summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/rbbi.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/rbbi.cpp')
-rw-r--r--intl/icu/source/common/rbbi.cpp1861
1 files changed, 1861 insertions, 0 deletions
diff --git a/intl/icu/source/common/rbbi.cpp b/intl/icu/source/common/rbbi.cpp
new file mode 100644
index 000000000..2680bf216
--- /dev/null
+++ b/intl/icu/source/common/rbbi.cpp
@@ -0,0 +1,1861 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+***************************************************************************
+* Copyright (C) 1999-2016 International Business Machines Corporation
+* and others. All rights reserved.
+***************************************************************************
+*/
+//
+// file: rbbi.c Contains the implementation of the rule based break iterator
+// runtime engine and the API implementation for
+// class RuleBasedBreakIterator
+//
+
+#include "utypeinfo.h" // for 'typeid' to work
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_BREAK_ITERATION
+
+#include "unicode/rbbi.h"
+#include "unicode/schriter.h"
+#include "unicode/uchriter.h"
+#include "unicode/udata.h"
+#include "unicode/uclean.h"
+#include "rbbidata.h"
+#include "rbbirb.h"
+#include "cmemory.h"
+#include "cstring.h"
+#include "umutex.h"
+#include "ucln_cmn.h"
+#include "brkeng.h"
+
+#include "uassert.h"
+#include "uvector.h"
+
+// if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
+#if U_LOCAL_SERVICE_HOOK
+#include "localsvc.h"
+#endif
+
+#ifdef RBBI_DEBUG
+static UBool fTrace = FALSE;
+#endif
+
+U_NAMESPACE_BEGIN
+
+// The state number of the starting state
+#define START_STATE 1
+
+// The state-transition value indicating "stop"
+#define STOP_STATE 0
+
+
+UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
+
+
+//=======================================================================
+// constructors
+//=======================================================================
+
+/**
+ * Constructs a RuleBasedBreakIterator that uses the already-created
+ * tables object that is passed in as a parameter.
+ */
+RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
+{
+ init();
+ fData = new RBBIDataWrapper(data, status); // status checked in constructor
+ if (U_FAILURE(status)) {return;}
+ if(fData == 0) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+}
+
+//
+// Construct from precompiled binary rules (tables). This constructor is public API,
+// taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
+//
+RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
+ uint32_t ruleLength,
+ UErrorCode &status) {
+ init();
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
+ if (data->fLength > ruleLength) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
+ if (U_FAILURE(status)) {return;}
+ if(fData == 0) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+}
+
+
+//-------------------------------------------------------------------------------
+//
+// Constructor from a UDataMemory handle to precompiled break rules
+// stored in an ICU data file.
+//
+//-------------------------------------------------------------------------------
+RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
+{
+ init();
+ fData = new RBBIDataWrapper(udm, status); // status checked in constructor
+ if (U_FAILURE(status)) {return;}
+ if(fData == 0) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+}
+
+
+
+//-------------------------------------------------------------------------------
+//
+// Constructor from a set of rules supplied as a string.
+//
+//-------------------------------------------------------------------------------
+RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
+ UParseError &parseError,
+ UErrorCode &status)
+{
+ init();
+ if (U_FAILURE(status)) {return;}
+ RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
+ RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
+ // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
+ // creates and returns a complete RBBI. From here, in a constructor, we
+ // can't just return the object created by the builder factory, hence
+ // the assignment of the factory created object to "this".
+ if (U_SUCCESS(status)) {
+ *this = *bi;
+ delete bi;
+ }
+}
+
+
+//-------------------------------------------------------------------------------
+//
+// Default Constructor. Create an empty shell that can be set up later.
+// Used when creating a RuleBasedBreakIterator from a set
+// of rules.
+//-------------------------------------------------------------------------------
+RuleBasedBreakIterator::RuleBasedBreakIterator() {
+ init();
+}
+
+
+//-------------------------------------------------------------------------------
+//
+// Copy constructor. Will produce a break iterator with the same behavior,
+// and which iterates over the same text, as the one passed in.
+//
+//-------------------------------------------------------------------------------
+RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
+: BreakIterator(other)
+{
+ this->init();
+ *this = other;
+}
+
+
+/**
+ * Destructor
+ */
+RuleBasedBreakIterator::~RuleBasedBreakIterator() {
+ if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ // fCharIter was adopted from the outside.
+ delete fCharIter;
+ }
+ fCharIter = NULL;
+ delete fSCharIter;
+ fCharIter = NULL;
+ delete fDCharIter;
+ fDCharIter = NULL;
+
+ utext_close(fText);
+
+ if (fData != NULL) {
+ fData->removeReference();
+ fData = NULL;
+ }
+ if (fCachedBreakPositions) {
+ uprv_free(fCachedBreakPositions);
+ fCachedBreakPositions = NULL;
+ }
+ if (fLanguageBreakEngines) {
+ delete fLanguageBreakEngines;
+ fLanguageBreakEngines = NULL;
+ }
+ if (fUnhandledBreakEngine) {
+ delete fUnhandledBreakEngine;
+ fUnhandledBreakEngine = NULL;
+ }
+}
+
+/**
+ * Assignment operator. Sets this iterator to have the same behavior,
+ * and iterate over the same text, as the one passed in.
+ */
+RuleBasedBreakIterator&
+RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
+ if (this == &that) {
+ return *this;
+ }
+ reset(); // Delete break cache information
+ fBreakType = that.fBreakType;
+ if (fLanguageBreakEngines != NULL) {
+ delete fLanguageBreakEngines;
+ fLanguageBreakEngines = NULL; // Just rebuild for now
+ }
+ // TODO: clone fLanguageBreakEngines from "that"
+ UErrorCode status = U_ZERO_ERROR;
+ fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
+
+ if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ delete fCharIter;
+ }
+ fCharIter = NULL;
+
+ if (that.fCharIter != NULL ) {
+ // This is a little bit tricky - it will intially appear that
+ // this->fCharIter is adopted, even if that->fCharIter was
+ // not adopted. That's ok.
+ fCharIter = that.fCharIter->clone();
+ }
+
+ if (fData != NULL) {
+ fData->removeReference();
+ fData = NULL;
+ }
+ if (that.fData != NULL) {
+ fData = that.fData->addReference();
+ }
+
+ return *this;
+}
+
+
+
+//-----------------------------------------------------------------------------
+//
+// init() Shared initialization routine. Used by all the constructors.
+// Initializes all fields, leaving the object in a consistent state.
+//
+//-----------------------------------------------------------------------------
+void RuleBasedBreakIterator::init() {
+ UErrorCode status = U_ZERO_ERROR;
+ fText = utext_openUChars(NULL, NULL, 0, &status);
+ fCharIter = NULL;
+ fSCharIter = NULL;
+ fDCharIter = NULL;
+ fData = NULL;
+ fLastRuleStatusIndex = 0;
+ fLastStatusIndexValid = TRUE;
+ fDictionaryCharCount = 0;
+ fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
+ // dictionary behavior for Break Iterators that are
+ // built from rules. Even better would be the ability to
+ // declare the type in the rules.
+
+ fCachedBreakPositions = NULL;
+ fLanguageBreakEngines = NULL;
+ fUnhandledBreakEngine = NULL;
+ fNumCachedBreakPositions = 0;
+ fPositionInCache = 0;
+
+#ifdef RBBI_DEBUG
+ static UBool debugInitDone = FALSE;
+ if (debugInitDone == FALSE) {
+ char *debugEnv = getenv("U_RBBIDEBUG");
+ if (debugEnv && uprv_strstr(debugEnv, "trace")) {
+ fTrace = TRUE;
+ }
+ debugInitDone = TRUE;
+ }
+#endif
+}
+
+
+
+//-----------------------------------------------------------------------------
+//
+// clone - Returns a newly-constructed RuleBasedBreakIterator with the same
+// behavior, and iterating over the same text, as this one.
+// Virtual function: does the right thing with subclasses.
+//
+//-----------------------------------------------------------------------------
+BreakIterator*
+RuleBasedBreakIterator::clone(void) const {
+ return new RuleBasedBreakIterator(*this);
+}
+
+/**
+ * Equality operator. Returns TRUE if both BreakIterators are of the
+ * same class, have the same behavior, and iterate over the same text.
+ */
+UBool
+RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
+ if (typeid(*this) != typeid(that)) {
+ return FALSE;
+ }
+
+ const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
+
+ if (!utext_equals(fText, that2.fText)) {
+ // The two break iterators are operating on different text,
+ // or have a different interation position.
+ return FALSE;
+ };
+
+ // TODO: need a check for when in a dictionary region at different offsets.
+
+ if (that2.fData == fData ||
+ (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
+ // The two break iterators are using the same rules.
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/**
+ * Compute a hash code for this BreakIterator
+ * @return A hash code
+ */
+int32_t
+RuleBasedBreakIterator::hashCode(void) const {
+ int32_t hash = 0;
+ if (fData != NULL) {
+ hash = fData->hashCode();
+ }
+ return hash;
+}
+
+
+void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ reset();
+ fText = utext_clone(fText, ut, FALSE, TRUE, &status);
+
+ // Set up a dummy CharacterIterator to be returned if anyone
+ // calls getText(). With input from UText, there is no reasonable
+ // way to return a characterIterator over the actual input text.
+ // Return one over an empty string instead - this is the closest
+ // we can come to signaling a failure.
+ // (GetText() is obsolete, this failure is sort of OK)
+ if (fDCharIter == NULL) {
+ static const UChar c = 0;
+ fDCharIter = new UCharCharacterIterator(&c, 0);
+ if (fDCharIter == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ }
+
+ if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ // existing fCharIter was adopted from the outside. Delete it now.
+ delete fCharIter;
+ }
+ fCharIter = fDCharIter;
+
+ this->first();
+}
+
+
+UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
+ UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
+ return result;
+}
+
+
+
+/**
+ * Returns the description used to create this iterator
+ */
+const UnicodeString&
+RuleBasedBreakIterator::getRules() const {
+ if (fData != NULL) {
+ return fData->getRuleSourceString();
+ } else {
+ static const UnicodeString *s;
+ if (s == NULL) {
+ // TODO: something more elegant here.
+ // perhaps API should return the string by value.
+ // Note: thread unsafe init & leak are semi-ok, better than
+ // what was before. Sould be cleaned up, though.
+ s = new UnicodeString;
+ }
+ return *s;
+ }
+}
+
+//=======================================================================
+// BreakIterator overrides
+//=======================================================================
+
+/**
+ * Return a CharacterIterator over the text being analyzed.
+ */
+CharacterIterator&
+RuleBasedBreakIterator::getText() const {
+ return *fCharIter;
+}
+
+/**
+ * Set the iterator to analyze a new piece of text. This function resets
+ * the current iteration position to the beginning of the text.
+ * @param newText An iterator over the text to analyze.
+ */
+void
+RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
+ // If we are holding a CharacterIterator adopted from a
+ // previous call to this function, delete it now.
+ if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ delete fCharIter;
+ }
+
+ fCharIter = newText;
+ UErrorCode status = U_ZERO_ERROR;
+ reset();
+ if (newText==NULL || newText->startIndex() != 0) {
+ // startIndex !=0 wants to be an error, but there's no way to report it.
+ // Make the iterator text be an empty string.
+ fText = utext_openUChars(fText, NULL, 0, &status);
+ } else {
+ fText = utext_openCharacterIterator(fText, newText, &status);
+ }
+ this->first();
+}
+
+/**
+ * Set the iterator to analyze a new piece of text. This function resets
+ * the current iteration position to the beginning of the text.
+ * @param newText An iterator over the text to analyze.
+ */
+void
+RuleBasedBreakIterator::setText(const UnicodeString& newText) {
+ UErrorCode status = U_ZERO_ERROR;
+ reset();
+ fText = utext_openConstUnicodeString(fText, &newText, &status);
+
+ // Set up a character iterator on the string.
+ // Needed in case someone calls getText().
+ // Can not, unfortunately, do this lazily on the (probably never)
+ // call to getText(), because getText is const.
+ if (fSCharIter == NULL) {
+ fSCharIter = new StringCharacterIterator(newText);
+ } else {
+ fSCharIter->setText(newText);
+ }
+
+ if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ // old fCharIter was adopted from the outside. Delete it.
+ delete fCharIter;
+ }
+ fCharIter = fSCharIter;
+
+ this->first();
+}
+
+
+/**
+ * Provide a new UText for the input text. Must reference text with contents identical
+ * to the original.
+ * Intended for use with text data originating in Java (garbage collected) environments
+ * where the data may be moved in memory at arbitrary times.
+ */
+RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ if (input == NULL) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return *this;
+ }
+ int64_t pos = utext_getNativeIndex(fText);
+ // Shallow read-only clone of the new UText into the existing input UText
+ fText = utext_clone(fText, input, FALSE, TRUE, &status);
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ utext_setNativeIndex(fText, pos);
+ if (utext_getNativeIndex(fText) != pos) {
+ // Sanity check. The new input utext is supposed to have the exact same
+ // contents as the old. If we can't set to the same position, it doesn't.
+ // The contents underlying the old utext might be invalid at this point,
+ // so it's not safe to check directly.
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ return *this;
+}
+
+
+/**
+ * Sets the current iteration position to the beginning of the text, position zero.
+ * @return The new iterator position, which is zero.
+ */
+int32_t RuleBasedBreakIterator::first(void) {
+ reset();
+ fLastRuleStatusIndex = 0;
+ fLastStatusIndexValid = TRUE;
+ //if (fText == NULL)
+ // return BreakIterator::DONE;
+
+ utext_setNativeIndex(fText, 0);
+ return 0;
+}
+
+/**
+ * Sets the current iteration position to the end of the text.
+ * @return The text's past-the-end offset.
+ */
+int32_t RuleBasedBreakIterator::last(void) {
+ reset();
+ if (fText == NULL) {
+ fLastRuleStatusIndex = 0;
+ fLastStatusIndexValid = TRUE;
+ return BreakIterator::DONE;
+ }
+
+ fLastStatusIndexValid = FALSE;
+ int32_t pos = (int32_t)utext_nativeLength(fText);
+ utext_setNativeIndex(fText, pos);
+ return pos;
+}
+
+/**
+ * Advances the iterator either forward or backward the specified number of steps.
+ * Negative values move backward, and positive values move forward. This is
+ * equivalent to repeatedly calling next() or previous().
+ * @param n The number of steps to move. The sign indicates the direction
+ * (negative is backwards, and positive is forwards).
+ * @return The character offset of the boundary position n boundaries away from
+ * the current one.
+ */
+int32_t RuleBasedBreakIterator::next(int32_t n) {
+ int32_t result = current();
+ while (n > 0) {
+ result = next();
+ --n;
+ }
+ while (n < 0) {
+ result = previous();
+ ++n;
+ }
+ return result;
+}
+
+/**
+ * Advances the iterator to the next boundary position.
+ * @return The position of the first boundary after this one.
+ */
+int32_t RuleBasedBreakIterator::next(void) {
+ // if we have cached break positions and we're still in the range
+ // covered by them, just move one step forward in the cache
+ if (fCachedBreakPositions != NULL) {
+ if (fPositionInCache < fNumCachedBreakPositions - 1) {
+ ++fPositionInCache;
+ int32_t pos = fCachedBreakPositions[fPositionInCache];
+ utext_setNativeIndex(fText, pos);
+ return pos;
+ }
+ else {
+ reset();
+ }
+ }
+
+ int32_t startPos = current();
+ fDictionaryCharCount = 0;
+ int32_t result = handleNext(fData->fForwardTable);
+ if (fDictionaryCharCount > 0) {
+ result = checkDictionary(startPos, result, FALSE);
+ }
+ return result;
+}
+
+/**
+ * Advances the iterator backwards, to the last boundary preceding this one.
+ * @return The position of the last boundary position preceding this one.
+ */
+int32_t RuleBasedBreakIterator::previous(void) {
+ int32_t result;
+ int32_t startPos;
+
+ // if we have cached break positions and we're still in the range
+ // covered by them, just move one step backward in the cache
+ if (fCachedBreakPositions != NULL) {
+ if (fPositionInCache > 0) {
+ --fPositionInCache;
+ // If we're at the beginning of the cache, need to reevaluate the
+ // rule status
+ if (fPositionInCache <= 0) {
+ fLastStatusIndexValid = FALSE;
+ }
+ int32_t pos = fCachedBreakPositions[fPositionInCache];
+ utext_setNativeIndex(fText, pos);
+ return pos;
+ }
+ else {
+ reset();
+ }
+ }
+
+ // if we're already sitting at the beginning of the text, return DONE
+ if (fText == NULL || (startPos = current()) == 0) {
+ fLastRuleStatusIndex = 0;
+ fLastStatusIndexValid = TRUE;
+ return BreakIterator::DONE;
+ }
+
+ if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
+ result = handlePrevious(fData->fReverseTable);
+ if (fDictionaryCharCount > 0) {
+ result = checkDictionary(result, startPos, TRUE);
+ }
+ return result;
+ }
+
+ // old rule syntax
+ // set things up. handlePrevious() will back us up to some valid
+ // break position before the current position (we back our internal
+ // iterator up one step to prevent handlePrevious() from returning
+ // the current position), but not necessarily the last one before
+ // where we started
+
+ int32_t start = current();
+
+ (void)UTEXT_PREVIOUS32(fText);
+ int32_t lastResult = handlePrevious(fData->fReverseTable);
+ if (lastResult == UBRK_DONE) {
+ lastResult = 0;
+ utext_setNativeIndex(fText, 0);
+ }
+ result = lastResult;
+ int32_t lastTag = 0;
+ UBool breakTagValid = FALSE;
+
+ // iterate forward from the known break position until we pass our
+ // starting point. The last break position before the starting
+ // point is our return value
+
+ for (;;) {
+ result = next();
+ if (result == BreakIterator::DONE || result >= start) {
+ break;
+ }
+ lastResult = result;
+ lastTag = fLastRuleStatusIndex;
+ breakTagValid = TRUE;
+ }
+
+ // fLastBreakTag wants to have the value for section of text preceding
+ // the result position that we are to return (in lastResult.) If
+ // the backwards rules overshot and the above loop had to do two or more
+ // next()s to move up to the desired return position, we will have a valid
+ // tag value. But, if handlePrevious() took us to exactly the correct result position,
+ // we wont have a tag value for that position, which is only set by handleNext().
+
+ // Set the current iteration position to be the last break position
+ // before where we started, and then return that value.
+ utext_setNativeIndex(fText, lastResult);
+ fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
+ fLastStatusIndexValid = breakTagValid;
+
+ // No need to check the dictionary; it will have been handled by
+ // next()
+
+ return lastResult;
+}
+
+/**
+ * Sets the iterator to refer to the first boundary position following
+ * the specified position.
+ * @offset The position from which to begin searching for a break position.
+ * @return The position of the first break after the current position.
+ */
+int32_t RuleBasedBreakIterator::following(int32_t offset) {
+ // if the offset passed in is already past the end of the text,
+ // just return DONE; if it's before the beginning, return the
+ // text's starting offset
+ if (fText == NULL || offset >= utext_nativeLength(fText)) {
+ last();
+ return next();
+ }
+ else if (offset < 0) {
+ return first();
+ }
+
+ // Move requested offset to a code point start. It might be on a trail surrogate,
+ // or on a trail byte if the input is UTF-8.
+ utext_setNativeIndex(fText, offset);
+ offset = (int32_t)utext_getNativeIndex(fText);
+
+ // if we have cached break positions and offset is in the range
+ // covered by them, use them
+ // TODO: could use binary search
+ // TODO: what if offset is outside range, but break is not?
+ if (fCachedBreakPositions != NULL) {
+ if (offset >= fCachedBreakPositions[0]
+ && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
+ fPositionInCache = 0;
+ // We are guaranteed not to leave the array due to range test above
+ while (offset >= fCachedBreakPositions[fPositionInCache]) {
+ ++fPositionInCache;
+ }
+ int32_t pos = fCachedBreakPositions[fPositionInCache];
+ utext_setNativeIndex(fText, pos);
+ return pos;
+ }
+ else {
+ reset();
+ }
+ }
+
+ // Set our internal iteration position (temporarily)
+ // to the position passed in. If this is the _beginning_ position,
+ // then we can just use next() to get our return value
+
+ int32_t result = 0;
+
+ if (fData->fSafeRevTable != NULL) {
+ // new rule syntax
+ utext_setNativeIndex(fText, offset);
+ // move forward one codepoint to prepare for moving back to a
+ // safe point.
+ // this handles offset being between a supplementary character
+ // TODO: is this still needed, with move to code point boundary handled above?
+ (void)UTEXT_NEXT32(fText);
+ // handlePrevious will move most of the time to < 1 boundary away
+ handlePrevious(fData->fSafeRevTable);
+ int32_t result = next();
+ while (result <= offset) {
+ result = next();
+ }
+ return result;
+ }
+ if (fData->fSafeFwdTable != NULL) {
+ // backup plan if forward safe table is not available
+ utext_setNativeIndex(fText, offset);
+ (void)UTEXT_PREVIOUS32(fText);
+ // handle next will give result >= offset
+ handleNext(fData->fSafeFwdTable);
+ // previous will give result 0 or 1 boundary away from offset,
+ // most of the time
+ // we have to
+ int32_t oldresult = previous();
+ while (oldresult > offset) {
+ int32_t result = previous();
+ if (result <= offset) {
+ return oldresult;
+ }
+ oldresult = result;
+ }
+ int32_t result = next();
+ if (result <= offset) {
+ return next();
+ }
+ return result;
+ }
+ // otherwise, we have to sync up first. Use handlePrevious() to back
+ // up to a known break position before the specified position (if
+ // we can determine that the specified position is a break position,
+ // we don't back up at all). This may or may not be the last break
+ // position at or before our starting position. Advance forward
+ // from here until we've passed the starting position. The position
+ // we stop on will be the first break position after the specified one.
+ // old rule syntax
+
+ utext_setNativeIndex(fText, offset);
+ if (offset==0 ||
+ (offset==1 && utext_getNativeIndex(fText)==0)) {
+ return next();
+ }
+ result = previous();
+
+ while (result != BreakIterator::DONE && result <= offset) {
+ result = next();
+ }
+
+ return result;
+}
+
+/**
+ * Sets the iterator to refer to the last boundary position before the
+ * specified position.
+ * @offset The position to begin searching for a break from.
+ * @return The position of the last boundary before the starting position.
+ */
+int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
+ // if the offset passed in is already past the end of the text,
+ // just return DONE; if it's before the beginning, return the
+ // text's starting offset
+ if (fText == NULL || offset > utext_nativeLength(fText)) {
+ return last();
+ }
+ else if (offset < 0) {
+ return first();
+ }
+
+ // Move requested offset to a code point start. It might be on a trail surrogate,
+ // or on a trail byte if the input is UTF-8.
+ utext_setNativeIndex(fText, offset);
+ offset = (int32_t)utext_getNativeIndex(fText);
+
+ // if we have cached break positions and offset is in the range
+ // covered by them, use them
+ if (fCachedBreakPositions != NULL) {
+ // TODO: binary search?
+ // TODO: What if offset is outside range, but break is not?
+ if (offset > fCachedBreakPositions[0]
+ && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
+ fPositionInCache = 0;
+ while (fPositionInCache < fNumCachedBreakPositions
+ && offset > fCachedBreakPositions[fPositionInCache])
+ ++fPositionInCache;
+ --fPositionInCache;
+ // If we're at the beginning of the cache, need to reevaluate the
+ // rule status
+ if (fPositionInCache <= 0) {
+ fLastStatusIndexValid = FALSE;
+ }
+ utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
+ return fCachedBreakPositions[fPositionInCache];
+ }
+ else {
+ reset();
+ }
+ }
+
+ // if we start by updating the current iteration position to the
+ // position specified by the caller, we can just use previous()
+ // to carry out this operation
+
+ if (fData->fSafeFwdTable != NULL) {
+ // new rule syntax
+ utext_setNativeIndex(fText, offset);
+ int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ if (newOffset != offset) {
+ // Will come here if specified offset was not a code point boundary AND
+ // the underlying implmentation is using UText, which snaps any non-code-point-boundary
+ // indices to the containing code point.
+ // For breakitereator::preceding only, these non-code-point indices need to be moved
+ // up to refer to the following codepoint.
+ (void)UTEXT_NEXT32(fText);
+ offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ }
+
+ // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
+ // rather than adjusting the position unconditionally?
+ // (Change would interact with safe rules.)
+ // TODO: change RBBI behavior for off-boundary indices to match that of UText?
+ // affects only preceding(), seems cleaner, but is slightly different.
+ (void)UTEXT_PREVIOUS32(fText);
+ handleNext(fData->fSafeFwdTable);
+ int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ while (result >= offset) {
+ result = previous();
+ }
+ return result;
+ }
+ if (fData->fSafeRevTable != NULL) {
+ // backup plan if forward safe table is not available
+ // TODO: check whether this path can be discarded
+ // It's probably OK to say that rules must supply both safe tables
+ // if they use safe tables at all. We have certainly never described
+ // to anyone how to work with just one safe table.
+ utext_setNativeIndex(fText, offset);
+ (void)UTEXT_NEXT32(fText);
+
+ // handle previous will give result <= offset
+ handlePrevious(fData->fSafeRevTable);
+
+ // next will give result 0 or 1 boundary away from offset,
+ // most of the time
+ // we have to
+ int32_t oldresult = next();
+ while (oldresult < offset) {
+ int32_t result = next();
+ if (result >= offset) {
+ return oldresult;
+ }
+ oldresult = result;
+ }
+ int32_t result = previous();
+ if (result >= offset) {
+ return previous();
+ }
+ return result;
+ }
+
+ // old rule syntax
+ utext_setNativeIndex(fText, offset);
+ return previous();
+}
+
+/**
+ * Returns true if the specfied position is a boundary position. As a side
+ * effect, leaves the iterator pointing to the first boundary position at
+ * or after "offset".
+ * @param offset the offset to check.
+ * @return True if "offset" is a boundary position.
+ */
+UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
+ // the beginning index of the iterator is always a boundary position by definition
+ if (offset == 0) {
+ first(); // For side effects on current position, tag values.
+ return TRUE;
+ }
+
+ if (offset == (int32_t)utext_nativeLength(fText)) {
+ last(); // For side effects on current position, tag values.
+ return TRUE;
+ }
+
+ // out-of-range indexes are never boundary positions
+ if (offset < 0) {
+ first(); // For side effects on current position, tag values.
+ return FALSE;
+ }
+
+ if (offset > utext_nativeLength(fText)) {
+ last(); // For side effects on current position, tag values.
+ return FALSE;
+ }
+
+ // otherwise, we can use following() on the position before the specified
+ // one and return true if the position we get back is the one the user
+ // specified
+ utext_previous32From(fText, offset);
+ int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ UBool result = following(backOne) == offset;
+ return result;
+}
+
+/**
+ * Returns the current iteration position.
+ * @return The current iteration position.
+ */
+int32_t RuleBasedBreakIterator::current(void) const {
+ int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ return pos;
+}
+
+//=======================================================================
+// implementation
+//=======================================================================
+
+//
+// RBBIRunMode - the state machine runs an extra iteration at the beginning and end
+// of user text. A variable with this enum type keeps track of where we
+// are. The state machine only fetches user input while in the RUN mode.
+//
+enum RBBIRunMode {
+ RBBI_START, // state machine processing is before first char of input
+ RBBI_RUN, // state machine processing is in the user text
+ RBBI_END // state machine processing is after end of user text.
+};
+
+
+// Map from look-ahead break states (corresponds to rules) to boundary positions.
+// Allows multiple lookahead break rules to be in flight at the same time.
+//
+// This is a temporary approach for ICU 57. A better fix is to make the look-ahead numbers
+// in the state table be sequential, then we can just index an array. And the
+// table could also tell us in advance how big that array needs to be.
+//
+// Before ICU 57 there was just a single simple variable for a look-ahead match that
+// was in progress. Two rules at once did not work.
+
+static const int32_t kMaxLookaheads = 8;
+struct LookAheadResults {
+ int32_t fUsedSlotLimit;
+ int32_t fPositions[8];
+ int16_t fKeys[8];
+
+ LookAheadResults() : fUsedSlotLimit(0), fPositions(), fKeys() {};
+
+ int32_t getPosition(int16_t key) {
+ for (int32_t i=0; i<fUsedSlotLimit; ++i) {
+ if (fKeys[i] == key) {
+ return fPositions[i];
+ }
+ }
+ U_ASSERT(FALSE);
+ return -1;
+ }
+
+ void setPosition(int16_t key, int32_t position) {
+ int32_t i;
+ for (i=0; i<fUsedSlotLimit; ++i) {
+ if (fKeys[i] == key) {
+ fPositions[i] = position;
+ return;
+ }
+ }
+ if (i >= kMaxLookaheads) {
+ U_ASSERT(FALSE);
+ i = kMaxLookaheads - 1;
+ }
+ fKeys[i] = key;
+ fPositions[i] = position;
+ U_ASSERT(fUsedSlotLimit == i);
+ fUsedSlotLimit = i + 1;
+ }
+};
+
+
+//-----------------------------------------------------------------------------------
+//
+// handleNext(stateTable)
+// This method is the actual implementation of the rbbi next() method.
+// This method initializes the state machine to state 1
+// and advances through the text character by character until we reach the end
+// of the text or the state machine transitions to state 0. We update our return
+// value every time the state machine passes through an accepting state.
+//
+//-----------------------------------------------------------------------------------
+int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
+ int32_t state;
+ uint16_t category = 0;
+ RBBIRunMode mode;
+
+ RBBIStateTableRow *row;
+ UChar32 c;
+ LookAheadResults lookAheadMatches;
+ int32_t result = 0;
+ int32_t initialPosition = 0;
+ const char *tableData = statetable->fTableData;
+ uint32_t tableRowLen = statetable->fRowLen;
+
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPuts("Handle Next pos char state category");
+ }
+ #endif
+
+ // No matter what, handleNext alway correctly sets the break tag value.
+ fLastStatusIndexValid = TRUE;
+ fLastRuleStatusIndex = 0;
+
+ // if we're already at the end of the text, return DONE.
+ initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ result = initialPosition;
+ c = UTEXT_NEXT32(fText);
+ if (fData == NULL || c==U_SENTINEL) {
+ return BreakIterator::DONE;
+ }
+
+ // Set the initial state for the state machine
+ state = START_STATE;
+ row = (RBBIStateTableRow *)
+ //(statetable->fTableData + (statetable->fRowLen * state));
+ (tableData + tableRowLen * state);
+
+
+ mode = RBBI_RUN;
+ if (statetable->fFlags & RBBI_BOF_REQUIRED) {
+ category = 2;
+ mode = RBBI_START;
+ }
+
+
+ // loop until we reach the end of the text or transition to state 0
+ //
+ for (;;) {
+ if (c == U_SENTINEL) {
+ // Reached end of input string.
+ if (mode == RBBI_END) {
+ // We have already run the loop one last time with the
+ // character set to the psueudo {eof} value. Now it is time
+ // to unconditionally bail out.
+ break;
+ }
+ // Run the loop one last time with the fake end-of-input character category.
+ mode = RBBI_END;
+ category = 1;
+ }
+
+ //
+ // Get the char category. An incoming category of 1 or 2 means that
+ // we are preset for doing the beginning or end of input, and
+ // that we shouldn't get a category from an actual text input character.
+ //
+ if (mode == RBBI_RUN) {
+ // look up the current character's character category, which tells us
+ // which column in the state table to look at.
+ // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
+ // not the size of the character going in, which is a UChar32.
+ //
+ UTRIE_GET16(&fData->fTrie, c, category);
+
+ // Check the dictionary bit in the character's category.
+ // Counter is only used by dictionary based iterators (subclasses).
+ // Chars that need to be handled by a dictionary have a flag bit set
+ // in their category values.
+ //
+ if ((category & 0x4000) != 0) {
+ fDictionaryCharCount++;
+ // And off the dictionary flag bit.
+ category &= ~0x4000;
+ }
+ }
+
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText));
+ if (0x20<=c && c<0x7f) {
+ RBBIDebugPrintf("\"%c\" ", c);
+ } else {
+ RBBIDebugPrintf("%5x ", c);
+ }
+ RBBIDebugPrintf("%3d %3d\n", state, category);
+ }
+ #endif
+
+ // State Transition - move machine to its next state
+ //
+
+ // Note: fNextState is defined as uint16_t[2], but we are casting
+ // a generated RBBI table to RBBIStateTableRow and some tables
+ // actually have more than 2 categories.
+ U_ASSERT(category<fData->fHeader->fCatCount);
+ state = row->fNextState[category]; /*Not accessing beyond memory*/
+ row = (RBBIStateTableRow *)
+ // (statetable->fTableData + (statetable->fRowLen * state));
+ (tableData + tableRowLen * state);
+
+
+ if (row->fAccepting == -1) {
+ // Match found, common case.
+ if (mode != RBBI_START) {
+ result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ }
+ fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
+ }
+
+ int16_t completedRule = row->fAccepting;
+ if (completedRule > 0) {
+ // Lookahead match is completed.
+ int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
+ if (lookaheadResult >= 0) {
+ fLastRuleStatusIndex = row->fTagIdx;
+ UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
+ return lookaheadResult;
+ }
+ }
+ int16_t rule = row->fLookAhead;
+ if (rule != 0) {
+ // At the position of a '/' in a look-ahead match. Record it.
+ int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ lookAheadMatches.setPosition(rule, pos);
+ }
+
+ if (state == STOP_STATE) {
+ // This is the normal exit from the lookup state machine.
+ // We have advanced through the string until it is certain that no
+ // longer match is possible, no matter what characters follow.
+ break;
+ }
+
+ // Advance to the next character.
+ // If this is a beginning-of-input loop iteration, don't advance
+ // the input position. The next iteration will be processing the
+ // first real input character.
+ if (mode == RBBI_RUN) {
+ c = UTEXT_NEXT32(fText);
+ } else {
+ if (mode == RBBI_START) {
+ mode = RBBI_RUN;
+ }
+ }
+
+
+ }
+
+ // The state machine is done. Check whether it found a match...
+
+ // If the iterator failed to advance in the match engine, force it ahead by one.
+ // (This really indicates a defect in the break rules. They should always match
+ // at least one character.)
+ if (result == initialPosition) {
+ UTEXT_SETNATIVEINDEX(fText, initialPosition);
+ UTEXT_NEXT32(fText);
+ result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ }
+
+ // Leave the iterator at our result position.
+ UTEXT_SETNATIVEINDEX(fText, result);
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPrintf("result = %d\n\n", result);
+ }
+ #endif
+ return result;
+}
+
+
+
+//-----------------------------------------------------------------------------------
+//
+// handlePrevious()
+//
+// Iterate backwards, according to the logic of the reverse rules.
+// This version handles the exact style backwards rules.
+//
+// The logic of this function is very similar to handleNext(), above.
+//
+//-----------------------------------------------------------------------------------
+int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
+ int32_t state;
+ uint16_t category = 0;
+ RBBIRunMode mode;
+ RBBIStateTableRow *row;
+ UChar32 c;
+ LookAheadResults lookAheadMatches;
+ int32_t result = 0;
+ int32_t initialPosition = 0;
+
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPuts("Handle Previous pos char state category");
+ }
+ #endif
+
+ // handlePrevious() never gets the rule status.
+ // Flag the status as invalid; if the user ever asks for status, we will need
+ // to back up, then re-find the break position using handleNext(), which does
+ // get the status value.
+ fLastStatusIndexValid = FALSE;
+ fLastRuleStatusIndex = 0;
+
+ // if we're already at the start of the text, return DONE.
+ if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
+ return BreakIterator::DONE;
+ }
+
+ // Set up the starting char.
+ initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ result = initialPosition;
+ c = UTEXT_PREVIOUS32(fText);
+
+ // Set the initial state for the state machine
+ state = START_STATE;
+ row = (RBBIStateTableRow *)
+ (statetable->fTableData + (statetable->fRowLen * state));
+ category = 3;
+ mode = RBBI_RUN;
+ if (statetable->fFlags & RBBI_BOF_REQUIRED) {
+ category = 2;
+ mode = RBBI_START;
+ }
+
+
+ // loop until we reach the start of the text or transition to state 0
+ //
+ for (;;) {
+ if (c == U_SENTINEL) {
+ // Reached end of input string.
+ if (mode == RBBI_END) {
+ // We have already run the loop one last time with the
+ // character set to the psueudo {eof} value. Now it is time
+ // to unconditionally bail out.
+ if (result == initialPosition) {
+ // Ran off start, no match found.
+ // move one index one (towards the start, since we are doing a previous())
+ UTEXT_SETNATIVEINDEX(fText, initialPosition);
+ (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
+ }
+ break;
+ }
+ // Run the loop one last time with the fake end-of-input character category.
+ mode = RBBI_END;
+ category = 1;
+ }
+
+ //
+ // Get the char category. An incoming category of 1 or 2 means that
+ // we are preset for doing the beginning or end of input, and
+ // that we shouldn't get a category from an actual text input character.
+ //
+ if (mode == RBBI_RUN) {
+ // look up the current character's character category, which tells us
+ // which column in the state table to look at.
+ // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
+ // not the size of the character going in, which is a UChar32.
+ //
+ UTRIE_GET16(&fData->fTrie, c, category);
+
+ // Check the dictionary bit in the character's category.
+ // Counter is only used by dictionary based iterators (subclasses).
+ // Chars that need to be handled by a dictionary have a flag bit set
+ // in their category values.
+ //
+ if ((category & 0x4000) != 0) {
+ fDictionaryCharCount++;
+ // And off the dictionary flag bit.
+ category &= ~0x4000;
+ }
+ }
+
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
+ if (0x20<=c && c<0x7f) {
+ RBBIDebugPrintf("\"%c\" ", c);
+ } else {
+ RBBIDebugPrintf("%5x ", c);
+ }
+ RBBIDebugPrintf("%3d %3d\n", state, category);
+ }
+ #endif
+
+ // State Transition - move machine to its next state
+ //
+
+ // Note: fNextState is defined as uint16_t[2], but we are casting
+ // a generated RBBI table to RBBIStateTableRow and some tables
+ // actually have more than 2 categories.
+ U_ASSERT(category<fData->fHeader->fCatCount);
+ state = row->fNextState[category]; /*Not accessing beyond memory*/
+ row = (RBBIStateTableRow *)
+ (statetable->fTableData + (statetable->fRowLen * state));
+
+ if (row->fAccepting == -1) {
+ // Match found, common case.
+ result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ }
+
+ int16_t completedRule = row->fAccepting;
+ if (completedRule > 0) {
+ // Lookahead match is completed.
+ int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
+ if (lookaheadResult >= 0) {
+ UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
+ return lookaheadResult;
+ }
+ }
+ int16_t rule = row->fLookAhead;
+ if (rule != 0) {
+ // At the position of a '/' in a look-ahead match. Record it.
+ int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ lookAheadMatches.setPosition(rule, pos);
+ }
+
+ if (state == STOP_STATE) {
+ // This is the normal exit from the lookup state machine.
+ // We have advanced through the string until it is certain that no
+ // longer match is possible, no matter what characters follow.
+ break;
+ }
+
+ // Move (backwards) to the next character to process.
+ // If this is a beginning-of-input loop iteration, don't advance
+ // the input position. The next iteration will be processing the
+ // first real input character.
+ if (mode == RBBI_RUN) {
+ c = UTEXT_PREVIOUS32(fText);
+ } else {
+ if (mode == RBBI_START) {
+ mode = RBBI_RUN;
+ }
+ }
+ }
+
+ // The state machine is done. Check whether it found a match...
+
+ // If the iterator failed to advance in the match engine, force it ahead by one.
+ // (This really indicates a defect in the break rules. They should always match
+ // at least one character.)
+ if (result == initialPosition) {
+ UTEXT_SETNATIVEINDEX(fText, initialPosition);
+ UTEXT_PREVIOUS32(fText);
+ result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ }
+
+ // Leave the iterator at our result position.
+ UTEXT_SETNATIVEINDEX(fText, result);
+ #ifdef RBBI_DEBUG
+ if (fTrace) {
+ RBBIDebugPrintf("result = %d\n\n", result);
+ }
+ #endif
+ return result;
+}
+
+
+void
+RuleBasedBreakIterator::reset()
+{
+ if (fCachedBreakPositions) {
+ uprv_free(fCachedBreakPositions);
+ }
+ fCachedBreakPositions = NULL;
+ fNumCachedBreakPositions = 0;
+ fDictionaryCharCount = 0;
+ fPositionInCache = 0;
+}
+
+
+
+//-------------------------------------------------------------------------------
+//
+// getRuleStatus() Return the break rule tag associated with the current
+// iterator position. If the iterator arrived at its current
+// position by iterating forwards, the value will have been
+// cached by the handleNext() function.
+//
+// If no cached status value is available, the status is
+// found by doing a previous() followed by a next(), which
+// leaves the iterator where it started, and computes the
+// status while doing the next().
+//
+//-------------------------------------------------------------------------------
+void RuleBasedBreakIterator::makeRuleStatusValid() {
+ if (fLastStatusIndexValid == FALSE) {
+ // No cached status is available.
+ if (fText == NULL || current() == 0) {
+ // At start of text, or there is no text. Status is always zero.
+ fLastRuleStatusIndex = 0;
+ fLastStatusIndexValid = TRUE;
+ } else {
+ // Not at start of text. Find status the tedious way.
+ int32_t pa = current();
+ previous();
+ if (fNumCachedBreakPositions > 0) {
+ reset(); // Blow off the dictionary cache
+ }
+ int32_t pb = next();
+ if (pa != pb) {
+ // note: the if (pa != pb) test is here only to eliminate warnings for
+ // unused local variables on gcc. Logically, it isn't needed.
+ U_ASSERT(pa == pb);
+ }
+ }
+ }
+ U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
+}
+
+
+int32_t RuleBasedBreakIterator::getRuleStatus() const {
+ RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
+ nonConstThis->makeRuleStatusValid();
+
+ // fLastRuleStatusIndex indexes to the start of the appropriate status record
+ // (the number of status values.)
+ // This function returns the last (largest) of the array of status values.
+ int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
+ int32_t tagVal = fData->fRuleStatusTable[idx];
+
+ return tagVal;
+}
+
+
+
+
+int32_t RuleBasedBreakIterator::getRuleStatusVec(
+ int32_t *fillInVec, int32_t capacity, UErrorCode &status)
+{
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
+ nonConstThis->makeRuleStatusValid();
+ int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
+ int32_t numValsToCopy = numVals;
+ if (numVals > capacity) {
+ status = U_BUFFER_OVERFLOW_ERROR;
+ numValsToCopy = capacity;
+ }
+ int i;
+ for (i=0; i<numValsToCopy; i++) {
+ fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
+ }
+ return numVals;
+}
+
+
+
+//-------------------------------------------------------------------------------
+//
+// getBinaryRules Access to the compiled form of the rules,
+// for use by build system tools that save the data
+// for standard iterator types.
+//
+//-------------------------------------------------------------------------------
+const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
+ const uint8_t *retPtr = NULL;
+ length = 0;
+
+ if (fData != NULL) {
+ retPtr = (const uint8_t *)fData->fHeader;
+ length = fData->fHeader->fLength;
+ }
+ return retPtr;
+}
+
+
+BreakIterator * RuleBasedBreakIterator::createBufferClone(void * /*stackBuffer*/,
+ int32_t &bufferSize,
+ UErrorCode &status)
+{
+ if (U_FAILURE(status)){
+ return NULL;
+ }
+
+ if (bufferSize == 0) {
+ bufferSize = 1; // preflighting for deprecated functionality
+ return NULL;
+ }
+
+ BreakIterator *clonedBI = clone();
+ if (clonedBI == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ } else {
+ status = U_SAFECLONE_ALLOCATED_WARNING;
+ }
+ return (RuleBasedBreakIterator *)clonedBI;
+}
+
+
+//-------------------------------------------------------------------------------
+//
+// isDictionaryChar Return true if the category lookup for this char
+// indicates that it is in the set of dictionary lookup
+// chars.
+//
+// This function is intended for use by dictionary based
+// break iterators.
+//
+//-------------------------------------------------------------------------------
+/*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
+ if (fData == NULL) {
+ return FALSE;
+ }
+ uint16_t category;
+ UTRIE_GET16(&fData->fTrie, c, category);
+ return (category & 0x4000) != 0;
+}*/
+
+
+//-------------------------------------------------------------------------------
+//
+// checkDictionary This function handles all processing of characters in
+// the "dictionary" set. It will determine the appropriate
+// course of action, and possibly set up a cache in the
+// process.
+//
+//-------------------------------------------------------------------------------
+int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
+ int32_t endPos,
+ UBool reverse) {
+ // Reset the old break cache first.
+ reset();
+
+ // note: code segment below assumes that dictionary chars are in the
+ // startPos-endPos range
+ // value returned should be next character in sequence
+ if ((endPos - startPos) <= 1) {
+ return (reverse ? startPos : endPos);
+ }
+
+ // Starting from the starting point, scan towards the proposed result,
+ // looking for the first dictionary character (which may be the one
+ // we're on, if we're starting in the middle of a range).
+ utext_setNativeIndex(fText, reverse ? endPos : startPos);
+ if (reverse) {
+ UTEXT_PREVIOUS32(fText);
+ }
+
+ int32_t rangeStart = startPos;
+ int32_t rangeEnd = endPos;
+
+ uint16_t category;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ UStack breaks(status);
+ int32_t foundBreakCount = 0;
+ UChar32 c = utext_current32(fText);
+
+ UTRIE_GET16(&fData->fTrie, c, category);
+
+ // Is the character we're starting on a dictionary character? If so, we
+ // need to back up to include the entire run; otherwise the results of
+ // the break algorithm will differ depending on where we start. Since
+ // the result is cached and there is typically a non-dictionary break
+ // within a small number of words, there should be little performance impact.
+ if (category & 0x4000) {
+ if (reverse) {
+ do {
+ utext_next32(fText); // TODO: recast to work directly with postincrement.
+ c = utext_current32(fText);
+ UTRIE_GET16(&fData->fTrie, c, category);
+ } while (c != U_SENTINEL && (category & 0x4000));
+ // Back up to the last dictionary character
+ rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ if (c == U_SENTINEL) {
+ // c = fText->last32();
+ // TODO: why was this if needed?
+ c = UTEXT_PREVIOUS32(fText);
+ }
+ else {
+ c = UTEXT_PREVIOUS32(fText);
+ }
+ }
+ else {
+ do {
+ c = UTEXT_PREVIOUS32(fText);
+ UTRIE_GET16(&fData->fTrie, c, category);
+ }
+ while (c != U_SENTINEL && (category & 0x4000));
+ // Back up to the last dictionary character
+ if (c == U_SENTINEL) {
+ // c = fText->first32();
+ c = utext_current32(fText);
+ }
+ else {
+ utext_next32(fText);
+ c = utext_current32(fText);
+ }
+ rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
+ }
+ UTRIE_GET16(&fData->fTrie, c, category);
+ }
+
+ // Loop through the text, looking for ranges of dictionary characters.
+ // For each span, find the appropriate break engine, and ask it to find
+ // any breaks within the span.
+ // Note: we always do this in the forward direction, so that the break
+ // cache is built in the right order.
+ if (reverse) {
+ utext_setNativeIndex(fText, rangeStart);
+ c = utext_current32(fText);
+ UTRIE_GET16(&fData->fTrie, c, category);
+ }
+ while(U_SUCCESS(status)) {
+ while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
+ utext_next32(fText); // TODO: tweak for post-increment operation
+ c = utext_current32(fText);
+ UTRIE_GET16(&fData->fTrie, c, category);
+ }
+ if (current >= rangeEnd) {
+ break;
+ }
+
+ // We now have a dictionary character. Get the appropriate language object
+ // to deal with it.
+ const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
+
+ // Ask the language object if there are any breaks. It will leave the text
+ // pointer on the other side of its range, ready to search for the next one.
+ if (lbe != NULL) {
+ foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
+ }
+
+ // Reload the loop variables for the next go-round
+ c = utext_current32(fText);
+ UTRIE_GET16(&fData->fTrie, c, category);
+ }
+
+ // If we found breaks, build a new break cache. The first and last entries must
+ // be the original starting and ending position.
+ if (foundBreakCount > 0) {
+ U_ASSERT(foundBreakCount == breaks.size());
+ int32_t totalBreaks = foundBreakCount;
+ if (startPos < breaks.elementAti(0)) {
+ totalBreaks += 1;
+ }
+ if (endPos > breaks.peeki()) {
+ totalBreaks += 1;
+ }
+ fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
+ if (fCachedBreakPositions != NULL) {
+ int32_t out = 0;
+ fNumCachedBreakPositions = totalBreaks;
+ if (startPos < breaks.elementAti(0)) {
+ fCachedBreakPositions[out++] = startPos;
+ }
+ for (int32_t i = 0; i < foundBreakCount; ++i) {
+ fCachedBreakPositions[out++] = breaks.elementAti(i);
+ }
+ if (endPos > fCachedBreakPositions[out-1]) {
+ fCachedBreakPositions[out] = endPos;
+ }
+ // If there are breaks, then by definition, we are replacing the original
+ // proposed break by one of the breaks we found. Use following() and
+ // preceding() to do the work. They should never recurse in this case.
+ if (reverse) {
+ return preceding(endPos);
+ }
+ else {
+ return following(startPos);
+ }
+ }
+ // If the allocation failed, just fall through to the "no breaks found" case.
+ }
+
+ // If we get here, there were no language-based breaks. Set the text pointer
+ // to the original proposed break.
+ utext_setNativeIndex(fText, reverse ? startPos : endPos);
+ return (reverse ? startPos : endPos);
+}
+
+U_NAMESPACE_END
+
+
+static icu::UStack *gLanguageBreakFactories = NULL;
+static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
+
+/**
+ * Release all static memory held by breakiterator.
+ */
+U_CDECL_BEGIN
+static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
+ if (gLanguageBreakFactories) {
+ delete gLanguageBreakFactories;
+ gLanguageBreakFactories = NULL;
+ }
+ gLanguageBreakFactoriesInitOnce.reset();
+ return TRUE;
+}
+U_CDECL_END
+
+U_CDECL_BEGIN
+static void U_CALLCONV _deleteFactory(void *obj) {
+ delete (icu::LanguageBreakFactory *) obj;
+}
+U_CDECL_END
+U_NAMESPACE_BEGIN
+
+static void U_CALLCONV initLanguageFactories() {
+ UErrorCode status = U_ZERO_ERROR;
+ U_ASSERT(gLanguageBreakFactories == NULL);
+ gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
+ if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
+ ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
+ gLanguageBreakFactories->push(builtIn, status);
+#ifdef U_LOCAL_SERVICE_HOOK
+ LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
+ if (extra != NULL) {
+ gLanguageBreakFactories->push(extra, status);
+ }
+#endif
+ }
+ ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
+}
+
+
+static const LanguageBreakEngine*
+getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
+{
+ umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
+ if (gLanguageBreakFactories == NULL) {
+ return NULL;
+ }
+
+ int32_t i = gLanguageBreakFactories->size();
+ const LanguageBreakEngine *lbe = NULL;
+ while (--i >= 0) {
+ LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
+ lbe = factory->getEngineFor(c, breakType);
+ if (lbe != NULL) {
+ break;
+ }
+ }
+ return lbe;
+}
+
+
+//-------------------------------------------------------------------------------
+//
+// getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
+// the character c.
+//
+//-------------------------------------------------------------------------------
+const LanguageBreakEngine *
+RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
+ const LanguageBreakEngine *lbe = NULL;
+ UErrorCode status = U_ZERO_ERROR;
+
+ if (fLanguageBreakEngines == NULL) {
+ fLanguageBreakEngines = new UStack(status);
+ if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
+ delete fLanguageBreakEngines;
+ fLanguageBreakEngines = 0;
+ return NULL;
+ }
+ }
+
+ int32_t i = fLanguageBreakEngines->size();
+ while (--i >= 0) {
+ lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
+ if (lbe->handles(c, fBreakType)) {
+ return lbe;
+ }
+ }
+
+ // No existing dictionary took the character. See if a factory wants to
+ // give us a new LanguageBreakEngine for this character.
+ lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
+
+ // If we got one, use it and push it on our stack.
+ if (lbe != NULL) {
+ fLanguageBreakEngines->push((void *)lbe, status);
+ // Even if we can't remember it, we can keep looking it up, so
+ // return it even if the push fails.
+ return lbe;
+ }
+
+ // No engine is forthcoming for this character. Add it to the
+ // reject set. Create the reject break engine if needed.
+ if (fUnhandledBreakEngine == NULL) {
+ fUnhandledBreakEngine = new UnhandledEngine(status);
+ if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ // Put it last so that scripts for which we have an engine get tried
+ // first.
+ fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
+ // If we can't insert it, or creation failed, get rid of it
+ if (U_FAILURE(status)) {
+ delete fUnhandledBreakEngine;
+ fUnhandledBreakEngine = 0;
+ return NULL;
+ }
+ }
+
+ // Tell the reject engine about the character; at its discretion, it may
+ // add more than just the one character.
+ fUnhandledBreakEngine->handleCharacter(c, fBreakType);
+
+ return fUnhandledBreakEngine;
+}
+
+
+
+/*int32_t RuleBasedBreakIterator::getBreakType() const {
+ return fBreakType;
+}*/
+
+void RuleBasedBreakIterator::setBreakType(int32_t type) {
+ fBreakType = type;
+ reset();
+}
+
+U_NAMESPACE_END
+
+#endif /* #if !UCONFIG_NO_BREAK_ITERATION */