summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Lowering-arm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/Lowering-arm.cpp')
-rw-r--r--js/src/jit/arm/Lowering-arm.cpp1031
1 files changed, 1031 insertions, 0 deletions
diff --git a/js/src/jit/arm/Lowering-arm.cpp b/js/src/jit/arm/Lowering-arm.cpp
new file mode 100644
index 000000000..c26680116
--- /dev/null
+++ b/js/src/jit/arm/Lowering-arm.cpp
@@ -0,0 +1,1031 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sts=4 et sw=4 tw=99:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mozilla/MathAlgorithms.h"
+
+#include "jit/arm/Assembler-arm.h"
+#include "jit/Lowering.h"
+#include "jit/MIR.h"
+
+#include "jit/shared/Lowering-shared-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+using mozilla::FloorLog2;
+
+LBoxAllocation
+LIRGeneratorARM::useBoxFixed(MDefinition* mir, Register reg1, Register reg2, bool useAtStart)
+{
+ MOZ_ASSERT(mir->type() == MIRType::Value);
+ MOZ_ASSERT(reg1 != reg2);
+
+ ensureDefined(mir);
+ return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
+ LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
+}
+
+LAllocation
+LIRGeneratorARM::useByteOpRegister(MDefinition* mir)
+{
+ return useRegister(mir);
+}
+
+LAllocation
+LIRGeneratorARM::useByteOpRegisterAtStart(MDefinition* mir)
+{
+ return useRegisterAtStart(mir);
+}
+
+LAllocation
+LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir)
+{
+ return useRegisterOrNonDoubleConstant(mir);
+}
+
+LDefinition
+LIRGeneratorARM::tempByteOpRegister()
+{
+ return temp();
+}
+
+void
+LIRGeneratorARM::visitBox(MBox* box)
+{
+ MDefinition* inner = box->getOperand(0);
+
+ // If the box wrapped a double, it needs a new register.
+ if (IsFloatingPointType(inner->type())) {
+ defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0),
+ inner->type()), box);
+ return;
+ }
+
+ if (box->canEmitAtUses()) {
+ emitAtUses(box);
+ return;
+ }
+
+ if (inner->isConstant()) {
+ defineBox(new(alloc()) LValue(inner->toConstant()->toJSValue()), box);
+ return;
+ }
+
+ LBox* lir = new(alloc()) LBox(use(inner), inner->type());
+
+ // Otherwise, we should not define a new register for the payload portion
+ // of the output, so bypass defineBox().
+ uint32_t vreg = getVirtualRegister();
+
+ // Note that because we're using BogusTemp(), we do not change the type of
+ // the definition. We also do not define the first output as "TYPE",
+ // because it has no corresponding payload at (vreg + 1). Also note that
+ // although we copy the input's original type for the payload half of the
+ // definition, this is only for clarity. BogusTemp() definitions are
+ // ignored.
+ lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
+ lir->setDef(1, LDefinition::BogusTemp());
+ box->setVirtualRegister(vreg);
+ add(lir);
+}
+
+void
+LIRGeneratorARM::visitUnbox(MUnbox* unbox)
+{
+ MDefinition* inner = unbox->getOperand(0);
+
+ if (inner->type() == MIRType::ObjectOrNull) {
+ LUnboxObjectOrNull* lir = new(alloc()) LUnboxObjectOrNull(useRegisterAtStart(inner));
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+ defineReuseInput(lir, unbox, 0);
+ return;
+ }
+
+ // An unbox on arm reads in a type tag (either in memory or a register) and
+ // a payload. Unlike most instructions consuming a box, we ask for the type
+ // second, so that the result can re-use the first input.
+ MOZ_ASSERT(inner->type() == MIRType::Value);
+
+ ensureDefined(inner);
+
+ if (IsFloatingPointType(unbox->type())) {
+ LUnboxFloatingPoint* lir = new(alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+ define(lir, unbox);
+ return;
+ }
+
+ // Swap the order we use the box pieces so we can re-use the payload register.
+ LUnbox* lir = new(alloc()) LUnbox;
+ lir->setOperand(0, usePayloadInRegisterAtStart(inner));
+ lir->setOperand(1, useType(inner, LUse::REGISTER));
+
+ if (unbox->fallible())
+ assignSnapshot(lir, unbox->bailoutKind());
+
+ // Types and payloads form two separate intervals. If the type becomes dead
+ // before the payload, it could be used as a Value without the type being
+ // recoverable. Unbox's purpose is to eagerly kill the definition of a type
+ // tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
+ // Instead, we create a new virtual register.
+ defineReuseInput(lir, unbox, 0);
+}
+
+void
+LIRGeneratorARM::visitReturn(MReturn* ret)
+{
+ MDefinition* opd = ret->getOperand(0);
+ MOZ_ASSERT(opd->type() == MIRType::Value);
+
+ LReturn* ins = new(alloc()) LReturn;
+ ins->setOperand(0, LUse(JSReturnReg_Type));
+ ins->setOperand(1, LUse(JSReturnReg_Data));
+ fillBoxUses(ins, 0, opd);
+ add(ins);
+}
+
+void
+LIRGeneratorARM::defineInt64Phi(MPhi* phi, size_t lirIndex)
+{
+ LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
+
+ uint32_t lowVreg = getVirtualRegister();
+
+ phi->setVirtualRegister(lowVreg);
+
+ uint32_t highVreg = getVirtualRegister();
+ MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
+
+ low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
+ high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
+ annotate(high);
+ annotate(low);
+}
+
+void
+LIRGeneratorARM::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
+{
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
+ low->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
+ high->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
+}
+
+// x = !y
+void
+LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input)
+{
+ ins->setOperand(0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input));
+ define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+// z = x+y
+void
+LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ // Some operations depend on checking inputs after writing the result, e.g.
+ // MulI, but only for bail out paths so useAtStart when no bailouts.
+ ins->setOperand(0, ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs));
+ ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) :
+ useRegisterOrConstantAtStart(rhs));
+ define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+void
+LIRGeneratorARM::lowerForALUInt64(LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void
+LIRGeneratorARM::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ bool needsTemp = true;
+
+ if (rhs->isConstant()) {
+ int64_t constant = rhs->toConstant()->toInt64();
+ int32_t shift = mozilla::FloorLog2(constant);
+ // See special cases in CodeGeneratorARM::visitMulI64
+ if (constant >= -1 && constant <= 2)
+ needsTemp = false;
+ if (int64_t(1) << shift == constant)
+ needsTemp = false;
+ }
+
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ if (needsTemp)
+ ins->setTemp(0, temp());
+
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void
+LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input)
+{
+ ins->setOperand(0, useRegisterAtStart(input));
+ define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template<size_t Temps>
+void
+LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ ins->setOperand(0, useRegisterAtStart(lhs));
+ ins->setOperand(1, useRegisterAtStart(rhs));
+ define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
+ MDefinition* lhs, MDefinition* rhs);
+template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, MDefinition* mir,
+ MDefinition* lhs, MDefinition* rhs);
+
+void
+LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir,
+ MDefinition* lhs, MDefinition* rhs)
+{
+ baab->setOperand(0, useRegisterAtStart(lhs));
+ baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
+ add(baab, mir);
+}
+
+void
+LIRGeneratorARM::defineUntypedPhi(MPhi* phi, size_t lirIndex)
+{
+ LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);
+
+ uint32_t typeVreg = getVirtualRegister();
+ phi->setVirtualRegister(typeVreg);
+
+ uint32_t payloadVreg = getVirtualRegister();
+ MOZ_ASSERT(typeVreg + 1 == payloadVreg);
+
+ type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
+ payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
+ annotate(type);
+ annotate(payload);
+}
+
+void
+LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
+{
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
+ type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
+ payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
+}
+
+void
+LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ ins->setOperand(0, useRegister(lhs));
+ ins->setOperand(1, useRegisterOrConstant(rhs));
+ define(ins, mir);
+}
+
+template<size_t Temps>
+void
+LIRGeneratorARM::lowerForShiftInt64(LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
+{
+ if (mir->isRotate() && !rhs->isConstant())
+ ins->setTemp(0, temp());
+
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+template void LIRGeneratorARM::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES+1, 0>* ins, MDefinition* mir,
+ MDefinition* lhs, MDefinition* rhs);
+template void LIRGeneratorARM::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES+1, 1>* ins, MDefinition* mir,
+ MDefinition* lhs, MDefinition* rhs);
+
+void
+LIRGeneratorARM::lowerDivI(MDiv* div)
+{
+ if (div->isUnsigned()) {
+ lowerUDiv(div);
+ return;
+ }
+
+ // Division instructions are slow. Division by constant denominators can be
+ // rewritten to use other instructions.
+ if (div->rhs()->isConstant()) {
+ int32_t rhs = div->rhs()->toConstant()->toInt32();
+ // Check for division by a positive power of two, which is an easy and
+ // important case to optimize. Note that other optimizations are also
+ // possible; division by negative powers of two can be optimized in a
+ // similar manner as positive powers of two, and division by other
+ // constants can be optimized by a reciprocal multiplication technique.
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LDivPowTwoI* lir = new(alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift);
+ if (div->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, div);
+ return;
+ }
+ }
+
+ if (HasIDIV()) {
+ LDivI* lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
+ if (div->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, div);
+ return;
+ }
+
+ LSoftDivI* lir = new(alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0), useFixedAtStart(div->rhs(), r1),
+ tempFixed(r1), tempFixed(r2), tempFixed(r3));
+ if (div->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ defineFixed(lir, div, LAllocation(AnyRegister(r0)));
+}
+
+void
+LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs)
+{
+ LMulI* lir = new(alloc()) LMulI;
+ if (mul->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ lowerForALU(lir, mul, lhs, rhs);
+}
+
+void
+LIRGeneratorARM::lowerModI(MMod* mod)
+{
+ if (mod->isUnsigned()) {
+ lowerUMod(mod);
+ return;
+ }
+
+ if (mod->rhs()->isConstant()) {
+ int32_t rhs = mod->rhs()->toConstant()->toInt32();
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LModPowTwoI* lir = new(alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, mod);
+ return;
+ }
+ if (shift < 31 && (1 << (shift+1)) - 1 == rhs) {
+ MOZ_ASSERT(rhs);
+ LModMaskI* lir = new(alloc()) LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift+1);
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, mod);
+ return;
+ }
+ }
+
+ if (HasIDIV()) {
+ LModI* lir = new(alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, mod);
+ return;
+ }
+
+ LSoftModI* lir = new(alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0), useFixedAtStart(mod->rhs(), r1),
+ tempFixed(r0), tempFixed(r2), tempFixed(r3),
+ temp(LDefinition::GENERAL));
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ defineFixed(lir, mod, LAllocation(AnyRegister(r1)));
+}
+
+void
+LIRGeneratorARM::lowerDivI64(MDiv* div)
+{
+ if (div->isUnsigned()) {
+ lowerUDivI64(div);
+ return;
+ }
+
+ LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(div->lhs()),
+ useInt64RegisterAtStart(div->rhs()));
+ defineReturn(lir, div);
+}
+
+void
+LIRGeneratorARM::lowerModI64(MMod* mod)
+{
+ if (mod->isUnsigned()) {
+ lowerUModI64(mod);
+ return;
+ }
+
+ LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
+ useInt64RegisterAtStart(mod->rhs()));
+ defineReturn(lir, mod);
+}
+
+void
+LIRGeneratorARM::lowerUDivI64(MDiv* div)
+{
+ LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()),
+ useInt64RegisterAtStart(div->rhs()));
+ defineReturn(lir, div);
+}
+
+void
+LIRGeneratorARM::lowerUModI64(MMod* mod)
+{
+ LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()),
+ useInt64RegisterAtStart(mod->rhs()));
+ defineReturn(lir, mod);
+}
+
+void
+LIRGeneratorARM::visitPowHalf(MPowHalf* ins)
+{
+ MDefinition* input = ins->input();
+ MOZ_ASSERT(input->type() == MIRType::Double);
+ LPowHalfD* lir = new(alloc()) LPowHalfD(useRegisterAtStart(input));
+ defineReuseInput(lir, ins, 0);
+}
+
+LTableSwitch*
+LIRGeneratorARM::newLTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
+ MTableSwitch* tableswitch)
+{
+ return new(alloc()) LTableSwitch(in, inputCopy, tableswitch);
+}
+
+LTableSwitchV*
+LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch)
+{
+ return new(alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)),
+ temp(), tempDouble(), tableswitch);
+}
+
+void
+LIRGeneratorARM::visitGuardShape(MGuardShape* ins)
+{
+ MOZ_ASSERT(ins->object()->type() == MIRType::Object);
+
+ LDefinition tempObj = temp(LDefinition::OBJECT);
+ LGuardShape* guard = new(alloc()) LGuardShape(useRegister(ins->object()), tempObj);
+ assignSnapshot(guard, ins->bailoutKind());
+ add(guard, ins);
+ redefine(ins, ins->object());
+}
+
+void
+LIRGeneratorARM::visitGuardObjectGroup(MGuardObjectGroup* ins)
+{
+ MOZ_ASSERT(ins->object()->type() == MIRType::Object);
+
+ LDefinition tempObj = temp(LDefinition::OBJECT);
+ LGuardObjectGroup* guard = new(alloc()) LGuardObjectGroup(useRegister(ins->object()), tempObj);
+ assignSnapshot(guard, ins->bailoutKind());
+ add(guard, ins);
+ redefine(ins, ins->object());
+}
+
+void
+LIRGeneratorARM::lowerUrshD(MUrsh* mir)
+{
+ MDefinition* lhs = mir->lhs();
+ MDefinition* rhs = mir->rhs();
+
+ MOZ_ASSERT(lhs->type() == MIRType::Int32);
+ MOZ_ASSERT(rhs->type() == MIRType::Int32);
+
+ LUrshD* lir = new(alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
+ define(lir, mir);
+}
+
+void
+LIRGeneratorARM::visitWasmSelect(MWasmSelect* ins)
+{
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new(alloc()) LWasmSelectI64(useInt64RegisterAtStart(ins->trueExpr()),
+ useInt64(ins->falseExpr()),
+ useRegister(ins->condExpr()));
+
+ defineInt64ReuseInput(lir, ins, LWasmSelectI64::TrueExprIndex);
+ return;
+ }
+
+ auto* lir = new(alloc()) LWasmSelect(useRegisterAtStart(ins->trueExpr()),
+ useRegister(ins->falseExpr()),
+ useRegister(ins->condExpr()));
+
+ defineReuseInput(lir, ins, LWasmSelect::TrueExprIndex);
+}
+
+void
+LIRGeneratorARM::visitAsmJSNeg(MAsmJSNeg* ins)
+{
+ if (ins->type() == MIRType::Int32) {
+ define(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
+ } else if (ins->type() == MIRType::Float32) {
+ define(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
+ } else {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ define(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
+ }
+}
+
+void
+LIRGeneratorARM::lowerUDiv(MDiv* div)
+{
+ MDefinition* lhs = div->getOperand(0);
+ MDefinition* rhs = div->getOperand(1);
+
+ if (HasIDIV()) {
+ LUDiv* lir = new(alloc()) LUDiv;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (div->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, div);
+ } else {
+ LSoftUDivOrMod* lir = new(alloc()) LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1),
+ tempFixed(r1), tempFixed(r2), tempFixed(r3));
+ if (div->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ defineFixed(lir, div, LAllocation(AnyRegister(r0)));
+ }
+}
+
+void
+LIRGeneratorARM::lowerUMod(MMod* mod)
+{
+ MDefinition* lhs = mod->getOperand(0);
+ MDefinition* rhs = mod->getOperand(1);
+
+ if (HasIDIV()) {
+ LUMod* lir = new(alloc()) LUMod;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ define(lir, mod);
+ } else {
+ LSoftUDivOrMod* lir = new(alloc()) LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1),
+ tempFixed(r0), tempFixed(r2), tempFixed(r3));
+ if (mod->fallible())
+ assignSnapshot(lir, Bailout_DoubleOutput);
+ defineFixed(lir, mod, LAllocation(AnyRegister(r1)));
+ }
+}
+
+void
+LIRGeneratorARM::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins)
+{
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToDouble* lir = new(alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins)
+{
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToFloat32* lir = new(alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitWasmLoad(MWasmLoad* ins)
+{
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ LAllocation ptr = useRegisterAtStart(base);
+
+ if (ins->access().isUnaligned()) {
+ // Unaligned access expected! Revert to a byte load.
+ LDefinition ptrCopy = tempCopy(base, 0);
+
+ LDefinition noTemp = LDefinition::BogusTemp();
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new(alloc()) LWasmUnalignedLoadI64(ptr, ptrCopy, temp(), noTemp, noTemp);
+ defineInt64(lir, ins);
+ return;
+ }
+
+ LDefinition temp2 = noTemp;
+ LDefinition temp3 = noTemp;
+ if (IsFloatingPointType(ins->type())) {
+ // For putting the low value in a GPR.
+ temp2 = temp();
+ // For putting the high value in a GPR.
+ if (ins->type() == MIRType::Double)
+ temp3 = temp();
+ }
+
+ auto* lir = new(alloc()) LWasmUnalignedLoad(ptr, ptrCopy, temp(), temp2, temp3);
+ define(lir, ins);
+ return;
+ }
+
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new(alloc()) LWasmLoadI64(ptr);
+ if (ins->access().offset() || ins->access().type() == Scalar::Int64)
+ lir->setTemp(0, tempCopy(base, 0));
+ defineInt64(lir, ins);
+ return;
+ }
+
+ auto* lir = new(alloc()) LWasmLoad(ptr);
+ if (ins->access().offset())
+ lir->setTemp(0, tempCopy(base, 0));
+
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitWasmStore(MWasmStore* ins)
+{
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ LAllocation ptr = useRegisterAtStart(base);
+
+ if (ins->access().isUnaligned()) {
+ // Unaligned access expected! Revert to a byte store.
+ LDefinition ptrCopy = tempCopy(base, 0);
+
+ MIRType valueType = ins->value()->type();
+ if (valueType == MIRType::Int64) {
+ LInt64Allocation value = useInt64RegisterAtStart(ins->value());
+ auto* lir = new(alloc()) LWasmUnalignedStoreI64(ptr, value, ptrCopy, temp());
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation value = useRegisterAtStart(ins->value());
+ LDefinition valueHelper = IsFloatingPointType(valueType)
+ ? temp() // to do a FPU -> GPR move.
+ : tempCopy(base, 1); // to clobber the value.
+
+ auto* lir = new(alloc()) LWasmUnalignedStore(ptr, value, ptrCopy, valueHelper);
+ add(lir, ins);
+ return;
+ }
+
+ if (ins->value()->type() == MIRType::Int64) {
+ LInt64Allocation value = useInt64RegisterAtStart(ins->value());
+ auto* lir = new(alloc()) LWasmStoreI64(ptr, value);
+ if (ins->access().offset() || ins->access().type() == Scalar::Int64)
+ lir->setTemp(0, tempCopy(base, 0));
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation value = useRegisterAtStart(ins->value());
+ auto* lir = new(alloc()) LWasmStore(ptr, value);
+
+ if (ins->access().offset())
+ lir->setTemp(0, tempCopy(base, 0));
+
+ add(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins)
+{
+ MOZ_ASSERT(ins->offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ // For the ARM it is best to keep the 'base' in a register if a bounds check is needed.
+ LAllocation baseAlloc;
+ if (base->isConstant() && !ins->needsBoundsCheck()) {
+ // A bounds check is only skipped for a positive index.
+ MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
+ baseAlloc = LAllocation(base->toConstant());
+ } else {
+ baseAlloc = useRegisterAtStart(base);
+ }
+
+ define(new(alloc()) LAsmJSLoadHeap(baseAlloc), ins);
+}
+
+void
+LIRGeneratorARM::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins)
+{
+ MOZ_ASSERT(ins->offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+ LAllocation baseAlloc;
+
+ if (base->isConstant() && !ins->needsBoundsCheck()) {
+ MOZ_ASSERT(base->toConstant()->toInt32() >= 0);
+ baseAlloc = LAllocation(base->toConstant());
+ } else {
+ baseAlloc = useRegisterAtStart(base);
+ }
+
+ add(new(alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value())), ins);
+}
+
+void
+LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins)
+{
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double);
+
+ define(new(alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins);
+}
+
+void
+LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins)
+{
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Float32);
+
+ define(new(alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins);
+}
+
+void
+LIRGeneratorARM::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins)
+{
+ MOZ_CRASH("NYI");
+}
+
+void
+LIRGeneratorARM::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins)
+{
+ MOZ_ASSERT(HasLDSTREXBHD());
+ MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+
+ const LAllocation value = useRegister(ins->value());
+ LDefinition tempDef = LDefinition::BogusTemp();
+ if (ins->arrayType() == Scalar::Uint32) {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ tempDef = temp();
+ }
+
+ LAtomicExchangeTypedArrayElement* lir =
+ new(alloc()) LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
+
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins)
+{
+ MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+ const LAllocation value = useRegister(ins->value());
+
+ if (!ins->hasUses()) {
+ LAtomicTypedArrayElementBinopForEffect* lir =
+ new(alloc()) LAtomicTypedArrayElementBinopForEffect(elements, index, value,
+ /* flagTemp= */ temp());
+ add(lir, ins);
+ return;
+ }
+
+ // For a Uint32Array with a known double result we need a temp for
+ // the intermediate output.
+ //
+ // Optimization opportunity (bug 1077317): We can do better by
+ // allowing 'value' to remain as an imm32 if it is small enough to
+ // fit in an instruction.
+
+ LDefinition flagTemp = temp();
+ LDefinition outTemp = LDefinition::BogusTemp();
+
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
+ outTemp = temp();
+
+ // On arm, map flagTemp to temp1 and outTemp to temp2, at least for now.
+
+ LAtomicTypedArrayElementBinop* lir =
+ new(alloc()) LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp);
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins)
+{
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index = useRegisterOrConstant(ins->index());
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+ //
+ // Optimization opportunity (bug 1077317): We could do better by
+ // allowing oldval to remain an immediate, if it is small enough
+ // to fit in an instruction.
+
+ const LAllocation newval = useRegister(ins->newval());
+ const LAllocation oldval = useRegister(ins->oldval());
+ LDefinition tempDef = LDefinition::BogusTemp();
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
+ tempDef = temp();
+
+ LCompareExchangeTypedArrayElement* lir =
+ new(alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, tempDef);
+
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins)
+{
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(ins->access().offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (byteSize(ins->access().type()) != 4 && !HasLDSTREXBHD()) {
+ LAsmJSCompareExchangeCallout* lir =
+ new(alloc()) LAsmJSCompareExchangeCallout(useRegisterAtStart(base),
+ useRegisterAtStart(ins->oldValue()),
+ useRegisterAtStart(ins->newValue()),
+ useFixed(ins->tls(), WasmTlsReg),
+ temp(), temp());
+ defineReturn(lir, ins);
+ return;
+ }
+
+ LAsmJSCompareExchangeHeap* lir =
+ new(alloc()) LAsmJSCompareExchangeHeap(useRegister(base),
+ useRegister(ins->oldValue()),
+ useRegister(ins->newValue()));
+
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins)
+{
+ MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(ins->access().offset() == 0);
+
+ const LAllocation base = useRegisterAtStart(ins->base());
+ const LAllocation value = useRegisterAtStart(ins->value());
+
+ if (byteSize(ins->access().type()) < 4 && !HasLDSTREXBHD()) {
+ // Call out on ARMv6.
+ defineReturn(new(alloc()) LAsmJSAtomicExchangeCallout(base, value,
+ useFixed(ins->tls(), WasmTlsReg),
+ temp(), temp()), ins);
+ return;
+ }
+
+ define(new(alloc()) LAsmJSAtomicExchangeHeap(base, value), ins);
+}
+
+void
+LIRGeneratorARM::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins)
+{
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+ MOZ_ASSERT(ins->access().offset() == 0);
+
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (byteSize(ins->access().type()) != 4 && !HasLDSTREXBHD()) {
+ LAsmJSAtomicBinopCallout* lir =
+ new(alloc()) LAsmJSAtomicBinopCallout(useRegisterAtStart(base),
+ useRegisterAtStart(ins->value()),
+ useFixed(ins->tls(), WasmTlsReg),
+ temp(), temp());
+ defineReturn(lir, ins);
+ return;
+ }
+
+ if (!ins->hasUses()) {
+ LAsmJSAtomicBinopHeapForEffect* lir =
+ new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(base),
+ useRegister(ins->value()),
+ /* flagTemp= */ temp());
+ add(lir, ins);
+ return;
+ }
+
+ LAsmJSAtomicBinopHeap* lir =
+ new(alloc()) LAsmJSAtomicBinopHeap(useRegister(base),
+ useRegister(ins->value()),
+ /* temp = */ LDefinition::BogusTemp(),
+ /* flagTemp= */ temp());
+ define(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitSubstr(MSubstr* ins)
+{
+ LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()),
+ useRegister(ins->begin()),
+ useRegister(ins->length()),
+ temp(),
+ temp(),
+ tempByteOpRegister());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitRandom(MRandom* ins)
+{
+ LRandom *lir = new(alloc()) LRandom(temp(),
+ temp(),
+ temp(),
+ temp(),
+ temp());
+ defineFixed(lir, ins, LFloatReg(ReturnDoubleReg));
+}
+
+void
+LIRGeneratorARM::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins)
+{
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ defineReturn(new(alloc()) LWasmTruncateToInt64(useRegisterAtStart(opd)), ins);
+}
+
+void
+LIRGeneratorARM::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins)
+{
+ MOZ_ASSERT(ins->type() == MIRType::Double || ins->type() == MIRType::Float32);
+
+ auto lir = new(alloc()) LInt64ToFloatingPointCall();
+ lir->setInt64Operand(0, useInt64RegisterAtStart(ins->input()));
+ defineReturn(lir, ins);
+}
+
+void
+LIRGeneratorARM::visitCopySign(MCopySign* ins)
+{
+ MDefinition* lhs = ins->lhs();
+ MDefinition* rhs = ins->rhs();
+
+ MOZ_ASSERT(IsFloatingPointType(lhs->type()));
+ MOZ_ASSERT(lhs->type() == rhs->type());
+ MOZ_ASSERT(lhs->type() == ins->type());
+
+ LInstructionHelper<1, 2, 2>* lir;
+ if (lhs->type() == MIRType::Double)
+ lir = new(alloc()) LCopySignD();
+ else
+ lir = new(alloc()) LCopySignF();
+
+ lir->setTemp(0, temp());
+ lir->setTemp(1, temp());
+
+ lowerForFPU(lir, ins, lhs, rhs);
+}
+
+void
+LIRGeneratorARM::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins)
+{
+ auto* lir = new(alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input()));
+ defineInt64(lir, ins);
+
+ LDefinition def(LDefinition::GENERAL, LDefinition::MUST_REUSE_INPUT);
+ def.setReusedInput(0);
+ def.setVirtualRegister(ins->virtualRegister());
+
+ lir->setDef(0, def);
+}