summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/Simulator-vixl.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm64/vixl/Simulator-vixl.h')
-rw-r--r--js/src/jit/arm64/vixl/Simulator-vixl.h2677
1 files changed, 2677 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Simulator-vixl.h b/js/src/jit/arm64/vixl/Simulator-vixl.h
new file mode 100644
index 000000000..8755ad671
--- /dev/null
+++ b/js/src/jit/arm64/vixl/Simulator-vixl.h
@@ -0,0 +1,2677 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_SIMULATOR_A64_H_
+#define VIXL_A64_SIMULATOR_A64_H_
+
+#include "js-config.h"
+
+#ifdef JS_SIMULATOR_ARM64
+
+#include "mozilla/Vector.h"
+
+#include "jsalloc.h"
+
+#include "jit/arm64/vixl/Assembler-vixl.h"
+#include "jit/arm64/vixl/Disasm-vixl.h"
+#include "jit/arm64/vixl/Globals-vixl.h"
+#include "jit/arm64/vixl/Instructions-vixl.h"
+#include "jit/arm64/vixl/Instrument-vixl.h"
+#include "jit/arm64/vixl/Simulator-Constants-vixl.h"
+#include "jit/arm64/vixl/Utils-vixl.h"
+#include "jit/IonTypes.h"
+#include "vm/MutexIDs.h"
+#include "vm/PosixNSPR.h"
+
+#define JS_CHECK_SIMULATOR_RECURSION_WITH_EXTRA(cx, extra, onerror) \
+ JS_BEGIN_MACRO \
+ if (cx->mainThread().simulator()->overRecursedWithExtra(extra)) { \
+ js::ReportOverRecursed(cx); \
+ onerror; \
+ } \
+ JS_END_MACRO
+
+namespace vixl {
+
+// Assemble the specified IEEE-754 components into the target type and apply
+// appropriate rounding.
+// sign: 0 = positive, 1 = negative
+// exponent: Unbiased IEEE-754 exponent.
+// mantissa: The mantissa of the input. The top bit (which is not encoded for
+// normal IEEE-754 values) must not be omitted. This bit has the
+// value 'pow(2, exponent)'.
+//
+// The input value is assumed to be a normalized value. That is, the input may
+// not be infinity or NaN. If the source value is subnormal, it must be
+// normalized before calling this function such that the highest set bit in the
+// mantissa has the value 'pow(2, exponent)'.
+//
+// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
+// calling a templated FPRound.
+template <class T, int ebits, int mbits>
+T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
+ FPRounding round_mode) {
+ VIXL_ASSERT((sign == 0) || (sign == 1));
+
+ // Only FPTieEven and FPRoundOdd rounding modes are implemented.
+ VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
+
+ // Rounding can promote subnormals to normals, and normals to infinities. For
+ // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
+ // encodable as a float, but rounding based on the low-order mantissa bits
+ // could make it overflow. With ties-to-even rounding, this value would become
+ // an infinity.
+
+ // ---- Rounding Method ----
+ //
+ // The exponent is irrelevant in the rounding operation, so we treat the
+ // lowest-order bit that will fit into the result ('onebit') as having
+ // the value '1'. Similarly, the highest-order bit that won't fit into
+ // the result ('halfbit') has the value '0.5'. The 'point' sits between
+ // 'onebit' and 'halfbit':
+ //
+ // These bits fit into the result.
+ // |---------------------|
+ // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // ||
+ // / |
+ // / halfbit
+ // onebit
+ //
+ // For subnormal outputs, the range of representable bits is smaller and
+ // the position of onebit and halfbit depends on the exponent of the
+ // input, but the method is otherwise similar.
+ //
+ // onebit(frac)
+ // |
+ // | halfbit(frac) halfbit(adjusted)
+ // | / /
+ // | | |
+ // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
+ // 0b00.0... -> 0b00.0... -> 0b00
+ // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
+ // 0b00.1... -> 0b00.1... -> 0b01
+ // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
+ // 0b01.0... -> 0b01.0... -> 0b01
+ // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
+ // 0b01.1... -> 0b01.1... -> 0b10
+ // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
+ // 0b10.0... -> 0b10.0... -> 0b10
+ // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
+ // 0b10.1... -> 0b10.1... -> 0b11
+ // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
+ // ... / | / |
+ // / | / |
+ // / |
+ // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
+ //
+ // mantissa = (mantissa >> shift) + halfbit(adjusted);
+
+ static const int mantissa_offset = 0;
+ static const int exponent_offset = mantissa_offset + mbits;
+ static const int sign_offset = exponent_offset + ebits;
+ VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));
+
+ // Bail out early for zero inputs.
+ if (mantissa == 0) {
+ return static_cast<T>(sign << sign_offset);
+ }
+
+ // If all bits in the exponent are set, the value is infinite or NaN.
+ // This is true for all binary IEEE-754 formats.
+ static const int infinite_exponent = (1 << ebits) - 1;
+ static const int max_normal_exponent = infinite_exponent - 1;
+
+ // Apply the exponent bias to encode it for the result. Doing this early makes
+ // it easy to detect values that will be infinite or subnormal.
+ exponent += max_normal_exponent >> 1;
+
+ if (exponent > max_normal_exponent) {
+ // Overflow: the input is too large for the result type to represent.
+ if (round_mode == FPTieEven) {
+ // FPTieEven rounding mode handles overflows using infinities.
+ exponent = infinite_exponent;
+ mantissa = 0;
+ } else {
+ VIXL_ASSERT(round_mode == FPRoundOdd);
+ // FPRoundOdd rounding mode handles overflows using the largest magnitude
+ // normal number.
+ exponent = max_normal_exponent;
+ mantissa = (UINT64_C(1) << exponent_offset) - 1;
+ }
+ return static_cast<T>((sign << sign_offset) |
+ (exponent << exponent_offset) |
+ (mantissa << mantissa_offset));
+ }
+
+ // Calculate the shift required to move the top mantissa bit to the proper
+ // place in the destination type.
+ const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
+ int shift = highest_significant_bit - mbits;
+
+ if (exponent <= 0) {
+ // The output will be subnormal (before rounding).
+ // For subnormal outputs, the shift must be adjusted by the exponent. The +1
+ // is necessary because the exponent of a subnormal value (encoded as 0) is
+ // the same as the exponent of the smallest normal value (encoded as 1).
+ shift += -exponent + 1;
+
+ // Handle inputs that would produce a zero output.
+ //
+ // Shifts higher than highest_significant_bit+1 will always produce a zero
+ // result. A shift of exactly highest_significant_bit+1 might produce a
+ // non-zero result after rounding.
+ if (shift > (highest_significant_bit + 1)) {
+ if (round_mode == FPTieEven) {
+ // The result will always be +/-0.0.
+ return static_cast<T>(sign << sign_offset);
+ } else {
+ VIXL_ASSERT(round_mode == FPRoundOdd);
+ VIXL_ASSERT(mantissa != 0);
+ // For FPRoundOdd, if the mantissa is too small to represent and
+ // non-zero return the next "odd" value.
+ return static_cast<T>((sign << sign_offset) | 1);
+ }
+ }
+
+ // Properly encode the exponent for a subnormal output.
+ exponent = 0;
+ } else {
+ // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
+ // normal values.
+ mantissa &= ~(UINT64_C(1) << highest_significant_bit);
+ }
+
+ if (shift > 0) {
+ if (round_mode == FPTieEven) {
+ // We have to shift the mantissa to the right. Some precision is lost, so
+ // we need to apply rounding.
+ uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
+ uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
+ uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
+ uint64_t adjusted = mantissa - adjustment;
+ T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
+
+ T result = static_cast<T>((sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa >> shift) << mantissa_offset));
+
+ // A very large mantissa can overflow during rounding. If this happens,
+ // the exponent should be incremented and the mantissa set to 1.0
+ // (encoded as 0). Applying halfbit_adjusted after assembling the float
+ // has the nice side-effect that this case is handled for free.
+ //
+ // This also handles cases where a very large finite value overflows to
+ // infinity, or where a very large subnormal value overflows to become
+ // normal.
+ return result + halfbit_adjusted;
+ } else {
+ VIXL_ASSERT(round_mode == FPRoundOdd);
+ // If any bits at position halfbit or below are set, onebit (ie. the
+ // bottom bit of the resulting mantissa) must be set.
+ uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
+ if (fractional_bits != 0) {
+ mantissa |= UINT64_C(1) << shift;
+ }
+
+ return static_cast<T>((sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa >> shift) << mantissa_offset));
+ }
+ } else {
+ // We have to shift the mantissa to the left (or not at all). The input
+ // mantissa is exactly representable in the output mantissa, so apply no
+ // rounding correction.
+ return static_cast<T>((sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa << -shift) << mantissa_offset));
+ }
+}
+
+
+// Representation of memory, with typed getters and setters for access.
+class Memory {
+ public:
+ template <typename T>
+ static T AddressUntag(T address) {
+ // Cast the address using a C-style cast. A reinterpret_cast would be
+ // appropriate, but it can't cast one integral type to another.
+ uint64_t bits = (uint64_t)address;
+ return (T)(bits & ~kAddressTagMask);
+ }
+
+ template <typename T, typename A>
+ static T Read(A address) {
+ T value;
+ address = AddressUntag(address);
+ VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
+ (sizeof(value) == 4) || (sizeof(value) == 8) ||
+ (sizeof(value) == 16));
+ memcpy(&value, reinterpret_cast<const char *>(address), sizeof(value));
+ return value;
+ }
+
+ template <typename T, typename A>
+ static void Write(A address, T value) {
+ address = AddressUntag(address);
+ VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
+ (sizeof(value) == 4) || (sizeof(value) == 8) ||
+ (sizeof(value) == 16));
+ memcpy(reinterpret_cast<char *>(address), &value, sizeof(value));
+ }
+};
+
+// Represent a register (r0-r31, v0-v31).
+template<int kSizeInBytes>
+class SimRegisterBase {
+ public:
+ SimRegisterBase() : written_since_last_log_(false) {}
+
+ // Write the specified value. The value is zero-extended if necessary.
+ template<typename T>
+ void Set(T new_value) {
+ VIXL_STATIC_ASSERT(sizeof(new_value) <= kSizeInBytes);
+ if (sizeof(new_value) < kSizeInBytes) {
+ // All AArch64 registers are zero-extending.
+ memset(value_ + sizeof(new_value), 0, kSizeInBytes - sizeof(new_value));
+ }
+ memcpy(value_, &new_value, sizeof(new_value));
+ NotifyRegisterWrite();
+ }
+
+ // Insert a typed value into a register, leaving the rest of the register
+ // unchanged. The lane parameter indicates where in the register the value
+ // should be inserted, in the range [ 0, sizeof(value_) / sizeof(T) ), where
+ // 0 represents the least significant bits.
+ template<typename T>
+ void Insert(int lane, T new_value) {
+ VIXL_ASSERT(lane >= 0);
+ VIXL_ASSERT((sizeof(new_value) +
+ (lane * sizeof(new_value))) <= kSizeInBytes);
+ memcpy(&value_[lane * sizeof(new_value)], &new_value, sizeof(new_value));
+ NotifyRegisterWrite();
+ }
+
+ // Read the value as the specified type. The value is truncated if necessary.
+ template<typename T>
+ T Get(int lane = 0) const {
+ T result;
+ VIXL_ASSERT(lane >= 0);
+ VIXL_ASSERT((sizeof(result) + (lane * sizeof(result))) <= kSizeInBytes);
+ memcpy(&result, &value_[lane * sizeof(result)], sizeof(result));
+ return result;
+ }
+
+ // TODO: Make this return a map of updated bytes, so that we can highlight
+ // updated lanes for load-and-insert. (That never happens for scalar code, but
+ // NEON has some instructions that can update individual lanes.)
+ bool WrittenSinceLastLog() const {
+ return written_since_last_log_;
+ }
+
+ void NotifyRegisterLogged() {
+ written_since_last_log_ = false;
+ }
+
+ protected:
+ uint8_t value_[kSizeInBytes];
+
+ // Helpers to aid with register tracing.
+ bool written_since_last_log_;
+
+ void NotifyRegisterWrite() {
+ written_since_last_log_ = true;
+ }
+};
+typedef SimRegisterBase<kXRegSizeInBytes> SimRegister; // r0-r31
+typedef SimRegisterBase<kQRegSizeInBytes> SimVRegister; // v0-v31
+
+// Representation of a vector register, with typed getters and setters for lanes
+// and additional information to represent lane state.
+class LogicVRegister {
+ public:
+ inline LogicVRegister(SimVRegister& other) // NOLINT
+ : register_(other) {
+ for (unsigned i = 0; i < sizeof(saturated_) / sizeof(saturated_[0]); i++) {
+ saturated_[i] = kNotSaturated;
+ }
+ for (unsigned i = 0; i < sizeof(round_) / sizeof(round_[0]); i++) {
+ round_[i] = 0;
+ }
+ }
+
+ int64_t Int(VectorFormat vform, int index) const {
+ int64_t element;
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: element = register_.Get<int8_t>(index); break;
+ case 16: element = register_.Get<int16_t>(index); break;
+ case 32: element = register_.Get<int32_t>(index); break;
+ case 64: element = register_.Get<int64_t>(index); break;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+ return element;
+ }
+
+ uint64_t Uint(VectorFormat vform, int index) const {
+ uint64_t element;
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: element = register_.Get<uint8_t>(index); break;
+ case 16: element = register_.Get<uint16_t>(index); break;
+ case 32: element = register_.Get<uint32_t>(index); break;
+ case 64: element = register_.Get<uint64_t>(index); break;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+ return element;
+ }
+
+ int64_t IntLeftJustified(VectorFormat vform, int index) const {
+ return Int(vform, index) << (64 - LaneSizeInBitsFromFormat(vform));
+ }
+
+ uint64_t UintLeftJustified(VectorFormat vform, int index) const {
+ return Uint(vform, index) << (64 - LaneSizeInBitsFromFormat(vform));
+ }
+
+ void SetInt(VectorFormat vform, int index, int64_t value) const {
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: register_.Insert(index, static_cast<int8_t>(value)); break;
+ case 16: register_.Insert(index, static_cast<int16_t>(value)); break;
+ case 32: register_.Insert(index, static_cast<int32_t>(value)); break;
+ case 64: register_.Insert(index, static_cast<int64_t>(value)); break;
+ default: VIXL_UNREACHABLE(); return;
+ }
+ }
+
+ void SetUint(VectorFormat vform, int index, uint64_t value) const {
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: register_.Insert(index, static_cast<uint8_t>(value)); break;
+ case 16: register_.Insert(index, static_cast<uint16_t>(value)); break;
+ case 32: register_.Insert(index, static_cast<uint32_t>(value)); break;
+ case 64: register_.Insert(index, static_cast<uint64_t>(value)); break;
+ default: VIXL_UNREACHABLE(); return;
+ }
+ }
+
+ void ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const {
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: register_.Insert(index, Memory::Read<uint8_t>(addr)); break;
+ case 16: register_.Insert(index, Memory::Read<uint16_t>(addr)); break;
+ case 32: register_.Insert(index, Memory::Read<uint32_t>(addr)); break;
+ case 64: register_.Insert(index, Memory::Read<uint64_t>(addr)); break;
+ default: VIXL_UNREACHABLE(); return;
+ }
+ }
+
+ void WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const {
+ uint64_t value = Uint(vform, index);
+ switch (LaneSizeInBitsFromFormat(vform)) {
+ case 8: Memory::Write(addr, static_cast<uint8_t>(value)); break;
+ case 16: Memory::Write(addr, static_cast<uint16_t>(value)); break;
+ case 32: Memory::Write(addr, static_cast<uint32_t>(value)); break;
+ case 64: Memory::Write(addr, value); break;
+ }
+ }
+
+ template <typename T>
+ T Float(int index) const {
+ return register_.Get<T>(index);
+ }
+
+ template <typename T>
+ void SetFloat(int index, T value) const {
+ register_.Insert(index, value);
+ }
+
+ // When setting a result in a register of size less than Q, the top bits of
+ // the Q register must be cleared.
+ void ClearForWrite(VectorFormat vform) const {
+ unsigned size = RegisterSizeInBytesFromFormat(vform);
+ for (unsigned i = size; i < kQRegSizeInBytes; i++) {
+ SetUint(kFormat16B, i, 0);
+ }
+ }
+
+ // Saturation state for each lane of a vector.
+ enum Saturation {
+ kNotSaturated = 0,
+ kSignedSatPositive = 1 << 0,
+ kSignedSatNegative = 1 << 1,
+ kSignedSatMask = kSignedSatPositive | kSignedSatNegative,
+ kSignedSatUndefined = kSignedSatMask,
+ kUnsignedSatPositive = 1 << 2,
+ kUnsignedSatNegative = 1 << 3,
+ kUnsignedSatMask = kUnsignedSatPositive | kUnsignedSatNegative,
+ kUnsignedSatUndefined = kUnsignedSatMask
+ };
+
+ // Getters for saturation state.
+ Saturation GetSignedSaturation(int index) {
+ return static_cast<Saturation>(saturated_[index] & kSignedSatMask);
+ }
+
+ Saturation GetUnsignedSaturation(int index) {
+ return static_cast<Saturation>(saturated_[index] & kUnsignedSatMask);
+ }
+
+ // Setters for saturation state.
+ void ClearSat(int index) {
+ saturated_[index] = kNotSaturated;
+ }
+
+ void SetSignedSat(int index, bool positive) {
+ SetSatFlag(index, positive ? kSignedSatPositive : kSignedSatNegative);
+ }
+
+ void SetUnsignedSat(int index, bool positive) {
+ SetSatFlag(index, positive ? kUnsignedSatPositive : kUnsignedSatNegative);
+ }
+
+ void SetSatFlag(int index, Saturation sat) {
+ saturated_[index] = static_cast<Saturation>(saturated_[index] | sat);
+ VIXL_ASSERT((sat & kUnsignedSatMask) != kUnsignedSatUndefined);
+ VIXL_ASSERT((sat & kSignedSatMask) != kSignedSatUndefined);
+ }
+
+ // Saturate lanes of a vector based on saturation state.
+ LogicVRegister& SignedSaturate(VectorFormat vform) {
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) {
+ Saturation sat = GetSignedSaturation(i);
+ if (sat == kSignedSatPositive) {
+ SetInt(vform, i, MaxIntFromFormat(vform));
+ } else if (sat == kSignedSatNegative) {
+ SetInt(vform, i, MinIntFromFormat(vform));
+ }
+ }
+ return *this;
+ }
+
+ LogicVRegister& UnsignedSaturate(VectorFormat vform) {
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) {
+ Saturation sat = GetUnsignedSaturation(i);
+ if (sat == kUnsignedSatPositive) {
+ SetUint(vform, i, MaxUintFromFormat(vform));
+ } else if (sat == kUnsignedSatNegative) {
+ SetUint(vform, i, 0);
+ }
+ }
+ return *this;
+ }
+
+ // Getter for rounding state.
+ bool GetRounding(int index) {
+ return round_[index];
+ }
+
+ // Setter for rounding state.
+ void SetRounding(int index, bool round) {
+ round_[index] = round;
+ }
+
+ // Round lanes of a vector based on rounding state.
+ LogicVRegister& Round(VectorFormat vform) {
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) {
+ SetInt(vform, i, Int(vform, i) + (GetRounding(i) ? 1 : 0));
+ }
+ return *this;
+ }
+
+ // Unsigned halve lanes of a vector, and use the saturation state to set the
+ // top bit.
+ LogicVRegister& Uhalve(VectorFormat vform) {
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) {
+ uint64_t val = Uint(vform, i);
+ SetRounding(i, (val & 1) == 1);
+ val >>= 1;
+ if (GetUnsignedSaturation(i) != kNotSaturated) {
+ // If the operation causes unsigned saturation, the bit shifted into the
+ // most significant bit must be set.
+ val |= (MaxUintFromFormat(vform) >> 1) + 1;
+ }
+ SetInt(vform, i, val);
+ }
+ return *this;
+ }
+
+ // Signed halve lanes of a vector, and use the carry state to set the top bit.
+ LogicVRegister& Halve(VectorFormat vform) {
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) {
+ int64_t val = Int(vform, i);
+ SetRounding(i, (val & 1) == 1);
+ val >>= 1;
+ if (GetSignedSaturation(i) != kNotSaturated) {
+ // If the operation causes signed saturation, the sign bit must be
+ // inverted.
+ val ^= (MaxUintFromFormat(vform) >> 1) + 1;
+ }
+ SetInt(vform, i, val);
+ }
+ return *this;
+ }
+
+ private:
+ SimVRegister& register_;
+
+ // Allocate one saturation state entry per lane; largest register is type Q,
+ // and lanes can be a minimum of one byte wide.
+ Saturation saturated_[kQRegSizeInBytes];
+
+ // Allocate one rounding state entry per lane.
+ bool round_[kQRegSizeInBytes];
+};
+
+// The proper way to initialize a simulated system register (such as NZCV) is as
+// follows:
+// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
+class SimSystemRegister {
+ public:
+ // The default constructor represents a register which has no writable bits.
+ // It is not possible to set its value to anything other than 0.
+ SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { }
+
+ uint32_t RawValue() const {
+ return value_;
+ }
+
+ void SetRawValue(uint32_t new_value) {
+ value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
+ }
+
+ uint32_t Bits(int msb, int lsb) const {
+ return unsigned_bitextract_32(msb, lsb, value_);
+ }
+
+ int32_t SignedBits(int msb, int lsb) const {
+ return signed_bitextract_32(msb, lsb, value_);
+ }
+
+ void SetBits(int msb, int lsb, uint32_t bits);
+
+ // Default system register values.
+ static SimSystemRegister DefaultValueFor(SystemRegister id);
+
+#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
+ uint32_t Name() const { return Func(HighBit, LowBit); } \
+ void Set##Name(uint32_t bits) { SetBits(HighBit, LowBit, bits); }
+#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
+ static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
+
+ SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
+
+#undef DEFINE_ZERO_BITS
+#undef DEFINE_GETTER
+
+ protected:
+ // Most system registers only implement a few of the bits in the word. Other
+ // bits are "read-as-zero, write-ignored". The write_ignore_mask argument
+ // describes the bits which are not modifiable.
+ SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
+ : value_(value), write_ignore_mask_(write_ignore_mask) { }
+
+ uint32_t value_;
+ uint32_t write_ignore_mask_;
+};
+
+
+class SimExclusiveLocalMonitor {
+ public:
+ SimExclusiveLocalMonitor() : kSkipClearProbability(8), seed_(0x87654321) {
+ Clear();
+ }
+
+ // Clear the exclusive monitor (like clrex).
+ void Clear() {
+ address_ = 0;
+ size_ = 0;
+ }
+
+ // Clear the exclusive monitor most of the time.
+ void MaybeClear() {
+ if ((seed_ % kSkipClearProbability) != 0) {
+ Clear();
+ }
+
+ // Advance seed_ using a simple linear congruential generator.
+ seed_ = (seed_ * 48271) % 2147483647;
+ }
+
+ // Mark the address range for exclusive access (like load-exclusive).
+ void MarkExclusive(uint64_t address, size_t size) {
+ address_ = address;
+ size_ = size;
+ }
+
+ // Return true if the address range is marked (like store-exclusive).
+ // This helper doesn't implicitly clear the monitor.
+ bool IsExclusive(uint64_t address, size_t size) {
+ VIXL_ASSERT(size > 0);
+ // Be pedantic: Require both the address and the size to match.
+ return (size == size_) && (address == address_);
+ }
+
+ private:
+ uint64_t address_;
+ size_t size_;
+
+ const int kSkipClearProbability;
+ uint32_t seed_;
+};
+
+
+// We can't accurate simulate the global monitor since it depends on external
+// influences. Instead, this implementation occasionally causes accesses to
+// fail, according to kPassProbability.
+class SimExclusiveGlobalMonitor {
+ public:
+ SimExclusiveGlobalMonitor() : kPassProbability(8), seed_(0x87654321) {}
+
+ bool IsExclusive(uint64_t address, size_t size) {
+ USE(address, size);
+
+ bool pass = (seed_ % kPassProbability) != 0;
+ // Advance seed_ using a simple linear congruential generator.
+ seed_ = (seed_ * 48271) % 2147483647;
+ return pass;
+ }
+
+ private:
+ const int kPassProbability;
+ uint32_t seed_;
+};
+
+class Redirection;
+
+class Simulator : public DecoderVisitor {
+ friend class AutoLockSimulatorCache;
+
+ public:
+ explicit Simulator(Decoder* decoder, FILE* stream = stdout);
+ ~Simulator();
+
+ // Moz changes.
+ void init(Decoder* decoder, FILE* stream);
+ static Simulator* Current();
+ static Simulator* Create(JSContext* cx);
+ static void Destroy(Simulator* sim);
+ uintptr_t stackLimit() const;
+ uintptr_t* addressOfStackLimit();
+ bool overRecursed(uintptr_t newsp = 0) const;
+ bool overRecursedWithExtra(uint32_t extra) const;
+ int64_t call(uint8_t* entry, int argument_count, ...);
+ void setRedirection(Redirection* redirection);
+ Redirection* redirection() const;
+ static void* RedirectNativeFunction(void* nativeFunction, js::jit::ABIFunctionType type);
+ void setGPR32Result(int32_t result);
+ void setGPR64Result(int64_t result);
+ void setFP32Result(float result);
+ void setFP64Result(double result);
+ void VisitCallRedirection(const Instruction* instr);
+ static inline uintptr_t StackLimit() {
+ return Simulator::Current()->stackLimit();
+ }
+
+ void ResetState();
+
+ // Run the simulator.
+ virtual void Run();
+ void RunFrom(const Instruction* first);
+
+ // Simulation helpers.
+ const Instruction* pc() const { return pc_; }
+ const Instruction* get_pc() const { return pc_; }
+
+ template <typename T>
+ T get_pc_as() const { return reinterpret_cast<T>(const_cast<Instruction*>(pc())); }
+
+ void set_pc(const Instruction* new_pc) {
+ pc_ = Memory::AddressUntag(new_pc);
+ pc_modified_ = true;
+ }
+
+ void set_resume_pc(void* new_resume_pc);
+
+ void increment_pc() {
+ if (!pc_modified_) {
+ pc_ = pc_->NextInstruction();
+ }
+
+ pc_modified_ = false;
+ }
+
+ void ExecuteInstruction();
+
+ // Declare all Visitor functions.
+ #define DECLARE(A) virtual void Visit##A(const Instruction* instr);
+ VISITOR_LIST_THAT_RETURN(DECLARE)
+ VISITOR_LIST_THAT_DONT_RETURN(DECLARE)
+ #undef DECLARE
+
+
+ // Integer register accessors.
+
+ // Basic accessor: Read the register as the specified type.
+ template<typename T>
+ T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ VIXL_ASSERT(code < kNumberOfRegisters);
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
+ T result;
+ memset(&result, 0, sizeof(result));
+ return result;
+ }
+ return registers_[code].Get<T>();
+ }
+
+ // Common specialized accessors for the reg() template.
+ int32_t wreg(unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ return reg<int32_t>(code, r31mode);
+ }
+
+ int64_t xreg(unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ return reg<int64_t>(code, r31mode);
+ }
+
+ // As above, with parameterized size and return type. The value is
+ // either zero-extended or truncated to fit, as required.
+ template<typename T>
+ T reg(unsigned size, unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ uint64_t raw;
+ switch (size) {
+ case kWRegSize: raw = reg<uint32_t>(code, r31mode); break;
+ case kXRegSize: raw = reg<uint64_t>(code, r31mode); break;
+ default:
+ VIXL_UNREACHABLE();
+ return 0;
+ }
+
+ T result;
+ VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(raw));
+ // Copy the result and truncate to fit. This assumes a little-endian host.
+ memcpy(&result, &raw, sizeof(result));
+ return result;
+ }
+
+ // Use int64_t by default if T is not specified.
+ int64_t reg(unsigned size, unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ return reg<int64_t>(size, code, r31mode);
+ }
+
+ enum RegLogMode {
+ LogRegWrites,
+ NoRegLog
+ };
+
+ // Write 'value' into an integer register. The value is zero-extended. This
+ // behaviour matches AArch64 register writes.
+ template<typename T>
+ void set_reg(unsigned code, T value,
+ RegLogMode log_mode = LogRegWrites,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ VIXL_STATIC_ASSERT((sizeof(T) == kWRegSizeInBytes) ||
+ (sizeof(T) == kXRegSizeInBytes));
+ VIXL_ASSERT(code < kNumberOfRegisters);
+
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
+ return;
+ }
+
+ registers_[code].Set(value);
+
+ if (log_mode == LogRegWrites) LogRegister(code, r31mode);
+ }
+
+ // Common specialized accessors for the set_reg() template.
+ void set_wreg(unsigned code, int32_t value,
+ RegLogMode log_mode = LogRegWrites,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ set_reg(code, value, log_mode, r31mode);
+ }
+
+ void set_xreg(unsigned code, int64_t value,
+ RegLogMode log_mode = LogRegWrites,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ set_reg(code, value, log_mode, r31mode);
+ }
+
+ // As above, with parameterized size and type. The value is either
+ // zero-extended or truncated to fit, as required.
+ template<typename T>
+ void set_reg(unsigned size, unsigned code, T value,
+ RegLogMode log_mode = LogRegWrites,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ // Zero-extend the input.
+ uint64_t raw = 0;
+ VIXL_STATIC_ASSERT(sizeof(value) <= sizeof(raw));
+ memcpy(&raw, &value, sizeof(value));
+
+ // Write (and possibly truncate) the value.
+ switch (size) {
+ case kWRegSize:
+ set_reg(code, static_cast<uint32_t>(raw), log_mode, r31mode);
+ break;
+ case kXRegSize:
+ set_reg(code, raw, log_mode, r31mode);
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ return;
+ }
+ }
+
+ // Common specialized accessors for the set_reg() template.
+
+ // Commonly-used special cases.
+ template<typename T>
+ void set_lr(T value) {
+ set_reg(kLinkRegCode, value);
+ }
+
+ template<typename T>
+ void set_sp(T value) {
+ set_reg(31, value, LogRegWrites, Reg31IsStackPointer);
+ }
+
+ // Vector register accessors.
+ // These are equivalent to the integer register accessors, but for vector
+ // registers.
+
+ // A structure for representing a 128-bit Q register.
+ struct qreg_t { uint8_t val[kQRegSizeInBytes]; };
+
+ // Basic accessor: read the register as the specified type.
+ template<typename T>
+ T vreg(unsigned code) const {
+ VIXL_STATIC_ASSERT((sizeof(T) == kBRegSizeInBytes) ||
+ (sizeof(T) == kHRegSizeInBytes) ||
+ (sizeof(T) == kSRegSizeInBytes) ||
+ (sizeof(T) == kDRegSizeInBytes) ||
+ (sizeof(T) == kQRegSizeInBytes));
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+
+ return vregisters_[code].Get<T>();
+ }
+
+ // Common specialized accessors for the vreg() template.
+ int8_t breg(unsigned code) const {
+ return vreg<int8_t>(code);
+ }
+
+ int16_t hreg(unsigned code) const {
+ return vreg<int16_t>(code);
+ }
+
+ float sreg(unsigned code) const {
+ return vreg<float>(code);
+ }
+
+ uint32_t sreg_bits(unsigned code) const {
+ return vreg<uint32_t>(code);
+ }
+
+ double dreg(unsigned code) const {
+ return vreg<double>(code);
+ }
+
+ uint64_t dreg_bits(unsigned code) const {
+ return vreg<uint64_t>(code);
+ }
+
+ qreg_t qreg(unsigned code) const {
+ return vreg<qreg_t>(code);
+ }
+
+ // As above, with parameterized size and return type. The value is
+ // either zero-extended or truncated to fit, as required.
+ template<typename T>
+ T vreg(unsigned size, unsigned code) const {
+ uint64_t raw = 0;
+ T result;
+
+ switch (size) {
+ case kSRegSize: raw = vreg<uint32_t>(code); break;
+ case kDRegSize: raw = vreg<uint64_t>(code); break;
+ default:
+ VIXL_UNREACHABLE();
+ break;
+ }
+
+ VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(raw));
+ // Copy the result and truncate to fit. This assumes a little-endian host.
+ memcpy(&result, &raw, sizeof(result));
+ return result;
+ }
+
+ inline SimVRegister& vreg(unsigned code) {
+ return vregisters_[code];
+ }
+
+ // Basic accessor: Write the specified value.
+ template<typename T>
+ void set_vreg(unsigned code, T value,
+ RegLogMode log_mode = LogRegWrites) {
+ VIXL_STATIC_ASSERT((sizeof(value) == kBRegSizeInBytes) ||
+ (sizeof(value) == kHRegSizeInBytes) ||
+ (sizeof(value) == kSRegSizeInBytes) ||
+ (sizeof(value) == kDRegSizeInBytes) ||
+ (sizeof(value) == kQRegSizeInBytes));
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ vregisters_[code].Set(value);
+
+ if (log_mode == LogRegWrites) {
+ LogVRegister(code, GetPrintRegisterFormat(value));
+ }
+ }
+
+ // Common specialized accessors for the set_vreg() template.
+ void set_breg(unsigned code, int8_t value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_hreg(unsigned code, int16_t value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_sreg(unsigned code, float value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_sreg_bits(unsigned code, uint32_t value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_dreg(unsigned code, double value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_dreg_bits(unsigned code, uint64_t value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ void set_qreg(unsigned code, qreg_t value,
+ RegLogMode log_mode = LogRegWrites) {
+ set_vreg(code, value, log_mode);
+ }
+
+ bool N() const { return nzcv_.N() != 0; }
+ bool Z() const { return nzcv_.Z() != 0; }
+ bool C() const { return nzcv_.C() != 0; }
+ bool V() const { return nzcv_.V() != 0; }
+ SimSystemRegister& nzcv() { return nzcv_; }
+
+ // TODO: Find a way to make the fpcr_ members return the proper types, so
+ // these accessors are not necessary.
+ FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); }
+ bool DN() { return fpcr_.DN() != 0; }
+ SimSystemRegister& fpcr() { return fpcr_; }
+
+ // Specify relevant register formats for Print(V)Register and related helpers.
+ enum PrintRegisterFormat {
+ // The lane size.
+ kPrintRegLaneSizeB = 0 << 0,
+ kPrintRegLaneSizeH = 1 << 0,
+ kPrintRegLaneSizeS = 2 << 0,
+ kPrintRegLaneSizeW = kPrintRegLaneSizeS,
+ kPrintRegLaneSizeD = 3 << 0,
+ kPrintRegLaneSizeX = kPrintRegLaneSizeD,
+ kPrintRegLaneSizeQ = 4 << 0,
+
+ kPrintRegLaneSizeOffset = 0,
+ kPrintRegLaneSizeMask = 7 << 0,
+
+ // The lane count.
+ kPrintRegAsScalar = 0,
+ kPrintRegAsDVector = 1 << 3,
+ kPrintRegAsQVector = 2 << 3,
+
+ kPrintRegAsVectorMask = 3 << 3,
+
+ // Indicate floating-point format lanes. (This flag is only supported for S-
+ // and D-sized lanes.)
+ kPrintRegAsFP = 1 << 5,
+
+ // Supported combinations.
+
+ kPrintXReg = kPrintRegLaneSizeX | kPrintRegAsScalar,
+ kPrintWReg = kPrintRegLaneSizeW | kPrintRegAsScalar,
+ kPrintSReg = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
+ kPrintDReg = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,
+
+ kPrintReg1B = kPrintRegLaneSizeB | kPrintRegAsScalar,
+ kPrintReg8B = kPrintRegLaneSizeB | kPrintRegAsDVector,
+ kPrintReg16B = kPrintRegLaneSizeB | kPrintRegAsQVector,
+ kPrintReg1H = kPrintRegLaneSizeH | kPrintRegAsScalar,
+ kPrintReg4H = kPrintRegLaneSizeH | kPrintRegAsDVector,
+ kPrintReg8H = kPrintRegLaneSizeH | kPrintRegAsQVector,
+ kPrintReg1S = kPrintRegLaneSizeS | kPrintRegAsScalar,
+ kPrintReg2S = kPrintRegLaneSizeS | kPrintRegAsDVector,
+ kPrintReg4S = kPrintRegLaneSizeS | kPrintRegAsQVector,
+ kPrintReg1SFP = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
+ kPrintReg2SFP = kPrintRegLaneSizeS | kPrintRegAsDVector | kPrintRegAsFP,
+ kPrintReg4SFP = kPrintRegLaneSizeS | kPrintRegAsQVector | kPrintRegAsFP,
+ kPrintReg1D = kPrintRegLaneSizeD | kPrintRegAsScalar,
+ kPrintReg2D = kPrintRegLaneSizeD | kPrintRegAsQVector,
+ kPrintReg1DFP = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,
+ kPrintReg2DFP = kPrintRegLaneSizeD | kPrintRegAsQVector | kPrintRegAsFP,
+ kPrintReg1Q = kPrintRegLaneSizeQ | kPrintRegAsScalar
+ };
+
+ unsigned GetPrintRegLaneSizeInBytesLog2(PrintRegisterFormat format) {
+ return (format & kPrintRegLaneSizeMask) >> kPrintRegLaneSizeOffset;
+ }
+
+ unsigned GetPrintRegLaneSizeInBytes(PrintRegisterFormat format) {
+ return 1 << GetPrintRegLaneSizeInBytesLog2(format);
+ }
+
+ unsigned GetPrintRegSizeInBytesLog2(PrintRegisterFormat format) {
+ if (format & kPrintRegAsDVector) return kDRegSizeInBytesLog2;
+ if (format & kPrintRegAsQVector) return kQRegSizeInBytesLog2;
+
+ // Scalar types.
+ return GetPrintRegLaneSizeInBytesLog2(format);
+ }
+
+ unsigned GetPrintRegSizeInBytes(PrintRegisterFormat format) {
+ return 1 << GetPrintRegSizeInBytesLog2(format);
+ }
+
+ unsigned GetPrintRegLaneCount(PrintRegisterFormat format) {
+ unsigned reg_size_log2 = GetPrintRegSizeInBytesLog2(format);
+ unsigned lane_size_log2 = GetPrintRegLaneSizeInBytesLog2(format);
+ VIXL_ASSERT(reg_size_log2 >= lane_size_log2);
+ return 1 << (reg_size_log2 - lane_size_log2);
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormatForSize(unsigned reg_size,
+ unsigned lane_size);
+
+ PrintRegisterFormat GetPrintRegisterFormatForSize(unsigned size) {
+ return GetPrintRegisterFormatForSize(size, size);
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormatForSizeFP(unsigned size) {
+ switch (size) {
+ default: VIXL_UNREACHABLE(); return kPrintDReg;
+ case kDRegSizeInBytes: return kPrintDReg;
+ case kSRegSizeInBytes: return kPrintSReg;
+ }
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormatTryFP(PrintRegisterFormat format) {
+ if ((GetPrintRegLaneSizeInBytes(format) == kSRegSizeInBytes) ||
+ (GetPrintRegLaneSizeInBytes(format) == kDRegSizeInBytes)) {
+ return static_cast<PrintRegisterFormat>(format | kPrintRegAsFP);
+ }
+ return format;
+ }
+
+ template<typename T>
+ PrintRegisterFormat GetPrintRegisterFormat(T value) {
+ return GetPrintRegisterFormatForSize(sizeof(value));
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormat(double value) {
+ VIXL_STATIC_ASSERT(sizeof(value) == kDRegSizeInBytes);
+ return GetPrintRegisterFormatForSizeFP(sizeof(value));
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormat(float value) {
+ VIXL_STATIC_ASSERT(sizeof(value) == kSRegSizeInBytes);
+ return GetPrintRegisterFormatForSizeFP(sizeof(value));
+ }
+
+ PrintRegisterFormat GetPrintRegisterFormat(VectorFormat vform);
+
+ // Print all registers of the specified types.
+ void PrintRegisters();
+ void PrintVRegisters();
+ void PrintSystemRegisters();
+
+ // As above, but only print the registers that have been updated.
+ void PrintWrittenRegisters();
+ void PrintWrittenVRegisters();
+
+ // As above, but respect LOG_REG and LOG_VREG.
+ void LogWrittenRegisters() {
+ if (trace_parameters() & LOG_REGS) PrintWrittenRegisters();
+ }
+ void LogWrittenVRegisters() {
+ if (trace_parameters() & LOG_VREGS) PrintWrittenVRegisters();
+ }
+ void LogAllWrittenRegisters() {
+ LogWrittenRegisters();
+ LogWrittenVRegisters();
+ }
+
+ // Print individual register values (after update).
+ void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer);
+ void PrintVRegister(unsigned code, PrintRegisterFormat format);
+ void PrintSystemRegister(SystemRegister id);
+
+ // Like Print* (above), but respect trace_parameters().
+ void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) {
+ if (trace_parameters() & LOG_REGS) PrintRegister(code, r31mode);
+ }
+ void LogVRegister(unsigned code, PrintRegisterFormat format) {
+ if (trace_parameters() & LOG_VREGS) PrintVRegister(code, format);
+ }
+ void LogSystemRegister(SystemRegister id) {
+ if (trace_parameters() & LOG_SYSREGS) PrintSystemRegister(id);
+ }
+
+ // Print memory accesses.
+ void PrintRead(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format);
+ void PrintWrite(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format);
+ void PrintVRead(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format, unsigned lane);
+ void PrintVWrite(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format, unsigned lane);
+
+ // Like Print* (above), but respect trace_parameters().
+ void LogRead(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format) {
+ if (trace_parameters() & LOG_REGS) PrintRead(address, reg_code, format);
+ }
+ void LogWrite(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format) {
+ if (trace_parameters() & LOG_WRITE) PrintWrite(address, reg_code, format);
+ }
+ void LogVRead(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format, unsigned lane = 0) {
+ if (trace_parameters() & LOG_VREGS) {
+ PrintVRead(address, reg_code, format, lane);
+ }
+ }
+ void LogVWrite(uintptr_t address, unsigned reg_code,
+ PrintRegisterFormat format, unsigned lane = 0) {
+ if (trace_parameters() & LOG_WRITE) {
+ PrintVWrite(address, reg_code, format, lane);
+ }
+ }
+
+ // Helper functions for register tracing.
+ void PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode,
+ int size_in_bytes = kXRegSizeInBytes);
+ void PrintVRegisterRawHelper(unsigned code, int bytes = kQRegSizeInBytes,
+ int lsb = 0);
+ void PrintVRegisterFPHelper(unsigned code, unsigned lane_size_in_bytes,
+ int lane_count = 1, int rightmost_lane = 0);
+
+ void DoUnreachable(const Instruction* instr);
+ void DoTrace(const Instruction* instr);
+ void DoLog(const Instruction* instr);
+
+ static const char* WRegNameForCode(unsigned code,
+ Reg31Mode mode = Reg31IsZeroRegister);
+ static const char* XRegNameForCode(unsigned code,
+ Reg31Mode mode = Reg31IsZeroRegister);
+ static const char* SRegNameForCode(unsigned code);
+ static const char* DRegNameForCode(unsigned code);
+ static const char* VRegNameForCode(unsigned code);
+
+ bool coloured_trace() const { return coloured_trace_; }
+ void set_coloured_trace(bool value);
+
+ int trace_parameters() const { return trace_parameters_; }
+ void set_trace_parameters(int parameters);
+
+ void set_instruction_stats(bool value);
+
+ // Clear the simulated local monitor to force the next store-exclusive
+ // instruction to fail.
+ void ClearLocalMonitor() {
+ local_monitor_.Clear();
+ }
+
+ void SilenceExclusiveAccessWarning() {
+ print_exclusive_access_warning_ = false;
+ }
+
+ protected:
+ const char* clr_normal;
+ const char* clr_flag_name;
+ const char* clr_flag_value;
+ const char* clr_reg_name;
+ const char* clr_reg_value;
+ const char* clr_vreg_name;
+ const char* clr_vreg_value;
+ const char* clr_memory_address;
+ const char* clr_warning;
+ const char* clr_warning_message;
+ const char* clr_printf;
+
+ // Simulation helpers ------------------------------------
+ bool ConditionPassed(Condition cond) {
+ switch (cond) {
+ case eq:
+ return Z();
+ case ne:
+ return !Z();
+ case hs:
+ return C();
+ case lo:
+ return !C();
+ case mi:
+ return N();
+ case pl:
+ return !N();
+ case vs:
+ return V();
+ case vc:
+ return !V();
+ case hi:
+ return C() && !Z();
+ case ls:
+ return !(C() && !Z());
+ case ge:
+ return N() == V();
+ case lt:
+ return N() != V();
+ case gt:
+ return !Z() && (N() == V());
+ case le:
+ return !(!Z() && (N() == V()));
+ case nv:
+ VIXL_FALLTHROUGH();
+ case al:
+ return true;
+ default:
+ VIXL_UNREACHABLE();
+ return false;
+ }
+ }
+
+ bool ConditionPassed(Instr cond) {
+ return ConditionPassed(static_cast<Condition>(cond));
+ }
+
+ bool ConditionFailed(Condition cond) {
+ return !ConditionPassed(cond);
+ }
+
+ void AddSubHelper(const Instruction* instr, int64_t op2);
+ uint64_t AddWithCarry(unsigned reg_size,
+ bool set_flags,
+ uint64_t left,
+ uint64_t right,
+ int carry_in = 0);
+ void LogicalHelper(const Instruction* instr, int64_t op2);
+ void ConditionalCompareHelper(const Instruction* instr, int64_t op2);
+ void LoadStoreHelper(const Instruction* instr,
+ int64_t offset,
+ AddrMode addrmode);
+ void LoadStorePairHelper(const Instruction* instr, AddrMode addrmode);
+ uintptr_t AddressModeHelper(unsigned addr_reg,
+ int64_t offset,
+ AddrMode addrmode);
+ void NEONLoadStoreMultiStructHelper(const Instruction* instr,
+ AddrMode addr_mode);
+ void NEONLoadStoreSingleStructHelper(const Instruction* instr,
+ AddrMode addr_mode);
+
+ uint64_t AddressUntag(uint64_t address) {
+ return address & ~kAddressTagMask;
+ }
+
+ template <typename T>
+ T* AddressUntag(T* address) {
+ uintptr_t address_raw = reinterpret_cast<uintptr_t>(address);
+ return reinterpret_cast<T*>(AddressUntag(address_raw));
+ }
+
+ int64_t ShiftOperand(unsigned reg_size,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount);
+ int64_t Rotate(unsigned reg_width,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount);
+ int64_t ExtendValue(unsigned reg_width,
+ int64_t value,
+ Extend extend_type,
+ unsigned left_shift = 0);
+ uint16_t PolynomialMult(uint8_t op1, uint8_t op2);
+
+ void ld1(VectorFormat vform,
+ LogicVRegister dst,
+ uint64_t addr);
+ void ld1(VectorFormat vform,
+ LogicVRegister dst,
+ int index,
+ uint64_t addr);
+ void ld1r(VectorFormat vform,
+ LogicVRegister dst,
+ uint64_t addr);
+ void ld2(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ uint64_t addr);
+ void ld2(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ int index,
+ uint64_t addr);
+ void ld2r(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ uint64_t addr);
+ void ld3(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ uint64_t addr);
+ void ld3(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ int index,
+ uint64_t addr);
+ void ld3r(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ uint64_t addr);
+ void ld4(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ LogicVRegister dst4,
+ uint64_t addr);
+ void ld4(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ LogicVRegister dst4,
+ int index,
+ uint64_t addr);
+ void ld4r(VectorFormat vform,
+ LogicVRegister dst1,
+ LogicVRegister dst2,
+ LogicVRegister dst3,
+ LogicVRegister dst4,
+ uint64_t addr);
+ void st1(VectorFormat vform,
+ LogicVRegister src,
+ uint64_t addr);
+ void st1(VectorFormat vform,
+ LogicVRegister src,
+ int index,
+ uint64_t addr);
+ void st2(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ uint64_t addr);
+ void st2(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ int index,
+ uint64_t addr);
+ void st3(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ LogicVRegister src3,
+ uint64_t addr);
+ void st3(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ LogicVRegister src3,
+ int index,
+ uint64_t addr);
+ void st4(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ LogicVRegister src3,
+ LogicVRegister src4,
+ uint64_t addr);
+ void st4(VectorFormat vform,
+ LogicVRegister src,
+ LogicVRegister src2,
+ LogicVRegister src3,
+ LogicVRegister src4,
+ int index,
+ uint64_t addr);
+ LogicVRegister cmp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ Condition cond);
+ LogicVRegister cmp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ int imm,
+ Condition cond);
+ LogicVRegister cmptst(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister add(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister addp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister mla(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister mls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister mul(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister mul(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister mla(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister mls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister pmul(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+
+ typedef LogicVRegister (Simulator::*ByElementOp)(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister fmul(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister fmla(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister fmls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister fmulx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smull(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smull2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umull(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umull2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smlal(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smlal2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umlal(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umlal2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smlsl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister smlsl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umlsl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister umlsl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmull(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmull2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmlal(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmlal2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmlsl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmlsl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqdmulh(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sqrdmulh(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister sub(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister and_(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister orr(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister orn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister eor(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister bic(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister bic(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ uint64_t imm);
+ LogicVRegister bif(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister bit(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister bsl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister cls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister clz(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister cnt(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister not_(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister rbit(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister rev(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int revSize);
+ LogicVRegister rev16(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister rev32(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister rev64(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister addlp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ bool is_signed,
+ bool do_accumulate);
+ LogicVRegister saddlp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uaddlp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sadalp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uadalp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister ext(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ int index);
+ LogicVRegister ins_element(VectorFormat vform,
+ LogicVRegister dst,
+ int dst_index,
+ const LogicVRegister& src,
+ int src_index);
+ LogicVRegister ins_immediate(VectorFormat vform,
+ LogicVRegister dst,
+ int dst_index,
+ uint64_t imm);
+ LogicVRegister dup_element(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int src_index);
+ LogicVRegister dup_immediate(VectorFormat vform,
+ LogicVRegister dst,
+ uint64_t imm);
+ LogicVRegister movi(VectorFormat vform,
+ LogicVRegister dst,
+ uint64_t imm);
+ LogicVRegister mvni(VectorFormat vform,
+ LogicVRegister dst,
+ uint64_t imm);
+ LogicVRegister orr(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ uint64_t imm);
+ LogicVRegister sshl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister ushl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister sminmax(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ bool max);
+ LogicVRegister smax(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister smin(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister sminmaxp(VectorFormat vform,
+ LogicVRegister dst,
+ int dst_index,
+ const LogicVRegister& src,
+ bool max);
+ LogicVRegister smaxp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister sminp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister addp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister addv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uaddlv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister saddlv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sminmaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ bool max);
+ LogicVRegister smaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sminv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uxtl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uxtl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sxtl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sxtl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister tbl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& ind);
+ LogicVRegister tbl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& ind);
+ LogicVRegister tbl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& tab3,
+ const LogicVRegister& ind);
+ LogicVRegister tbl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& tab3,
+ const LogicVRegister& tab4,
+ const LogicVRegister& ind);
+ LogicVRegister tbx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& ind);
+ LogicVRegister tbx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& ind);
+ LogicVRegister tbx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& tab3,
+ const LogicVRegister& ind);
+ LogicVRegister tbx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& tab,
+ const LogicVRegister& tab2,
+ const LogicVRegister& tab3,
+ const LogicVRegister& tab4,
+ const LogicVRegister& ind);
+ LogicVRegister uaddl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uaddl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uaddw(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uaddw2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister saddl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister saddl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister saddw(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister saddw2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister usubl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister usubl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister usubw(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister usubw2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister ssubl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister ssubl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister ssubw(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister ssubw2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uminmax(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ bool max);
+ LogicVRegister umax(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister umin(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uminmaxp(VectorFormat vform,
+ LogicVRegister dst,
+ int dst_index,
+ const LogicVRegister& src,
+ bool max);
+ LogicVRegister umaxp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uminp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uminmaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ bool max);
+ LogicVRegister umaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uminv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister trn1(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister trn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister zip1(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister zip2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uzp1(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uzp2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister shl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister scvtf(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int fbits,
+ FPRounding rounding_mode);
+ LogicVRegister ucvtf(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int fbits,
+ FPRounding rounding_mode);
+ LogicVRegister sshll(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sshll2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister shll(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister shll2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister ushll(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister ushll2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sli(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sri(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sshr(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister ushr(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister ssra(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister usra(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister srsra(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister ursra(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister suqadd(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister usqadd(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sqshl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister uqshl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqshlu(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister abs(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister neg(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister extractnarrow(VectorFormat vform,
+ LogicVRegister dst,
+ bool dstIsSigned,
+ const LogicVRegister& src,
+ bool srcIsSigned);
+ LogicVRegister xtn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sqxtn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister uqxtn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister sqxtun(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister absdiff(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ bool issigned);
+ LogicVRegister saba(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister uaba(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister shrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister shrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister rshrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister rshrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister uqshrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister uqshrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister uqrshrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister uqrshrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqshrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqshrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqrshrn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqrshrn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqshrun(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqshrun2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqrshrun(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqrshrun2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ int shift);
+ LogicVRegister sqrdmulh(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ bool round = true);
+ LogicVRegister sqdmulh(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ #define NEON_3VREG_LOGIC_LIST(V) \
+ V(addhn) \
+ V(addhn2) \
+ V(raddhn) \
+ V(raddhn2) \
+ V(subhn) \
+ V(subhn2) \
+ V(rsubhn) \
+ V(rsubhn2) \
+ V(pmull) \
+ V(pmull2) \
+ V(sabal) \
+ V(sabal2) \
+ V(uabal) \
+ V(uabal2) \
+ V(sabdl) \
+ V(sabdl2) \
+ V(uabdl) \
+ V(uabdl2) \
+ V(smull) \
+ V(smull2) \
+ V(umull) \
+ V(umull2) \
+ V(smlal) \
+ V(smlal2) \
+ V(umlal) \
+ V(umlal2) \
+ V(smlsl) \
+ V(smlsl2) \
+ V(umlsl) \
+ V(umlsl2) \
+ V(sqdmlal) \
+ V(sqdmlal2) \
+ V(sqdmlsl) \
+ V(sqdmlsl2) \
+ V(sqdmull) \
+ V(sqdmull2)
+
+ #define DEFINE_LOGIC_FUNC(FXN) \
+ LogicVRegister FXN(VectorFormat vform, \
+ LogicVRegister dst, \
+ const LogicVRegister& src1, \
+ const LogicVRegister& src2);
+ NEON_3VREG_LOGIC_LIST(DEFINE_LOGIC_FUNC)
+ #undef DEFINE_LOGIC_FUNC
+
+ #define NEON_FP3SAME_LIST(V) \
+ V(fadd, FPAdd, false) \
+ V(fsub, FPSub, true) \
+ V(fmul, FPMul, true) \
+ V(fmulx, FPMulx, true) \
+ V(fdiv, FPDiv, true) \
+ V(fmax, FPMax, false) \
+ V(fmin, FPMin, false) \
+ V(fmaxnm, FPMaxNM, false) \
+ V(fminnm, FPMinNM, false)
+
+ #define DECLARE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \
+ template <typename T> \
+ LogicVRegister FN(VectorFormat vform, \
+ LogicVRegister dst, \
+ const LogicVRegister& src1, \
+ const LogicVRegister& src2); \
+ LogicVRegister FN(VectorFormat vform, \
+ LogicVRegister dst, \
+ const LogicVRegister& src1, \
+ const LogicVRegister& src2);
+ NEON_FP3SAME_LIST(DECLARE_NEON_FP_VECTOR_OP)
+ #undef DECLARE_NEON_FP_VECTOR_OP
+
+ #define NEON_FPPAIRWISE_LIST(V) \
+ V(faddp, fadd, FPAdd) \
+ V(fmaxp, fmax, FPMax) \
+ V(fmaxnmp, fmaxnm, FPMaxNM) \
+ V(fminp, fmin, FPMin) \
+ V(fminnmp, fminnm, FPMinNM)
+
+ #define DECLARE_NEON_FP_PAIR_OP(FNP, FN, OP) \
+ LogicVRegister FNP(VectorFormat vform, \
+ LogicVRegister dst, \
+ const LogicVRegister& src1, \
+ const LogicVRegister& src2); \
+ LogicVRegister FNP(VectorFormat vform, \
+ LogicVRegister dst, \
+ const LogicVRegister& src);
+ NEON_FPPAIRWISE_LIST(DECLARE_NEON_FP_PAIR_OP)
+ #undef DECLARE_NEON_FP_PAIR_OP
+
+ template <typename T>
+ LogicVRegister frecps(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister frecps(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ template <typename T>
+ LogicVRegister frsqrts(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister frsqrts(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ template <typename T>
+ LogicVRegister fmla(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister fmla(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ template <typename T>
+ LogicVRegister fmls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister fmls(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister fnmul(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+
+ template <typename T>
+ LogicVRegister fcmp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ Condition cond);
+ LogicVRegister fcmp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ Condition cond);
+ LogicVRegister fabscmp(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2,
+ Condition cond);
+ LogicVRegister fcmp_zero(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ Condition cond);
+
+ template <typename T>
+ LogicVRegister fneg(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fneg(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ template <typename T>
+ LogicVRegister frecpx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister frecpx(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ template <typename T>
+ LogicVRegister fabs_(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fabs_(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fabd(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src1,
+ const LogicVRegister& src2);
+ LogicVRegister frint(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ FPRounding rounding_mode,
+ bool inexact_exception = false);
+ LogicVRegister fcvts(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ FPRounding rounding_mode,
+ int fbits = 0);
+ LogicVRegister fcvtu(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ FPRounding rounding_mode,
+ int fbits = 0);
+ LogicVRegister fcvtl(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fcvtl2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fcvtn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fcvtn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fcvtxn(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fcvtxn2(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fsqrt(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister frsqrte(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister frecpe(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ FPRounding rounding);
+ LogicVRegister ursqrte(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister urecpe(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+
+ typedef float (Simulator::*FPMinMaxOp)(float a, float b);
+
+ LogicVRegister fminmaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src,
+ FPMinMaxOp Op);
+
+ LogicVRegister fminv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fmaxv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fminnmv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+ LogicVRegister fmaxnmv(VectorFormat vform,
+ LogicVRegister dst,
+ const LogicVRegister& src);
+
+ static const uint32_t CRC32_POLY = 0x04C11DB7;
+ static const uint32_t CRC32C_POLY = 0x1EDC6F41;
+ uint32_t Poly32Mod2(unsigned n, uint64_t data, uint32_t poly);
+ template <typename T>
+ uint32_t Crc32Checksum(uint32_t acc, T val, uint32_t poly);
+ uint32_t Crc32Checksum(uint32_t acc, uint64_t val, uint32_t poly);
+
+ void SysOp_W(int op, int64_t val);
+
+ template <typename T>
+ T FPRecipSqrtEstimate(T op);
+ template <typename T>
+ T FPRecipEstimate(T op, FPRounding rounding);
+ template <typename T, typename R>
+ R FPToFixed(T op, int fbits, bool is_signed, FPRounding rounding);
+
+ void FPCompare(double val0, double val1, FPTrapFlags trap);
+ double FPRoundInt(double value, FPRounding round_mode);
+ double FPToDouble(float value);
+ float FPToFloat(double value, FPRounding round_mode);
+ float FPToFloat(float16 value);
+ float16 FPToFloat16(float value, FPRounding round_mode);
+ float16 FPToFloat16(double value, FPRounding round_mode);
+ double recip_sqrt_estimate(double a);
+ double recip_estimate(double a);
+ double FPRecipSqrtEstimate(double a);
+ double FPRecipEstimate(double a);
+ double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
+ double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
+ float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
+ float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
+ int32_t FPToInt32(double value, FPRounding rmode);
+ int64_t FPToInt64(double value, FPRounding rmode);
+ uint32_t FPToUInt32(double value, FPRounding rmode);
+ uint64_t FPToUInt64(double value, FPRounding rmode);
+
+ template <typename T>
+ T FPAdd(T op1, T op2);
+
+ template <typename T>
+ T FPDiv(T op1, T op2);
+
+ template <typename T>
+ T FPMax(T a, T b);
+
+ template <typename T>
+ T FPMaxNM(T a, T b);
+
+ template <typename T>
+ T FPMin(T a, T b);
+
+ template <typename T>
+ T FPMinNM(T a, T b);
+
+ template <typename T>
+ T FPMul(T op1, T op2);
+
+ template <typename T>
+ T FPMulx(T op1, T op2);
+
+ template <typename T>
+ T FPMulAdd(T a, T op1, T op2);
+
+ template <typename T>
+ T FPSqrt(T op);
+
+ template <typename T>
+ T FPSub(T op1, T op2);
+
+ template <typename T>
+ T FPRecipStepFused(T op1, T op2);
+
+ template <typename T>
+ T FPRSqrtStepFused(T op1, T op2);
+
+ // This doesn't do anything at the moment. We'll need it if we want support
+ // for cumulative exception bits or floating-point exceptions.
+ void FPProcessException() { }
+
+ bool FPProcessNaNs(const Instruction* instr);
+
+ // Pseudo Printf instruction
+ void DoPrintf(const Instruction* instr);
+
+ // Processor state ---------------------------------------
+
+ // Simulated monitors for exclusive access instructions.
+ SimExclusiveLocalMonitor local_monitor_;
+ SimExclusiveGlobalMonitor global_monitor_;
+
+ // Output stream.
+ FILE* stream_;
+ PrintDisassembler* print_disasm_;
+
+ // Instruction statistics instrumentation.
+ Instrument* instrumentation_;
+
+ // General purpose registers. Register 31 is the stack pointer.
+ SimRegister registers_[kNumberOfRegisters];
+
+ // Vector registers
+ SimVRegister vregisters_[kNumberOfVRegisters];
+
+ // Program Status Register.
+ // bits[31, 27]: Condition flags N, Z, C, and V.
+ // (Negative, Zero, Carry, Overflow)
+ SimSystemRegister nzcv_;
+
+ // Floating-Point Control Register
+ SimSystemRegister fpcr_;
+
+ // Only a subset of FPCR features are supported by the simulator. This helper
+ // checks that the FPCR settings are supported.
+ //
+ // This is checked when floating-point instructions are executed, not when
+ // FPCR is set. This allows generated code to modify FPCR for external
+ // functions, or to save and restore it when entering and leaving generated
+ // code.
+ void AssertSupportedFPCR() {
+ VIXL_ASSERT(fpcr().FZ() == 0); // No flush-to-zero support.
+ VIXL_ASSERT(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only.
+
+ // The simulator does not support half-precision operations so fpcr().AHP()
+ // is irrelevant, and is not checked here.
+ }
+
+ static int CalcNFlag(uint64_t result, unsigned reg_size) {
+ return (result >> (reg_size - 1)) & 1;
+ }
+
+ static int CalcZFlag(uint64_t result) {
+ return (result == 0) ? 1 : 0;
+ }
+
+ static const uint32_t kConditionFlagsMask = 0xf0000000;
+
+ // Stack
+ byte* stack_;
+ static const int stack_protection_size_ = 128 * KBytes;
+ static const int stack_size_ = (2 * MBytes) + (2 * stack_protection_size_);
+ byte* stack_limit_;
+
+ Decoder* decoder_;
+ // Indicates if the pc has been modified by the instruction and should not be
+ // automatically incremented.
+ bool pc_modified_;
+ const Instruction* pc_;
+ const Instruction* resume_pc_;
+
+ static const char* xreg_names[];
+ static const char* wreg_names[];
+ static const char* sreg_names[];
+ static const char* dreg_names[];
+ static const char* vreg_names[];
+
+ static const Instruction* kEndOfSimAddress;
+
+ private:
+ template <typename T>
+ static T FPDefaultNaN();
+
+ // Standard NaN processing.
+ template <typename T>
+ T FPProcessNaN(T op) {
+ VIXL_ASSERT(std::isnan(op));
+ if (IsSignallingNaN(op)) {
+ FPProcessException();
+ }
+ return DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
+ }
+
+ template <typename T>
+ T FPProcessNaNs(T op1, T op2) {
+ if (IsSignallingNaN(op1)) {
+ return FPProcessNaN(op1);
+ } else if (IsSignallingNaN(op2)) {
+ return FPProcessNaN(op2);
+ } else if (std::isnan(op1)) {
+ VIXL_ASSERT(IsQuietNaN(op1));
+ return FPProcessNaN(op1);
+ } else if (std::isnan(op2)) {
+ VIXL_ASSERT(IsQuietNaN(op2));
+ return FPProcessNaN(op2);
+ } else {
+ return 0.0;
+ }
+ }
+
+ template <typename T>
+ T FPProcessNaNs3(T op1, T op2, T op3) {
+ if (IsSignallingNaN(op1)) {
+ return FPProcessNaN(op1);
+ } else if (IsSignallingNaN(op2)) {
+ return FPProcessNaN(op2);
+ } else if (IsSignallingNaN(op3)) {
+ return FPProcessNaN(op3);
+ } else if (std::isnan(op1)) {
+ VIXL_ASSERT(IsQuietNaN(op1));
+ return FPProcessNaN(op1);
+ } else if (std::isnan(op2)) {
+ VIXL_ASSERT(IsQuietNaN(op2));
+ return FPProcessNaN(op2);
+ } else if (std::isnan(op3)) {
+ VIXL_ASSERT(IsQuietNaN(op3));
+ return FPProcessNaN(op3);
+ } else {
+ return 0.0;
+ }
+ }
+
+ bool coloured_trace_;
+
+ // A set of TraceParameters flags.
+ int trace_parameters_;
+
+ // Indicates whether the instruction instrumentation is active.
+ bool instruction_stats_;
+
+ // Indicates whether the exclusive-access warning has been printed.
+ bool print_exclusive_access_warning_;
+ void PrintExclusiveAccessWarning();
+
+ // Indicates that the simulator ran out of memory at some point.
+ // Data structures may not be fully allocated.
+ bool oom_;
+
+ public:
+ // True if the simulator ran out of memory during or after construction.
+ bool oom() const { return oom_; }
+
+ protected:
+ // Moz: Synchronizes access between main thread and compilation threads.
+ js::Mutex lock_;
+ Redirection* redirection_;
+ mozilla::Vector<int64_t, 0, js::SystemAllocPolicy> spStack_;
+};
+} // namespace vixl
+
+#endif // JS_SIMULATOR_ARM64
+#endif // VIXL_A64_SIMULATOR_A64_H_