diff options
Diffstat (limited to 'js/src/jit-test/tests/heap-analysis/byteSize-of-object.js')
-rw-r--r-- | js/src/jit-test/tests/heap-analysis/byteSize-of-object.js | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/js/src/jit-test/tests/heap-analysis/byteSize-of-object.js b/js/src/jit-test/tests/heap-analysis/byteSize-of-object.js new file mode 100644 index 000000000..3b667aa4a --- /dev/null +++ b/js/src/jit-test/tests/heap-analysis/byteSize-of-object.js @@ -0,0 +1,83 @@ +// Check that JS::ubi::Node::size returns reasonable results for objects. + +// We actually hard-code specific sizes into this test, even though they're +// implementation details, because in practice there are only two architecture +// variants to consider (32-bit and 64-bit), and if these sizes change, that's +// something SpiderMonkey hackers really want to know; they're supposed to be +// stable. + +// Run this test only if we're using jemalloc. Other malloc implementations +// exhibit surprising behaviors. For example, 32-bit Fedora builds have +// non-deterministic allocation sizes. +if (!getBuildConfiguration()['moz-memory']) + quit(0); + +if (getBuildConfiguration()['pointer-byte-size'] == 4) + var s = (s32, s64) => s32 +else + var s = (s32, s64) => s64 + +function tenure(obj) { + gc(); + return obj; +} + +// Return the byte size of |obj|, ensuring that the size is not affected by +// being tenured. (We use 'survives a GC' as an approximation for 'tenuring'.) +function tByteSize(obj) { + var size = byteSize(obj); + minorgc(); + if (size != byteSize(obj)) + return 0; + return size; +} + +assertEq(tByteSize({}), s(16, 32)); + +// Try objects with only named properties. +assertEq(tByteSize({ w: 1 }), s(32, 48)); +assertEq(tByteSize({ w: 1, x: 2 }), s(32, 48)); +assertEq(tByteSize({ w: 1, x: 2, y: 3 }), s(48, 64)); +assertEq(tByteSize({ w: 1, x: 2, y: 3, z:4 }), s(48, 64)); +assertEq(tByteSize({ w: 1, x: 2, y: 3, z:4, a: 5 }), s(80, 96)); + +// Try objects with only indexed properties. +assertEq(tByteSize({ 0:0 }), s(96, 112)); +assertEq(tByteSize({ 0:0, 1:1 }), s(96, 112)); +assertEq(tByteSize({ 0:0, 1:1, 2:2 }), s(112, 128)); +assertEq(tByteSize({ 0:0, 1:1, 2:2, 3:3 }), s(112, 128)); +assertEq(tByteSize({ 0:0, 1:1, 2:2, 3:3, 4:4 }), s(144, 160)); + +// Mix indexed and named properties, exploring each combination of the size +// classes above. +// +// Oddly, the changes here as the objects grow are not simply the sums of the +// changes above: for example, with one named property, the objects with three +// and five indexed properties are in different size classes; but with three +// named properties, there's no break there. +assertEq(tByteSize({ w:1, 0:0 }), s(96, 112)); +assertEq(tByteSize({ w:1, 0:0, 1:1, 2:2 }), s(112, 128)); +assertEq(tByteSize({ w:1, 0:0, 1:1, 2:2, 3:3, 4:4 }), s(144, 160)); +assertEq(tByteSize({ w:1, x:2, y:3, 0:0 }), s(112, 128)); +assertEq(tByteSize({ w:1, x:2, y:3, 0:0, 1:1, 2:2 }), s(144, 160)); +assertEq(tByteSize({ w:1, x:2, y:3, 0:0, 1:1, 2:2, 3:3, 4:4 }), s(144, 160)); +assertEq(tByteSize({ w:1, x:2, y:3, z:4, a:6, 0:0 }), s(144, 160)); +assertEq(tByteSize({ w:1, x:2, y:3, z:4, a:6, 0:0, 1:1, 2:2 }), s(144, 160)); +assertEq(tByteSize({ w:1, x:2, y:3, z:4, a:6, 0:0, 1:1, 2:2, 3:3, 4:4 }), s(176, 192)); + +// Check various lengths of array. +assertEq(tByteSize([]), s(80, 96)); +assertEq(tByteSize([1]), s(48, 64)); +assertEq(tByteSize([1, 2]), s(48, 64)); +assertEq(tByteSize([1, 2, 3]), s(80, 96)); +assertEq(tByteSize([1, 2, 3, 4]), s(80, 96)); +assertEq(tByteSize([1, 2, 3, 4, 5]), s(80, 96)); +assertEq(tByteSize([1, 2, 3, 4, 5, 6]), s(80, 96)); +assertEq(tByteSize([1, 2, 3, 4, 5, 6, 7]), s(112, 128)); +assertEq(tByteSize([1, 2, 3, 4, 5, 6, 7, 8]), s(112, 128)); + +// Various forms of functions. +assertEq(tByteSize(function () {}), s(32, 64)); +assertEq(tByteSize(function () {}.bind()), s(48, 80)); +assertEq(tByteSize(() => 1), s(48, 80)); +assertEq(tByteSize(Math.sin), s(32, 64)); |