summaryrefslogtreecommitdiffstats
path: root/js/src/regexp/regexp-bytecode-peephole.cc
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/regexp/regexp-bytecode-peephole.cc')
-rw-r--r--js/src/regexp/regexp-bytecode-peephole.cc1029
1 files changed, 1029 insertions, 0 deletions
diff --git a/js/src/regexp/regexp-bytecode-peephole.cc b/js/src/regexp/regexp-bytecode-peephole.cc
new file mode 100644
index 000000000..2bc1b5aa2
--- /dev/null
+++ b/js/src/regexp/regexp-bytecode-peephole.cc
@@ -0,0 +1,1029 @@
+// Copyright 2019 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "regexp/regexp-bytecode-peephole.h"
+
+#include "regexp/regexp-bytecodes.h"
+
+namespace v8 {
+namespace internal {
+
+namespace {
+
+struct BytecodeArgument {
+ int offset;
+ int length;
+
+ BytecodeArgument(int offset, int length) : offset(offset), length(length) {}
+};
+
+struct BytecodeArgumentMapping : BytecodeArgument {
+ int new_length;
+
+ BytecodeArgumentMapping(int offset, int length, int new_length)
+ : BytecodeArgument(offset, length), new_length(new_length) {}
+};
+
+struct BytecodeArgumentCheck : BytecodeArgument {
+ enum CheckType { kCheckAddress = 0, kCheckValue };
+ CheckType type;
+ int check_offset;
+ int check_length;
+
+ BytecodeArgumentCheck(int offset, int length, int check_offset)
+ : BytecodeArgument(offset, length),
+ type(kCheckAddress),
+ check_offset(check_offset) {}
+ BytecodeArgumentCheck(int offset, int length, int check_offset,
+ int check_length)
+ : BytecodeArgument(offset, length),
+ type(kCheckValue),
+ check_offset(check_offset),
+ check_length(check_length) {}
+};
+
+// Trie-Node for storing bytecode sequences we want to optimize.
+class BytecodeSequenceNode {
+ public:
+ // Dummy bytecode used when we need to store/return a bytecode but it's not a
+ // valid bytecode in the current context.
+ static constexpr int kDummyBytecode = -1;
+
+ BytecodeSequenceNode(int bytecode, Zone* zone);
+ // Adds a new node as child of the current node if it isn't a child already.
+ BytecodeSequenceNode& FollowedBy(int bytecode);
+ // Marks the end of a sequence and sets optimized bytecode to replace all
+ // bytecodes of the sequence with.
+ BytecodeSequenceNode& ReplaceWith(int bytecode);
+ // Maps arguments of bytecodes in the sequence to the optimized bytecode.
+ // Order of invocation determines order of arguments in the optimized
+ // bytecode.
+ // Invoking this method is only allowed on nodes that mark the end of a valid
+ // sequence (i.e. after ReplaceWith()).
+ // bytecode_index_in_sequence: Zero-based index of the referred bytecode
+ // within the sequence (e.g. the bytecode passed to CreateSequence() has
+ // index 0).
+ // argument_offset: Zero-based offset to the argument within the bytecode
+ // (e.g. the first argument that's not packed with the bytecode has offset 4).
+ // argument_byte_length: Length of the argument.
+ // new_argument_byte_length: Length of the argument in the new bytecode
+ // (= argument_byte_length if omitted).
+ BytecodeSequenceNode& MapArgument(int bytecode_index_in_sequence,
+ int argument_offset,
+ int argument_byte_length,
+ int new_argument_byte_length = 0);
+ // Adds a check to the sequence node making it only a valid sequence when the
+ // argument of the current bytecode at the specified offset matches the offset
+ // to check against.
+ // argument_offset: Zero-based offset to the argument within the bytecode
+ // (e.g. the first argument that's not packed with the bytecode has offset 4).
+ // argument_byte_length: Length of the argument.
+ // check_byte_offset: Zero-based offset relative to the beginning of the
+ // sequence that needs to match the value given by argument_offset. (e.g.
+ // check_byte_offset 0 matches the address of the first bytecode in the
+ // sequence).
+ BytecodeSequenceNode& IfArgumentEqualsOffset(int argument_offset,
+ int argument_byte_length,
+ int check_byte_offset);
+ // Adds a check to the sequence node making it only a valid sequence when the
+ // argument of the current bytecode at the specified offset matches the
+ // argument of another bytecode in the sequence.
+ // This is similar to IfArgumentEqualsOffset, except that this method matches
+ // the values of both arguments.
+ BytecodeSequenceNode& IfArgumentEqualsValueAtOffset(
+ int argument_offset, int argument_byte_length,
+ int other_bytecode_index_in_sequence, int other_argument_offset,
+ int other_argument_byte_length);
+ // Marks an argument as unused.
+ // All arguments that are not mapped explicitly have to be marked as unused.
+ // bytecode_index_in_sequence: Zero-based index of the referred bytecode
+ // within the sequence (e.g. the bytecode passed to CreateSequence() has
+ // index 0).
+ // argument_offset: Zero-based offset to the argument within the bytecode
+ // (e.g. the first argument that's not packed with the bytecode has offset 4).
+ // argument_byte_length: Length of the argument.
+ BytecodeSequenceNode& IgnoreArgument(int bytecode_index_in_sequence,
+ int argument_offset,
+ int argument_byte_length);
+ // Checks if the current node is valid for the sequence. I.e. all conditions
+ // set by IfArgumentEqualsOffset and IfArgumentEquals are fulfilled by this
+ // node for the actual bytecode sequence.
+ bool CheckArguments(const byte* bytecode, int pc);
+ // Returns whether this node marks the end of a valid sequence (i.e. can be
+ // replaced with an optimized bytecode).
+ bool IsSequence() const;
+ // Returns the length of the sequence in bytes.
+ int SequenceLength() const;
+ // Returns the optimized bytecode for the node or kDummyBytecode if it is not
+ // the end of a valid sequence.
+ int OptimizedBytecode() const;
+ // Returns the child of the current node matching the given bytecode or
+ // nullptr if no such child is found.
+ BytecodeSequenceNode* Find(int bytecode) const;
+ // Returns number of arguments mapped to the current node.
+ // Invoking this method is only allowed on nodes that mark the end of a valid
+ // sequence (i.e. if IsSequence())
+ size_t ArgumentSize() const;
+ // Returns the argument-mapping of the argument at index.
+ // Invoking this method is only allowed on nodes that mark the end of a valid
+ // sequence (i.e. if IsSequence())
+ BytecodeArgumentMapping ArgumentMapping(size_t index) const;
+ // Returns an iterator to begin of ignored arguments.
+ // Invoking this method is only allowed on nodes that mark the end of a valid
+ // sequence (i.e. if IsSequence())
+ ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredBegin() const;
+ // Returns an iterator to end of ignored arguments.
+ // Invoking this method is only allowed on nodes that mark the end of a valid
+ // sequence (i.e. if IsSequence())
+ ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredEnd() const;
+ // Returns whether the current node has ignored argument or not.
+ bool HasIgnoredArguments() const;
+
+ private:
+ // Returns a node in the sequence specified by its index within the sequence.
+ BytecodeSequenceNode& GetNodeByIndexInSequence(int index_in_sequence);
+ Zone* zone() const;
+
+ int bytecode_;
+ int bytecode_replacement_;
+ int index_in_sequence_;
+ int start_offset_;
+ BytecodeSequenceNode* parent_;
+ ZoneUnorderedMap<int, BytecodeSequenceNode*> children_;
+ ZoneVector<BytecodeArgumentMapping>* argument_mapping_;
+ ZoneLinkedList<BytecodeArgumentCheck>* argument_check_;
+ ZoneLinkedList<BytecodeArgument>* argument_ignored_;
+
+ Zone* zone_;
+};
+
+class RegExpBytecodePeephole {
+ public:
+ RegExpBytecodePeephole(Zone* zone, size_t buffer_size,
+ const ZoneUnorderedMap<int, int>& jump_edges);
+
+ // Parses bytecode and fills the internal buffer with the potentially
+ // optimized bytecode. Returns true when optimizations were performed, false
+ // otherwise.
+ bool OptimizeBytecode(const byte* bytecode, int length);
+ // Copies the internal bytecode buffer to another buffer. The caller is
+ // responsible for allocating/freeing the memory.
+ void CopyOptimizedBytecode(byte* to_address) const;
+ int Length() const;
+
+ private:
+ // Sets up all sequences that are going to be used.
+ void DefineStandardSequences();
+ // Starts a new bytecode sequence.
+ BytecodeSequenceNode& CreateSequence(int bytecode);
+ // Checks for optimization candidates at pc and emits optimized bytecode to
+ // the internal buffer. Returns the length of replaced bytecodes in bytes.
+ int TryOptimizeSequence(const byte* bytecode, int start_pc);
+ // Emits optimized bytecode to the internal buffer. start_pc points to the
+ // start of the sequence in bytecode and last_node is the last
+ // BytecodeSequenceNode of the matching sequence found.
+ void EmitOptimization(int start_pc, const byte* bytecode,
+ const BytecodeSequenceNode& last_node);
+ // Adds a relative jump source fixup at pos.
+ // Jump source fixups are used to find offsets in the new bytecode that
+ // contain jump sources.
+ void AddJumpSourceFixup(int fixup, int pos);
+ // Adds a relative jump destination fixup at pos.
+ // Jump destination fixups are used to find offsets in the new bytecode that
+ // can be jumped to.
+ void AddJumpDestinationFixup(int fixup, int pos);
+ // Sets an absolute jump destination fixup at pos.
+ void SetJumpDestinationFixup(int fixup, int pos);
+ // Prepare internal structures used to fixup jumps.
+ void PrepareJumpStructures(const ZoneUnorderedMap<int, int>& jump_edges);
+ // Updates all jump targets in the new bytecode.
+ void FixJumps();
+ // Update a single jump.
+ void FixJump(int jump_source, int jump_destination);
+ void AddSentinelFixups(int pos);
+ template <typename T>
+ void EmitValue(T value);
+ template <typename T>
+ void OverwriteValue(int offset, T value);
+ void CopyRangeToOutput(const byte* orig_bytecode, int start, int length);
+ void SetRange(byte value, int count);
+ void EmitArgument(int start_pc, const byte* bytecode,
+ BytecodeArgumentMapping arg);
+ int pc() const;
+ Zone* zone() const;
+
+ ZoneVector<byte> optimized_bytecode_buffer_;
+ BytecodeSequenceNode* sequences_;
+ // Jumps used in old bytecode.
+ // Key: Jump source (offset where destination is stored in old bytecode)
+ // Value: Destination
+ ZoneMap<int, int> jump_edges_;
+ // Jumps used in new bytecode.
+ // Key: Jump source (offset where destination is stored in new bytecode)
+ // Value: Destination
+ ZoneMap<int, int> jump_edges_mapped_;
+ // Number of times a jump destination is used within the bytecode.
+ // Key: Jump destination (offset in old bytecode).
+ // Value: Number of times jump destination is used.
+ ZoneMap<int, int> jump_usage_counts_;
+ // Maps offsets in old bytecode to fixups of sources (delta to new bytecode).
+ // Key: Offset in old bytecode from where the fixup is valid.
+ // Value: Delta to map jump source from old bytecode to new bytecode in bytes.
+ ZoneMap<int, int> jump_source_fixups_;
+ // Maps offsets in old bytecode to fixups of destinations (delta to new
+ // bytecode).
+ // Key: Offset in old bytecode from where the fixup is valid.
+ // Value: Delta to map jump destinations from old bytecode to new bytecode in
+ // bytes.
+ ZoneMap<int, int> jump_destination_fixups_;
+
+ Zone* zone_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpBytecodePeephole);
+};
+
+template <typename T>
+T GetValue(const byte* buffer, int pos) {
+ DCHECK(IsAligned(reinterpret_cast<Address>(buffer + pos), alignof(T)));
+ return *reinterpret_cast<const T*>(buffer + pos);
+}
+
+int32_t GetArgumentValue(const byte* bytecode, int offset, int length) {
+ switch (length) {
+ case 1:
+ return GetValue<byte>(bytecode, offset);
+ break;
+ case 2:
+ return GetValue<int16_t>(bytecode, offset);
+ break;
+ case 4:
+ return GetValue<int32_t>(bytecode, offset);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+BytecodeSequenceNode::BytecodeSequenceNode(int bytecode, Zone* zone)
+ : bytecode_(bytecode),
+ bytecode_replacement_(kDummyBytecode),
+ index_in_sequence_(0),
+ start_offset_(0),
+ parent_(nullptr),
+ children_(ZoneUnorderedMap<int, BytecodeSequenceNode*>(zone)),
+ argument_mapping_(new (zone->New(sizeof(*argument_mapping_)))
+ ZoneVector<BytecodeArgumentMapping>(zone)),
+ argument_check_(new (zone->New(sizeof(*argument_check_)))
+ ZoneLinkedList<BytecodeArgumentCheck>(zone)),
+ argument_ignored_(new (zone->New(sizeof(*argument_ignored_)))
+ ZoneLinkedList<BytecodeArgument>(zone)),
+ zone_(zone) {}
+
+BytecodeSequenceNode& BytecodeSequenceNode::FollowedBy(int bytecode) {
+ DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
+
+ if (children_.find(bytecode) == children_.end()) {
+ BytecodeSequenceNode* new_node =
+ new (zone()->New(sizeof(BytecodeSequenceNode)))
+ BytecodeSequenceNode(bytecode, zone());
+ // If node is not the first in the sequence, set offsets and parent.
+ if (bytecode_ != kDummyBytecode) {
+ new_node->start_offset_ = start_offset_ + RegExpBytecodeLength(bytecode_);
+ new_node->index_in_sequence_ = index_in_sequence_ + 1;
+ new_node->parent_ = this;
+ }
+ children_[bytecode] = new_node;
+ }
+
+ return *children_[bytecode];
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::ReplaceWith(int bytecode) {
+ DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
+
+ bytecode_replacement_ = bytecode;
+
+ return *this;
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::MapArgument(
+ int bytecode_index_in_sequence, int argument_offset,
+ int argument_byte_length, int new_argument_byte_length) {
+ DCHECK(IsSequence());
+ DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_);
+
+ BytecodeSequenceNode& ref_node =
+ GetNodeByIndexInSequence(bytecode_index_in_sequence);
+ DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
+
+ int absolute_offset = ref_node.start_offset_ + argument_offset;
+ if (new_argument_byte_length == 0) {
+ new_argument_byte_length = argument_byte_length;
+ }
+
+ argument_mapping_->push_back(BytecodeArgumentMapping{
+ absolute_offset, argument_byte_length, new_argument_byte_length});
+
+ return *this;
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsOffset(
+ int argument_offset, int argument_byte_length, int check_byte_offset) {
+ DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_));
+ DCHECK(argument_byte_length == 1 || argument_byte_length == 2 ||
+ argument_byte_length == 4);
+
+ int absolute_offset = start_offset_ + argument_offset;
+
+ argument_check_->push_back(BytecodeArgumentCheck{
+ absolute_offset, argument_byte_length, check_byte_offset});
+
+ return *this;
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsValueAtOffset(
+ int argument_offset, int argument_byte_length,
+ int other_bytecode_index_in_sequence, int other_argument_offset,
+ int other_argument_byte_length) {
+ DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_));
+ DCHECK_LE(other_bytecode_index_in_sequence, index_in_sequence_);
+ DCHECK_EQ(argument_byte_length, other_argument_byte_length);
+
+ BytecodeSequenceNode& ref_node =
+ GetNodeByIndexInSequence(other_bytecode_index_in_sequence);
+ DCHECK_LT(other_argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
+
+ int absolute_offset = start_offset_ + argument_offset;
+ int other_absolute_offset = ref_node.start_offset_ + other_argument_offset;
+
+ argument_check_->push_back(
+ BytecodeArgumentCheck{absolute_offset, argument_byte_length,
+ other_absolute_offset, other_argument_byte_length});
+
+ return *this;
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::IgnoreArgument(
+ int bytecode_index_in_sequence, int argument_offset,
+ int argument_byte_length) {
+ DCHECK(IsSequence());
+ DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_);
+
+ BytecodeSequenceNode& ref_node =
+ GetNodeByIndexInSequence(bytecode_index_in_sequence);
+ DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
+
+ int absolute_offset = ref_node.start_offset_ + argument_offset;
+
+ argument_ignored_->push_back(
+ BytecodeArgument{absolute_offset, argument_byte_length});
+
+ return *this;
+}
+
+bool BytecodeSequenceNode::CheckArguments(const byte* bytecode, int pc) {
+ bool is_valid = true;
+ for (auto check_iter = argument_check_->begin();
+ check_iter != argument_check_->end() && is_valid; check_iter++) {
+ auto value =
+ GetArgumentValue(bytecode, pc + check_iter->offset, check_iter->length);
+ if (check_iter->type == BytecodeArgumentCheck::kCheckAddress) {
+ is_valid &= value == pc + check_iter->check_offset;
+ } else if (check_iter->type == BytecodeArgumentCheck::kCheckValue) {
+ auto other_value = GetArgumentValue(
+ bytecode, pc + check_iter->check_offset, check_iter->check_length);
+ is_valid &= value == other_value;
+ } else {
+ UNREACHABLE();
+ }
+ }
+ return is_valid;
+}
+
+bool BytecodeSequenceNode::IsSequence() const {
+ return bytecode_replacement_ != kDummyBytecode;
+}
+
+int BytecodeSequenceNode::SequenceLength() const {
+ return start_offset_ + RegExpBytecodeLength(bytecode_);
+}
+
+int BytecodeSequenceNode::OptimizedBytecode() const {
+ return bytecode_replacement_;
+}
+
+BytecodeSequenceNode* BytecodeSequenceNode::Find(int bytecode) const {
+ auto found = children_.find(bytecode);
+ if (found == children_.end()) return nullptr;
+ return found->second;
+}
+
+size_t BytecodeSequenceNode::ArgumentSize() const {
+ DCHECK(IsSequence());
+ return argument_mapping_->size();
+}
+
+BytecodeArgumentMapping BytecodeSequenceNode::ArgumentMapping(
+ size_t index) const {
+ DCHECK(IsSequence());
+ DCHECK(argument_mapping_ != nullptr);
+ DCHECK_GE(index, 0);
+ DCHECK_LT(index, argument_mapping_->size());
+
+ return argument_mapping_->at(index);
+}
+
+ZoneLinkedList<BytecodeArgument>::iterator
+BytecodeSequenceNode::ArgumentIgnoredBegin() const {
+ DCHECK(IsSequence());
+ DCHECK(argument_ignored_ != nullptr);
+ return argument_ignored_->begin();
+}
+
+ZoneLinkedList<BytecodeArgument>::iterator
+BytecodeSequenceNode::ArgumentIgnoredEnd() const {
+ DCHECK(IsSequence());
+ DCHECK(argument_ignored_ != nullptr);
+ return argument_ignored_->end();
+}
+
+bool BytecodeSequenceNode::HasIgnoredArguments() const {
+ return argument_ignored_ != nullptr;
+}
+
+BytecodeSequenceNode& BytecodeSequenceNode::GetNodeByIndexInSequence(
+ int index_in_sequence) {
+ DCHECK_LE(index_in_sequence, index_in_sequence_);
+
+ if (index_in_sequence < index_in_sequence_) {
+ DCHECK(parent_ != nullptr);
+ return parent_->GetNodeByIndexInSequence(index_in_sequence);
+ } else {
+ return *this;
+ }
+}
+
+Zone* BytecodeSequenceNode::zone() const { return zone_; }
+
+RegExpBytecodePeephole::RegExpBytecodePeephole(
+ Zone* zone, size_t buffer_size,
+ const ZoneUnorderedMap<int, int>& jump_edges)
+ : optimized_bytecode_buffer_(zone),
+ sequences_(new (zone->New(sizeof(*sequences_))) BytecodeSequenceNode(
+ BytecodeSequenceNode::kDummyBytecode, zone)),
+ jump_edges_(zone),
+ jump_edges_mapped_(zone),
+ jump_usage_counts_(zone),
+ jump_source_fixups_(zone),
+ jump_destination_fixups_(zone),
+ zone_(zone) {
+ optimized_bytecode_buffer_.reserve(buffer_size);
+ PrepareJumpStructures(jump_edges);
+ DefineStandardSequences();
+ // Sentinel fixups at beginning of bytecode (position -1) so we don't have to
+ // check for end of iterator inside the fixup loop.
+ // In general fixups are deltas of original offsets of jump
+ // sources/destinations (in the old bytecode) to find them in the new
+ // bytecode. All jump targets are fixed after the new bytecode is fully
+ // emitted in the internal buffer.
+ AddSentinelFixups(-1);
+ // Sentinel fixups at end of (old) bytecode so we don't have to check for
+ // end of iterator inside the fixup loop.
+ DCHECK_LE(buffer_size, std::numeric_limits<int>::max());
+ AddSentinelFixups(static_cast<int>(buffer_size));
+}
+
+void RegExpBytecodePeephole::DefineStandardSequences() {
+ // Commonly used sequences can be found by creating regexp bytecode traces
+ // (--trace-regexp-bytecodes) and using v8/tools/regexp-sequences.py.
+ CreateSequence(BC_LOAD_CURRENT_CHAR)
+ .FollowedBy(BC_CHECK_BIT_IN_TABLE)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_BIT_IN_TABLE)
+ .MapArgument(0, 1, 3) // load offset
+ .MapArgument(2, 1, 3, 4) // advance by
+ .MapArgument(1, 8, 16) // bit table
+ .MapArgument(1, 4, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(2, 4, 4); // loop jump
+
+ CreateSequence(BC_CHECK_CURRENT_POSITION)
+ .FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED)
+ .FollowedBy(BC_CHECK_CHAR)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_CHAR_POS_CHECKED)
+ .MapArgument(1, 1, 3) // load offset
+ .MapArgument(3, 1, 3, 2) // advance_by
+ .MapArgument(2, 1, 3, 2) // c
+ .MapArgument(0, 1, 3, 4) // eats at least
+ .MapArgument(2, 4, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(3, 4, 4); // loop jump
+
+ CreateSequence(BC_CHECK_CURRENT_POSITION)
+ .FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED)
+ .FollowedBy(BC_AND_CHECK_CHAR)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_CHAR_AND)
+ .MapArgument(1, 1, 3) // load offset
+ .MapArgument(3, 1, 3, 2) // advance_by
+ .MapArgument(2, 1, 3, 2) // c
+ .MapArgument(2, 4, 4) // mask
+ .MapArgument(0, 1, 3, 4) // eats at least
+ .MapArgument(2, 8, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(3, 4, 4); // loop jump
+
+ // TODO(pthier): It might make sense for short sequences like this one to only
+ // optimize them if the resulting optimization is not longer than the current
+ // one. This could be the case if there are jumps inside the sequence and we
+ // have to replicate parts of the sequence. A method to mark such sequences
+ // might be useful.
+ CreateSequence(BC_LOAD_CURRENT_CHAR)
+ .FollowedBy(BC_CHECK_CHAR)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_CHAR)
+ .MapArgument(0, 1, 3) // load offset
+ .MapArgument(2, 1, 3, 2) // advance by
+ .MapArgument(1, 1, 3, 2) // character
+ .MapArgument(1, 4, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(2, 4, 4); // loop jump
+
+ CreateSequence(BC_LOAD_CURRENT_CHAR)
+ .FollowedBy(BC_CHECK_CHAR)
+ .FollowedBy(BC_CHECK_CHAR)
+ // Sequence is only valid if the jump targets of both CHECK_CHAR bytecodes
+ // are equal.
+ .IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_CHAR_OR_CHAR)
+ .MapArgument(0, 1, 3) // load offset
+ .MapArgument(3, 1, 3, 4) // advance by
+ .MapArgument(1, 1, 3, 2) // character 1
+ .MapArgument(2, 1, 3, 2) // character 2
+ .MapArgument(1, 4, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(2, 4, 4) // goto when match 2
+ .IgnoreArgument(3, 4, 4); // loop jump
+
+ CreateSequence(BC_LOAD_CURRENT_CHAR)
+ .FollowedBy(BC_CHECK_GT)
+ // Sequence is only valid if the jump target of CHECK_GT is the first
+ // bytecode AFTER the whole sequence.
+ .IfArgumentEqualsOffset(4, 4, 56)
+ .FollowedBy(BC_CHECK_BIT_IN_TABLE)
+ // Sequence is only valid if the jump target of CHECK_BIT_IN_TABLE is
+ // the ADVANCE_CP_AND_GOTO bytecode at the end of the sequence.
+ .IfArgumentEqualsOffset(4, 4, 48)
+ .FollowedBy(BC_GOTO)
+ // Sequence is only valid if the jump target of GOTO is the same as the
+ // jump target of CHECK_GT (i.e. both jump to the first bytecode AFTER the
+ // whole sequence.
+ .IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4)
+ .FollowedBy(BC_ADVANCE_CP_AND_GOTO)
+ // Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
+ // first bytecode in this sequence.
+ .IfArgumentEqualsOffset(4, 4, 0)
+ .ReplaceWith(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE)
+ .MapArgument(0, 1, 3) // load offset
+ .MapArgument(4, 1, 3, 2) // advance by
+ .MapArgument(1, 1, 3, 2) // character
+ .MapArgument(2, 8, 16) // bit table
+ .MapArgument(1, 4, 4) // goto when match
+ .MapArgument(0, 4, 4) // goto on failure
+ .IgnoreArgument(2, 4, 4) // indirect loop jump
+ .IgnoreArgument(3, 4, 4) // jump out of loop
+ .IgnoreArgument(4, 4, 4); // loop jump
+}
+
+bool RegExpBytecodePeephole::OptimizeBytecode(const byte* bytecode,
+ int length) {
+ int old_pc = 0;
+ bool did_optimize = false;
+
+ while (old_pc < length) {
+ int replaced_len = TryOptimizeSequence(bytecode, old_pc);
+ if (replaced_len > 0) {
+ old_pc += replaced_len;
+ did_optimize = true;
+ } else {
+ int bc = bytecode[old_pc];
+ int bc_len = RegExpBytecodeLength(bc);
+ CopyRangeToOutput(bytecode, old_pc, bc_len);
+ old_pc += bc_len;
+ }
+ }
+
+ if (did_optimize) {
+ FixJumps();
+ }
+
+ return did_optimize;
+}
+
+void RegExpBytecodePeephole::CopyOptimizedBytecode(byte* to_address) const {
+ MemCopy(to_address, &(*optimized_bytecode_buffer_.begin()), Length());
+}
+
+int RegExpBytecodePeephole::Length() const { return pc(); }
+
+BytecodeSequenceNode& RegExpBytecodePeephole::CreateSequence(int bytecode) {
+ DCHECK(sequences_ != nullptr);
+ DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
+
+ return sequences_->FollowedBy(bytecode);
+}
+
+int RegExpBytecodePeephole::TryOptimizeSequence(const byte* bytecode,
+ int start_pc) {
+ BytecodeSequenceNode* seq_node = sequences_;
+ BytecodeSequenceNode* valid_seq_end = nullptr;
+
+ int current_pc = start_pc;
+
+ // Check for the longest valid sequence matching any of the pre-defined
+ // sequences in the Trie data structure.
+ while ((seq_node = seq_node->Find(bytecode[current_pc]))) {
+ if (!seq_node->CheckArguments(bytecode, start_pc)) {
+ break;
+ }
+ if (seq_node->IsSequence()) {
+ valid_seq_end = seq_node;
+ }
+ current_pc += RegExpBytecodeLength(bytecode[current_pc]);
+ }
+
+ if (valid_seq_end) {
+ EmitOptimization(start_pc, bytecode, *valid_seq_end);
+ return valid_seq_end->SequenceLength();
+ }
+
+ return 0;
+}
+
+void RegExpBytecodePeephole::EmitOptimization(
+ int start_pc, const byte* bytecode, const BytecodeSequenceNode& last_node) {
+#ifdef DEBUG
+ int optimized_start_pc = pc();
+#endif
+ // Jump sources that are mapped or marked as unused will be deleted at the end
+ // of this method. We don't delete them immediately as we might need the
+ // information when we have to preserve bytecodes at the end.
+ // TODO(pthier): Replace with a stack-allocated data structure.
+ ZoneLinkedList<int> delete_jumps = ZoneLinkedList<int>(zone());
+
+ uint32_t bc = last_node.OptimizedBytecode();
+ EmitValue(bc);
+
+ for (size_t arg = 0; arg < last_node.ArgumentSize(); arg++) {
+ BytecodeArgumentMapping arg_map = last_node.ArgumentMapping(arg);
+ int arg_pos = start_pc + arg_map.offset;
+ // If we map any jump source we mark the old source for deletion and insert
+ // a new jump.
+ auto jump_edge_iter = jump_edges_.find(arg_pos);
+ if (jump_edge_iter != jump_edges_.end()) {
+ int jump_source = jump_edge_iter->first;
+ int jump_destination = jump_edge_iter->second;
+ // Add new jump edge add current position.
+ jump_edges_mapped_.emplace(Length(), jump_destination);
+ // Mark old jump edge for deletion.
+ delete_jumps.push_back(jump_source);
+ // Decrement usage count of jump destination.
+ auto jump_count_iter = jump_usage_counts_.find(jump_destination);
+ DCHECK(jump_count_iter != jump_usage_counts_.end());
+ int& usage_count = jump_count_iter->second;
+ --usage_count;
+ }
+ // TODO(pthier): DCHECK that mapped arguments are never sources of jumps
+ // to destinations inside the sequence.
+ EmitArgument(start_pc, bytecode, arg_map);
+ }
+ DCHECK_EQ(pc(), optimized_start_pc +
+ RegExpBytecodeLength(last_node.OptimizedBytecode()));
+
+ // Remove jumps from arguments we ignore.
+ if (last_node.HasIgnoredArguments()) {
+ for (auto ignored_arg = last_node.ArgumentIgnoredBegin();
+ ignored_arg != last_node.ArgumentIgnoredEnd(); ignored_arg++) {
+ auto jump_edge_iter = jump_edges_.find(start_pc + ignored_arg->offset);
+ if (jump_edge_iter != jump_edges_.end()) {
+ int jump_source = jump_edge_iter->first;
+ int jump_destination = jump_edge_iter->second;
+ // Mark old jump edge for deletion.
+ delete_jumps.push_back(jump_source);
+ // Decrement usage count of jump destination.
+ auto jump_count_iter = jump_usage_counts_.find(jump_destination);
+ DCHECK(jump_count_iter != jump_usage_counts_.end());
+ int& usage_count = jump_count_iter->second;
+ --usage_count;
+ }
+ }
+ }
+
+ int fixup_length = RegExpBytecodeLength(bc) - last_node.SequenceLength();
+
+ // Check if there are any jumps inside the old sequence.
+ // If so we have to keep the bytecodes that are jumped to around.
+ auto jump_destination_candidate = jump_usage_counts_.upper_bound(start_pc);
+ int jump_candidate_destination = jump_destination_candidate->first;
+ int jump_candidate_count = jump_destination_candidate->second;
+ // Jump destinations only jumped to from inside the sequence will be ignored.
+ while (jump_destination_candidate != jump_usage_counts_.end() &&
+ jump_candidate_count == 0) {
+ ++jump_destination_candidate;
+ jump_candidate_destination = jump_destination_candidate->first;
+ jump_candidate_count = jump_destination_candidate->second;
+ }
+
+ int preserve_from = start_pc + last_node.SequenceLength();
+ if (jump_destination_candidate != jump_usage_counts_.end() &&
+ jump_candidate_destination < start_pc + last_node.SequenceLength()) {
+ preserve_from = jump_candidate_destination;
+ // Check if any jump in the sequence we are preserving has a jump
+ // destination inside the optimized sequence before the current position we
+ // want to preserve. If so we have to preserve all bytecodes starting at
+ // this jump destination.
+ for (auto jump_iter = jump_edges_.lower_bound(preserve_from);
+ jump_iter != jump_edges_.end() &&
+ jump_iter->first /* jump source */ <
+ start_pc + last_node.SequenceLength();
+ ++jump_iter) {
+ int jump_destination = jump_iter->second;
+ if (jump_destination > start_pc && jump_destination < preserve_from) {
+ preserve_from = jump_destination;
+ }
+ }
+
+ // We preserve everything to the end of the sequence. This is conservative
+ // since it would be enough to preserve all bytecudes up to an unconditional
+ // jump.
+ int preserve_length = start_pc + last_node.SequenceLength() - preserve_from;
+ fixup_length += preserve_length;
+ // Jumps after the start of the preserved sequence need fixup.
+ AddJumpSourceFixup(fixup_length,
+ start_pc + last_node.SequenceLength() - preserve_length);
+ // All jump targets after the start of the optimized sequence need to be
+ // fixed relative to the length of the optimized sequence including
+ // bytecodes we preserved.
+ AddJumpDestinationFixup(fixup_length, start_pc + 1);
+ // Jumps to the sequence we preserved need absolute fixup as they could
+ // occur before or after the sequence.
+ SetJumpDestinationFixup(pc() - preserve_from, preserve_from);
+ CopyRangeToOutput(bytecode, preserve_from, preserve_length);
+ } else {
+ AddJumpDestinationFixup(fixup_length, start_pc + 1);
+ // Jumps after the end of the old sequence need fixup.
+ AddJumpSourceFixup(fixup_length, start_pc + last_node.SequenceLength());
+ }
+
+ // Delete jumps we definitely don't need anymore
+ for (int del : delete_jumps) {
+ if (del < preserve_from) {
+ jump_edges_.erase(del);
+ }
+ }
+}
+
+void RegExpBytecodePeephole::AddJumpSourceFixup(int fixup, int pos) {
+ auto previous_fixup = jump_source_fixups_.lower_bound(pos);
+ DCHECK(previous_fixup != jump_source_fixups_.end());
+ DCHECK(previous_fixup != jump_source_fixups_.begin());
+
+ int previous_fixup_value = (--previous_fixup)->second;
+ jump_source_fixups_[pos] = previous_fixup_value + fixup;
+}
+
+void RegExpBytecodePeephole::AddJumpDestinationFixup(int fixup, int pos) {
+ auto previous_fixup = jump_destination_fixups_.lower_bound(pos);
+ DCHECK(previous_fixup != jump_destination_fixups_.end());
+ DCHECK(previous_fixup != jump_destination_fixups_.begin());
+
+ int previous_fixup_value = (--previous_fixup)->second;
+ jump_destination_fixups_[pos] = previous_fixup_value + fixup;
+}
+
+void RegExpBytecodePeephole::SetJumpDestinationFixup(int fixup, int pos) {
+ auto previous_fixup = jump_destination_fixups_.lower_bound(pos);
+ DCHECK(previous_fixup != jump_destination_fixups_.end());
+ DCHECK(previous_fixup != jump_destination_fixups_.begin());
+
+ int previous_fixup_value = (--previous_fixup)->second;
+ jump_destination_fixups_.emplace(pos, fixup);
+ jump_destination_fixups_.emplace(pos + 1, previous_fixup_value);
+}
+
+void RegExpBytecodePeephole::PrepareJumpStructures(
+ const ZoneUnorderedMap<int, int>& jump_edges) {
+ for (auto jump_edge : jump_edges) {
+ int jump_source = jump_edge.first;
+ int jump_destination = jump_edge.second;
+
+ jump_edges_.emplace(jump_source, jump_destination);
+ jump_usage_counts_[jump_destination]++;
+ }
+}
+
+void RegExpBytecodePeephole::FixJumps() {
+ int position_fixup = 0;
+ // Next position where fixup changes.
+ auto next_source_fixup = jump_source_fixups_.lower_bound(0);
+ int next_source_fixup_offset = next_source_fixup->first;
+ int next_source_fixup_value = next_source_fixup->second;
+
+ for (auto jump_edge : jump_edges_) {
+ int jump_source = jump_edge.first;
+ int jump_destination = jump_edge.second;
+ while (jump_source >= next_source_fixup_offset) {
+ position_fixup = next_source_fixup_value;
+ ++next_source_fixup;
+ next_source_fixup_offset = next_source_fixup->first;
+ next_source_fixup_value = next_source_fixup->second;
+ }
+ jump_source += position_fixup;
+
+ FixJump(jump_source, jump_destination);
+ }
+
+ // Mapped jump edges don't need source fixups, as the position already is an
+ // offset in the new bytecode.
+ for (auto jump_edge : jump_edges_mapped_) {
+ int jump_source = jump_edge.first;
+ int jump_destination = jump_edge.second;
+
+ FixJump(jump_source, jump_destination);
+ }
+}
+
+void RegExpBytecodePeephole::FixJump(int jump_source, int jump_destination) {
+ int fixed_jump_destination =
+ jump_destination +
+ (--jump_destination_fixups_.upper_bound(jump_destination))->second;
+ DCHECK_LT(fixed_jump_destination, Length());
+#ifdef DEBUG
+ // TODO(pthier): This check could be better if we track the bytecodes
+ // actually used and check if we jump to one of them.
+ byte jump_bc = optimized_bytecode_buffer_[fixed_jump_destination];
+ DCHECK_GT(jump_bc, 0);
+ DCHECK_LT(jump_bc, kRegExpBytecodeCount);
+#endif
+
+ if (jump_destination != fixed_jump_destination) {
+ OverwriteValue<uint32_t>(jump_source, fixed_jump_destination);
+ }
+}
+
+void RegExpBytecodePeephole::AddSentinelFixups(int pos) {
+ jump_source_fixups_.emplace(pos, 0);
+ jump_destination_fixups_.emplace(pos, 0);
+}
+
+template <typename T>
+void RegExpBytecodePeephole::EmitValue(T value) {
+ DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
+ optimized_bytecode_buffer_.end());
+ byte* value_byte_iter = reinterpret_cast<byte*>(&value);
+ optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(),
+ value_byte_iter,
+ value_byte_iter + sizeof(T));
+}
+
+template <typename T>
+void RegExpBytecodePeephole::OverwriteValue(int offset, T value) {
+ byte* value_byte_iter = reinterpret_cast<byte*>(&value);
+ byte* value_byte_iter_end = value_byte_iter + sizeof(T);
+ while (value_byte_iter < value_byte_iter_end) {
+ optimized_bytecode_buffer_[offset++] = *value_byte_iter++;
+ }
+}
+
+void RegExpBytecodePeephole::CopyRangeToOutput(const byte* orig_bytecode,
+ int start, int length) {
+ DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
+ optimized_bytecode_buffer_.end());
+ optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(),
+ orig_bytecode + start,
+ orig_bytecode + start + length);
+}
+
+void RegExpBytecodePeephole::SetRange(byte value, int count) {
+ DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
+ optimized_bytecode_buffer_.end());
+ optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(), count,
+ value);
+}
+
+void RegExpBytecodePeephole::EmitArgument(int start_pc, const byte* bytecode,
+ BytecodeArgumentMapping arg) {
+ int arg_pos = start_pc + arg.offset;
+ switch (arg.length) {
+ case 1:
+ DCHECK_EQ(arg.new_length, arg.length);
+ EmitValue(GetValue<byte>(bytecode, arg_pos));
+ break;
+ case 2:
+ DCHECK_EQ(arg.new_length, arg.length);
+ EmitValue(GetValue<uint16_t>(bytecode, arg_pos));
+ break;
+ case 3: {
+ // Length 3 only occurs in 'packed' arguments where the lowermost byte is
+ // the current bytecode, and the remaining 3 bytes are the packed value.
+ //
+ // We load 4 bytes from position - 1 and shift out the bytecode.
+#ifdef V8_TARGET_BIG_ENDIAN
+ UNIMPLEMENTED();
+ int32_t val = 0;
+#else
+ int32_t val = GetValue<int32_t>(bytecode, arg_pos - 1) >> kBitsPerByte;
+#endif // V8_TARGET_BIG_ENDIAN
+
+ switch (arg.new_length) {
+ case 2:
+ EmitValue<uint16_t>(val);
+ break;
+ case 3: {
+ // Pack with previously emitted value.
+ auto prev_val =
+ GetValue<int32_t>(&(*optimized_bytecode_buffer_.begin()),
+ Length() - sizeof(uint32_t));
+#ifdef V8_TARGET_BIG_ENDIAN
+ UNIMPLEMENTED();
+ USE(prev_val);
+#else
+ DCHECK_EQ(prev_val & 0xFFFFFF00, 0);
+ OverwriteValue<uint32_t>(
+ pc() - sizeof(uint32_t),
+ (static_cast<uint32_t>(val) << 8) | (prev_val & 0xFF));
+#endif // V8_TARGET_BIG_ENDIAN
+ break;
+ }
+ case 4:
+ EmitValue<uint32_t>(val);
+ break;
+ }
+ break;
+ }
+ case 4:
+ DCHECK_EQ(arg.new_length, arg.length);
+ EmitValue(GetValue<uint32_t>(bytecode, arg_pos));
+ break;
+ case 8:
+ DCHECK_EQ(arg.new_length, arg.length);
+ EmitValue(GetValue<uint64_t>(bytecode, arg_pos));
+ break;
+ default:
+ CopyRangeToOutput(bytecode, arg_pos, Min(arg.length, arg.new_length));
+ if (arg.length < arg.new_length) {
+ SetRange(0x00, arg.new_length - arg.length);
+ }
+ break;
+ }
+}
+
+int RegExpBytecodePeephole::pc() const {
+ DCHECK_LE(optimized_bytecode_buffer_.size(), std::numeric_limits<int>::max());
+ return static_cast<int>(optimized_bytecode_buffer_.size());
+}
+
+Zone* RegExpBytecodePeephole::zone() const { return zone_; }
+
+} // namespace
+
+// static
+Handle<ByteArray> RegExpBytecodePeepholeOptimization::OptimizeBytecode(
+ Isolate* isolate, Zone* zone, Handle<String> source, const byte* bytecode,
+ int length, const ZoneUnorderedMap<int, int>& jump_edges) {
+ RegExpBytecodePeephole peephole(zone, length, jump_edges);
+ bool did_optimize = peephole.OptimizeBytecode(bytecode, length);
+ Handle<ByteArray> array = isolate->factory()->NewByteArray(peephole.Length());
+ peephole.CopyOptimizedBytecode(array->GetDataStartAddress());
+
+ if (did_optimize && FLAG_trace_regexp_peephole_optimization) {
+ PrintF("Original Bytecode:\n");
+ RegExpBytecodeDisassemble(bytecode, length, source->ToCString().get());
+ PrintF("Optimized Bytecode:\n");
+ RegExpBytecodeDisassemble(array->GetDataStartAddress(), peephole.Length(),
+ source->ToCString().get());
+ }
+
+ return array;
+}
+
+} // namespace internal
+} // namespace v8