diff options
Diffstat (limited to 'gfx/qcms/transform.c')
-rw-r--r-- | gfx/qcms/transform.c | 1410 |
1 files changed, 1410 insertions, 0 deletions
diff --git a/gfx/qcms/transform.c b/gfx/qcms/transform.c new file mode 100644 index 000000000..139eb3738 --- /dev/null +++ b/gfx/qcms/transform.c @@ -0,0 +1,1410 @@ +/* vim: set ts=8 sw=8 noexpandtab: */ +// qcms +// Copyright (C) 2009 Mozilla Corporation +// Copyright (C) 1998-2007 Marti Maria +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#include <stdlib.h> +#include <math.h> +#include <assert.h> +#include <string.h> //memcpy +#include "qcmsint.h" +#include "chain.h" +#include "matrix.h" +#include "transform_util.h" + +/* for MSVC, GCC, Intel, and Sun compilers */ +#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64) +#define X86 +#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ + +/** + * AltiVec detection for PowerPC CPUs + * In case we have a method of detecting do the runtime detection. + * Otherwise statically choose the AltiVec path in case the compiler + * was told to build with AltiVec support. + */ +#if (defined(__POWERPC__) || defined(__powerpc__)) +#if defined(__linux__) +#include <unistd.h> +#include <fcntl.h> +#include <stdio.h> +#include <elf.h> +#include <linux/auxvec.h> +#include <asm/cputable.h> +#include <link.h> + +static inline qcms_bool have_altivec() { + static int available = -1; + int new_avail = 0; + ElfW(auxv_t) auxv; + ssize_t count; + int fd, i; + + if (available != -1) + return (available != 0 ? true : false); + + fd = open("/proc/self/auxv", O_RDONLY); + if (fd < 0) + goto out; + do { + count = read(fd, &auxv, sizeof(auxv)); + if (count < 0) + goto out_close; + + if (auxv.a_type == AT_HWCAP) { + new_avail = !!(auxv.a_un.a_val & PPC_FEATURE_HAS_ALTIVEC); + goto out_close; + } + } while (auxv.a_type != AT_NULL); + +out_close: + close(fd); +out: + available = new_avail; + return (available != 0 ? true : false); +} +#elif defined(__APPLE__) && defined(__MACH__) +#include <sys/sysctl.h> + +/** + * rip-off from ffmpeg AltiVec detection code. + * this code also appears on Apple's AltiVec pages. + */ +static inline qcms_bool have_altivec() { + int sels[2] = {CTL_HW, HW_VECTORUNIT}; + static int available = -1; + size_t len = sizeof(available); + int err; + + if (available != -1) + return (available != 0 ? true : false); + + err = sysctl(sels, 2, &available, &len, NULL, 0); + + if (err == 0) + if (available != 0) + return true; + + return false; +} +#elif defined(__ALTIVEC__) || defined(__APPLE_ALTIVEC__) +#define have_altivec() true +#else +#define have_altivec() false +#endif +#endif // (defined(__POWERPC__) || defined(__powerpc__)) + +// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ +// This is just an approximation, I am not handling all the non-linear +// aspects of the RGB to XYZ process, and assumming that the gamma correction +// has transitive property in the tranformation chain. +// +// the alghoritm: +// +// - First I build the absolute conversion matrix using +// primaries in XYZ. This matrix is next inverted +// - Then I eval the source white point across this matrix +// obtaining the coeficients of the transformation +// - Then, I apply these coeficients to the original matrix +static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs) +{ + struct matrix primaries; + struct matrix primaries_invert; + struct matrix result; + struct vector white_point; + struct vector coefs; + + double xn, yn; + double xr, yr; + double xg, yg; + double xb, yb; + + xn = white.x; + yn = white.y; + + if (yn == 0.0) + return matrix_invalid(); + + xr = primrs.red.x; + yr = primrs.red.y; + xg = primrs.green.x; + yg = primrs.green.y; + xb = primrs.blue.x; + yb = primrs.blue.y; + + primaries.m[0][0] = xr; + primaries.m[0][1] = xg; + primaries.m[0][2] = xb; + + primaries.m[1][0] = yr; + primaries.m[1][1] = yg; + primaries.m[1][2] = yb; + + primaries.m[2][0] = 1 - xr - yr; + primaries.m[2][1] = 1 - xg - yg; + primaries.m[2][2] = 1 - xb - yb; + primaries.invalid = false; + + white_point.v[0] = xn/yn; + white_point.v[1] = 1.; + white_point.v[2] = (1.0-xn-yn)/yn; + + primaries_invert = matrix_invert(primaries); + + coefs = matrix_eval(primaries_invert, white_point); + + result.m[0][0] = coefs.v[0]*xr; + result.m[0][1] = coefs.v[1]*xg; + result.m[0][2] = coefs.v[2]*xb; + + result.m[1][0] = coefs.v[0]*yr; + result.m[1][1] = coefs.v[1]*yg; + result.m[1][2] = coefs.v[2]*yb; + + result.m[2][0] = coefs.v[0]*(1.-xr-yr); + result.m[2][1] = coefs.v[1]*(1.-xg-yg); + result.m[2][2] = coefs.v[2]*(1.-xb-yb); + result.invalid = primaries_invert.invalid; + + return result; +} + +struct CIE_XYZ { + double X; + double Y; + double Z; +}; + +/* CIE Illuminant D50 */ +static const struct CIE_XYZ D50_XYZ = { + 0.9642, + 1.0000, + 0.8249 +}; + +/* from lcms: xyY2XYZ() + * corresponds to argyll: icmYxy2XYZ() */ +static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) +{ + struct CIE_XYZ dest; + dest.X = (source.x / source.y) * source.Y; + dest.Y = source.Y; + dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; + return dest; +} + +/* from lcms: ComputeChromaticAdaption */ +// Compute chromatic adaption matrix using chad as cone matrix +static struct matrix +compute_chromatic_adaption(struct CIE_XYZ source_white_point, + struct CIE_XYZ dest_white_point, + struct matrix chad) +{ + struct matrix chad_inv; + struct vector cone_source_XYZ, cone_source_rgb; + struct vector cone_dest_XYZ, cone_dest_rgb; + struct matrix cone, tmp; + + tmp = chad; + chad_inv = matrix_invert(tmp); + + cone_source_XYZ.v[0] = source_white_point.X; + cone_source_XYZ.v[1] = source_white_point.Y; + cone_source_XYZ.v[2] = source_white_point.Z; + + cone_dest_XYZ.v[0] = dest_white_point.X; + cone_dest_XYZ.v[1] = dest_white_point.Y; + cone_dest_XYZ.v[2] = dest_white_point.Z; + + cone_source_rgb = matrix_eval(chad, cone_source_XYZ); + cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); + + cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; + cone.m[0][1] = 0; + cone.m[0][2] = 0; + cone.m[1][0] = 0; + cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; + cone.m[1][2] = 0; + cone.m[2][0] = 0; + cone.m[2][1] = 0; + cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; + cone.invalid = false; + + // Normalize + return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); +} + +/* from lcms: cmsAdaptionMatrix */ +// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll +// Bradford is assumed +static struct matrix +adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination) +{ + struct matrix lam_rigg = {{ // Bradford matrix + { 0.8951f, 0.2664f, -0.1614f }, + { -0.7502f, 1.7135f, 0.0367f }, + { 0.0389f, -0.0685f, 1.0296f } + }}; + return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg); +} + +/* from lcms: cmsAdaptMatrixToD50 */ +static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt) +{ + struct CIE_XYZ Dn; + struct matrix Bradford; + + if (source_white_pt.y == 0.0) + return matrix_invalid(); + + Dn = xyY2XYZ(source_white_pt); + + Bradford = adaption_matrix(Dn, D50_XYZ); + return matrix_multiply(Bradford, r); +} + +qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) +{ + struct matrix colorants; + colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); + colorants = adapt_matrix_to_D50(colorants, white_point); + + if (colorants.invalid) + return false; + + /* note: there's a transpose type of operation going on here */ + profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); + profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); + profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); + + profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]); + profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]); + profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]); + + profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); + profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); + profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); + + return true; +} + +qcms_bool get_rgb_colorants(struct matrix *colorants, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) +{ + *colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); + *colorants = adapt_matrix_to_D50(*colorants, white_point); + + return (colorants->invalid ? true : false); +} + +#if 0 +static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + int i; + float (*mat)[4] = transform->matrix; + for (i=0; i<length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + float out_device_r = pow(out_linear_r, transform->out_gamma_r); + float out_device_g = pow(out_linear_g, transform->out_gamma_g); + float out_device_b = pow(out_linear_b, transform->out_gamma_b); + + dest[OUTPUT_R_INDEX] = clamp_u8(255*out_device_r); + dest[OUTPUT_G_INDEX] = clamp_u8(255*out_device_g); + dest[OUTPUT_B_INDEX] = clamp_u8(255*out_device_b); + dest += RGB_OUTPUT_COMPONENTS; + } +} +#endif + +static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + float out_device_r, out_device_g, out_device_b; + unsigned char device = *src++; + + float linear = transform->input_gamma_table_gray[device]; + + out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255); + dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255); + dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255); + dest += RGB_OUTPUT_COMPONENTS; + } +} + +/* Alpha is not corrected. + A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If + RGB Is?" Tech Memo 17 (December 14, 1998). + See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf +*/ + +static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + float out_device_r, out_device_g, out_device_b; + unsigned char device = *src++; + unsigned char alpha = *src++; + + float linear = transform->input_gamma_table_gray[device]; + + out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255); + dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255); + dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255); + dest[OUTPUT_A_INDEX] = alpha; + dest += RGBA_OUTPUT_COMPONENTS; + } +} + + +static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + unsigned char device = *src++; + uint16_t gray; + + float linear = transform->input_gamma_table_gray[device]; + + /* we could round here... */ + gray = linear * PRECACHE_OUTPUT_MAX; + + dest[OUTPUT_R_INDEX] = transform->output_table_r->data[gray]; + dest[OUTPUT_G_INDEX] = transform->output_table_g->data[gray]; + dest[OUTPUT_B_INDEX] = transform->output_table_b->data[gray]; + dest += RGB_OUTPUT_COMPONENTS; + } +} + +static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + unsigned char device = *src++; + unsigned char alpha = *src++; + uint16_t gray; + + float linear = transform->input_gamma_table_gray[device]; + + /* we could round here... */ + gray = linear * PRECACHE_OUTPUT_MAX; + + dest[OUTPUT_R_INDEX] = transform->output_table_r->data[gray]; + dest[OUTPUT_G_INDEX] = transform->output_table_g->data[gray]; + dest[OUTPUT_B_INDEX] = transform->output_table_b->data[gray]; + dest[OUTPUT_A_INDEX] = alpha; + dest += RGBA_OUTPUT_COMPONENTS; + } +} + +static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + uint16_t r, g, b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + /* we could round here... */ + r = out_linear_r * PRECACHE_OUTPUT_MAX; + g = out_linear_g * PRECACHE_OUTPUT_MAX; + b = out_linear_b * PRECACHE_OUTPUT_MAX; + + dest[OUTPUT_R_INDEX] = transform->output_table_r->data[r]; + dest[OUTPUT_G_INDEX] = transform->output_table_g->data[g]; + dest[OUTPUT_B_INDEX] = transform->output_table_b->data[b]; + dest += RGB_OUTPUT_COMPONENTS; + } +} + +static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + unsigned char alpha = *src++; + uint16_t r, g, b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + /* we could round here... */ + r = out_linear_r * PRECACHE_OUTPUT_MAX; + g = out_linear_g * PRECACHE_OUTPUT_MAX; + b = out_linear_b * PRECACHE_OUTPUT_MAX; + + dest[OUTPUT_R_INDEX] = transform->output_table_r->data[r]; + dest[OUTPUT_G_INDEX] = transform->output_table_g->data[g]; + dest[OUTPUT_B_INDEX] = transform->output_table_b->data[b]; + dest[OUTPUT_A_INDEX] = alpha; + dest += RGBA_OUTPUT_COMPONENTS; + } +} + +// Not used +/* +static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { + unsigned int i; + int xy_len = 1; + int x_len = transform->grid_size; + int len = x_len * x_len; + float* r_table = transform->r_clut; + float* g_table = transform->g_clut; + float* b_table = transform->b_clut; + + for (i = 0; i < length; i++) { + unsigned char in_r = *src++; + unsigned char in_g = *src++; + unsigned char in_b = *src++; + float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; + + int x = floorf(linear_r * (transform->grid_size-1)); + int y = floorf(linear_g * (transform->grid_size-1)); + int z = floorf(linear_b * (transform->grid_size-1)); + int x_n = ceilf(linear_r * (transform->grid_size-1)); + int y_n = ceilf(linear_g * (transform->grid_size-1)); + int z_n = ceilf(linear_b * (transform->grid_size-1)); + float x_d = linear_r * (transform->grid_size-1) - x; + float y_d = linear_g * (transform->grid_size-1) - y; + float z_d = linear_b * (transform->grid_size-1) - z; + + float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); + float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); + float r_y1 = lerp(r_x1, r_x2, y_d); + float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); + float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); + float r_y2 = lerp(r_x3, r_x4, y_d); + float clut_r = lerp(r_y1, r_y2, z_d); + + float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); + float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); + float g_y1 = lerp(g_x1, g_x2, y_d); + float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); + float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); + float g_y2 = lerp(g_x3, g_x4, y_d); + float clut_g = lerp(g_y1, g_y2, z_d); + + float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); + float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); + float b_y1 = lerp(b_x1, b_x2, y_d); + float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); + float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); + float b_y2 = lerp(b_x3, b_x4, y_d); + float clut_b = lerp(b_y1, b_y2, z_d); + + *dest++ = clamp_u8(clut_r*255.0f); + *dest++ = clamp_u8(clut_g*255.0f); + *dest++ = clamp_u8(clut_b*255.0f); + } +} +*/ + +static int int_div_ceil(int value, int div) { + return ((value + div - 1) / div); +} + +// Using lcms' tetra interpolation algorithm. +static void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { + unsigned int i; + int xy_len = 1; + int x_len = transform->grid_size; + int len = x_len * x_len; + float* r_table = transform->r_clut; + float* g_table = transform->g_clut; + float* b_table = transform->b_clut; + float c0_r, c1_r, c2_r, c3_r; + float c0_g, c1_g, c2_g, c3_g; + float c0_b, c1_b, c2_b, c3_b; + float clut_r, clut_g, clut_b; + for (i = 0; i < length; i++) { + unsigned char in_r = *src++; + unsigned char in_g = *src++; + unsigned char in_b = *src++; + unsigned char in_a = *src++; + float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; + + int x = in_r * (transform->grid_size-1) / 255; + int y = in_g * (transform->grid_size-1) / 255; + int z = in_b * (transform->grid_size-1) / 255; + int x_n = int_div_ceil(in_r * (transform->grid_size-1), 255); + int y_n = int_div_ceil(in_g * (transform->grid_size-1), 255); + int z_n = int_div_ceil(in_b * (transform->grid_size-1), 255); + float rx = linear_r * (transform->grid_size-1) - x; + float ry = linear_g * (transform->grid_size-1) - y; + float rz = linear_b * (transform->grid_size-1) - z; + + c0_r = CLU(r_table, x, y, z); + c0_g = CLU(g_table, x, y, z); + c0_b = CLU(b_table, x, y, z); + + if( rx >= ry ) { + if (ry >= rz) { //rx >= ry && ry >= rz + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (rx >= rz) { //rx >= rz && rz >= ry + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); + } else { //rz > rx && rx >= ry + c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x, y, z_n) - c0_r; + c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x, y, z_n) - c0_g; + c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x, y, z_n) - c0_b; + } + } + } else { + if (rx >= rz) { //ry > rx && rx >= rz + c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (ry >= rz) { //ry >= rz && rz > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); + } else { //rz > ry && ry > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); + c3_r = CLU(r_table, x, y, z_n) - c0_r; + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); + c3_g = CLU(g_table, x, y, z_n) - c0_g; + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); + c3_b = CLU(b_table, x, y, z_n) - c0_b; + } + } + } + + clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; + clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; + clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; + + dest[OUTPUT_R_INDEX] = clamp_u8(clut_r*255.0f); + dest[OUTPUT_G_INDEX] = clamp_u8(clut_g*255.0f); + dest[OUTPUT_B_INDEX] = clamp_u8(clut_b*255.0f); + dest[OUTPUT_A_INDEX] = in_a; + dest += RGBA_OUTPUT_COMPONENTS; + } +} + +// Using lcms' tetra interpolation code. +static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { + unsigned int i; + int xy_len = 1; + int x_len = transform->grid_size; + int len = x_len * x_len; + float* r_table = transform->r_clut; + float* g_table = transform->g_clut; + float* b_table = transform->b_clut; + float c0_r, c1_r, c2_r, c3_r; + float c0_g, c1_g, c2_g, c3_g; + float c0_b, c1_b, c2_b, c3_b; + float clut_r, clut_g, clut_b; + for (i = 0; i < length; i++) { + unsigned char in_r = *src++; + unsigned char in_g = *src++; + unsigned char in_b = *src++; + float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; + + int x = in_r * (transform->grid_size-1) / 255; + int y = in_g * (transform->grid_size-1) / 255; + int z = in_b * (transform->grid_size-1) / 255; + int x_n = int_div_ceil(in_r * (transform->grid_size-1), 255); + int y_n = int_div_ceil(in_g * (transform->grid_size-1), 255); + int z_n = int_div_ceil(in_b * (transform->grid_size-1), 255); + float rx = linear_r * (transform->grid_size-1) - x; + float ry = linear_g * (transform->grid_size-1) - y; + float rz = linear_b * (transform->grid_size-1) - z; + + c0_r = CLU(r_table, x, y, z); + c0_g = CLU(g_table, x, y, z); + c0_b = CLU(b_table, x, y, z); + + if( rx >= ry ) { + if (ry >= rz) { //rx >= ry && ry >= rz + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (rx >= rz) { //rx >= rz && rz >= ry + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); + } else { //rz > rx && rx >= ry + c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x, y, z_n) - c0_r; + c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x, y, z_n) - c0_g; + c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x, y, z_n) - c0_b; + } + } + } else { + if (rx >= rz) { //ry > rx && rx >= rz + c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (ry >= rz) { //ry >= rz && rz > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); + } else { //rz > ry && ry > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); + c3_r = CLU(r_table, x, y, z_n) - c0_r; + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); + c3_g = CLU(g_table, x, y, z_n) - c0_g; + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); + c3_b = CLU(b_table, x, y, z_n) - c0_b; + } + } + } + + clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; + clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; + clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; + + dest[OUTPUT_R_INDEX] = clamp_u8(clut_r*255.0f); + dest[OUTPUT_G_INDEX] = clamp_u8(clut_g*255.0f); + dest[OUTPUT_B_INDEX] = clamp_u8(clut_b*255.0f); + dest += RGB_OUTPUT_COMPONENTS; + } +} + +static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + float out_device_r, out_device_g, out_device_b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + out_device_r = lut_interp_linear(out_linear_r, + transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(out_linear_g, + transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(out_linear_b, + transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255); + dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255); + dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255); + dest += RGB_OUTPUT_COMPONENTS; + } +} + +static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + unsigned char alpha = *src++; + float out_device_r, out_device_g, out_device_b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + out_device_r = lut_interp_linear(out_linear_r, + transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(out_linear_g, + transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(out_linear_b, + transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255); + dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255); + dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255); + dest[OUTPUT_A_INDEX] = alpha; + dest += RGBA_OUTPUT_COMPONENTS; + } +} + +#if 0 +static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + *dest++ = clamp_u8(out_linear_r*255); + *dest++ = clamp_u8(out_linear_g*255); + *dest++ = clamp_u8(out_linear_b*255); + } +} +#endif + +/* + * If users create and destroy objects on different threads, even if the same + * objects aren't used on different threads at the same time, we can still run + * in to trouble with refcounts if they aren't atomic. + * + * This can lead to us prematurely deleting the precache if threads get unlucky + * and write the wrong value to the ref count. + */ +static struct precache_output *precache_reference(struct precache_output *p) +{ + qcms_atomic_increment(p->ref_count); + return p; +} + +static struct precache_output *precache_create() +{ + struct precache_output *p = malloc(sizeof(struct precache_output)); + if (p) + p->ref_count = 1; + return p; +} + +void precache_release(struct precache_output *p) +{ + if (qcms_atomic_decrement(p->ref_count) == 0) { + free(p); + } +} + +#ifdef HAVE_POSIX_MEMALIGN +static qcms_transform *transform_alloc(void) +{ + qcms_transform *t; + + void *allocated_memory; + if (!posix_memalign(&allocated_memory, 16, sizeof(qcms_transform))) { + /* Doing a memset to initialise all bits to 'zero'*/ + memset(allocated_memory, 0, sizeof(qcms_transform)); + t = allocated_memory; + return t; + } else { + return NULL; + } +} +static void transform_free(qcms_transform *t) +{ + free(t); +} +#else +static qcms_transform *transform_alloc(void) +{ + /* transform needs to be aligned on a 16byte boundrary */ + char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1); + /* make room for a pointer to the block returned by calloc */ + void *transform_start = original_block + sizeof(void*); + /* align transform_start */ + qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf); + + /* store a pointer to the block returned by calloc so that we can free it later */ + void **(original_block_ptr) = (void**)transform_aligned; + if (!original_block) + return NULL; + original_block_ptr--; + *original_block_ptr = original_block; + + return transform_aligned; +} +static void transform_free(qcms_transform *t) +{ + /* get at the pointer to the unaligned block returned by calloc */ + void **p = (void**)t; + p--; + free(*p); +} +#endif + +void qcms_transform_release(qcms_transform *t) +{ + /* ensure we only free the gamma tables once even if there are + * multiple references to the same data */ + + if (t->output_table_r) + precache_release(t->output_table_r); + if (t->output_table_g) + precache_release(t->output_table_g); + if (t->output_table_b) + precache_release(t->output_table_b); + + free(t->input_gamma_table_r); + if (t->input_gamma_table_g != t->input_gamma_table_r) + free(t->input_gamma_table_g); + if (t->input_gamma_table_g != t->input_gamma_table_r && + t->input_gamma_table_g != t->input_gamma_table_b) + free(t->input_gamma_table_b); + + free(t->input_gamma_table_gray); + + free(t->output_gamma_lut_r); + free(t->output_gamma_lut_g); + free(t->output_gamma_lut_b); + + transform_free(t); +} + +#ifdef X86 +// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in +// mozilla/jpeg) + // ------------------------------------------------------------------------- +#if defined(_M_IX86) && defined(_MSC_VER) +#define HAS_CPUID +/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC + register - I'm not sure if that ever happens on windows, but cpuid isn't + on the critical path so we just preserve the register to be safe and to be + consistent with the non-windows version. */ +static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { + uint32_t a_, b_, c_, d_; + __asm { + xchg ebx, esi + mov eax, fxn + cpuid + mov a_, eax + mov b_, ebx + mov c_, ecx + mov d_, edx + xchg ebx, esi + } + *a = a_; + *b = b_; + *c = c_; + *d = d_; +} +#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386)) +#define HAS_CPUID +/* Get us a CPUID function. We can't use ebx because it's the PIC register on + some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ +static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { + + uint32_t a_, b_, c_, d_; + __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" + : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn)); + *a = a_; + *b = b_; + *c = c_; + *d = d_; +} +#endif + +// -------------------------Runtime SSEx Detection----------------------------- + +/* MMX is always supported per + * Gecko v1.9.1 minimum CPU requirements */ +#define SSE1_EDX_MASK (1UL << 25) +#define SSE2_EDX_MASK (1UL << 26) +#define SSE3_ECX_MASK (1UL << 0) + +static int sse_version_available(void) +{ +#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) + /* we know at build time that 64-bit CPUs always have SSE2 + * this tells the compiler that non-SSE2 branches will never be + * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ + return 2; +#elif defined(HAS_CPUID) + static int sse_version = -1; + uint32_t a, b, c, d; + uint32_t function = 0x00000001; + + if (sse_version == -1) { + sse_version = 0; + cpuid(function, &a, &b, &c, &d); + if (c & SSE3_ECX_MASK) + sse_version = 3; + else if (d & SSE2_EDX_MASK) + sse_version = 2; + else if (d & SSE1_EDX_MASK) + sse_version = 1; + } + + return sse_version; +#else + return 0; +#endif +} +#endif + +static const struct matrix bradford_matrix = {{ { 0.8951f, 0.2664f,-0.1614f}, + {-0.7502f, 1.7135f, 0.0367f}, + { 0.0389f,-0.0685f, 1.0296f}}, + false}; + +static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f}, + { 0.4323053f, 0.5183603f, 0.0492912f}, + {-0.0085287f, 0.0400428f, 0.9684867f}}, + false}; + +// See ICCv4 E.3 +struct matrix compute_whitepoint_adaption(float X, float Y, float Z) { + float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) / + (X*bradford_matrix.m[0][0] + Y*bradford_matrix.m[1][0] + Z*bradford_matrix.m[2][0] ); + float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) / + (X*bradford_matrix.m[0][1] + Y*bradford_matrix.m[1][1] + Z*bradford_matrix.m[2][1] ); + float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) / + (X*bradford_matrix.m[0][2] + Y*bradford_matrix.m[1][2] + Z*bradford_matrix.m[2][2] ); + struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false}; + return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) ); +} + +void qcms_profile_precache_output_transform(qcms_profile *profile) +{ + /* we only support precaching on rgb profiles */ + if (profile->color_space != RGB_SIGNATURE) + return; + + if (qcms_supports_iccv4) { + /* don't precache since we will use the B2A LUT */ + if (profile->B2A0) + return; + + /* don't precache since we will use the mBA LUT */ + if (profile->mBA) + return; + } + + /* don't precache if we do not have the TRC curves */ + if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC) + return; + + if (!profile->output_table_r) { + profile->output_table_r = precache_create(); + if (profile->output_table_r && + !compute_precache(profile->redTRC, profile->output_table_r->data)) { + precache_release(profile->output_table_r); + profile->output_table_r = NULL; + } + } + if (!profile->output_table_g) { + profile->output_table_g = precache_create(); + if (profile->output_table_g && + !compute_precache(profile->greenTRC, profile->output_table_g->data)) { + precache_release(profile->output_table_g); + profile->output_table_g = NULL; + } + } + if (!profile->output_table_b) { + profile->output_table_b = precache_create(); + if (profile->output_table_b && + !compute_precache(profile->blueTRC, profile->output_table_b->data)) { + precache_release(profile->output_table_b); + profile->output_table_b = NULL; + } + } +} + +/* Replace the current transformation with a LUT transformation using a given number of sample points */ +qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out, + int samples, qcms_data_type in_type) +{ + /* The range between which 2 consecutive sample points can be used to interpolate */ + uint16_t x,y,z; + uint32_t l; + uint32_t lutSize = 3 * samples * samples * samples; + float* src = NULL; + float* dest = NULL; + float* lut = NULL; + + src = malloc(lutSize*sizeof(float)); + dest = malloc(lutSize*sizeof(float)); + + if (src && dest) { + /* Prepare a list of points we want to sample */ + l = 0; + for (x = 0; x < samples; x++) { + for (y = 0; y < samples; y++) { + for (z = 0; z < samples; z++) { + src[l++] = x / (float)(samples-1); + src[l++] = y / (float)(samples-1); + src[l++] = z / (float)(samples-1); + } + } + } + + lut = qcms_chain_transform(in, out, src, dest, lutSize); + if (lut) { + transform->r_clut = &lut[0]; + transform->g_clut = &lut[1]; + transform->b_clut = &lut[2]; + transform->grid_size = samples; + if (in_type == QCMS_DATA_RGBA_8) { + transform->transform_fn = qcms_transform_data_tetra_clut_rgba; + } else { + transform->transform_fn = qcms_transform_data_tetra_clut; + } + } + } + + + //XXX: qcms_modular_transform_data may return either the src or dest buffer. If so it must not be free-ed + if (src && lut != src) { + free(src); + } + if (dest && lut != dest) { + free(dest); + } + + if (lut == NULL) { + return NULL; + } + return transform; +} + +#define NO_MEM_TRANSFORM NULL + +qcms_transform* qcms_transform_create( + qcms_profile *in, qcms_data_type in_type, + qcms_profile *out, qcms_data_type out_type, + qcms_intent intent) +{ + bool precache = false; + + qcms_transform *transform = transform_alloc(); + if (!transform) { + return NULL; + } + if (out_type != QCMS_DATA_RGB_8 && + out_type != QCMS_DATA_RGBA_8) { + assert(0 && "output type"); + qcms_transform_release(transform); + return NULL; + } + + if (out->output_table_r && + out->output_table_g && + out->output_table_b) { + precache = true; + } + + // This precache assumes RGB_SIGNATURE (fails on GRAY_SIGNATURE, for instance) + if (qcms_supports_iccv4 && + (in_type == QCMS_DATA_RGB_8 || in_type == QCMS_DATA_RGBA_8) && + (in->A2B0 || out->B2A0 || in->mAB || out->mAB)) + { + // Precache the transformation to a CLUT 33x33x33 in size. + // 33 is used by many profiles and works well in pratice. + // This evenly divides 256 into blocks of 8x8x8. + // TODO For transforming small data sets of about 200x200 or less + // precaching should be avoided. + qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type); + if (!result) { + assert(0 && "precacheLUT failed"); + qcms_transform_release(transform); + return NULL; + } + return result; + } + + if (precache) { + transform->output_table_r = precache_reference(out->output_table_r); + transform->output_table_g = precache_reference(out->output_table_g); + transform->output_table_b = precache_reference(out->output_table_b); + } else { + if (!out->redTRC || !out->greenTRC || !out->blueTRC) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); + build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); + build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); + if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + } + + if (in->color_space == RGB_SIGNATURE) { + struct matrix in_matrix, out_matrix, result; + + if (in_type != QCMS_DATA_RGB_8 && + in_type != QCMS_DATA_RGBA_8){ + assert(0 && "input type"); + qcms_transform_release(transform); + return NULL; + } + if (precache) { +#ifdef X86 + if (sse_version_available() >= 2) { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2; + +#if !(defined(_MSC_VER) && defined(_M_AMD64)) + /* Microsoft Compiler for x64 doesn't support MMX. + * SSE code uses MMX so that we disable on x64 */ + } else + if (sse_version_available() >= 1) { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1; +#endif + } else +#endif +#if (defined(__POWERPC__) || defined(__powerpc__) && !defined(__NO_FPRS__)) + if (have_altivec()) { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_altivec; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_altivec; + } else +#endif + { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_precache; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_precache; + } + } else { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut; + } + + //XXX: avoid duplicating tables if we can + transform->input_gamma_table_r = build_input_gamma_table(in->redTRC); + transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC); + transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC); + if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + + + /* build combined colorant matrix */ + in_matrix = build_colorant_matrix(in); + out_matrix = build_colorant_matrix(out); + out_matrix = matrix_invert(out_matrix); + if (out_matrix.invalid) { + qcms_transform_release(transform); + return NULL; + } + result = matrix_multiply(out_matrix, in_matrix); + + /* check for NaN values in the matrix and bail if we find any */ + for (unsigned i = 0 ; i < 3 ; ++i) { + for (unsigned j = 0 ; j < 3 ; ++j) { + if (result.m[i][j] != result.m[i][j]) { + qcms_transform_release(transform); + return NULL; + } + } + } + + /* store the results in column major mode + * this makes doing the multiplication with sse easier */ + transform->matrix[0][0] = result.m[0][0]; + transform->matrix[1][0] = result.m[0][1]; + transform->matrix[2][0] = result.m[0][2]; + transform->matrix[0][1] = result.m[1][0]; + transform->matrix[1][1] = result.m[1][1]; + transform->matrix[2][1] = result.m[1][2]; + transform->matrix[0][2] = result.m[2][0]; + transform->matrix[1][2] = result.m[2][1]; + transform->matrix[2][2] = result.m[2][2]; + + } else if (in->color_space == GRAY_SIGNATURE) { + if (in_type != QCMS_DATA_GRAY_8 && + in_type != QCMS_DATA_GRAYA_8){ + assert(0 && "input type"); + qcms_transform_release(transform); + return NULL; + } + + transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC); + if (!transform->input_gamma_table_gray) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + + if (precache) { + if (in_type == QCMS_DATA_GRAY_8) { + transform->transform_fn = qcms_transform_data_gray_out_precache; + } else { + transform->transform_fn = qcms_transform_data_graya_out_precache; + } + } else { + if (in_type == QCMS_DATA_GRAY_8) { + transform->transform_fn = qcms_transform_data_gray_out_lut; + } else { + transform->transform_fn = qcms_transform_data_graya_out_lut; + } + } + } else { + assert(0 && "unexpected colorspace"); + qcms_transform_release(transform); + return NULL; + } + return transform; +} + +#if defined(__GNUC__) && defined(__i386__) +/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ +__attribute__((__force_align_arg_pointer__)) +#endif +void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length) +{ + transform->transform_fn(transform, src, dest, length); +} + +qcms_bool qcms_supports_iccv4; +void qcms_enable_iccv4() +{ + qcms_supports_iccv4 = true; +} |