summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/normalizer2impl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/normalizer2impl.cpp')
-rw-r--r--intl/icu/source/common/normalizer2impl.cpp2110
1 files changed, 2110 insertions, 0 deletions
diff --git a/intl/icu/source/common/normalizer2impl.cpp b/intl/icu/source/common/normalizer2impl.cpp
new file mode 100644
index 000000000..be0240eee
--- /dev/null
+++ b/intl/icu/source/common/normalizer2impl.cpp
@@ -0,0 +1,2110 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+*******************************************************************************
+*
+* Copyright (C) 2009-2014, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+*******************************************************************************
+* file name: normalizer2impl.cpp
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2009nov22
+* created by: Markus W. Scherer
+*/
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_NORMALIZATION
+
+#include "unicode/normalizer2.h"
+#include "unicode/udata.h"
+#include "unicode/ustring.h"
+#include "unicode/utf16.h"
+#include "cmemory.h"
+#include "mutex.h"
+#include "normalizer2impl.h"
+#include "putilimp.h"
+#include "uassert.h"
+#include "uset_imp.h"
+#include "utrie2.h"
+#include "uvector.h"
+
+U_NAMESPACE_BEGIN
+
+// ReorderingBuffer -------------------------------------------------------- ***
+
+UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
+ int32_t length=str.length();
+ start=str.getBuffer(destCapacity);
+ if(start==NULL) {
+ // getBuffer() already did str.setToBogus()
+ errorCode=U_MEMORY_ALLOCATION_ERROR;
+ return FALSE;
+ }
+ limit=start+length;
+ remainingCapacity=str.getCapacity()-length;
+ reorderStart=start;
+ if(start==limit) {
+ lastCC=0;
+ } else {
+ setIterator();
+ lastCC=previousCC();
+ // Set reorderStart after the last code point with cc<=1 if there is one.
+ if(lastCC>1) {
+ while(previousCC()>1) {}
+ }
+ reorderStart=codePointLimit;
+ }
+ return TRUE;
+}
+
+UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
+ int32_t length=(int32_t)(limit-start);
+ return
+ length==(int32_t)(otherLimit-otherStart) &&
+ 0==u_memcmp(start, otherStart, length);
+}
+
+UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
+ if(remainingCapacity<2 && !resize(2, errorCode)) {
+ return FALSE;
+ }
+ if(lastCC<=cc || cc==0) {
+ limit[0]=U16_LEAD(c);
+ limit[1]=U16_TRAIL(c);
+ limit+=2;
+ lastCC=cc;
+ if(cc<=1) {
+ reorderStart=limit;
+ }
+ } else {
+ insert(c, cc);
+ }
+ remainingCapacity-=2;
+ return TRUE;
+}
+
+UBool ReorderingBuffer::append(const UChar *s, int32_t length,
+ uint8_t leadCC, uint8_t trailCC,
+ UErrorCode &errorCode) {
+ if(length==0) {
+ return TRUE;
+ }
+ if(remainingCapacity<length && !resize(length, errorCode)) {
+ return FALSE;
+ }
+ remainingCapacity-=length;
+ if(lastCC<=leadCC || leadCC==0) {
+ if(trailCC<=1) {
+ reorderStart=limit+length;
+ } else if(leadCC<=1) {
+ reorderStart=limit+1; // Ok if not a code point boundary.
+ }
+ const UChar *sLimit=s+length;
+ do { *limit++=*s++; } while(s!=sLimit);
+ lastCC=trailCC;
+ } else {
+ int32_t i=0;
+ UChar32 c;
+ U16_NEXT(s, i, length, c);
+ insert(c, leadCC); // insert first code point
+ while(i<length) {
+ U16_NEXT(s, i, length, c);
+ if(i<length) {
+ // s must be in NFD, otherwise we need to use getCC().
+ leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
+ } else {
+ leadCC=trailCC;
+ }
+ append(c, leadCC, errorCode);
+ }
+ }
+ return TRUE;
+}
+
+UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
+ int32_t cpLength=U16_LENGTH(c);
+ if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
+ return FALSE;
+ }
+ remainingCapacity-=cpLength;
+ if(cpLength==1) {
+ *limit++=(UChar)c;
+ } else {
+ limit[0]=U16_LEAD(c);
+ limit[1]=U16_TRAIL(c);
+ limit+=2;
+ }
+ lastCC=0;
+ reorderStart=limit;
+ return TRUE;
+}
+
+UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
+ if(s==sLimit) {
+ return TRUE;
+ }
+ int32_t length=(int32_t)(sLimit-s);
+ if(remainingCapacity<length && !resize(length, errorCode)) {
+ return FALSE;
+ }
+ u_memcpy(limit, s, length);
+ limit+=length;
+ remainingCapacity-=length;
+ lastCC=0;
+ reorderStart=limit;
+ return TRUE;
+}
+
+void ReorderingBuffer::remove() {
+ reorderStart=limit=start;
+ remainingCapacity=str.getCapacity();
+ lastCC=0;
+}
+
+void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
+ if(suffixLength<(limit-start)) {
+ limit-=suffixLength;
+ remainingCapacity+=suffixLength;
+ } else {
+ limit=start;
+ remainingCapacity=str.getCapacity();
+ }
+ lastCC=0;
+ reorderStart=limit;
+}
+
+UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
+ int32_t reorderStartIndex=(int32_t)(reorderStart-start);
+ int32_t length=(int32_t)(limit-start);
+ str.releaseBuffer(length);
+ int32_t newCapacity=length+appendLength;
+ int32_t doubleCapacity=2*str.getCapacity();
+ if(newCapacity<doubleCapacity) {
+ newCapacity=doubleCapacity;
+ }
+ if(newCapacity<256) {
+ newCapacity=256;
+ }
+ start=str.getBuffer(newCapacity);
+ if(start==NULL) {
+ // getBuffer() already did str.setToBogus()
+ errorCode=U_MEMORY_ALLOCATION_ERROR;
+ return FALSE;
+ }
+ reorderStart=start+reorderStartIndex;
+ limit=start+length;
+ remainingCapacity=str.getCapacity()-length;
+ return TRUE;
+}
+
+void ReorderingBuffer::skipPrevious() {
+ codePointLimit=codePointStart;
+ UChar c=*--codePointStart;
+ if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
+ --codePointStart;
+ }
+}
+
+uint8_t ReorderingBuffer::previousCC() {
+ codePointLimit=codePointStart;
+ if(reorderStart>=codePointStart) {
+ return 0;
+ }
+ UChar32 c=*--codePointStart;
+ if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) {
+ return 0;
+ }
+
+ UChar c2;
+ if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
+ --codePointStart;
+ c=U16_GET_SUPPLEMENTARY(c2, c);
+ }
+ return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
+}
+
+// Inserts c somewhere before the last character.
+// Requires 0<cc<lastCC which implies reorderStart<limit.
+void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
+ for(setIterator(), skipPrevious(); previousCC()>cc;) {}
+ // insert c at codePointLimit, after the character with prevCC<=cc
+ UChar *q=limit;
+ UChar *r=limit+=U16_LENGTH(c);
+ do {
+ *--r=*--q;
+ } while(codePointLimit!=q);
+ writeCodePoint(q, c);
+ if(cc<=1) {
+ reorderStart=r;
+ }
+}
+
+// Normalizer2Impl --------------------------------------------------------- ***
+
+struct CanonIterData : public UMemory {
+ CanonIterData(UErrorCode &errorCode);
+ ~CanonIterData();
+ void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
+ UTrie2 *trie;
+ UVector canonStartSets; // contains UnicodeSet *
+};
+
+Normalizer2Impl::~Normalizer2Impl() {
+ delete fCanonIterData;
+}
+
+void
+Normalizer2Impl::init(const int32_t *inIndexes, const UTrie2 *inTrie,
+ const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
+ minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
+ minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
+
+ minYesNo=inIndexes[IX_MIN_YES_NO];
+ minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
+ minNoNo=inIndexes[IX_MIN_NO_NO];
+ limitNoNo=inIndexes[IX_LIMIT_NO_NO];
+ minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
+
+ normTrie=inTrie;
+
+ maybeYesCompositions=inExtraData;
+ extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes);
+
+ smallFCD=inSmallFCD;
+
+ // Build tccc180[].
+ // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300.
+ uint8_t bits=0;
+ for(UChar c=0; c<0x180; bits>>=1) {
+ if((c&0xff)==0) {
+ bits=smallFCD[c>>8]; // one byte per 0x100 code points
+ }
+ if(bits&1) {
+ for(int i=0; i<0x20; ++i, ++c) {
+ tccc180[c]=(uint8_t)getFCD16FromNormData(c);
+ }
+ } else {
+ uprv_memset(tccc180+c, 0, 0x20);
+ c+=0x20;
+ }
+ }
+}
+
+uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const {
+ UChar32 c;
+ if(cpStart==(cpLimit-1)) {
+ c=*cpStart;
+ } else {
+ c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]);
+ }
+ uint16_t prevNorm16=getNorm16(c);
+ if(prevNorm16<=minYesNo) {
+ return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0
+ } else {
+ return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo
+ }
+}
+
+namespace {
+
+class LcccContext {
+public:
+ LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {}
+
+ void handleRange(UChar32 start, UChar32 end, uint16_t norm16) {
+ if(impl.isAlgorithmicNoNo(norm16)) {
+ // Range of code points with same-norm16-value algorithmic decompositions.
+ // They might have different non-zero FCD16 values.
+ do {
+ uint16_t fcd16=impl.getFCD16(start);
+ if(fcd16>0xff) { set.add(start); }
+ } while(++start<=end);
+ } else {
+ uint16_t fcd16=impl.getFCD16(start);
+ if(fcd16>0xff) { set.add(start, end); }
+ }
+ }
+
+private:
+ const Normalizer2Impl &impl;
+ UnicodeSet &set;
+};
+
+struct PropertyStartsContext {
+ PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder)
+ : impl(ni), sa(adder) {}
+
+ const Normalizer2Impl &impl;
+ const USetAdder *sa;
+};
+
+} // namespace
+
+U_CDECL_BEGIN
+
+static UBool U_CALLCONV
+enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
+ ((LcccContext *)context)->handleRange(start, end, (uint16_t)value);
+ return TRUE;
+}
+
+static UBool U_CALLCONV
+enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
+ /* add the start code point to the USet */
+ const PropertyStartsContext *ctx=(const PropertyStartsContext *)context;
+ const USetAdder *sa=ctx->sa;
+ sa->add(sa->set, start);
+ if(start!=end && ctx->impl.isAlgorithmicNoNo((uint16_t)value)) {
+ // Range of code points with same-norm16-value algorithmic decompositions.
+ // They might have different non-zero FCD16 values.
+ uint16_t prevFCD16=ctx->impl.getFCD16(start);
+ while(++start<=end) {
+ uint16_t fcd16=ctx->impl.getFCD16(start);
+ if(fcd16!=prevFCD16) {
+ sa->add(sa->set, start);
+ prevFCD16=fcd16;
+ }
+ }
+ }
+ return TRUE;
+}
+
+static UBool U_CALLCONV
+enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) {
+ /* add the start code point to the USet */
+ const USetAdder *sa=(const USetAdder *)context;
+ sa->add(sa->set, start);
+ return TRUE;
+}
+
+static uint32_t U_CALLCONV
+segmentStarterMapper(const void * /*context*/, uint32_t value) {
+ return value&CANON_NOT_SEGMENT_STARTER;
+}
+
+U_CDECL_END
+
+void
+Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
+ /* add the start code point of each same-value range of each trie */
+ LcccContext context(*this, set);
+ utrie2_enum(normTrie, NULL, enumLcccRange, &context);
+}
+
+void
+Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
+ /* add the start code point of each same-value range of each trie */
+ PropertyStartsContext context(*this, sa);
+ utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context);
+
+ /* add Hangul LV syllables and LV+1 because of skippables */
+ for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
+ sa->add(sa->set, c);
+ sa->add(sa->set, c+1);
+ }
+ sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
+}
+
+void
+Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
+ /* add the start code point of each same-value range of the canonical iterator data trie */
+ if(ensureCanonIterData(errorCode)) {
+ // currently only used for the SEGMENT_STARTER property
+ utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa);
+ }
+}
+
+const UChar *
+Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
+ UChar32 minNeedDataCP,
+ ReorderingBuffer *buffer,
+ UErrorCode &errorCode) const {
+ // Make some effort to support NUL-terminated strings reasonably.
+ // Take the part of the fast quick check loop that does not look up
+ // data and check the first part of the string.
+ // After this prefix, determine the string length to simplify the rest
+ // of the code.
+ const UChar *prevSrc=src;
+ UChar c;
+ while((c=*src++)<minNeedDataCP && c!=0) {}
+ // Back out the last character for full processing.
+ // Copy this prefix.
+ if(--src!=prevSrc) {
+ if(buffer!=NULL) {
+ buffer->appendZeroCC(prevSrc, src, errorCode);
+ }
+ }
+ return src;
+}
+
+UnicodeString &
+Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
+ UErrorCode &errorCode) const {
+ if(U_FAILURE(errorCode)) {
+ dest.setToBogus();
+ return dest;
+ }
+ const UChar *sArray=src.getBuffer();
+ if(&dest==&src || sArray==NULL) {
+ errorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ dest.setToBogus();
+ return dest;
+ }
+ decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
+ return dest;
+}
+
+void
+Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
+ UnicodeString &dest,
+ int32_t destLengthEstimate,
+ UErrorCode &errorCode) const {
+ if(destLengthEstimate<0 && limit!=NULL) {
+ destLengthEstimate=(int32_t)(limit-src);
+ }
+ dest.remove();
+ ReorderingBuffer buffer(*this, dest);
+ if(buffer.init(destLengthEstimate, errorCode)) {
+ decompose(src, limit, &buffer, errorCode);
+ }
+}
+
+// Dual functionality:
+// buffer!=NULL: normalize
+// buffer==NULL: isNormalized/spanQuickCheckYes
+const UChar *
+Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
+ ReorderingBuffer *buffer,
+ UErrorCode &errorCode) const {
+ UChar32 minNoCP=minDecompNoCP;
+ if(limit==NULL) {
+ src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
+ if(U_FAILURE(errorCode)) {
+ return src;
+ }
+ limit=u_strchr(src, 0);
+ }
+
+ const UChar *prevSrc;
+ UChar32 c=0;
+ uint16_t norm16=0;
+
+ // only for quick check
+ const UChar *prevBoundary=src;
+ uint8_t prevCC=0;
+
+ for(;;) {
+ // count code units below the minimum or with irrelevant data for the quick check
+ for(prevSrc=src; src!=limit;) {
+ if( (c=*src)<minNoCP ||
+ isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
+ ) {
+ ++src;
+ } else if(!U16_IS_SURROGATE(c)) {
+ break;
+ } else {
+ UChar c2;
+ if(U16_IS_SURROGATE_LEAD(c)) {
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
+ c=U16_GET_SUPPLEMENTARY(c, c2);
+ }
+ } else /* trail surrogate */ {
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
+ --src;
+ c=U16_GET_SUPPLEMENTARY(c2, c);
+ }
+ }
+ if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
+ src+=U16_LENGTH(c);
+ } else {
+ break;
+ }
+ }
+ }
+ // copy these code units all at once
+ if(src!=prevSrc) {
+ if(buffer!=NULL) {
+ if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
+ break;
+ }
+ } else {
+ prevCC=0;
+ prevBoundary=src;
+ }
+ }
+ if(src==limit) {
+ break;
+ }
+
+ // Check one above-minimum, relevant code point.
+ src+=U16_LENGTH(c);
+ if(buffer!=NULL) {
+ if(!decompose(c, norm16, *buffer, errorCode)) {
+ break;
+ }
+ } else {
+ if(isDecompYes(norm16)) {
+ uint8_t cc=getCCFromYesOrMaybe(norm16);
+ if(prevCC<=cc || cc==0) {
+ prevCC=cc;
+ if(cc<=1) {
+ prevBoundary=src;
+ }
+ continue;
+ }
+ }
+ return prevBoundary; // "no" or cc out of order
+ }
+ }
+ return src;
+}
+
+// Decompose a short piece of text which is likely to contain characters that
+// fail the quick check loop and/or where the quick check loop's overhead
+// is unlikely to be amortized.
+// Called by the compose() and makeFCD() implementations.
+UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ while(src<limit) {
+ UChar32 c;
+ uint16_t norm16;
+ UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
+ if(!decompose(c, norm16, buffer, errorCode)) {
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ // Only loops for 1:1 algorithmic mappings.
+ for(;;) {
+ // get the decomposition and the lead and trail cc's
+ if(isDecompYes(norm16)) {
+ // c does not decompose
+ return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
+ } else if(isHangul(norm16)) {
+ // Hangul syllable: decompose algorithmically
+ UChar jamos[3];
+ return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ norm16=getNorm16(c);
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ int32_t length=firstUnit&MAPPING_LENGTH_MASK;
+ uint8_t leadCC, trailCC;
+ trailCC=(uint8_t)(firstUnit>>8);
+ if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
+ leadCC=(uint8_t)(*(mapping-1)>>8);
+ } else {
+ leadCC=0;
+ }
+ return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode);
+ }
+ }
+}
+
+const UChar *
+Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
+ const UChar *decomp=NULL;
+ uint16_t norm16;
+ for(;;) {
+ if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
+ // c does not decompose
+ return decomp;
+ } else if(isHangul(norm16)) {
+ // Hangul syllable: decompose algorithmically
+ length=Hangul::decompose(c, buffer);
+ return buffer;
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ decomp=buffer;
+ length=0;
+ U16_APPEND_UNSAFE(buffer, length, c);
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ length=*mapping&MAPPING_LENGTH_MASK;
+ return (const UChar *)mapping+1;
+ }
+ }
+}
+
+// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
+// so that a raw mapping fits that consists of one unit ("rm0")
+// plus all but the first two code units of the normal mapping.
+// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
+const UChar *
+Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
+ // We do not loop in this method because an algorithmic mapping itself
+ // becomes a final result rather than having to be decomposed recursively.
+ uint16_t norm16;
+ if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
+ // c does not decompose
+ return NULL;
+ } else if(isHangul(norm16)) {
+ // Hangul syllable: decompose algorithmically
+ Hangul::getRawDecomposition(c, buffer);
+ length=2;
+ return buffer;
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ length=0;
+ U16_APPEND_UNSAFE(buffer, length, c);
+ return buffer;
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
+ if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
+ // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
+ // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
+ const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
+ uint16_t rm0=*rawMapping;
+ if(rm0<=MAPPING_LENGTH_MASK) {
+ length=rm0;
+ return (const UChar *)rawMapping-rm0;
+ } else {
+ // Copy the normal mapping and replace its first two code units with rm0.
+ buffer[0]=(UChar)rm0;
+ u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
+ length=mLength-1;
+ return buffer;
+ }
+ } else {
+ length=mLength;
+ return (const UChar *)mapping+1;
+ }
+ }
+}
+
+void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
+ UBool doDecompose,
+ UnicodeString &safeMiddle,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ buffer.copyReorderableSuffixTo(safeMiddle);
+ if(doDecompose) {
+ decompose(src, limit, &buffer, errorCode);
+ return;
+ }
+ // Just merge the strings at the boundary.
+ ForwardUTrie2StringIterator iter(normTrie, src, limit);
+ uint8_t firstCC, prevCC, cc;
+ firstCC=prevCC=cc=getCC(iter.next16());
+ while(cc!=0) {
+ prevCC=cc;
+ cc=getCC(iter.next16());
+ };
+ if(limit==NULL) { // appendZeroCC() needs limit!=NULL
+ limit=u_strchr(iter.codePointStart, 0);
+ }
+
+ if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) {
+ buffer.appendZeroCC(iter.codePointStart, limit, errorCode);
+ }
+}
+
+// Note: hasDecompBoundary() could be implemented as aliases to
+// hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
+// at the cost of building the FCD trie for a decomposition normalizer.
+UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const {
+ for(;;) {
+ if(c<minDecompNoCP) {
+ return TRUE;
+ }
+ uint16_t norm16=getNorm16(c);
+ if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) {
+ return TRUE;
+ } else if(norm16>MIN_NORMAL_MAYBE_YES) {
+ return FALSE; // ccc!=0
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) {
+ return FALSE;
+ }
+ if(!before) {
+ // decomp after-boundary: same as hasFCDBoundaryAfter(),
+ // fcd16<=1 || trailCC==0
+ if(firstUnit>0x1ff) {
+ return FALSE; // trailCC>1
+ }
+ if(firstUnit<=0xff) {
+ return TRUE; // trailCC==0
+ }
+ // if(trailCC==1) test leadCC==0, same as checking for before-boundary
+ }
+ // TRUE if leadCC==0 (hasFCDBoundaryBefore())
+ return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
+ }
+ }
+}
+
+/*
+ * Finds the recomposition result for
+ * a forward-combining "lead" character,
+ * specified with a pointer to its compositions list,
+ * and a backward-combining "trail" character.
+ *
+ * If the lead and trail characters combine, then this function returns
+ * the following "compositeAndFwd" value:
+ * Bits 21..1 composite character
+ * Bit 0 set if the composite is a forward-combining starter
+ * otherwise it returns -1.
+ *
+ * The compositions list has (trail, compositeAndFwd) pair entries,
+ * encoded as either pairs or triples of 16-bit units.
+ * The last entry has the high bit of its first unit set.
+ *
+ * The list is sorted by ascending trail characters (there are no duplicates).
+ * A linear search is used.
+ *
+ * See normalizer2impl.h for a more detailed description
+ * of the compositions list format.
+ */
+int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
+ uint16_t key1, firstUnit;
+ if(trail<COMP_1_TRAIL_LIMIT) {
+ // trail character is 0..33FF
+ // result entry may have 2 or 3 units
+ key1=(uint16_t)(trail<<1);
+ while(key1>(firstUnit=*list)) {
+ list+=2+(firstUnit&COMP_1_TRIPLE);
+ }
+ if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
+ if(firstUnit&COMP_1_TRIPLE) {
+ return ((int32_t)list[1]<<16)|list[2];
+ } else {
+ return list[1];
+ }
+ }
+ } else {
+ // trail character is 3400..10FFFF
+ // result entry has 3 units
+ key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
+ (((trail>>COMP_1_TRAIL_SHIFT))&
+ ~COMP_1_TRIPLE));
+ uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
+ uint16_t secondUnit;
+ for(;;) {
+ if(key1>(firstUnit=*list)) {
+ list+=2+(firstUnit&COMP_1_TRIPLE);
+ } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
+ if(key2>(secondUnit=list[1])) {
+ if(firstUnit&COMP_1_LAST_TUPLE) {
+ break;
+ } else {
+ list+=3;
+ }
+ } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
+ return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
+ } else {
+ break;
+ }
+ } else {
+ break;
+ }
+ }
+ }
+ return -1;
+}
+
+/**
+ * @param list some character's compositions list
+ * @param set recursively receives the composites from these compositions
+ */
+void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
+ uint16_t firstUnit;
+ int32_t compositeAndFwd;
+ do {
+ firstUnit=*list;
+ if((firstUnit&COMP_1_TRIPLE)==0) {
+ compositeAndFwd=list[1];
+ list+=2;
+ } else {
+ compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
+ list+=3;
+ }
+ UChar32 composite=compositeAndFwd>>1;
+ if((compositeAndFwd&1)!=0) {
+ addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
+ }
+ set.add(composite);
+ } while((firstUnit&COMP_1_LAST_TUPLE)==0);
+}
+
+/*
+ * Recomposes the buffer text starting at recomposeStartIndex
+ * (which is in NFD - decomposed and canonically ordered),
+ * and truncates the buffer contents.
+ *
+ * Note that recomposition never lengthens the text:
+ * Any character consists of either one or two code units;
+ * a composition may contain at most one more code unit than the original starter,
+ * while the combining mark that is removed has at least one code unit.
+ */
+void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
+ UBool onlyContiguous) const {
+ UChar *p=buffer.getStart()+recomposeStartIndex;
+ UChar *limit=buffer.getLimit();
+ if(p==limit) {
+ return;
+ }
+
+ UChar *starter, *pRemove, *q, *r;
+ const uint16_t *compositionsList;
+ UChar32 c, compositeAndFwd;
+ uint16_t norm16;
+ uint8_t cc, prevCC;
+ UBool starterIsSupplementary;
+
+ // Some of the following variables are not used until we have a forward-combining starter
+ // and are only initialized now to avoid compiler warnings.
+ compositionsList=NULL; // used as indicator for whether we have a forward-combining starter
+ starter=NULL;
+ starterIsSupplementary=FALSE;
+ prevCC=0;
+
+ for(;;) {
+ UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
+ cc=getCCFromYesOrMaybe(norm16);
+ if( // this character combines backward and
+ isMaybe(norm16) &&
+ // we have seen a starter that combines forward and
+ compositionsList!=NULL &&
+ // the backward-combining character is not blocked
+ (prevCC<cc || prevCC==0)
+ ) {
+ if(isJamoVT(norm16)) {
+ // c is a Jamo V/T, see if we can compose it with the previous character.
+ if(c<Hangul::JAMO_T_BASE) {
+ // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
+ UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
+ if(prev<Hangul::JAMO_L_COUNT) {
+ pRemove=p-1;
+ UChar syllable=(UChar)
+ (Hangul::HANGUL_BASE+
+ (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
+ Hangul::JAMO_T_COUNT);
+ UChar t;
+ if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
+ ++p;
+ syllable+=t; // The next character was a Jamo T.
+ }
+ *starter=syllable;
+ // remove the Jamo V/T
+ q=pRemove;
+ r=p;
+ while(r<limit) {
+ *q++=*r++;
+ }
+ limit=q;
+ p=pRemove;
+ }
+ }
+ /*
+ * No "else" for Jamo T:
+ * Since the input is in NFD, there are no Hangul LV syllables that
+ * a Jamo T could combine with.
+ * All Jamo Ts are combined above when handling Jamo Vs.
+ */
+ if(p==limit) {
+ break;
+ }
+ compositionsList=NULL;
+ continue;
+ } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
+ // The starter and the combining mark (c) do combine.
+ UChar32 composite=compositeAndFwd>>1;
+
+ // Replace the starter with the composite, remove the combining mark.
+ pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
+ if(starterIsSupplementary) {
+ if(U_IS_SUPPLEMENTARY(composite)) {
+ // both are supplementary
+ starter[0]=U16_LEAD(composite);
+ starter[1]=U16_TRAIL(composite);
+ } else {
+ *starter=(UChar)composite;
+ // The composite is shorter than the starter,
+ // move the intermediate characters forward one.
+ starterIsSupplementary=FALSE;
+ q=starter+1;
+ r=q+1;
+ while(r<pRemove) {
+ *q++=*r++;
+ }
+ --pRemove;
+ }
+ } else if(U_IS_SUPPLEMENTARY(composite)) {
+ // The composite is longer than the starter,
+ // move the intermediate characters back one.
+ starterIsSupplementary=TRUE;
+ ++starter; // temporarily increment for the loop boundary
+ q=pRemove;
+ r=++pRemove;
+ while(starter<q) {
+ *--r=*--q;
+ }
+ *starter=U16_TRAIL(composite);
+ *--starter=U16_LEAD(composite); // undo the temporary increment
+ } else {
+ // both are on the BMP
+ *starter=(UChar)composite;
+ }
+
+ /* remove the combining mark by moving the following text over it */
+ if(pRemove<p) {
+ q=pRemove;
+ r=p;
+ while(r<limit) {
+ *q++=*r++;
+ }
+ limit=q;
+ p=pRemove;
+ }
+ // Keep prevCC because we removed the combining mark.
+
+ if(p==limit) {
+ break;
+ }
+ // Is the composite a starter that combines forward?
+ if(compositeAndFwd&1) {
+ compositionsList=
+ getCompositionsListForComposite(getNorm16(composite));
+ } else {
+ compositionsList=NULL;
+ }
+
+ // We combined; continue with looking for compositions.
+ continue;
+ }
+ }
+
+ // no combination this time
+ prevCC=cc;
+ if(p==limit) {
+ break;
+ }
+
+ // If c did not combine, then check if it is a starter.
+ if(cc==0) {
+ // Found a new starter.
+ if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
+ // It may combine with something, prepare for it.
+ if(U_IS_BMP(c)) {
+ starterIsSupplementary=FALSE;
+ starter=p-1;
+ } else {
+ starterIsSupplementary=TRUE;
+ starter=p-2;
+ }
+ }
+ } else if(onlyContiguous) {
+ // FCC: no discontiguous compositions; any intervening character blocks.
+ compositionsList=NULL;
+ }
+ }
+ buffer.setReorderingLimit(limit);
+}
+
+UChar32
+Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
+ uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0
+ const uint16_t *list;
+ if(isInert(norm16)) {
+ return U_SENTINEL;
+ } else if(norm16<minYesNoMappingsOnly) {
+ if(isJamoL(norm16)) {
+ b-=Hangul::JAMO_V_BASE;
+ if(0<=b && b<Hangul::JAMO_V_COUNT) {
+ return
+ (Hangul::HANGUL_BASE+
+ ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
+ Hangul::JAMO_T_COUNT);
+ } else {
+ return U_SENTINEL;
+ }
+ } else if(isHangul(norm16)) {
+ b-=Hangul::JAMO_T_BASE;
+ if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
+ return a+b;
+ } else {
+ return U_SENTINEL;
+ }
+ } else {
+ // 'a' has a compositions list in extraData
+ list=extraData+norm16;
+ if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
+ list+= // mapping pointer
+ 1+ // +1 to skip the first unit with the mapping lenth
+ (*list&MAPPING_LENGTH_MASK); // + mapping length
+ }
+ }
+ } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
+ return U_SENTINEL;
+ } else {
+ list=maybeYesCompositions+norm16-minMaybeYes;
+ }
+ if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
+ return U_SENTINEL;
+ }
+#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
+ return combine(list, b)>>1;
+#else
+ int32_t compositeAndFwd=combine(list, b);
+ return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
+#endif
+}
+
+// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
+// doCompose: normalize
+// !doCompose: isNormalized (buffer must be empty and initialized)
+UBool
+Normalizer2Impl::compose(const UChar *src, const UChar *limit,
+ UBool onlyContiguous,
+ UBool doCompose,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ /*
+ * prevBoundary points to the last character before the current one
+ * that has a composition boundary before it with ccc==0 and quick check "yes".
+ * Keeping track of prevBoundary saves us looking for a composition boundary
+ * when we find a "no" or "maybe".
+ *
+ * When we back out from prevSrc back to prevBoundary,
+ * then we also remove those same characters (which had been simply copied
+ * or canonically-order-inserted) from the ReorderingBuffer.
+ * Therefore, at all times, the [prevBoundary..prevSrc[ source units
+ * must correspond 1:1 to destination units at the end of the destination buffer.
+ */
+ const UChar *prevBoundary=src;
+ UChar32 minNoMaybeCP=minCompNoMaybeCP;
+ if(limit==NULL) {
+ src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
+ doCompose ? &buffer : NULL,
+ errorCode);
+ if(U_FAILURE(errorCode)) {
+ return FALSE;
+ }
+ if(prevBoundary<src) {
+ // Set prevBoundary to the last character in the prefix.
+ prevBoundary=src-1;
+ }
+ limit=u_strchr(src, 0);
+ }
+
+ const UChar *prevSrc;
+ UChar32 c=0;
+ uint16_t norm16=0;
+
+ // only for isNormalized
+ uint8_t prevCC=0;
+
+ for(;;) {
+ // count code units below the minimum or with irrelevant data for the quick check
+ for(prevSrc=src; src!=limit;) {
+ if( (c=*src)<minNoMaybeCP ||
+ isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
+ ) {
+ ++src;
+ } else if(!U16_IS_SURROGATE(c)) {
+ break;
+ } else {
+ UChar c2;
+ if(U16_IS_SURROGATE_LEAD(c)) {
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
+ c=U16_GET_SUPPLEMENTARY(c, c2);
+ }
+ } else /* trail surrogate */ {
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
+ --src;
+ c=U16_GET_SUPPLEMENTARY(c2, c);
+ }
+ }
+ if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
+ src+=U16_LENGTH(c);
+ } else {
+ break;
+ }
+ }
+ }
+ // copy these code units all at once
+ if(src!=prevSrc) {
+ if(doCompose) {
+ if(!buffer.appendZeroCC(prevSrc, src, errorCode)) {
+ break;
+ }
+ } else {
+ prevCC=0;
+ }
+ if(src==limit) {
+ break;
+ }
+ // Set prevBoundary to the last character in the quick check loop.
+ prevBoundary=src-1;
+ if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
+ U16_IS_LEAD(*(prevBoundary-1))
+ ) {
+ --prevBoundary;
+ }
+ // The start of the current character (c).
+ prevSrc=src;
+ } else if(src==limit) {
+ break;
+ }
+
+ src+=U16_LENGTH(c);
+ /*
+ * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
+ * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
+ * or has ccc!=0.
+ * Check for Jamo V/T, then for regular characters.
+ * c is not a Hangul syllable or Jamo L because those have "yes" properties.
+ */
+ if(isJamoVT(norm16) && prevBoundary!=prevSrc) {
+ UChar prev=*(prevSrc-1);
+ UBool needToDecompose=FALSE;
+ if(c<Hangul::JAMO_T_BASE) {
+ // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
+ prev=(UChar)(prev-Hangul::JAMO_L_BASE);
+ if(prev<Hangul::JAMO_L_COUNT) {
+ if(!doCompose) {
+ return FALSE;
+ }
+ UChar syllable=(UChar)
+ (Hangul::HANGUL_BASE+
+ (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
+ Hangul::JAMO_T_COUNT);
+ UChar t;
+ if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
+ ++src;
+ syllable+=t; // The next character was a Jamo T.
+ prevBoundary=src;
+ buffer.setLastChar(syllable);
+ continue;
+ }
+ // If we see L+V+x where x!=T then we drop to the slow path,
+ // decompose and recompose.
+ // This is to deal with NFKC finding normal L and V but a
+ // compatibility variant of a T. We need to either fully compose that
+ // combination here (which would complicate the code and may not work
+ // with strange custom data) or use the slow path -- or else our replacing
+ // two input characters (L+V) with one output character (LV syllable)
+ // would violate the invariant that [prevBoundary..prevSrc[ has the same
+ // length as what we appended to the buffer since prevBoundary.
+ needToDecompose=TRUE;
+ }
+ } else if(Hangul::isHangulWithoutJamoT(prev)) {
+ // c is a Jamo Trailing consonant,
+ // compose with previous Hangul LV that does not contain a Jamo T.
+ if(!doCompose) {
+ return FALSE;
+ }
+ buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE));
+ prevBoundary=src;
+ continue;
+ }
+ if(!needToDecompose) {
+ // The Jamo V/T did not compose into a Hangul syllable.
+ if(doCompose) {
+ if(!buffer.appendBMP((UChar)c, 0, errorCode)) {
+ break;
+ }
+ } else {
+ prevCC=0;
+ }
+ continue;
+ }
+ }
+ /*
+ * Source buffer pointers:
+ *
+ * all done quick check current char not yet
+ * "yes" but (c) processed
+ * may combine
+ * forward
+ * [-------------[-------------[-------------[-------------[
+ * | | | | |
+ * orig. src prevBoundary prevSrc src limit
+ *
+ *
+ * Destination buffer pointers inside the ReorderingBuffer:
+ *
+ * all done might take not filled yet
+ * characters for
+ * reordering
+ * [-------------[-------------[-------------[
+ * | | | |
+ * start reorderStart limit |
+ * +remainingCap.+
+ */
+ if(norm16>=MIN_YES_YES_WITH_CC) {
+ uint8_t cc=(uint8_t)norm16; // cc!=0
+ if( onlyContiguous && // FCC
+ (doCompose ? buffer.getLastCC() : prevCC)==0 &&
+ prevBoundary<prevSrc &&
+ // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
+ // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
+ // passed the quick check "yes && ccc==0" test.
+ // Check whether the last character was a "yesYes" or a "yesNo".
+ // If a "yesNo", then we get its trailing ccc from its
+ // mapping and check for canonical order.
+ // All other cases are ok.
+ getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
+ ) {
+ // Fails FCD test, need to decompose and contiguously recompose.
+ if(!doCompose) {
+ return FALSE;
+ }
+ } else if(doCompose) {
+ if(!buffer.append(c, cc, errorCode)) {
+ break;
+ }
+ continue;
+ } else if(prevCC<=cc) {
+ prevCC=cc;
+ continue;
+ } else {
+ return FALSE;
+ }
+ } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) {
+ return FALSE;
+ }
+
+ /*
+ * Find appropriate boundaries around this character,
+ * decompose the source text from between the boundaries,
+ * and recompose it.
+ *
+ * We may need to remove the last few characters from the ReorderingBuffer
+ * to account for source text that was copied or appended
+ * but needs to take part in the recomposition.
+ */
+
+ /*
+ * Find the last composition boundary in [prevBoundary..src[.
+ * It is either the decomposition of the current character (at prevSrc),
+ * or prevBoundary.
+ */
+ if(hasCompBoundaryBefore(c, norm16)) {
+ prevBoundary=prevSrc;
+ } else if(doCompose) {
+ buffer.removeSuffix((int32_t)(prevSrc-prevBoundary));
+ }
+
+ // Find the next composition boundary in [src..limit[ -
+ // modifies src to point to the next starter.
+ src=(UChar *)findNextCompBoundary(src, limit);
+
+ // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
+ int32_t recomposeStartIndex=buffer.length();
+ if(!decomposeShort(prevBoundary, src, buffer, errorCode)) {
+ break;
+ }
+ recompose(buffer, recomposeStartIndex, onlyContiguous);
+ if(!doCompose) {
+ if(!buffer.equals(prevBoundary, src)) {
+ return FALSE;
+ }
+ buffer.remove();
+ prevCC=0;
+ }
+
+ // Move to the next starter. We never need to look back before this point again.
+ prevBoundary=src;
+ }
+ return TRUE;
+}
+
+// Very similar to compose(): Make the same changes in both places if relevant.
+// pQCResult==NULL: spanQuickCheckYes
+// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
+const UChar *
+Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
+ UBool onlyContiguous,
+ UNormalizationCheckResult *pQCResult) const {
+ /*
+ * prevBoundary points to the last character before the current one
+ * that has a composition boundary before it with ccc==0 and quick check "yes".
+ */
+ const UChar *prevBoundary=src;
+ UChar32 minNoMaybeCP=minCompNoMaybeCP;
+ if(limit==NULL) {
+ UErrorCode errorCode=U_ZERO_ERROR;
+ src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
+ if(prevBoundary<src) {
+ // Set prevBoundary to the last character in the prefix.
+ prevBoundary=src-1;
+ }
+ limit=u_strchr(src, 0);
+ }
+
+ const UChar *prevSrc;
+ UChar32 c=0;
+ uint16_t norm16=0;
+ uint8_t prevCC=0;
+
+ for(;;) {
+ // count code units below the minimum or with irrelevant data for the quick check
+ for(prevSrc=src;;) {
+ if(src==limit) {
+ return src;
+ }
+ if( (c=*src)<minNoMaybeCP ||
+ isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
+ ) {
+ ++src;
+ } else if(!U16_IS_SURROGATE(c)) {
+ break;
+ } else {
+ UChar c2;
+ if(U16_IS_SURROGATE_LEAD(c)) {
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
+ c=U16_GET_SUPPLEMENTARY(c, c2);
+ }
+ } else /* trail surrogate */ {
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
+ --src;
+ c=U16_GET_SUPPLEMENTARY(c2, c);
+ }
+ }
+ if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
+ src+=U16_LENGTH(c);
+ } else {
+ break;
+ }
+ }
+ }
+ if(src!=prevSrc) {
+ // Set prevBoundary to the last character in the quick check loop.
+ prevBoundary=src-1;
+ if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
+ U16_IS_LEAD(*(prevBoundary-1))
+ ) {
+ --prevBoundary;
+ }
+ prevCC=0;
+ // The start of the current character (c).
+ prevSrc=src;
+ }
+
+ src+=U16_LENGTH(c);
+ /*
+ * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
+ * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
+ * or has ccc!=0.
+ */
+ if(isMaybeOrNonZeroCC(norm16)) {
+ uint8_t cc=getCCFromYesOrMaybe(norm16);
+ if( onlyContiguous && // FCC
+ cc!=0 &&
+ prevCC==0 &&
+ prevBoundary<prevSrc &&
+ // prevCC==0 && prevBoundary<prevSrc tell us that
+ // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
+ // passed the quick check "yes && ccc==0" test.
+ // Check whether the last character was a "yesYes" or a "yesNo".
+ // If a "yesNo", then we get its trailing ccc from its
+ // mapping and check for canonical order.
+ // All other cases are ok.
+ getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
+ ) {
+ // Fails FCD test.
+ } else if(prevCC<=cc || cc==0) {
+ prevCC=cc;
+ if(norm16<MIN_YES_YES_WITH_CC) {
+ if(pQCResult!=NULL) {
+ *pQCResult=UNORM_MAYBE;
+ } else {
+ return prevBoundary;
+ }
+ }
+ continue;
+ }
+ }
+ if(pQCResult!=NULL) {
+ *pQCResult=UNORM_NO;
+ }
+ return prevBoundary;
+ }
+}
+
+void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
+ UBool doCompose,
+ UBool onlyContiguous,
+ UnicodeString &safeMiddle,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ if(!buffer.isEmpty()) {
+ const UChar *firstStarterInSrc=findNextCompBoundary(src, limit);
+ if(src!=firstStarterInSrc) {
+ const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
+ buffer.getLimit());
+ int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
+ UnicodeString middle(lastStarterInDest, destSuffixLength);
+ buffer.removeSuffix(destSuffixLength);
+ safeMiddle=middle;
+ middle.append(src, (int32_t)(firstStarterInSrc-src));
+ const UChar *middleStart=middle.getBuffer();
+ compose(middleStart, middleStart+middle.length(), onlyContiguous,
+ TRUE, buffer, errorCode);
+ if(U_FAILURE(errorCode)) {
+ return;
+ }
+ src=firstStarterInSrc;
+ }
+ }
+ if(doCompose) {
+ compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
+ } else {
+ if(limit==NULL) { // appendZeroCC() needs limit!=NULL
+ limit=u_strchr(src, 0);
+ }
+ buffer.appendZeroCC(src, limit, errorCode);
+ }
+}
+
+/**
+ * Does c have a composition boundary before it?
+ * True if its decomposition begins with a character that has
+ * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
+ * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
+ * (isCompYesAndZeroCC()) so we need not decompose.
+ */
+UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
+ for(;;) {
+ if(isCompYesAndZeroCC(norm16)) {
+ return TRUE;
+ } else if(isMaybeOrNonZeroCC(norm16)) {
+ return FALSE;
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ norm16=getNorm16(c);
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) {
+ return FALSE;
+ }
+ if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) {
+ return FALSE; // non-zero leadCC
+ }
+ int32_t i=1; // skip over the firstUnit
+ UChar32 c;
+ U16_NEXT_UNSAFE(mapping, i, c);
+ return isCompYesAndZeroCC(getNorm16(c));
+ }
+ }
+}
+
+UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const {
+ for(;;) {
+ uint16_t norm16=getNorm16(c);
+ if(isInert(norm16)) {
+ return TRUE;
+ } else if(norm16<=minYesNo) {
+ // Hangul: norm16==minYesNo
+ // Hangul LVT has a boundary after it.
+ // Hangul LV and non-inert yesYes characters combine forward.
+ return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c);
+ } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) {
+ return FALSE;
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ } else {
+ // c decomposes, get everything from the variable-length extra data.
+ // If testInert, then c must be a yesNo character which has lccc=0,
+ // otherwise it could be a noNo.
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ // TRUE if
+ // not MAPPING_NO_COMP_BOUNDARY_AFTER
+ // (which is set if
+ // c is not deleted, and
+ // it and its decomposition do not combine forward, and it has a starter)
+ // and if FCC then trailCC<=1
+ return
+ (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 &&
+ (!onlyContiguous || firstUnit<=0x1ff);
+ }
+ }
+}
+
+const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const {
+ BackwardUTrie2StringIterator iter(normTrie, start, p);
+ uint16_t norm16;
+ do {
+ norm16=iter.previous16();
+ } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
+ // We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
+ // but that's probably not worth the extra cost.
+ return iter.codePointStart;
+}
+
+const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const {
+ ForwardUTrie2StringIterator iter(normTrie, p, limit);
+ uint16_t norm16;
+ do {
+ norm16=iter.next16();
+ } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
+ return iter.codePointStart;
+}
+
+// Note: normalizer2impl.cpp r30982 (2011-nov-27)
+// still had getFCDTrie() which built and cached an FCD trie.
+// That provided faster access to FCD data than getFCD16FromNormData()
+// but required synchronization and consumed some 10kB of heap memory
+// in any process that uses FCD (e.g., via collation).
+// tccc180[] and smallFCD[] are intended to help with any loss of performance,
+// at least for Latin & CJK.
+
+// Gets the FCD value from the regular normalization data.
+uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
+ // Only loops for 1:1 algorithmic mappings.
+ for(;;) {
+ uint16_t norm16=getNorm16(c);
+ if(norm16<=minYesNo) {
+ // no decomposition or Hangul syllable, all zeros
+ return 0;
+ } else if(norm16>=MIN_NORMAL_MAYBE_YES) {
+ // combining mark
+ norm16&=0xff;
+ return norm16|(norm16<<8);
+ } else if(norm16>=minMaybeYes) {
+ return 0;
+ } else if(isDecompNoAlgorithmic(norm16)) {
+ c=mapAlgorithmic(c, norm16);
+ } else {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16);
+ uint16_t firstUnit=*mapping;
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) {
+ // A character that is deleted (maps to an empty string) must
+ // get the worst-case lccc and tccc values because arbitrary
+ // characters on both sides will become adjacent.
+ return 0x1ff;
+ } else {
+ norm16=firstUnit>>8; // tccc
+ if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
+ norm16|=*(mapping-1)&0xff00; // lccc
+ }
+ return norm16;
+ }
+ }
+ }
+}
+
+// Dual functionality:
+// buffer!=NULL: normalize
+// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
+const UChar *
+Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
+ ReorderingBuffer *buffer,
+ UErrorCode &errorCode) const {
+ // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
+ // Similar to the prevBoundary in the compose() implementation.
+ const UChar *prevBoundary=src;
+ int32_t prevFCD16=0;
+ if(limit==NULL) {
+ src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode);
+ if(U_FAILURE(errorCode)) {
+ return src;
+ }
+ if(prevBoundary<src) {
+ prevBoundary=src;
+ // We know that the previous character's lccc==0.
+ // Fetching the fcd16 value was deferred for this below-U+0300 code point.
+ prevFCD16=getFCD16(*(src-1));
+ if(prevFCD16>1) {
+ --prevBoundary;
+ }
+ }
+ limit=u_strchr(src, 0);
+ }
+
+ // Note: In this function we use buffer->appendZeroCC() because we track
+ // the lead and trail combining classes here, rather than leaving it to
+ // the ReorderingBuffer.
+ // The exception is the call to decomposeShort() which uses the buffer
+ // in the normal way.
+
+ const UChar *prevSrc;
+ UChar32 c=0;
+ uint16_t fcd16=0;
+
+ for(;;) {
+ // count code units with lccc==0
+ for(prevSrc=src; src!=limit;) {
+ if((c=*src)<MIN_CCC_LCCC_CP) {
+ prevFCD16=~c;
+ ++src;
+ } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
+ prevFCD16=0;
+ ++src;
+ } else {
+ if(U16_IS_SURROGATE(c)) {
+ UChar c2;
+ if(U16_IS_SURROGATE_LEAD(c)) {
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
+ c=U16_GET_SUPPLEMENTARY(c, c2);
+ }
+ } else /* trail surrogate */ {
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
+ --src;
+ c=U16_GET_SUPPLEMENTARY(c2, c);
+ }
+ }
+ }
+ if((fcd16=getFCD16FromNormData(c))<=0xff) {
+ prevFCD16=fcd16;
+ src+=U16_LENGTH(c);
+ } else {
+ break;
+ }
+ }
+ }
+ // copy these code units all at once
+ if(src!=prevSrc) {
+ if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
+ break;
+ }
+ if(src==limit) {
+ break;
+ }
+ prevBoundary=src;
+ // We know that the previous character's lccc==0.
+ if(prevFCD16<0) {
+ // Fetching the fcd16 value was deferred for this below-U+0300 code point.
+ UChar32 prev=~prevFCD16;
+ prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev);
+ if(prevFCD16>1) {
+ --prevBoundary;
+ }
+ } else {
+ const UChar *p=src-1;
+ if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
+ --p;
+ // Need to fetch the previous character's FCD value because
+ // prevFCD16 was just for the trail surrogate code point.
+ prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
+ // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
+ }
+ if(prevFCD16>1) {
+ prevBoundary=p;
+ }
+ }
+ // The start of the current character (c).
+ prevSrc=src;
+ } else if(src==limit) {
+ break;
+ }
+
+ src+=U16_LENGTH(c);
+ // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
+ // Check for proper order, and decompose locally if necessary.
+ if((prevFCD16&0xff)<=(fcd16>>8)) {
+ // proper order: prev tccc <= current lccc
+ if((fcd16&0xff)<=1) {
+ prevBoundary=src;
+ }
+ if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
+ break;
+ }
+ prevFCD16=fcd16;
+ continue;
+ } else if(buffer==NULL) {
+ return prevBoundary; // quick check "no"
+ } else {
+ /*
+ * Back out the part of the source that we copied or appended
+ * already but is now going to be decomposed.
+ * prevSrc is set to after what was copied/appended.
+ */
+ buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
+ /*
+ * Find the part of the source that needs to be decomposed,
+ * up to the next safe boundary.
+ */
+ src=findNextFCDBoundary(src, limit);
+ /*
+ * The source text does not fulfill the conditions for FCD.
+ * Decompose and reorder a limited piece of the text.
+ */
+ if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) {
+ break;
+ }
+ prevBoundary=src;
+ prevFCD16=0;
+ }
+ }
+ return src;
+}
+
+void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
+ UBool doMakeFCD,
+ UnicodeString &safeMiddle,
+ ReorderingBuffer &buffer,
+ UErrorCode &errorCode) const {
+ if(!buffer.isEmpty()) {
+ const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
+ if(src!=firstBoundaryInSrc) {
+ const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
+ buffer.getLimit());
+ int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
+ UnicodeString middle(lastBoundaryInDest, destSuffixLength);
+ buffer.removeSuffix(destSuffixLength);
+ safeMiddle=middle;
+ middle.append(src, (int32_t)(firstBoundaryInSrc-src));
+ const UChar *middleStart=middle.getBuffer();
+ makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
+ if(U_FAILURE(errorCode)) {
+ return;
+ }
+ src=firstBoundaryInSrc;
+ }
+ }
+ if(doMakeFCD) {
+ makeFCD(src, limit, &buffer, errorCode);
+ } else {
+ if(limit==NULL) { // appendZeroCC() needs limit!=NULL
+ limit=u_strchr(src, 0);
+ }
+ buffer.appendZeroCC(src, limit, errorCode);
+ }
+}
+
+const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
+ while(start<p && previousFCD16(start, p)>0xff) {}
+ return p;
+}
+
+const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
+ while(p<limit) {
+ const UChar *codePointStart=p;
+ if(nextFCD16(p, limit)<=0xff) {
+ return codePointStart;
+ }
+ }
+ return p;
+}
+
+// CanonicalIterator data -------------------------------------------------- ***
+
+CanonIterData::CanonIterData(UErrorCode &errorCode) :
+ trie(utrie2_open(0, 0, &errorCode)),
+ canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
+
+CanonIterData::~CanonIterData() {
+ utrie2_close(trie);
+}
+
+void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
+ uint32_t canonValue=utrie2_get32(trie, decompLead);
+ if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
+ // origin is the first character whose decomposition starts with
+ // the character for which we are setting the value.
+ utrie2_set32(trie, decompLead, canonValue|origin, &errorCode);
+ } else {
+ // origin is not the first character, or it is U+0000.
+ UnicodeSet *set;
+ if((canonValue&CANON_HAS_SET)==0) {
+ set=new UnicodeSet;
+ if(set==NULL) {
+ errorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
+ canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
+ utrie2_set32(trie, decompLead, canonValue, &errorCode);
+ canonStartSets.addElement(set, errorCode);
+ if(firstOrigin!=0) {
+ set->add(firstOrigin);
+ }
+ } else {
+ set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
+ }
+ set->add(origin);
+ }
+}
+
+U_CDECL_BEGIN
+
+// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
+// context: the Normalizer2Impl
+static UBool U_CALLCONV
+enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
+ UErrorCode errorCode = U_ZERO_ERROR;
+ if (value != 0) {
+ Normalizer2Impl *impl = (Normalizer2Impl *)context;
+ impl->makeCanonIterDataFromNorm16(
+ start, end, (uint16_t)value, *impl->fCanonIterData, errorCode);
+ }
+ return U_SUCCESS(errorCode);
+}
+
+
+
+// UInitOnce instantiation function for CanonIterData
+
+static void U_CALLCONV
+initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
+ U_ASSERT(impl->fCanonIterData == NULL);
+ impl->fCanonIterData = new CanonIterData(errorCode);
+ if (impl->fCanonIterData == NULL) {
+ errorCode=U_MEMORY_ALLOCATION_ERROR;
+ }
+ if (U_SUCCESS(errorCode)) {
+ utrie2_enum(impl->getNormTrie(), NULL, enumCIDRangeHandler, impl);
+ utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode);
+ }
+ if (U_FAILURE(errorCode)) {
+ delete impl->fCanonIterData;
+ impl->fCanonIterData = NULL;
+ }
+}
+
+U_CDECL_END
+
+void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16,
+ CanonIterData &newData,
+ UErrorCode &errorCode) const {
+ if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) {
+ // Inert, or 2-way mapping (including Hangul syllable).
+ // We do not write a canonStartSet for any yesNo character.
+ // Composites from 2-way mappings are added at runtime from the
+ // starter's compositions list, and the other characters in
+ // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
+ // "maybe" characters.
+ return;
+ }
+ for(UChar32 c=start; c<=end; ++c) {
+ uint32_t oldValue=utrie2_get32(newData.trie, c);
+ uint32_t newValue=oldValue;
+ if(norm16>=minMaybeYes) {
+ // not a segment starter if it occurs in a decomposition or has cc!=0
+ newValue|=CANON_NOT_SEGMENT_STARTER;
+ if(norm16<MIN_NORMAL_MAYBE_YES) {
+ newValue|=CANON_HAS_COMPOSITIONS;
+ }
+ } else if(norm16<minYesNo) {
+ newValue|=CANON_HAS_COMPOSITIONS;
+ } else {
+ // c has a one-way decomposition
+ UChar32 c2=c;
+ uint16_t norm16_2=norm16;
+ while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) {
+ c2=mapAlgorithmic(c2, norm16_2);
+ norm16_2=getNorm16(c2);
+ }
+ if(minYesNo<=norm16_2 && norm16_2<limitNoNo) {
+ // c decomposes, get everything from the variable-length extra data
+ const uint16_t *mapping=getMapping(norm16_2);
+ uint16_t firstUnit=*mapping;
+ int32_t length=firstUnit&MAPPING_LENGTH_MASK;
+ if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
+ if(c==c2 && (*(mapping-1)&0xff)!=0) {
+ newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
+ }
+ }
+ // Skip empty mappings (no characters in the decomposition).
+ if(length!=0) {
+ ++mapping; // skip over the firstUnit
+ // add c to first code point's start set
+ int32_t i=0;
+ U16_NEXT_UNSAFE(mapping, i, c2);
+ newData.addToStartSet(c, c2, errorCode);
+ // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
+ // one-way mapping. A 2-way mapping is possible here after
+ // intermediate algorithmic mapping.
+ if(norm16_2>=minNoNo) {
+ while(i<length) {
+ U16_NEXT_UNSAFE(mapping, i, c2);
+ uint32_t c2Value=utrie2_get32(newData.trie, c2);
+ if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
+ utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER,
+ &errorCode);
+ }
+ }
+ }
+ }
+ } else {
+ // c decomposed to c2 algorithmically; c has cc==0
+ newData.addToStartSet(c, c2, errorCode);
+ }
+ }
+ if(newValue!=oldValue) {
+ utrie2_set32(newData.trie, c, newValue, &errorCode);
+ }
+ }
+}
+
+UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
+ // Logically const: Synchronized instantiation.
+ Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
+ umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
+ return U_SUCCESS(errorCode);
+}
+
+int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
+ return (int32_t)utrie2_get32(fCanonIterData->trie, c);
+}
+
+const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
+ return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
+}
+
+UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
+ return getCanonValue(c)>=0;
+}
+
+UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
+ int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
+ if(canonValue==0) {
+ return FALSE;
+ }
+ set.clear();
+ int32_t value=canonValue&CANON_VALUE_MASK;
+ if((canonValue&CANON_HAS_SET)!=0) {
+ set.addAll(getCanonStartSet(value));
+ } else if(value!=0) {
+ set.add(value);
+ }
+ if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
+ uint16_t norm16=getNorm16(c);
+ if(norm16==JAMO_L) {
+ UChar32 syllable=
+ (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
+ set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
+ } else {
+ addComposites(getCompositionsList(norm16), set);
+ }
+ }
+ return TRUE;
+}
+
+U_NAMESPACE_END
+
+// Normalizer2 data swapping ----------------------------------------------- ***
+
+U_NAMESPACE_USE
+
+U_CAPI int32_t U_EXPORT2
+unorm2_swap(const UDataSwapper *ds,
+ const void *inData, int32_t length, void *outData,
+ UErrorCode *pErrorCode) {
+ const UDataInfo *pInfo;
+ int32_t headerSize;
+
+ const uint8_t *inBytes;
+ uint8_t *outBytes;
+
+ const int32_t *inIndexes;
+ int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1];
+
+ int32_t i, offset, nextOffset, size;
+
+ /* udata_swapDataHeader checks the arguments */
+ headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
+ return 0;
+ }
+
+ /* check data format and format version */
+ pInfo=(const UDataInfo *)((const char *)inData+4);
+ if(!(
+ pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
+ pInfo->dataFormat[1]==0x72 &&
+ pInfo->dataFormat[2]==0x6d &&
+ pInfo->dataFormat[3]==0x32 &&
+ (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2)
+ )) {
+ udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
+ pInfo->dataFormat[0], pInfo->dataFormat[1],
+ pInfo->dataFormat[2], pInfo->dataFormat[3],
+ pInfo->formatVersion[0]);
+ *pErrorCode=U_UNSUPPORTED_ERROR;
+ return 0;
+ }
+
+ inBytes=(const uint8_t *)inData+headerSize;
+ outBytes=(uint8_t *)outData+headerSize;
+
+ inIndexes=(const int32_t *)inBytes;
+
+ if(length>=0) {
+ length-=headerSize;
+ if(length<(int32_t)sizeof(indexes)) {
+ udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
+ length);
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ return 0;
+ }
+ }
+
+ /* read the first few indexes */
+ for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) {
+ indexes[i]=udata_readInt32(ds, inIndexes[i]);
+ }
+
+ /* get the total length of the data */
+ size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
+
+ if(length>=0) {
+ if(length<size) {
+ udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
+ length);
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ return 0;
+ }
+
+ /* copy the data for inaccessible bytes */
+ if(inBytes!=outBytes) {
+ uprv_memcpy(outBytes, inBytes, size);
+ }
+
+ offset=0;
+
+ /* swap the int32_t indexes[] */
+ nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
+ ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
+ offset=nextOffset;
+
+ /* swap the UTrie2 */
+ nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
+ utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
+ offset=nextOffset;
+
+ /* swap the uint16_t extraData[] */
+ nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
+ ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
+ offset=nextOffset;
+
+ /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
+ nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
+ offset=nextOffset;
+
+ U_ASSERT(offset==size);
+ }
+
+ return headerSize+size;
+}
+
+#endif // !UCONFIG_NO_NORMALIZATION