is not in range 'A'-'Z' or 'a'-'z'. + // Read the backslash as a literal character instead of as + // starting an escape. + // ES#prod-annexB-ExtendedPatternCharacter + if (unicode()) { + // With /u, invalid escapes are not treated as identity escapes. + return ReportError(CStrVector("Invalid unicode escape")); + } + builder->AddCharacter('\\'); + } else { + Advance(2); + builder->AddCharacter(controlLetter & 0x1F); + } + break; + } + case 'x': { + Advance(2); + uc32 value; + if (ParseHexEscape(2, &value)) { + builder->AddCharacter(value); + } else if (!unicode()) { + builder->AddCharacter('x'); + } else { + // With /u, invalid escapes are not treated as identity escapes. + return ReportError(CStrVector("Invalid escape")); + } + break; + } + case 'u': { + Advance(2); + uc32 value; + if (ParseUnicodeEscape(&value)) { + builder->AddEscapedUnicodeCharacter(value); + } else if (!unicode()) { + builder->AddCharacter('u'); + } else { + // With /u, invalid escapes are not treated as identity escapes. + return ReportError(CStrVector("Invalid Unicode escape")); + } + break; + } + case 'k': + // Either an identity escape or a named back-reference. The two + // interpretations are mutually exclusive: '\k' is interpreted as + // an identity escape for non-Unicode patterns without named + // capture groups, and as the beginning of a named back-reference + // in all other cases. + if (unicode() || HasNamedCaptures()) { + Advance(2); + ParseNamedBackReference(builder, state CHECK_FAILED); + break; + } + V8_FALLTHROUGH; + default: + Advance(); + // With /u, no identity escapes except for syntax characters + // are allowed. Otherwise, all identity escapes are allowed. + if (!unicode() || IsSyntaxCharacterOrSlash(current())) { + builder->AddCharacter(current()); + Advance(); + } else { + return ReportError(CStrVector("Invalid escape")); + } + break; + } + break; + case '{': { + int dummy; + bool parsed = ParseIntervalQuantifier(&dummy, &dummy CHECK_FAILED); + if (parsed) return ReportError(CStrVector("Nothing to repeat")); + V8_FALLTHROUGH; + } + case '}': + case ']': + if (unicode()) { + return ReportError(CStrVector("Lone quantifier brackets")); + } + V8_FALLTHROUGH; + default: + builder->AddUnicodeCharacter(current()); + Advance(); + break; + } // end switch(current()) + + int min; + int max; + switch (current()) { + // QuantifierPrefix :: + // * + // + + // ? + // { + case '*': + min = 0; + max = RegExpTree::kInfinity; + Advance(); + break; + case '+': + min = 1; + max = RegExpTree::kInfinity; + Advance(); + break; + case '?': + min = 0; + max = 1; + Advance(); + break; + case '{': + if (ParseIntervalQuantifier(&min, &max)) { + if (max < min) { + return ReportError( + CStrVector("numbers out of order in {} quantifier")); + } + break; + } else if (unicode()) { + // With /u, incomplete quantifiers are not allowed. + return ReportError(CStrVector("Incomplete quantifier")); + } + continue; + default: + continue; + } + RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY; + if (current() == '?') { + quantifier_type = RegExpQuantifier::NON_GREEDY; + Advance(); + } else if (FLAG_regexp_possessive_quantifier && current() == '+') { + // FLAG_regexp_possessive_quantifier is a debug-only flag. + quantifier_type = RegExpQuantifier::POSSESSIVE; + Advance(); + } + if (!builder->AddQuantifierToAtom(min, max, quantifier_type)) { + return ReportError(CStrVector("Invalid quantifier")); + } + } +} + +RegExpParser::RegExpParserState* RegExpParser::ParseOpenParenthesis( + RegExpParserState* state) { + RegExpLookaround::Type lookaround_type = state->lookaround_type(); + bool is_named_capture = false; + JSRegExp::Flags switch_on = JSRegExp::kNone; + JSRegExp::Flags switch_off = JSRegExp::kNone; + const ZoneVector<uc16>* capture_name = nullptr; + SubexpressionType subexpr_type = CAPTURE; + Advance(); + if (current() == '?') { + switch (Next()) { + case ':': + Advance(2); + subexpr_type = GROUPING; + break; + case '=': + Advance(2); + lookaround_type = RegExpLookaround::LOOKAHEAD; + subexpr_type = POSITIVE_LOOKAROUND; + break; + case '!': + Advance(2); + lookaround_type = RegExpLookaround::LOOKAHEAD; + subexpr_type = NEGATIVE_LOOKAROUND; + break; + case '-': + case 'i': + case 's': + case 'm': { + if (!FLAG_regexp_mode_modifiers) { + ReportError(CStrVector("Invalid group")); + return nullptr; + } + Advance(); + bool flags_sense = true; // Switching on flags. + while (subexpr_type != GROUPING) { + switch (current()) { + case '-': + if (!flags_sense) { + ReportError(CStrVector("Multiple dashes in flag group")); + return nullptr; + } + flags_sense = false; + Advance(); + continue; + case 's': + case 'i': + case 'm': { + JSRegExp::Flags bit = JSRegExp::kUnicode; + if (current() == 'i') bit = JSRegExp::kIgnoreCase; + if (current() == 'm') bit = JSRegExp::kMultiline; + if (current() == 's') bit = JSRegExp::kDotAll; + if (((switch_on | switch_off) & bit) != 0) { + ReportError(CStrVector("Repeated flag in flag group")); + return nullptr; + } + if (flags_sense) { + switch_on |= bit; + } else { + switch_off |= bit; + } + Advance(); + continue; + } + case ')': { + Advance(); + state->builder() + ->FlushText(); // Flush pending text using old flags. + // These (?i)-style flag switches don't put us in a subexpression + // at all, they just modify the flags in the rest of the current + // subexpression. + JSRegExp::Flags flags = + (state->builder()->flags() | switch_on) & ~switch_off; + state->builder()->set_flags(flags); + return state; + } + case ':': + Advance(); + subexpr_type = GROUPING; // Will break us out of the outer loop. + continue; + default: + ReportError(CStrVector("Invalid flag group")); + return nullptr; + } + } + break; + } + case '<': + Advance(); + if (Next() == '=') { + Advance(2); + lookaround_type = RegExpLookaround::LOOKBEHIND; + subexpr_type = POSITIVE_LOOKAROUND; + break; + } else if (Next() == '!') { + Advance(2); + lookaround_type = RegExpLookaround::LOOKBEHIND; + subexpr_type = NEGATIVE_LOOKAROUND; + break; + } + is_named_capture = true; + has_named_captures_ = true; + Advance(); + break; + default: + ReportError(CStrVector("Invalid group")); + return nullptr; + } + } + if (subexpr_type == CAPTURE) { + if (captures_started_ >= JSRegExp::kMaxCaptures) { + ReportError(CStrVector("Too many captures")); + return nullptr; + } + captures_started_++; + + if (is_named_capture) { + capture_name = ParseCaptureGroupName(CHECK_FAILED); + } + } + JSRegExp::Flags flags = (state->builder()->flags() | switch_on) & ~switch_off; + // Store current state and begin new disjunction parsing. + return new (zone()) + RegExpParserState(state, subexpr_type, lookaround_type, captures_started_, + capture_name, flags, zone()); +} + +#ifdef DEBUG +// Currently only used in an DCHECK. +static bool IsSpecialClassEscape(uc32 c) { + switch (c) { + case 'd': + case 'D': + case 's': + case 'S': + case 'w': + case 'W': + return true; + default: + return false; + } +} +#endif + + +// In order to know whether an escape is a backreference or not we have to scan +// the entire regexp and find the number of capturing parentheses. However we +// don't want to scan the regexp twice unless it is necessary. This mini-parser +// is called when needed. It can see the difference between capturing and +// noncapturing parentheses and can skip character classes and backslash-escaped +// characters. +void RegExpParser::ScanForCaptures() { + DCHECK(!is_scanned_for_captures_); + const int saved_position = position(); + // Start with captures started previous to current position + int capture_count = captures_started(); + // Add count of captures after this position. + int n; + while ((n = current()) != kEndMarker) { + Advance(); + switch (n) { + case '\\': + Advance(); + break; + case '[': { + int c; + while ((c = current()) != kEndMarker) { + Advance(); + if (c == '\\') { + Advance(); + } else { + if (c == ']') break; + } + } + break; + } + case '(': + if (current() == '?') { + // At this point we could be in + // * a non-capturing group '(:', + // * a lookbehind assertion '(?<=' '(?<!' + // * or a named capture '(?<'. + // + // Of these, only named captures are capturing groups. + + Advance(); + if (current() != '<') break; + + Advance(); + if (current() == '=' || current() == '!') break; + + // Found a possible named capture. It could turn out to be a syntax + // error (e.g. an unterminated or invalid name), but that distinction + // does not matter for our purposes. + has_named_captures_ = true; + } + capture_count++; + break; + } + } + capture_count_ = capture_count; + is_scanned_for_captures_ = true; + Reset(saved_position); +} + + +bool RegExpParser::ParseBackReferenceIndex(int* index_out) { + DCHECK_EQ('\\', current()); + DCHECK('1' <= Next() && Next() <= '9'); + // Try to parse a decimal literal that is no greater than the total number + // of left capturing parentheses in the input. + int start = position(); + int value = Next() - '0'; + Advance(2); + while (true) { + uc32 c = current(); + if (IsDecimalDigit(c)) { + value = 10 * value + (c - '0'); + if (value > JSRegExp::kMaxCaptures) { + Reset(start); + return false; + } + Advance(); + } else { + break; + } + } + if (value > captures_started()) { + if (!is_scanned_for_captures_) ScanForCaptures(); + if (value > capture_count_) { + Reset(start); + return false; + } + } + *index_out = value; + return true; +} + +static void push_code_unit(ZoneVector<uc16>* v, uint32_t code_unit) { + if (code_unit <= unibrow::Utf16::kMaxNonSurrogateCharCode) { + v->push_back(code_unit); + } else { + v->push_back(unibrow::Utf16::LeadSurrogate(code_unit)); + v->push_back(unibrow::Utf16::TrailSurrogate(code_unit)); + } +} + +const ZoneVector<uc16>* RegExpParser::ParseCaptureGroupName() { + ZoneVector<uc16>* name = + new (zone()->New(sizeof(ZoneVector<uc16>))) ZoneVector<uc16>(zone()); + + bool at_start = true; + while (true) { + uc32 c = current(); + Advance(); + + // Convert unicode escapes. + if (c == '\\' && current() == 'u') { + Advance(); + if (!ParseUnicodeEscape(&c)) { + ReportError(CStrVector("Invalid Unicode escape sequence")); + return nullptr; + } + } + + // The backslash char is misclassified as both ID_Start and ID_Continue. + if (c == '\\') { + ReportError(CStrVector("Invalid capture group name")); + return nullptr; + } + + if (at_start) { + if (!IsIdentifierStart(c)) { + ReportError(CStrVector("Invalid capture group name")); + return nullptr; + } + push_code_unit(name, c); + at_start = false; + } else { + if (c == '>') { + break; + } else if (IsIdentifierPart(c)) { + push_code_unit(name, c); + } else { + ReportError(CStrVector("Invalid capture group name")); + return nullptr; + } + } + } + + return name; +} + +bool RegExpParser::CreateNamedCaptureAtIndex(const ZoneVector<uc16>* name, + int index) { + DCHECK(0 < index && index <= captures_started_); + DCHECK_NOT_NULL(name); + + RegExpCapture* capture = GetCapture(index); + DCHECK_NULL(capture->name()); + + capture->set_name(name); + + if (named_captures_ == nullptr) { + named_captures_ = new (zone_->New(sizeof(*named_captures_))) + ZoneSet<RegExpCapture*, RegExpCaptureNameLess>(zone()); + } else { + // Check for duplicates and bail if we find any. + + const auto& named_capture_it = named_captures_->find(capture); + if (named_capture_it != named_captures_->end()) { + ReportError(CStrVector("Duplicate capture group name")); + return false; + } + } + + named_captures_->emplace(capture); + + return true; +} + +bool RegExpParser::ParseNamedBackReference(RegExpBuilder* builder, + RegExpParserState* state) { + // The parser is assumed to be on the '<' in \k<name>. + if (current() != '<') { + ReportError(CStrVector("Invalid named reference")); + return false; + } + + Advance(); + const ZoneVector<uc16>* name = ParseCaptureGroupName(); + if (name == nullptr) { + return false; + } + + if (state->IsInsideCaptureGroup(name)) { + builder->AddEmpty(); + } else { + RegExpBackReference* atom = + new (zone()) RegExpBackReference(builder->flags()); + atom->set_name(name); + + builder->AddAtom(atom); + + if (named_back_references_ == nullptr) { + named_back_references_ = + new (zone()) ZoneList<RegExpBackReference*>(1, zone()); + } + named_back_references_->Add(atom, zone()); + } + + return true; +} + +void RegExpParser::PatchNamedBackReferences() { + if (named_back_references_ == nullptr) return; + + if (named_captures_ == nullptr) { + ReportError(CStrVector("Invalid named capture referenced")); + return; + } + + // Look up and patch the actual capture for each named back reference. + + for (int i = 0; i < named_back_references_->length(); i++) { + RegExpBackReference* ref = named_back_references_->at(i); + + // Capture used to search the named_captures_ by name, index of the + // capture is never used. + static const int kInvalidIndex = 0; + RegExpCapture* search_capture = new (zone()) RegExpCapture(kInvalidIndex); + DCHECK_NULL(search_capture->name()); + search_capture->set_name(ref->name()); + + int index = -1; + const auto& capture_it = named_captures_->find(search_capture); + if (capture_it != named_captures_->end()) { + index = (*capture_it)->index(); + } else { + ReportError(CStrVector("Invalid named capture referenced")); + return; + } + + ref->set_capture(GetCapture(index)); + } +} + +RegExpCapture* RegExpParser::GetCapture(int index) { + // The index for the capture groups are one-based. Its index in the list is + // zero-based. + int know_captures = + is_scanned_for_captures_ ? capture_count_ : captures_started_; + DCHECK(index <= know_captures); + if (captures_ == nullptr) { + captures_ = new (zone()) ZoneList<RegExpCapture*>(know_captures, zone()); + } + while (captures_->length() < know_captures) { + captures_->Add(new (zone()) RegExpCapture(captures_->length() + 1), zone()); + } + return captures_->at(index - 1); +} + +namespace { + +struct RegExpCaptureIndexLess { + bool operator()(const RegExpCapture* lhs, const RegExpCapture* rhs) const { + DCHECK_NOT_NULL(lhs); + DCHECK_NOT_NULL(rhs); + return lhs->index() < rhs->index(); + } +}; + +} // namespace + +Handle<FixedArray> RegExpParser::CreateCaptureNameMap() { + if (named_captures_ == nullptr || named_captures_->empty()) { + return Handle<FixedArray>(); + } + + // Named captures are sorted by name (because the set is used to ensure + // name uniqueness). But the capture name map must to be sorted by index. + + ZoneVector<RegExpCapture*> sorted_named_captures( + named_captures_->begin(), named_captures_->end(), zone()); + std::sort(sorted_named_captures.begin(), sorted_named_captures.end(), + RegExpCaptureIndexLess{}); + DCHECK_EQ(sorted_named_captures.size(), named_captures_->size()); + + Factory* factory = isolate()->factory(); + + int len = static_cast<int>(sorted_named_captures.size()) * 2; + Handle<FixedArray> array = factory->NewFixedArray(len); + + int i = 0; + for (const auto& capture : sorted_named_captures) { + Vector<const uc16> capture_name(capture->name()->data(), + capture->name()->size()); + // CSA code in ConstructNewResultFromMatchInfo requires these strings to be + // internalized so they can be used as property names in the 'exec' results. + Handle<String> name = factory->InternalizeString(capture_name); + array->set(i * 2, *name); + array->set(i * 2 + 1, Smi::FromInt(capture->index())); + + i++; + } + DCHECK_EQ(i * 2, len); + + return array; +} + +bool RegExpParser::HasNamedCaptures() { + if (has_named_captures_ || is_scanned_for_captures_) { + return has_named_captures_; + } + + ScanForCaptures(); + DCHECK(is_scanned_for_captures_); + return has_named_captures_; +} + +bool RegExpParser::RegExpParserState::IsInsideCaptureGroup(int index) { + for (RegExpParserState* s = this; s != nullptr; s = s->previous_state()) { + if (s->group_type() != CAPTURE) continue; + // Return true if we found the matching capture index. + if (index == s->capture_index()) return true; + // Abort if index is larger than what has been parsed up till this state. + if (index > s->capture_index()) return false; + } + return false; +} + +bool RegExpParser::RegExpParserState::IsInsideCaptureGroup( + const ZoneVector<uc16>* name) { + DCHECK_NOT_NULL(name); + for (RegExpParserState* s = this; s != nullptr; s = s->previous_state()) { + if (s->capture_name() == nullptr) continue; + if (*s->capture_name() == *name) return true; + } + return false; +} + +// QuantifierPrefix :: +// { DecimalDigits } +// { DecimalDigits , } +// { DecimalDigits , DecimalDigits } +// +// Returns true if parsing succeeds, and set the min_out and max_out +// values. Values are truncated to RegExpTree::kInfinity if they overflow. +bool RegExpParser::ParseIntervalQuantifier(int* min_out, int* max_out) { + DCHECK_EQ(current(), '{'); + int start = position(); + Advance(); + int min = 0; + if (!IsDecimalDigit(current())) { + Reset(start); + return false; + } + while (IsDecimalDigit(current())) { + int next = current() - '0'; + if (min > (RegExpTree::kInfinity - next) / 10) { + // Overflow. Skip past remaining decimal digits and return -1. + do { + Advance(); + } while (IsDecimalDigit(current())); + min = RegExpTree::kInfinity; + break; + } + min = 10 * min + next; + Advance(); + } + int max = 0; + if (current() == '}') { + max = min; + Advance(); + } else if (current() == ',') { + Advance(); + if (current() == '}') { + max = RegExpTree::kInfinity; + Advance(); + } else { + while (IsDecimalDigit(current())) { + int next = current() - '0'; + if (max > (RegExpTree::kInfinity - next) / 10) { + do { + Advance(); + } while (IsDecimalDigit(current())); + max = RegExpTree::kInfinity; + break; + } + max = 10 * max + next; + Advance(); + } + if (current() != '}') { + Reset(start); + return false; + } + Advance(); + } + } else { + Reset(start); + return false; + } + *min_out = min; + *max_out = max; + return true; +} + + +uc32 RegExpParser::ParseOctalLiteral() { + DCHECK(('0' <= current() && current() <= '7') || current() == kEndMarker); + // For compatibility with some other browsers (not all), we parse + // up to three octal digits with a value below 256. + // ES#prod-annexB-LegacyOctalEscapeSequence + uc32 value = current() - '0'; + Advance(); + if ('0' <= current() && current() <= '7') { + value = value * 8 + current() - '0'; + Advance(); + if (value < 32 && '0' <= current() && current() <= '7') { + value = value * 8 + current() - '0'; + Advance(); + } + } + return value; +} + + +bool RegExpParser::ParseHexEscape(int length, uc32* value) { + int start = position(); + uc32 val = 0; + for (int i = 0; i < length; ++i) { + uc32 c = current(); + int d = HexValue(c); + if (d < 0) { + Reset(start); + return false; + } + val = val * 16 + d; + Advance(); + } + *value = val; + return true; +} + +// This parses RegExpUnicodeEscapeSequence as described in ECMA262. +bool RegExpParser::ParseUnicodeEscape(uc32* value) { + // Accept both \uxxxx and \u{xxxxxx} (if harmony unicode escapes are + // allowed). In the latter case, the number of hex digits between { } is + // arbitrary. \ and u have already been read. + if (current() == '{' && unicode()) { + int start = position(); + Advance(); + if (ParseUnlimitedLengthHexNumber(0x10FFFF, value)) { + if (current() == '}') { + Advance(); + return true; + } + } + Reset(start); + return false; + } + // \u but no {, or \u{...} escapes not allowed. + bool result = ParseHexEscape(4, value); + if (result && unicode() && unibrow::Utf16::IsLeadSurrogate(*value) && + current() == '\\') { + // Attempt to read trail surrogate. + int start = position(); + if (Next() == 'u') { + Advance(2); + uc32 trail; + if (ParseHexEscape(4, &trail) && + unibrow::Utf16::IsTrailSurrogate(trail)) { + *value = unibrow::Utf16::CombineSurrogatePair(static_cast<uc16>(*value), + static_cast<uc16>(trail)); + return true; + } + } + Reset(start); + } + return result; +} + +#ifdef V8_INTL_SUPPORT + +namespace { + +bool IsExactPropertyAlias(const char* property_name, UProperty property) { + const char* short_name = u_getPropertyName(property, U_SHORT_PROPERTY_NAME); + if (short_name != nullptr && strcmp(property_name, short_name) == 0) + return true; + for (int i = 0;; i++) { + const char* long_name = u_getPropertyName( + property, static_cast<UPropertyNameChoice>(U_LONG_PROPERTY_NAME + i)); + if (long_name == nullptr) break; + if (strcmp(property_name, long_name) == 0) return true; + } + return false; +} + +bool IsExactPropertyValueAlias(const char* property_value_name, + UProperty property, int32_t property_value) { + const char* short_name = + u_getPropertyValueName(property, property_value, U_SHORT_PROPERTY_NAME); + if (short_name != nullptr && strcmp(property_value_name, short_name) == 0) { + return true; + } + for (int i = 0;; i++) { + const char* long_name = u_getPropertyValueName( + property, property_value, + static_cast<UPropertyNameChoice>(U_LONG_PROPERTY_NAME + i)); + if (long_name == nullptr) break; + if (strcmp(property_value_name, long_name) == 0) return true; + } + return false; +} + +bool LookupPropertyValueName(UProperty property, + const char* property_value_name, bool negate, + ZoneList<CharacterRange>* result, Zone* zone) { + UProperty property_for_lookup = property; + if (property_for_lookup == UCHAR_SCRIPT_EXTENSIONS) { + // For the property Script_Extensions, we have to do the property value + // name lookup as if the property is Script. + property_for_lookup = UCHAR_SCRIPT; + } + int32_t property_value = + u_getPropertyValueEnum(property_for_lookup, property_value_name); + if (property_value == UCHAR_INVALID_CODE) return false; + + // We require the property name to match exactly to one of the property value + // aliases. However, u_getPropertyValueEnum uses loose matching. + if (!IsExactPropertyValueAlias(property_value_name, property_for_lookup, + property_value)) { + return false; + } + + UErrorCode ec = U_ZERO_ERROR; + icu::UnicodeSet set; + set.applyIntPropertyValue(property, property_value, ec); + bool success = ec == U_ZERO_ERROR && !set.isEmpty(); + + if (success) { + set.removeAllStrings(); + if (negate) set.complement(); + for (int i = 0; i < set.getRangeCount(); i++) { + result->Add( + CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)), + zone); + } + } + return success; +} + +template <size_t N> +inline bool NameEquals(const char* name, const char (&literal)[N]) { + return strncmp(name, literal, N + 1) == 0; +} + +bool LookupSpecialPropertyValueName(const char* name, + ZoneList<CharacterRange>* result, + bool negate, Zone* zone) { + if (NameEquals(name, "Any")) { + if (negate) { + // Leave the list of character ranges empty, since the negation of 'Any' + // is the empty set. + } else { + result->Add(CharacterRange::Everything(), zone); + } + } else if (NameEquals(name, "ASCII")) { + result->Add(negate ? CharacterRange::Range(0x80, String::kMaxCodePoint) + : CharacterRange::Range(0x0, 0x7F), + zone); + } else if (NameEquals(name, "Assigned")) { + return LookupPropertyValueName(UCHAR_GENERAL_CATEGORY, "Unassigned", + !negate, result, zone); + } else { + return false; + } + return true; +} + +// Explicitly whitelist supported binary properties. The spec forbids supporting +// properties outside of this set to ensure interoperability. +bool IsSupportedBinaryProperty(UProperty property) { + switch (property) { + case UCHAR_ALPHABETIC: + // 'Any' is not supported by ICU. See LookupSpecialPropertyValueName. + // 'ASCII' is not supported by ICU. See LookupSpecialPropertyValueName. + case UCHAR_ASCII_HEX_DIGIT: + // 'Assigned' is not supported by ICU. See LookupSpecialPropertyValueName. + case UCHAR_BIDI_CONTROL: + case UCHAR_BIDI_MIRRORED: + case UCHAR_CASE_IGNORABLE: + case UCHAR_CASED: + case UCHAR_CHANGES_WHEN_CASEFOLDED: + case UCHAR_CHANGES_WHEN_CASEMAPPED: + case UCHAR_CHANGES_WHEN_LOWERCASED: + case UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED: + case UCHAR_CHANGES_WHEN_TITLECASED: + case UCHAR_CHANGES_WHEN_UPPERCASED: + case UCHAR_DASH: + case UCHAR_DEFAULT_IGNORABLE_CODE_POINT: + case UCHAR_DEPRECATED: + case UCHAR_DIACRITIC: + case UCHAR_EMOJI: + case UCHAR_EMOJI_COMPONENT: + case UCHAR_EMOJI_MODIFIER_BASE: + case UCHAR_EMOJI_MODIFIER: + case UCHAR_EMOJI_PRESENTATION: + case UCHAR_EXTENDED_PICTOGRAPHIC: + case UCHAR_EXTENDER: + case UCHAR_GRAPHEME_BASE: + case UCHAR_GRAPHEME_EXTEND: + case UCHAR_HEX_DIGIT: + case UCHAR_ID_CONTINUE: + case UCHAR_ID_START: + case UCHAR_IDEOGRAPHIC: + case UCHAR_IDS_BINARY_OPERATOR: + case UCHAR_IDS_TRINARY_OPERATOR: + case UCHAR_JOIN_CONTROL: + case UCHAR_LOGICAL_ORDER_EXCEPTION: + case UCHAR_LOWERCASE: + case UCHAR_MATH: + case UCHAR_NONCHARACTER_CODE_POINT: + case UCHAR_PATTERN_SYNTAX: + case UCHAR_PATTERN_WHITE_SPACE: + case UCHAR_QUOTATION_MARK: + case UCHAR_RADICAL: + case UCHAR_REGIONAL_INDICATOR: + case UCHAR_S_TERM: + case UCHAR_SOFT_DOTTED: + case UCHAR_TERMINAL_PUNCTUATION: + case UCHAR_UNIFIED_IDEOGRAPH: + case UCHAR_UPPERCASE: + case UCHAR_VARIATION_SELECTOR: + case UCHAR_WHITE_SPACE: + case UCHAR_XID_CONTINUE: + case UCHAR_XID_START: + return true; + default: + break; + } + return false; +} + +bool IsUnicodePropertyValueCharacter(char c) { + // https://tc39.github.io/proposal-regexp-unicode-property-escapes/ + // + // Note that using this to validate each parsed char is quite conservative. + // A possible alternative solution would be to only ensure the parsed + // property name/value candidate string does not contain '\0' characters and + // let ICU lookups trigger the final failure. + if ('a' <= c && c <= 'z') return true; + if ('A' <= c && c <= 'Z') return true; + if ('0' <= c && c <= '9') return true; + return (c == '_'); +} + +} // anonymous namespace + +bool RegExpParser::ParsePropertyClassName(std::vector<char>* name_1, + std::vector<char>* name_2) { + DCHECK(name_1->empty()); + DCHECK(name_2->empty()); + // Parse the property class as follows: + // - In \p{name}, 'name' is interpreted + // - either as a general category property value name. + // - or as a binary property name. + // - In \p{name=value}, 'name' is interpreted as an enumerated property name, + // and 'value' is interpreted as one of the available property value names. + // - Aliases in PropertyAlias.txt and PropertyValueAlias.txt can be used. + // - Loose matching is not applied. + if (current() == '{') { + // Parse \p{[PropertyName=]PropertyNameValue} + for (Advance(); current() != '}' && current() != '='; Advance()) { + if (!IsUnicodePropertyValueCharacter(current())) return false; + if (!has_next()) return false; + name_1->push_back(static_cast<char>(current())); + } + if (current() == '=') { + for (Advance(); current() != '}'; Advance()) { + if (!IsUnicodePropertyValueCharacter(current())) return false; + if (!has_next()) return false; + name_2->push_back(static_cast<char>(current())); + } + name_2->push_back(0); // null-terminate string. + } + } else { + return false; + } + Advance(); + name_1->push_back(0); // null-terminate string. + + DCHECK(name_1->size() - 1 == std::strlen(name_1->data())); + DCHECK(name_2->empty() || name_2->size() - 1 == std::strlen(name_2->data())); + return true; +} + +bool RegExpParser::AddPropertyClassRange(ZoneList<CharacterRange>* add_to, + bool negate, + const std::vector<char>& name_1, + const std::vector<char>& name_2) { + if (name_2.empty()) { + // First attempt to interpret as general category property value name. + const char* name = name_1.data(); + if (LookupPropertyValueName(UCHAR_GENERAL_CATEGORY_MASK, name, negate, + add_to, zone())) { + return true; + } + // Interpret "Any", "ASCII", and "Assigned". + if (LookupSpecialPropertyValueName(name, add_to, negate, zone())) { + return true; + } + // Then attempt to interpret as binary property name with value name 'Y'. + UProperty property = u_getPropertyEnum(name); + if (!IsSupportedBinaryProperty(property)) return false; + if (!IsExactPropertyAlias(name, property)) return false; + return LookupPropertyValueName(property, negate ? "N" : "Y", false, add_to, + zone()); + } else { + // Both property name and value name are specified. Attempt to interpret + // the property name as enumerated property. + const char* property_name = name_1.data(); + const char* value_name = name_2.data(); + UProperty property = u_getPropertyEnum(property_name); + if (!IsExactPropertyAlias(property_name, property)) return false; + if (property == UCHAR_GENERAL_CATEGORY) { + // We want to allow aggregate value names such as "Letter". + property = UCHAR_GENERAL_CATEGORY_MASK; + } else if (property != UCHAR_SCRIPT && + property != UCHAR_SCRIPT_EXTENSIONS) { + return false; + } + return LookupPropertyValueName(property, value_name, negate, add_to, + zone()); + } +} + +RegExpTree* RegExpParser::GetPropertySequence(const std::vector<char>& name_1) { + if (!FLAG_harmony_regexp_sequence) return nullptr; + const char* name = name_1.data(); + const uc32* sequence_list = nullptr; + JSRegExp::Flags flags = JSRegExp::kUnicode; + if (NameEquals(name, "Emoji_Flag_Sequence")) { + sequence_list = UnicodePropertySequences::kEmojiFlagSequences; + } else if (NameEquals(name, "Emoji_Tag_Sequence")) { + sequence_list = UnicodePropertySequences::kEmojiTagSequences; + } else if (NameEquals(name, "Emoji_ZWJ_Sequence")) { + sequence_list = UnicodePropertySequences::kEmojiZWJSequences; + } + if (sequence_list != nullptr) { + // TODO(yangguo): this creates huge regexp code. Alternative to this is + // to create a new operator that checks for these sequences at runtime. + RegExpBuilder builder(zone(), flags); + while (true) { // Iterate through list of sequences. + while (*sequence_list != 0) { // Iterate through sequence. + builder.AddUnicodeCharacter(*sequence_list); + sequence_list++; + } + sequence_list++; + if (*sequence_list == 0) break; + builder.NewAlternative(); + } + return builder.ToRegExp(); + } + + if (NameEquals(name, "Emoji_Keycap_Sequence")) { + // https://unicode.org/reports/tr51/#def_emoji_keycap_sequence + // emoji_keycap_sequence := [0-9#*] \x{FE0F 20E3} + RegExpBuilder builder(zone(), flags); + ZoneList<CharacterRange>* prefix_ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + prefix_ranges->Add(CharacterRange::Range('0', '9'), zone()); + prefix_ranges->Add(CharacterRange::Singleton('#'), zone()); + prefix_ranges->Add(CharacterRange::Singleton('*'), zone()); + builder.AddCharacterClass( + new (zone()) RegExpCharacterClass(zone(), prefix_ranges, flags)); + builder.AddCharacter(0xFE0F); + builder.AddCharacter(0x20E3); + return builder.ToRegExp(); + } else if (NameEquals(name, "Emoji_Modifier_Sequence")) { + // https://unicode.org/reports/tr51/#def_emoji_modifier_sequence + // emoji_modifier_sequence := emoji_modifier_base emoji_modifier + RegExpBuilder builder(zone(), flags); + ZoneList<CharacterRange>* modifier_base_ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + LookupPropertyValueName(UCHAR_EMOJI_MODIFIER_BASE, "Y", false, + modifier_base_ranges, zone()); + builder.AddCharacterClass( + new (zone()) RegExpCharacterClass(zone(), modifier_base_ranges, flags)); + ZoneList<CharacterRange>* modifier_ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + LookupPropertyValueName(UCHAR_EMOJI_MODIFIER, "Y", false, modifier_ranges, + zone()); + builder.AddCharacterClass( + new (zone()) RegExpCharacterClass(zone(), modifier_ranges, flags)); + return builder.ToRegExp(); + } + + return nullptr; +} + +#else // V8_INTL_SUPPORT + +bool RegExpParser::ParsePropertyClassName(std::vector<char>* name_1, + std::vector<char>* name_2) { + return false; +} + +bool RegExpParser::AddPropertyClassRange(ZoneList<CharacterRange>* add_to, + bool negate, + const std::vector<char>& name_1, + const std::vector<char>& name_2) { + return false; +} + +RegExpTree* RegExpParser::GetPropertySequence(const std::vector<char>& name) { + return nullptr; +} + +#endif // V8_INTL_SUPPORT + +bool RegExpParser::ParseUnlimitedLengthHexNumber(int max_value, uc32* value) { + uc32 x = 0; + int d = HexValue(current()); + if (d < 0) { + return false; + } + while (d >= 0) { + x = x * 16 + d; + if (x > max_value) { + return false; + } + Advance(); + d = HexValue(current()); + } + *value = x; + return true; +} + + +uc32 RegExpParser::ParseClassCharacterEscape() { + DCHECK_EQ('\\', current()); + DCHECK(has_next() && !IsSpecialClassEscape(Next())); + Advance(); + switch (current()) { + case 'b': + Advance(); + return '\b'; + // ControlEscape :: one of + // f n r t v + case 'f': + Advance(); + return '\f'; + case 'n': + Advance(); + return '\n'; + case 'r': + Advance(); + return '\r'; + case 't': + Advance(); + return '\t'; + case 'v': + Advance(); + return '\v'; + case 'c': { + uc32 controlLetter = Next(); + uc32 letter = controlLetter & ~('A' ^ 'a'); + // Inside a character class, we also accept digits and underscore as + // control characters, unless with /u. See Annex B: + // ES#prod-annexB-ClassControlLetter + if (letter >= 'A' && letter <= 'Z') { + Advance(2); + // Control letters mapped to ASCII control characters in the range + // 0x00-0x1F. + return controlLetter & 0x1F; + } + if (unicode()) { + // With /u, invalid escapes are not treated as identity escapes. + ReportError(CStrVector("Invalid class escape")); + return 0; + } + if ((controlLetter >= '0' && controlLetter <= '9') || + controlLetter == '_') { + Advance(2); + return controlLetter & 0x1F; + } + // We match JSC in reading the backslash as a literal + // character instead of as starting an escape. + // TODO(v8:6201): Not yet covered by the spec. + return '\\'; + } + case '0': + // With /u, \0 is interpreted as NUL if not followed by another digit. + if (unicode() && !(Next() >= '0' && Next() <= '9')) { + Advance(); + return 0; + } + V8_FALLTHROUGH; + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + // For compatibility, we interpret a decimal escape that isn't + // a back reference (and therefore either \0 or not valid according + // to the specification) as a 1..3 digit octal character code. + // ES#prod-annexB-LegacyOctalEscapeSequence + if (unicode()) { + // With /u, decimal escape is not interpreted as octal character code. + ReportError(CStrVector("Invalid class escape")); + return 0; + } + return ParseOctalLiteral(); + case 'x': { + Advance(); + uc32 value; + if (ParseHexEscape(2, &value)) return value; + if (unicode()) { + // With /u, invalid escapes are not treated as identity escapes. + ReportError(CStrVector("Invalid escape")); + return 0; + } + // If \x is not followed by a two-digit hexadecimal, treat it + // as an identity escape. + return 'x'; + } + case 'u': { + Advance(); + uc32 value; + if (ParseUnicodeEscape(&value)) return value; + if (unicode()) { + // With /u, invalid escapes are not treated as identity escapes. + ReportError(CStrVector("Invalid unicode escape")); + return 0; + } + // If \u is not followed by a two-digit hexadecimal, treat it + // as an identity escape. + return 'u'; + } + default: { + uc32 result = current(); + // With /u, no identity escapes except for syntax characters and '-' are + // allowed. Otherwise, all identity escapes are allowed. + if (!unicode() || IsSyntaxCharacterOrSlash(result) || result == '-') { + Advance(); + return result; + } + ReportError(CStrVector("Invalid escape")); + return 0; + } + } + return 0; +} + +void RegExpParser::ParseClassEscape(ZoneList<CharacterRange>* ranges, + Zone* zone, + bool add_unicode_case_equivalents, + uc32* char_out, bool* is_class_escape) { + uc32 current_char = current(); + if (current_char == '\\') { + switch (Next()) { + case 'w': + case 'W': + case 'd': + case 'D': + case 's': + case 'S': { + CharacterRange::AddClassEscape(static_cast<char>(Next()), ranges, + add_unicode_case_equivalents, zone); + Advance(2); + *is_class_escape = true; + return; + } + case kEndMarker: + ReportError(CStrVector("\\ at end of pattern")); + return; + case 'p': + case 'P': + if (unicode()) { + bool negate = Next() == 'P'; + Advance(2); + std::vector<char> name_1, name_2; + if (!ParsePropertyClassName(&name_1, &name_2) || + !AddPropertyClassRange(ranges, negate, name_1, name_2)) { + ReportError(CStrVector("Invalid property name in character class")); + } + *is_class_escape = true; + return; + } + break; + default: + break; + } + *char_out = ParseClassCharacterEscape(); + *is_class_escape = false; + } else { + Advance(); + *char_out = current_char; + *is_class_escape = false; + } +} + +RegExpTree* RegExpParser::ParseCharacterClass(const RegExpBuilder* builder) { + static const char* kUnterminated = "Unterminated character class"; + static const char* kRangeInvalid = "Invalid character class"; + static const char* kRangeOutOfOrder = "Range out of order in character class"; + + DCHECK_EQ(current(), '['); + Advance(); + bool is_negated = false; + if (current() == '^') { + is_negated = true; + Advance(); + } + ZoneList<CharacterRange>* ranges = + new (zone()) ZoneList<CharacterRange>(2, zone()); + bool add_unicode_case_equivalents = unicode() && builder->ignore_case(); + while (has_more() && current() != ']') { + uc32 char_1, char_2; + bool is_class_1, is_class_2; + ParseClassEscape(ranges, zone(), add_unicode_case_equivalents, &char_1, + &is_class_1 CHECK_FAILED); + if (current() == '-') { + Advance(); + if (current() == kEndMarker) { + // If we reach the end we break out of the loop and let the + // following code report an error. + break; + } else if (current() == ']') { + if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1), zone()); + ranges->Add(CharacterRange::Singleton('-'), zone()); + break; + } + ParseClassEscape(ranges, zone(), add_unicode_case_equivalents, &char_2, + &is_class_2 CHECK_FAILED); + if (is_class_1 || is_class_2) { + // Either end is an escaped character class. Treat the '-' verbatim. + if (unicode()) { + // ES2015 21.2.2.15.1 step 1. + return ReportError(CStrVector(kRangeInvalid)); + } + if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1), zone()); + ranges->Add(CharacterRange::Singleton('-'), zone()); + if (!is_class_2) ranges->Add(CharacterRange::Singleton(char_2), zone()); + continue; + } + // ES2015 21.2.2.15.1 step 6. + if (char_1 > char_2) { + return ReportError(CStrVector(kRangeOutOfOrder)); + } + ranges->Add(CharacterRange::Range(char_1, char_2), zone()); + } else { + if (!is_class_1) ranges->Add(CharacterRange::Singleton(char_1), zone()); + } + } + if (!has_more()) { + return ReportError(CStrVector(kUnterminated)); + } + Advance(); + RegExpCharacterClass::CharacterClassFlags character_class_flags; + if (is_negated) character_class_flags = RegExpCharacterClass::NEGATED; + return new (zone()) RegExpCharacterClass(zone(), ranges, builder->flags(), + character_class_flags); +} + + +#undef CHECK_FAILED + + +bool RegExpParser::ParseRegExp(Isolate* isolate, Zone* zone, + FlatStringReader* input, JSRegExp::Flags flags, + RegExpCompileData* result) { + DCHECK(result != nullptr); + RegExpParser parser(input, &result->error, flags, isolate, zone); + RegExpTree* tree = parser.ParsePattern(); + if (parser.failed()) { + DCHECK(tree == nullptr); + DCHECK(!result->error.is_null()); + } else { + DCHECK(tree != nullptr); + DCHECK(result->error.is_null()); + if (FLAG_trace_regexp_parser) { + StdoutStream os; + tree->Print(os, zone); + os << "\n"; + } + result->tree = tree; + int capture_count = parser.captures_started(); + result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; + result->contains_anchor = parser.contains_anchor(); + result->capture_name_map = parser.CreateCaptureNameMap(); + result->capture_count = capture_count; + } + return !parser.failed(); +} + +RegExpBuilder::RegExpBuilder(Zone* zone, JSRegExp::Flags flags) + : zone_(zone), + pending_empty_(false), + flags_(flags), + characters_(nullptr), + pending_surrogate_(kNoPendingSurrogate), + terms_(), + alternatives_() +#ifdef DEBUG + , + last_added_(ADD_NONE) +#endif +{ +} + + +void RegExpBuilder::AddLeadSurrogate(uc16 lead_surrogate) { + DCHECK(unibrow::Utf16::IsLeadSurrogate(lead_surrogate)); + FlushPendingSurrogate(); + // Hold onto the lead surrogate, waiting for a trail surrogate to follow. + pending_surrogate_ = lead_surrogate; +} + + +void RegExpBuilder::AddTrailSurrogate(uc16 trail_surrogate) { + DCHECK(unibrow::Utf16::IsTrailSurrogate(trail_surrogate)); + if (pending_surrogate_ != kNoPendingSurrogate) { + uc16 lead_surrogate = pending_surrogate_; + pending_surrogate_ = kNoPendingSurrogate; + DCHECK(unibrow::Utf16::IsLeadSurrogate(lead_surrogate)); + uc32 combined = + unibrow::Utf16::CombineSurrogatePair(lead_surrogate, trail_surrogate); + if (NeedsDesugaringForIgnoreCase(combined)) { + AddCharacterClassForDesugaring(combined); + } else { + ZoneList<uc16> surrogate_pair(2, zone()); + surrogate_pair.Add(lead_surrogate, zone()); + surrogate_pair.Add(trail_surrogate, zone()); + RegExpAtom* atom = + new (zone()) RegExpAtom(surrogate_pair.ToConstVector(), flags_); + AddAtom(atom); + } + } else { + pending_surrogate_ = trail_surrogate; + FlushPendingSurrogate(); + } +} + + +void RegExpBuilder::FlushPendingSurrogate() { + if (pending_surrogate_ != kNoPendingSurrogate) { + DCHECK(unicode()); + uc32 c = pending_surrogate_; + pending_surrogate_ = kNoPendingSurrogate; + AddCharacterClassForDesugaring(c); + } +} + + +void RegExpBuilder::FlushCharacters() { + FlushPendingSurrogate(); + pending_empty_ = false; + if (characters_ != nullptr) { + RegExpTree* atom = + new (zone()) RegExpAtom(characters_->ToConstVector(), flags_); + characters_ = nullptr; + text_.Add(atom, zone()); + LAST(ADD_ATOM); + } +} + + +void RegExpBuilder::FlushText() { + FlushCharacters(); + int num_text = text_.length(); + if (num_text == 0) { + return; + } else if (num_text == 1) { + terms_.Add(text_.last(), zone()); + } else { + RegExpText* text = new (zone()) RegExpText(zone()); + for (int i = 0; i < num_text; i++) text_.Get(i)->AppendToText(text, zone()); + terms_.Add(text, zone()); + } + text_.Clear(); +} + + +void RegExpBuilder::AddCharacter(uc16 c) { + FlushPendingSurrogate(); + pending_empty_ = false; + if (NeedsDesugaringForIgnoreCase(c)) { + AddCharacterClassForDesugaring(c); + } else { + if (characters_ == nullptr) { + characters_ = new (zone()) ZoneList<uc16>(4, zone()); + } + characters_->Add(c, zone()); + LAST(ADD_CHAR); + } +} + + +void RegExpBuilder::AddUnicodeCharacter(uc32 c) { + if (c > static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) { + DCHECK(unicode()); + AddLeadSurrogate(unibrow::Utf16::LeadSurrogate(c)); + AddTrailSurrogate(unibrow::Utf16::TrailSurrogate(c)); + } else if (unicode() && unibrow::Utf16::IsLeadSurrogate(c)) { + AddLeadSurrogate(c); + } else if (unicode() && unibrow::Utf16::IsTrailSurrogate(c)) { + AddTrailSurrogate(c); + } else { + AddCharacter(static_cast<uc16>(c)); + } +} + +void RegExpBuilder::AddEscapedUnicodeCharacter(uc32 character) { + // A lead or trail surrogate parsed via escape sequence will not + // pair up with any preceding lead or following trail surrogate. + FlushPendingSurrogate(); + AddUnicodeCharacter(character); + FlushPendingSurrogate(); +} + +void RegExpBuilder::AddEmpty() { pending_empty_ = true; } + + +void RegExpBuilder::AddCharacterClass(RegExpCharacterClass* cc) { + if (NeedsDesugaringForUnicode(cc)) { + // With /u, character class needs to be desugared, so it + // must be a standalone term instead of being part of a RegExpText. + AddTerm(cc); + } else { + AddAtom(cc); + } +} + +void RegExpBuilder::AddCharacterClassForDesugaring(uc32 c) { + AddTerm(new (zone()) RegExpCharacterClass( + zone(), CharacterRange::List(zone(), CharacterRange::Singleton(c)), + flags_)); +} + + +void RegExpBuilder::AddAtom(RegExpTree* term) { + if (term->IsEmpty()) { + AddEmpty(); + return; + } + if (term->IsTextElement()) { + FlushCharacters(); + text_.Add(term, zone()); + } else { + FlushText(); + terms_.Add(term, zone()); + } + LAST(ADD_ATOM); +} + + +void RegExpBuilder::AddTerm(RegExpTree* term) { + FlushText(); + terms_.Add(term, zone()); + LAST(ADD_ATOM); +} + + +void RegExpBuilder::AddAssertion(RegExpTree* assert) { + FlushText(); + terms_.Add(assert, zone()); + LAST(ADD_ASSERT); +} + + +void RegExpBuilder::NewAlternative() { FlushTerms(); } + + +void RegExpBuilder::FlushTerms() { + FlushText(); + int num_terms = terms_.length(); + RegExpTree* alternative; + if (num_terms == 0) { + alternative = new (zone()) RegExpEmpty(); + } else if (num_terms == 1) { + alternative = terms_.last(); + } else { + alternative = new (zone()) RegExpAlternative(terms_.GetList(zone())); + } + alternatives_.Add(alternative, zone()); + terms_.Clear(); + LAST(ADD_NONE); +} + + +bool RegExpBuilder::NeedsDesugaringForUnicode(RegExpCharacterClass* cc) { + if (!unicode()) return false; + // TODO(yangguo): we could be smarter than this. Case-insensitivity does not + // necessarily mean that we need to desugar. It's probably nicer to have a + // separate pass to figure out unicode desugarings. + if (ignore_case()) return true; + ZoneList<CharacterRange>* ranges = cc->ranges(zone()); + CharacterRange::Canonicalize(ranges); + for (int i = ranges->length() - 1; i >= 0; i--) { + uc32 from = ranges->at(i).from(); + uc32 to = ranges->at(i).to(); + // Check for non-BMP characters. + if (to >= kNonBmpStart) return true; + // Check for lone surrogates. + if (from <= kTrailSurrogateEnd && to >= kLeadSurrogateStart) return true; + } + return false; +} + + +bool RegExpBuilder::NeedsDesugaringForIgnoreCase(uc32 c) { +#ifdef V8_INTL_SUPPORT + if (unicode() && ignore_case()) { + icu::UnicodeSet set(c, c); + set.closeOver(USET_CASE_INSENSITIVE); + set.removeAllStrings(); + return set.size() > 1; + } + // In the case where ICU is not included, we act as if the unicode flag is + // not set, and do not desugar. +#endif // V8_INTL_SUPPORT + return false; +} + + +RegExpTree* RegExpBuilder::ToRegExp() { + FlushTerms(); + int num_alternatives = alternatives_.length(); + if (num_alternatives == 0) return new (zone()) RegExpEmpty(); + if (num_alternatives == 1) return alternatives_.last(); + return new (zone()) RegExpDisjunction(alternatives_.GetList(zone())); +} + +bool RegExpBuilder::AddQuantifierToAtom( + int min, int max, RegExpQuantifier::QuantifierType quantifier_type) { + FlushPendingSurrogate(); + if (pending_empty_) { + pending_empty_ = false; + return true; + } + RegExpTree* atom; + if (characters_ != nullptr) { + DCHECK(last_added_ == ADD_CHAR); + // Last atom was character. + Vector<const uc16> char_vector = characters_->ToConstVector(); + int num_chars = char_vector.length(); + if (num_chars > 1) { + Vector<const uc16> prefix = char_vector.SubVector(0, num_chars - 1); + text_.Add(new (zone()) RegExpAtom(prefix, flags_), zone()); + char_vector = char_vector.SubVector(num_chars - 1, num_chars); + } + characters_ = nullptr; + atom = new (zone()) RegExpAtom(char_vector, flags_); + FlushText(); + } else if (text_.length() > 0) { + DCHECK(last_added_ == ADD_ATOM); + atom = text_.RemoveLast(); + FlushText(); + } else if (terms_.length() > 0) { + DCHECK(last_added_ == ADD_ATOM); + atom = terms_.RemoveLast(); + if (atom->IsLookaround()) { + // With /u, lookarounds are not quantifiable. + if (unicode()) return false; + // Lookbehinds are not quantifiable. + if (atom->AsLookaround()->type() == RegExpLookaround::LOOKBEHIND) { + return false; + } + } + if (atom->max_match() == 0) { + // Guaranteed to only match an empty string. + LAST(ADD_TERM); + if (min == 0) { + return true; + } + terms_.Add(atom, zone()); + return true; + } + } else { + // Only call immediately after adding an atom or character! + UNREACHABLE(); + } + terms_.Add(new (zone()) RegExpQuantifier(min, max, quantifier_type, atom), + zone()); + LAST(ADD_TERM); + return true; +} + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-parser.h b/js/src/regexp/regexp-parser.h new file mode 100644 index 000000000..91677d6c3 --- /dev/null +++ b/js/src/regexp/regexp-parser.h @@ -0,0 +1,359 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_PARSER_H_ +#define V8_REGEXP_REGEXP_PARSER_H_ + +#include "regexp/regexp-ast.h" + +namespace v8 { +namespace internal { + +struct RegExpCompileData; + +// A BufferedZoneList is an automatically growing list, just like (and backed +// by) a ZoneList, that is optimized for the case of adding and removing +// a single element. The last element added is stored outside the backing list, +// and if no more than one element is ever added, the ZoneList isn't even +// allocated. +// Elements must not be nullptr pointers. +template <typename T, int initial_size> +class BufferedZoneList { + public: + BufferedZoneList() : list_(nullptr), last_(nullptr) {} + + // Adds element at end of list. This element is buffered and can + // be read using last() or removed using RemoveLast until a new Add or until + // RemoveLast or GetList has been called. + void Add(T* value, Zone* zone) { + if (last_ != nullptr) { + if (list_ == nullptr) { + list_ = new (zone) ZoneList<T*>(initial_size, zone); + } + list_->Add(last_, zone); + } + last_ = value; + } + + T* last() { + DCHECK(last_ != nullptr); + return last_; + } + + T* RemoveLast() { + DCHECK(last_ != nullptr); + T* result = last_; + if ((list_ != nullptr) && (list_->length() > 0)) + last_ = list_->RemoveLast(); + else + last_ = nullptr; + return result; + } + + T* Get(int i) { + DCHECK((0 <= i) && (i < length())); + if (list_ == nullptr) { + DCHECK_EQ(0, i); + return last_; + } else { + if (i == list_->length()) { + DCHECK(last_ != nullptr); + return last_; + } else { + return list_->at(i); + } + } + } + + void Clear() { + list_ = nullptr; + last_ = nullptr; + } + + int length() { + int length = (list_ == nullptr) ? 0 : list_->length(); + return length + ((last_ == nullptr) ? 0 : 1); + } + + ZoneList<T*>* GetList(Zone* zone) { + if (list_ == nullptr) { + list_ = new (zone) ZoneList<T*>(initial_size, zone); + } + if (last_ != nullptr) { + list_->Add(last_, zone); + last_ = nullptr; + } + return list_; + } + + private: + ZoneList<T*>* list_; + T* last_; +}; + + +// Accumulates RegExp atoms and assertions into lists of terms and alternatives. +class RegExpBuilder : public ZoneObject { + public: + RegExpBuilder(Zone* zone, JSRegExp::Flags flags); + void AddCharacter(uc16 character); + void AddUnicodeCharacter(uc32 character); + void AddEscapedUnicodeCharacter(uc32 character); + // "Adds" an empty expression. Does nothing except consume a + // following quantifier + void AddEmpty(); + void AddCharacterClass(RegExpCharacterClass* cc); + void AddCharacterClassForDesugaring(uc32 c); + void AddAtom(RegExpTree* tree); + void AddTerm(RegExpTree* tree); + void AddAssertion(RegExpTree* tree); + void NewAlternative(); // '|' + bool AddQuantifierToAtom(int min, int max, + RegExpQuantifier::QuantifierType type); + void FlushText(); + RegExpTree* ToRegExp(); + JSRegExp::Flags flags() const { return flags_; } + void set_flags(JSRegExp::Flags flags) { flags_ = flags; } + + bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; } + bool multiline() const { return (flags_ & JSRegExp::kMultiline) != 0; } + bool dotall() const { return (flags_ & JSRegExp::kDotAll) != 0; } + + private: + static const uc16 kNoPendingSurrogate = 0; + void AddLeadSurrogate(uc16 lead_surrogate); + void AddTrailSurrogate(uc16 trail_surrogate); + void FlushPendingSurrogate(); + void FlushCharacters(); + void FlushTerms(); + bool NeedsDesugaringForUnicode(RegExpCharacterClass* cc); + bool NeedsDesugaringForIgnoreCase(uc32 c); + Zone* zone() const { return zone_; } + bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; } + + Zone* zone_; + bool pending_empty_; + JSRegExp::Flags flags_; + ZoneList<uc16>* characters_; + uc16 pending_surrogate_; + BufferedZoneList<RegExpTree, 2> terms_; + BufferedZoneList<RegExpTree, 2> text_; + BufferedZoneList<RegExpTree, 2> alternatives_; +#ifdef DEBUG + enum { ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM } last_added_; +#define LAST(x) last_added_ = x; +#else +#define LAST(x) +#endif +}; + +class V8_EXPORT_PRIVATE RegExpParser { + public: + RegExpParser(FlatStringReader* in, Handle<String>* error, + JSRegExp::Flags flags, Isolate* isolate, Zone* zone); + + static bool ParseRegExp(Isolate* isolate, Zone* zone, FlatStringReader* input, + JSRegExp::Flags flags, RegExpCompileData* result); + + RegExpTree* ParsePattern(); + RegExpTree* ParseDisjunction(); + RegExpTree* ParseGroup(); + + // Parses a {...,...} quantifier and stores the range in the given + // out parameters. + bool ParseIntervalQuantifier(int* min_out, int* max_out); + + // Parses and returns a single escaped character. The character + // must not be 'b' or 'B' since they are usually handle specially. + uc32 ParseClassCharacterEscape(); + + // Checks whether the following is a length-digit hexadecimal number, + // and sets the value if it is. + bool ParseHexEscape(int length, uc32* value); + bool ParseUnicodeEscape(uc32* value); + bool ParseUnlimitedLengthHexNumber(int max_value, uc32* value); + + bool ParsePropertyClassName(std::vector<char>* name_1, + std::vector<char>* name_2); + bool AddPropertyClassRange(ZoneList<CharacterRange>* add_to, bool negate, + const std::vector<char>& name_1, + const std::vector<char>& name_2); + + RegExpTree* GetPropertySequence(const std::vector<char>& name_1); + RegExpTree* ParseCharacterClass(const RegExpBuilder* state); + + uc32 ParseOctalLiteral(); + + // Tries to parse the input as a back reference. If successful it + // stores the result in the output parameter and returns true. If + // it fails it will push back the characters read so the same characters + // can be reparsed. + bool ParseBackReferenceIndex(int* index_out); + + // Parse inside a class. Either add escaped class to the range, or return + // false and pass parsed single character through |char_out|. + void ParseClassEscape(ZoneList<CharacterRange>* ranges, Zone* zone, + bool add_unicode_case_equivalents, uc32* char_out, + bool* is_class_escape); + + char ParseClassEscape(); + + RegExpTree* ReportError(Vector<const char> message); + void Advance(); + void Advance(int dist); + void Reset(int pos); + + // Reports whether the pattern might be used as a literal search string. + // Only use if the result of the parse is a single atom node. + bool simple(); + bool contains_anchor() { return contains_anchor_; } + void set_contains_anchor() { contains_anchor_ = true; } + int captures_started() { return captures_started_; } + int position() { return next_pos_ - 1; } + bool failed() { return failed_; } + // The Unicode flag can't be changed using in-regexp syntax, so it's OK to + // just read the initial flag value here. + bool unicode() const { return (top_level_flags_ & JSRegExp::kUnicode) != 0; } + + static bool IsSyntaxCharacterOrSlash(uc32 c); + + static const uc32 kEndMarker = (1 << 21); + + private: + enum SubexpressionType { + INITIAL, + CAPTURE, // All positive values represent captures. + POSITIVE_LOOKAROUND, + NEGATIVE_LOOKAROUND, + GROUPING + }; + + class RegExpParserState : public ZoneObject { + public: + // Push a state on the stack. + RegExpParserState(RegExpParserState* previous_state, + SubexpressionType group_type, + RegExpLookaround::Type lookaround_type, + int disjunction_capture_index, + const ZoneVector<uc16>* capture_name, + JSRegExp::Flags flags, Zone* zone) + : previous_state_(previous_state), + builder_(new (zone) RegExpBuilder(zone, flags)), + group_type_(group_type), + lookaround_type_(lookaround_type), + disjunction_capture_index_(disjunction_capture_index), + capture_name_(capture_name) {} + // Parser state of containing expression, if any. + RegExpParserState* previous_state() const { return previous_state_; } + bool IsSubexpression() { return previous_state_ != nullptr; } + // RegExpBuilder building this regexp's AST. + RegExpBuilder* builder() const { return builder_; } + // Type of regexp being parsed (parenthesized group or entire regexp). + SubexpressionType group_type() const { return group_type_; } + // Lookahead or Lookbehind. + RegExpLookaround::Type lookaround_type() const { return lookaround_type_; } + // Index in captures array of first capture in this sub-expression, if any. + // Also the capture index of this sub-expression itself, if group_type + // is CAPTURE. + int capture_index() const { return disjunction_capture_index_; } + // The name of the current sub-expression, if group_type is CAPTURE. Only + // used for named captures. + const ZoneVector<uc16>* capture_name() const { return capture_name_; } + + bool IsNamedCapture() const { return capture_name_ != nullptr; } + + // Check whether the parser is inside a capture group with the given index. + bool IsInsideCaptureGroup(int index); + // Check whether the parser is inside a capture group with the given name. + bool IsInsideCaptureGroup(const ZoneVector<uc16>* name); + + private: + // Linked list implementation of stack of states. + RegExpParserState* const previous_state_; + // Builder for the stored disjunction. + RegExpBuilder* const builder_; + // Stored disjunction type (capture, look-ahead or grouping), if any. + const SubexpressionType group_type_; + // Stored read direction. + const RegExpLookaround::Type lookaround_type_; + // Stored disjunction's capture index (if any). + const int disjunction_capture_index_; + // Stored capture name (if any). + const ZoneVector<uc16>* const capture_name_; + }; + + // Return the 1-indexed RegExpCapture object, allocate if necessary. + RegExpCapture* GetCapture(int index); + + // Creates a new named capture at the specified index. Must be called exactly + // once for each named capture. Fails if a capture with the same name is + // encountered. + bool CreateNamedCaptureAtIndex(const ZoneVector<uc16>* name, int index); + + // Parses the name of a capture group (?<name>pattern). The name must adhere + // to IdentifierName in the ECMAScript standard. + const ZoneVector<uc16>* ParseCaptureGroupName(); + + bool ParseNamedBackReference(RegExpBuilder* builder, + RegExpParserState* state); + RegExpParserState* ParseOpenParenthesis(RegExpParserState* state); + + // After the initial parsing pass, patch corresponding RegExpCapture objects + // into all RegExpBackReferences. This is done after initial parsing in order + // to avoid complicating cases in which references comes before the capture. + void PatchNamedBackReferences(); + + Handle<FixedArray> CreateCaptureNameMap(); + + // Returns true iff the pattern contains named captures. May call + // ScanForCaptures to look ahead at the remaining pattern. + bool HasNamedCaptures(); + + Isolate* isolate() { return isolate_; } + Zone* zone() const { return zone_; } + + uc32 current() { return current_; } + bool has_more() { return has_more_; } + bool has_next() { return next_pos_ < in()->length(); } + uc32 Next(); + template <bool update_position> + uc32 ReadNext(); + FlatStringReader* in() { return in_; } + void ScanForCaptures(); + + struct RegExpCaptureNameLess { + bool operator()(const RegExpCapture* lhs, const RegExpCapture* rhs) const { + DCHECK_NOT_NULL(lhs); + DCHECK_NOT_NULL(rhs); + return *lhs->name() < *rhs->name(); + } + }; + + Isolate* isolate_; + Zone* zone_; + Handle<String>* error_; + ZoneList<RegExpCapture*>* captures_; + ZoneSet<RegExpCapture*, RegExpCaptureNameLess>* named_captures_; + ZoneList<RegExpBackReference*>* named_back_references_; + FlatStringReader* in_; + uc32 current_; + // These are the flags specified outside the regexp syntax ie after the + // terminating '/' or in the second argument to the constructor. The current + // flags are stored on the RegExpBuilder. + JSRegExp::Flags top_level_flags_; + int next_pos_; + int captures_started_; + int capture_count_; // Only valid after we have scanned for captures. + bool has_more_; + bool simple_; + bool contains_anchor_; + bool is_scanned_for_captures_; + bool has_named_captures_; // Only valid after we have scanned for captures. + bool failed_; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_PARSER_H_ diff --git a/js/src/regexp/regexp-stack.cc b/js/src/regexp/regexp-stack.cc new file mode 100644 index 000000000..b8819e48b --- /dev/null +++ b/js/src/regexp/regexp-stack.cc @@ -0,0 +1,97 @@ +// Copyright 2009 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "regexp/regexp-stack.h" + + +namespace v8 { +namespace internal { + +RegExpStackScope::RegExpStackScope(Isolate* isolate) + : regexp_stack_(isolate->regexp_stack()) { + // Initialize, if not already initialized. + regexp_stack_->EnsureCapacity(0); +} + + +RegExpStackScope::~RegExpStackScope() { + // Reset the buffer if it has grown. + regexp_stack_->Reset(); +} + +RegExpStack::RegExpStack() : thread_local_(this), isolate_(nullptr) {} + +RegExpStack::~RegExpStack() { thread_local_.FreeAndInvalidate(); } + +char* RegExpStack::ArchiveStack(char* to) { + if (!thread_local_.owns_memory_) { + // Force dynamic stacks prior to archiving. Any growth will do. A dynamic + // stack is needed because stack archival & restoration rely on `memory_` + // pointing at a fixed-location backing store, whereas the static stack is + // tied to a RegExpStack instance. + EnsureCapacity(thread_local_.memory_size_ + 1); + DCHECK(thread_local_.owns_memory_); + } + + size_t size = sizeof(thread_local_); + MemCopy(reinterpret_cast<void*>(to), &thread_local_, size); + thread_local_ = ThreadLocal(this); + return to + size; +} + + +char* RegExpStack::RestoreStack(char* from) { + size_t size = sizeof(thread_local_); + MemCopy(&thread_local_, reinterpret_cast<void*>(from), size); + return from + size; +} + +void RegExpStack::Reset() { thread_local_.ResetToStaticStack(this); } + +void RegExpStack::ThreadLocal::ResetToStaticStack(RegExpStack* regexp_stack) { + if (owns_memory_) DeleteArray(memory_); + + memory_ = regexp_stack->static_stack_; + memory_top_ = regexp_stack->static_stack_ + kStaticStackSize; + memory_size_ = kStaticStackSize; + limit_ = reinterpret_cast<Address>(regexp_stack->static_stack_) + + kStackLimitSlack * kSystemPointerSize; + owns_memory_ = false; +} + +void RegExpStack::ThreadLocal::FreeAndInvalidate() { + if (owns_memory_) DeleteArray(memory_); + + // This stack may not be used after being freed. Just reset to invalid values + // to ensure we don't accidentally use old memory areas. + memory_ = nullptr; + memory_top_ = nullptr; + memory_size_ = 0; + limit_ = kMemoryTop; +} + +Address RegExpStack::EnsureCapacity(size_t size) { + if (size > kMaximumStackSize) return kNullAddress; + if (size < kMinimumDynamicStackSize) size = kMinimumDynamicStackSize; + if (thread_local_.memory_size_ < size) { + byte* new_memory = NewArray<byte>(size); + if (thread_local_.memory_size_ > 0) { + // Copy original memory into top of new memory. + MemCopy(new_memory + size - thread_local_.memory_size_, + thread_local_.memory_, thread_local_.memory_size_); + if (thread_local_.owns_memory_) DeleteArray(thread_local_.memory_); + } + thread_local_.memory_ = new_memory; + thread_local_.memory_top_ = new_memory + size; + thread_local_.memory_size_ = size; + thread_local_.limit_ = reinterpret_cast<Address>(new_memory) + + kStackLimitSlack * kSystemPointerSize; + thread_local_.owns_memory_ = true; + } + return reinterpret_cast<Address>(thread_local_.memory_top_); +} + + +} // namespace internal +} // namespace v8 diff --git a/js/src/regexp/regexp-stack.h b/js/src/regexp/regexp-stack.h new file mode 100644 index 000000000..2c2cf2630 --- /dev/null +++ b/js/src/regexp/regexp-stack.h @@ -0,0 +1,140 @@ +// Copyright 2009 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_STACK_H_ +#define V8_REGEXP_REGEXP_STACK_H_ + + +namespace v8 { +namespace internal { + +class RegExpStack; + +// Maintains a per-v8thread stack area that can be used by irregexp +// implementation for its backtracking stack. +// Since there is only one stack area, the Irregexp implementation is not +// re-entrant. I.e., no regular expressions may be executed in the same thread +// during a preempted Irregexp execution. +class RegExpStackScope { + public: + // Create and delete an instance to control the life-time of a growing stack. + + // Initializes the stack memory area if necessary. + explicit RegExpStackScope(Isolate* isolate); + ~RegExpStackScope(); // Releases the stack if it has grown. + + RegExpStack* stack() const { return regexp_stack_; } + + private: + RegExpStack* regexp_stack_; + + DISALLOW_COPY_AND_ASSIGN(RegExpStackScope); +}; + + +class RegExpStack { + public: + // Number of allocated locations on the stack below the limit. + // No sequence of pushes must be longer that this without doing a stack-limit + // check. + static constexpr int kStackLimitSlack = 32; + + // Gives the top of the memory used as stack. + Address stack_base() { + DCHECK_NE(0, thread_local_.memory_size_); + DCHECK_EQ(thread_local_.memory_top_, + thread_local_.memory_ + thread_local_.memory_size_); + return reinterpret_cast<Address>(thread_local_.memory_top_); + } + + // The total size of the memory allocated for the stack. + size_t stack_capacity() { return thread_local_.memory_size_; } + + // If the stack pointer gets below the limit, we should react and + // either grow the stack or report an out-of-stack exception. + // There is only a limited number of locations below the stack limit, + // so users of the stack should check the stack limit during any + // sequence of pushes longer that this. + Address* limit_address_address() { return &(thread_local_.limit_); } + + // Ensures that there is a memory area with at least the specified size. + // If passing zero, the default/minimum size buffer is allocated. + Address EnsureCapacity(size_t size); + + // Thread local archiving. + static constexpr int ArchiveSpacePerThread() { + return static_cast<int>(sizeof(ThreadLocal)); + } + char* ArchiveStack(char* to); + char* RestoreStack(char* from); + void FreeThreadResources() { thread_local_.ResetToStaticStack(this); } + + // Maximal size of allocated stack area. + static constexpr size_t kMaximumStackSize = 64 * MB; + + private: + RegExpStack(); + ~RegExpStack(); + + // Artificial limit used when the thread-local state has been destroyed. + static const Address kMemoryTop = + static_cast<Address>(static_cast<uintptr_t>(-1)); + + // Minimal size of dynamically-allocated stack area. + static constexpr size_t kMinimumDynamicStackSize = 1 * KB; + + // In addition to dynamically-allocated, variable-sized stacks, we also have + // a statically allocated and sized area that is used whenever no dynamic + // stack is allocated. This guarantees that a stack is always available and + // we can skip availability-checks later on. + // It's double the slack size to ensure that we have a bit of breathing room + // before NativeRegExpMacroAssembler::GrowStack must be called. + static constexpr size_t kStaticStackSize = + 2 * kStackLimitSlack * kSystemPointerSize; + byte static_stack_[kStaticStackSize] = {0}; + + STATIC_ASSERT(kStaticStackSize <= kMaximumStackSize); + + // Structure holding the allocated memory, size and limit. + struct ThreadLocal { + explicit ThreadLocal(RegExpStack* regexp_stack) { + ResetToStaticStack(regexp_stack); + } + + // If memory_size_ > 0 then memory_ and memory_top_ must be non-nullptr + // and memory_top_ = memory_ + memory_size_ + byte* memory_ = nullptr; + byte* memory_top_ = nullptr; + size_t memory_size_ = 0; + Address limit_ = kNullAddress; + bool owns_memory_ = false; // Whether memory_ is owned and must be freed. + + void ResetToStaticStack(RegExpStack* regexp_stack); + void FreeAndInvalidate(); + }; + + // Address of top of memory used as stack. + Address memory_top_address_address() { + return reinterpret_cast<Address>(&thread_local_.memory_top_); + } + + // Resets the buffer if it has grown beyond the default/minimum size. + // After this, the buffer is either the default size, or it is empty, so + // you have to call EnsureCapacity before using it again. + void Reset(); + + ThreadLocal thread_local_; + Isolate* isolate_; + + friend class ExternalReference; + friend class Isolate; + friend class RegExpStackScope; + + DISALLOW_COPY_AND_ASSIGN(RegExpStack); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_STACK_H_ diff --git a/js/src/regexp/regexp.h b/js/src/regexp/regexp.h new file mode 100644 index 000000000..1ee10da5c --- /dev/null +++ b/js/src/regexp/regexp.h @@ -0,0 +1,189 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_REGEXP_H_ +#define V8_REGEXP_REGEXP_H_ + + +namespace v8 { +namespace internal { + +class RegExpNode; +class RegExpTree; + +enum class RegExpCompilationTarget : int { kBytecode, kNative }; + +// TODO(jgruber): Do not expose in regexp.h. +// TODO(jgruber): Consider splitting between ParseData and CompileData. +struct RegExpCompileData { + // The parsed AST as produced by the RegExpParser. + RegExpTree* tree = nullptr; + + // The compiled Node graph as produced by RegExpTree::ToNode methods. + RegExpNode* node = nullptr; + + // Either the generated code as produced by the compiler or a trampoline + // to the interpreter. + Object code; + + // True, iff the pattern is a 'simple' atom with zero captures. In other + // words, the pattern consists of a string with no metacharacters and special + // regexp features, and can be implemented as a standard string search. + bool simple = true; + + // True, iff the pattern is anchored at the start of the string with '^'. + bool contains_anchor = false; + + // Only use if the pattern contains named captures. If so, this contains a + // mapping of capture names to capture indices. + Handle<FixedArray> capture_name_map; + + // The error message. Only used if an error occurred during parsing or + // compilation. + Handle<String> error; + + // The number of capture groups, without the global capture \0. + int capture_count = 0; + + // The number of registers used by the generated code. + int register_count = 0; + + // The compilation target (bytecode or native code). + RegExpCompilationTarget compilation_target; +}; + +class RegExp final : public AllStatic { + public: + // Whether the irregexp engine generates interpreter bytecode. + static bool CanGenerateBytecode() { + return FLAG_regexp_interpret_all || FLAG_regexp_tier_up; + } + + // Parses the RegExp pattern and prepares the JSRegExp object with + // generic data and choice of implementation - as well as what + // the implementation wants to store in the data field. + // Returns false if compilation fails. + V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Compile( + Isolate* isolate, Handle<JSRegExp> re, Handle<String> pattern, + JSRegExp::Flags flags, uint32_t backtrack_limit); + + enum CallOrigin : int { + kFromRuntime = 0, + kFromJs = 1, + }; + + // See ECMA-262 section 15.10.6.2. + // This function calls the garbage collector if necessary. + V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Exec( + Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject, + int index, Handle<RegExpMatchInfo> last_match_info); + + // Integral return values used throughout regexp code layers. + static constexpr int kInternalRegExpFailure = 0; + static constexpr int kInternalRegExpSuccess = 1; + static constexpr int kInternalRegExpException = -1; + static constexpr int kInternalRegExpRetry = -2; + + enum IrregexpResult : int32_t { + RE_FAILURE = kInternalRegExpFailure, + RE_SUCCESS = kInternalRegExpSuccess, + RE_EXCEPTION = kInternalRegExpException, + }; + + // Prepare a RegExp for being executed one or more times (using + // IrregexpExecOnce) on the subject. + // This ensures that the regexp is compiled for the subject, and that + // the subject is flat. + // Returns the number of integer spaces required by IrregexpExecOnce + // as its "registers" argument. If the regexp cannot be compiled, + // an exception is set as pending, and this function returns negative. + static int IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp, + Handle<String> subject); + + // Set last match info. If match is nullptr, then setting captures is + // omitted. + static Handle<RegExpMatchInfo> SetLastMatchInfo( + Isolate* isolate, Handle<RegExpMatchInfo> last_match_info, + Handle<String> subject, int capture_count, int32_t* match); + + V8_EXPORT_PRIVATE static bool CompileForTesting(Isolate* isolate, Zone* zone, + RegExpCompileData* input, + JSRegExp::Flags flags, + Handle<String> pattern, + Handle<String> sample_subject, + bool is_one_byte); + + V8_EXPORT_PRIVATE static void DotPrintForTesting(const char* label, + RegExpNode* node); + + static const int kRegExpTooLargeToOptimize = 20 * KB; +}; + +// Uses a special global mode of irregexp-generated code to perform a global +// search and return multiple results at once. As such, this is essentially an +// iterator over multiple results (retrieved batch-wise in advance). +class RegExpGlobalCache final { + public: + RegExpGlobalCache(Handle<JSRegExp> regexp, Handle<String> subject, + Isolate* isolate); + + ~RegExpGlobalCache(); + + // Fetch the next entry in the cache for global regexp match results. + // This does not set the last match info. Upon failure, nullptr is + // returned. The cause can be checked with Result(). The previous result is + // still in available in memory when a failure happens. + int32_t* FetchNext(); + + int32_t* LastSuccessfulMatch(); + + bool HasException() { return num_matches_ < 0; } + + private: + int AdvanceZeroLength(int last_index); + + int num_matches_; + int max_matches_; + int current_match_index_; + int registers_per_match_; + // Pointer to the last set of captures. + int32_t* register_array_; + int register_array_size_; + Handle<JSRegExp> regexp_; + Handle<String> subject_; + Isolate* isolate_; +}; + +// Caches results for specific regexp queries on the isolate. At the time of +// writing, this is used during global calls to RegExp.prototype.exec and +// @@split. +class RegExpResultsCache final : public AllStatic { + public: + enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; + + // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. + // On success, the returned result is guaranteed to be a COW-array. + static Object Lookup(Heap* heap, String key_string, Object key_pattern, + FixedArray* last_match_out, ResultsCacheType type); + // Attempt to add value_array to the cache specified by type. On success, + // value_array is turned into a COW-array. + static void Enter(Isolate* isolate, Handle<String> key_string, + Handle<Object> key_pattern, Handle<FixedArray> value_array, + Handle<FixedArray> last_match_cache, ResultsCacheType type); + static void Clear(FixedArray cache); + + static constexpr int kRegExpResultsCacheSize = 0x100; + + private: + static constexpr int kStringOffset = 0; + static constexpr int kPatternOffset = 1; + static constexpr int kArrayOffset = 2; + static constexpr int kLastMatchOffset = 3; + static constexpr int kArrayEntriesPerCacheEntry = 4; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_REGEXP_REGEXP_H_ diff --git a/js/src/regexp/special-case.h b/js/src/regexp/special-case.h new file mode 100644 index 000000000..1ccec5d31 --- /dev/null +++ b/js/src/regexp/special-case.h @@ -0,0 +1,79 @@ +// Copyright 2019 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_REGEXP_SPECIAL_CASE_H_ +#define V8_REGEXP_SPECIAL_CASE_H_ + +#ifdef V8_INTL_SUPPORT +#include "unicode/uversion.h" +namespace U_ICU_NAMESPACE { +class UnicodeSet; +} // namespace U_ICU_NAMESPACE + +namespace v8 { +namespace internal { + +// Functions to build special sets of Unicode characters that need special +// handling under "i" mode that cannot use closeOver(USET_CASE_INSENSITIVE). +// +// For the characters in the "ignore set", the process should not treat other +// characters in the result of closeOver(USET_CASE_INSENSITIVE) as case +// equivlant under the ECMA262 RegExp "i" mode because these characters are +// uppercase themselves that no other characters in the set uppercase to. +// +// For the characters in the "special add set", the proecess should add only +// those characters in the result of closeOver(USET_CASE_INSENSITIVE) which is +// not uppercase characters as case equivlant under the ECMA262 RegExp "i" mode +// and also that ONE uppercase character that other non uppercase character +// uppercase into to the set. Other uppercase characters in the result of +// closeOver(USET_CASE_INSENSITIVE) should not be considered because ECMA262 +// RegExp "i" mode consider two characters as "case equivlant" if both +// characters uppercase to the same character. +// +// For example, consider the following case equivalent set defined by Unicode +// standard. Notice there are more than one uppercase characters in this set: +// U+212B Å Angstrom Sign - an uppercase character. +// U+00C5 Å Latin Capital Letter A with Ring Above - an uppercase character. +// U+00E5 å Latin Small Letter A with Ring Above - a lowercase character which +// uppercase to U+00C5. +// In this case equivlant set is a special set and need special handling while +// considering "case equivlant" under the ECMA262 RegExp "i" mode which is +// different than Unicode Standard: +// * U+212B should be included into the "ignore" set because there are no other +// characters, under the ECMA262 "i" mode, are considered as "case equivlant" +// to it because U+212B is itself an uppercase but neither U+00C5 nor U+00E5 +// uppercase to U+212B. +// * U+00C5 and U+00E5 will both be included into the "special add" set. While +// calculate the "equivlant set" under ECMA262 "i" mode, the process will +// add U+00E5, because it is not an uppercase character in the set. The +// process will also add U+00C5, because it is the uppercase character which +// other non uppercase character, U+00C5, uppercase into. +// +// For characters not included in "ignore set" and "special add set", the +// process will just use closeOver(USET_CASE_INSENSITIVE) to calcualte, which is +// much faster. +// +// Under Unicode 12.0, there are only 7 characters in the "special add set" and +// 4 characters in "ignore set" so even the special add process is slower, it is +// limited to a small set of cases only. +// +// The implementation of these two function will be generated by calling ICU +// icu::UnicodeSet during the build time into gen/src/regexp/special-case.cc by +// the code in src/regexp/gen-regexp-special-case.cc. +// +// These two function will be used with LazyInstance<> template to generate +// global sharable set to reduce memory usage and speed up performance. + +// Function to build and return the Ignore set. +icu::UnicodeSet BuildIgnoreSet(); + +// Function to build and return the Special Add set. +icu::UnicodeSet BuildSpecialAddSet(); + +} // namespace internal +} // namespace v8 + +#endif // V8_INTL_SUPPORT + +#endif // V8_REGEXP_SPECIAL_CASE_H_ diff --git a/js/src/regexp/update-headers.py b/js/src/regexp/update-headers.py new file mode 100644 index 000000000..0cff9d6ae --- /dev/null +++ b/js/src/regexp/update-headers.py @@ -0,0 +1,38 @@ +#!/usr/bin/env python + +# This Source Code Form is subject to the terms of the Mozilla Public +# License, v. 2.0. If a copy of the MPL was not distributed with this file, +# You can obtain one at http://mozilla.org/MPL/2.0/. + +# +# This script modifies V8 regexp source files to make them suitable for +# inclusion in SpiderMonkey. Specifically, it: +# +# 1. Rewrites all #includes of V8 regexp headers to point to their location in +# the SM tree: src/regexp/* --> regexp/* +# 2. Removes all #includes of other V8 src/* headers. The required definitions +# will be provided by regexp-shim.h. +# +# Usage: +# cd js/src/regexp +# find . -name "*.h" -o -name "*.cc" | xargs ./update_headers.py +# + +import fileinput +import re +import sys + +# 1. Rewrite includes of V8 regexp headers +regexp_include = re.compile('#include "src/regexp') +regexp_include_new = '#include "regexp' + +# 2. Remove includes of other V8 headers +other_include = re.compile('#include "src/') + +for line in fileinput.input(inplace=1): + if regexp_include.search(line): + sys.stdout.write(re.sub(regexp_include, regexp_include_new, line)) + elif other_include.search(line): + pass + else: + sys.stdout.write(line) |