diff options
Diffstat (limited to 'intl/icu/source/i18n/uspoof_conf.cpp')
-rw-r--r-- | intl/icu/source/i18n/uspoof_conf.cpp | 448 |
1 files changed, 448 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/uspoof_conf.cpp b/intl/icu/source/i18n/uspoof_conf.cpp new file mode 100644 index 000000000..587dc4e01 --- /dev/null +++ b/intl/icu/source/i18n/uspoof_conf.cpp @@ -0,0 +1,448 @@ +// Copyright (C) 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +****************************************************************************** +* +* Copyright (C) 2008-2015, International Business Machines +* Corporation and others. All Rights Reserved. +* +****************************************************************************** +* file name: uspoof_conf.cpp +* encoding: US-ASCII +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2009Jan05 (refactoring earlier files) +* created by: Andy Heninger +* +* Internal classes for compililing confusable data into its binary (runtime) form. +*/ + +#include "unicode/utypes.h" +#include "unicode/uspoof.h" +#if !UCONFIG_NO_REGULAR_EXPRESSIONS +#if !UCONFIG_NO_NORMALIZATION + +#include "unicode/unorm.h" +#include "unicode/uregex.h" +#include "unicode/ustring.h" +#include "cmemory.h" +#include "uspoof_impl.h" +#include "uhash.h" +#include "uvector.h" +#include "uassert.h" +#include "uarrsort.h" +#include "uspoof_conf.h" + +U_NAMESPACE_USE + + +//--------------------------------------------------------------------- +// +// buildConfusableData Compile the source confusable data, as defined by +// the Unicode data file confusables.txt, into the binary +// structures used by the confusable detector. +// +// The binary structures are described in uspoof_impl.h +// +// 1. Parse the data, making a hash table mapping from a UChar32 to a String. +// +// 2. Sort all of the strings encountered by length, since they will need to +// be stored in that order in the final string table. +// TODO: Sorting these strings by length is no longer needed since the removal of +// the string lengths table. This logic can be removed to save processing time +// when building confusables data. +// +// 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the +// list because that will be the ordering of our runtime table. +// +// 4. Generate the run time string table. This is generated before the key & value +// tables because we need the string indexes when building those tables. +// +// 5. Build the run-time key and value tables. These are parallel tables, and are built +// at the same time +// + +SPUString::SPUString(UnicodeString *s) { + fStr = s; + fCharOrStrTableIndex = 0; +} + + +SPUString::~SPUString() { + delete fStr; +} + + +SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { + fVec = new UVector(status); + fHash = uhash_open(uhash_hashUnicodeString, // key hash function + uhash_compareUnicodeString, // Key Comparator + NULL, // Value Comparator + &status); +} + + +SPUStringPool::~SPUStringPool() { + int i; + for (i=fVec->size()-1; i>=0; i--) { + SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); + delete s; + } + delete fVec; + uhash_close(fHash); +} + + +int32_t SPUStringPool::size() { + return fVec->size(); +} + +SPUString *SPUStringPool::getByIndex(int32_t index) { + SPUString *retString = (SPUString *)fVec->elementAt(index); + return retString; +} + + +// Comparison function for ordering strings in the string pool. +// Compare by length first, then, within a group of the same length, +// by code point order. +// Conforms to the type signature for a USortComparator in uvector.h + +static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { + const SPUString *sL = const_cast<const SPUString *>( + static_cast<SPUString *>(left.pointer)); + const SPUString *sR = const_cast<const SPUString *>( + static_cast<SPUString *>(right.pointer)); + int32_t lenL = sL->fStr->length(); + int32_t lenR = sR->fStr->length(); + if (lenL < lenR) { + return -1; + } else if (lenL > lenR) { + return 1; + } else { + return sL->fStr->compare(*(sR->fStr)); + } +} + +void SPUStringPool::sort(UErrorCode &status) { + fVec->sort(SPUStringCompare, status); +} + + +SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { + SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); + if (hashedString != NULL) { + delete src; + } else { + hashedString = new SPUString(src); + uhash_put(fHash, src, hashedString, &status); + fVec->addElement(hashedString, status); + } + return hashedString; +} + + + +ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : + fSpoofImpl(spImpl), + fInput(NULL), + fTable(NULL), + fKeySet(NULL), + fKeyVec(NULL), + fValueVec(NULL), + fStringTable(NULL), + stringPool(NULL), + fParseLine(NULL), + fParseHexNum(NULL), + fLineNum(0) +{ + if (U_FAILURE(status)) { + return; + } + fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); + fKeySet = new UnicodeSet(); + fKeyVec = new UVector(status); + fValueVec = new UVector(status); + stringPool = new SPUStringPool(status); +} + + +ConfusabledataBuilder::~ConfusabledataBuilder() { + uprv_free(fInput); + uregex_close(fParseLine); + uregex_close(fParseHexNum); + uhash_close(fTable); + delete fKeySet; + delete fKeyVec; + delete fStringTable; + delete fValueVec; + delete stringPool; +} + + +void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, + int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { + + if (U_FAILURE(status)) { + return; + } + ConfusabledataBuilder builder(spImpl, status); + builder.build(confusables, confusablesLen, status); + if (U_FAILURE(status) && errorType != NULL) { + *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; + pe->line = builder.fLineNum; + } +} + + +void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, + UErrorCode &status) { + + // Convert the user input data from UTF-8 to UChar (UTF-16) + int32_t inputLen = 0; + if (U_FAILURE(status)) { + return; + } + u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); + if (status != U_BUFFER_OVERFLOW_ERROR) { + return; + } + status = U_ZERO_ERROR; + fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); + if (fInput == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); + + + // Regular Expression to parse a line from Confusables.txt. The expression will match + // any line. What was matched is determined by examining which capture groups have a match. + // Capture Group 1: the source char + // Capture Group 2: the replacement chars + // Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated) + // Capture Group 7: A blank or comment only line. + // Capture Group 8: A syntactically invalid line. Anything that didn't match before. + // Example Line from the confusables.txt source file: + // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " + UnicodeString pattern( + "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char + "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) + "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) + "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type + "[ \\t]*(?:#.*?)?$" // Match any trailing #comment + "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment + "|^(.*?)$", -1, US_INV); // OR match any line, which catches illegal lines. + // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... + fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); + + // Regular expression for parsing a hex number out of a space-separated list of them. + // Capture group 1 gets the number, with spaces removed. + pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)"); + fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); + + // Zap any Byte Order Mark at the start of input. Changing it to a space is benign + // given the syntax of the input. + if (*fInput == 0xfeff) { + *fInput = 0x20; + } + + // Parse the input, one line per iteration of this loop. + uregex_setText(fParseLine, fInput, inputLen, &status); + while (uregex_findNext(fParseLine, &status)) { + fLineNum++; + if (uregex_start(fParseLine, 7, &status) >= 0) { + // this was a blank or comment line. + continue; + } + if (uregex_start(fParseLine, 8, &status) >= 0) { + // input file syntax error. + status = U_PARSE_ERROR; + return; + } + + // We have a good input line. Extract the key character and mapping string, and + // put them into the appropriate mapping table. + UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), + uregex_end(fParseLine, 1, &status), status); + + int32_t mapStringStart = uregex_start(fParseLine, 2, &status); + int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; + uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); + + UnicodeString *mapString = new UnicodeString(); + if (mapString == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + while (uregex_findNext(fParseHexNum, &status)) { + UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), + uregex_end(fParseHexNum, 1, &status), status); + mapString->append(c); + } + U_ASSERT(mapString->length() >= 1); + + // Put the map (value) string into the string pool + // This a little like a Java intern() - any duplicates will be eliminated. + SPUString *smapString = stringPool->addString(mapString, status); + + // Add the UChar32 -> string mapping to the table. + // For Unicode 8, the SL, SA and ML tables have been discontinued. + // All input data from confusables.txt is tagged MA. + uhash_iput(fTable, keyChar, smapString, &status); + if (U_FAILURE(status)) { return; } + fKeySet->add(keyChar); + } + + // Input data is now all parsed and collected. + // Now create the run-time binary form of the data. + // + // This is done in two steps. First the data is assembled into vectors and strings, + // for ease of construction, then the contents of these collections are dumped + // into the actual raw-bytes data storage. + + // Build up the string array, and record the index of each string therein + // in the (build time only) string pool. + // Strings of length one are not entered into the strings array. + // (Strings in the table are sorted by length) + stringPool->sort(status); + fStringTable = new UnicodeString(); + int32_t poolSize = stringPool->size(); + int32_t i; + for (i=0; i<poolSize; i++) { + SPUString *s = stringPool->getByIndex(i); + int32_t strLen = s->fStr->length(); + int32_t strIndex = fStringTable->length(); + if (strLen == 1) { + // strings of length one do not get an entry in the string table. + // Keep the single string character itself here, which is the same + // convention that is used in the final run-time string table index. + s->fCharOrStrTableIndex = s->fStr->charAt(0); + } else { + s->fCharOrStrTableIndex = strIndex; + fStringTable->append(*(s->fStr)); + } + } + + // Construct the compile-time Key and Value tables + // + // For each key code point, check which mapping tables it applies to, + // and create the final data for the key & value structures. + // + // The four logical mapping tables are conflated into one combined table. + // If multiple logical tables have the same mapping for some key, they + // share a single entry in the combined table. + // If more than one mapping exists for the same key code point, multiple + // entries will be created in the table + + for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { + // It is an oddity of the UnicodeSet API that simply enumerating the contained + // code points requires a nested loop. + for (UChar32 keyChar=fKeySet->getRangeStart(range); + keyChar <= fKeySet->getRangeEnd(range); keyChar++) { + SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar)); + U_ASSERT(targetMapping != NULL); + + // Set an error code if trying to consume a long string. Otherwise, + // codePointAndLengthToKey will abort on a U_ASSERT. + if (targetMapping->fStr->length() > 256) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return; + } + + int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar, + targetMapping->fStr->length()); + int32_t value = targetMapping->fCharOrStrTableIndex; + + fKeyVec->addElement(key, status); + fValueVec->addElement(value, status); + } + } + + // Put the assembled data into the flat runtime array + outputData(status); + + // All of the intermediate allocated data belongs to the ConfusabledataBuilder + // object (this), and is deleted in the destructor. + return; +} + +// +// outputData The confusable data has been compiled and stored in intermediate +// collections and strings. Copy it from there to the final flat +// binary array. +// +// Note that as each section is added to the output data, the +// expand (reserveSpace() function will likely relocate it in memory. +// Be careful with pointers. +// +void ConfusabledataBuilder::outputData(UErrorCode &status) { + + U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); + + // The Key Table + // While copying the keys to the runtime array, + // also sanity check that they are sorted. + + int32_t numKeys = fKeyVec->size(); + int32_t *keys = + static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); + if (U_FAILURE(status)) { + return; + } + int i; + UChar32 previousCodePoint = 0; + for (i=0; i<numKeys; i++) { + int32_t key = fKeyVec->elementAti(i); + UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key); + // strictly greater because there can be only one entry per code point + U_ASSERT(codePoint > previousCodePoint); + keys[i] = key; + previousCodePoint = codePoint; + } + SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; + rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); + rawData->fCFUKeysSize = numKeys; + fSpoofImpl->fSpoofData->fCFUKeys = keys; + + + // The Value Table, parallels the key table + int32_t numValues = fValueVec->size(); + U_ASSERT(numKeys == numValues); + uint16_t *values = + static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); + if (U_FAILURE(status)) { + return; + } + for (i=0; i<numValues; i++) { + uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); + U_ASSERT(value < 0xffff); + values[i] = static_cast<uint16_t>(value); + } + rawData = fSpoofImpl->fSpoofData->fRawData; + rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); + rawData->fCFUStringIndexSize = numValues; + fSpoofImpl->fSpoofData->fCFUValues = values; + + // The Strings Table. + + uint32_t stringsLength = fStringTable->length(); + // Reserve an extra space so the string will be nul-terminated. This is + // only a convenience, for when debugging; it is not needed otherwise. + UChar *strings = + static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); + if (U_FAILURE(status)) { + return; + } + fStringTable->extract(strings, stringsLength+1, status); + rawData = fSpoofImpl->fSpoofData->fRawData; + U_ASSERT(rawData->fCFUStringTable == 0); + rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); + rawData->fCFUStringTableLen = stringsLength; + fSpoofImpl->fSpoofData->fCFUStrings = strings; +} + +#endif +#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS + |