diff options
Diffstat (limited to 'gfx/qcms/transform-sse1.c')
-rw-r--r-- | gfx/qcms/transform-sse1.c | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/gfx/qcms/transform-sse1.c b/gfx/qcms/transform-sse1.c new file mode 100644 index 000000000..69d814545 --- /dev/null +++ b/gfx/qcms/transform-sse1.c @@ -0,0 +1,253 @@ +#include <xmmintrin.h> + +#include "qcmsint.h" + +/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */ +#define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) +#define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE ) +static const ALIGN float floatScaleX4[4] = + { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE}; +static const ALIGN float clampMaxValueX4[4] = + { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL}; + +void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform, + unsigned char *src, + unsigned char *dest, + size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + char input_back[32]; + /* Ensure we have a buffer that's 16 byte aligned regardless of the original + * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) + * because they don't work on stack variables. gcc 4.4 does do the right thing + * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ + float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); + /* share input and output locations to save having to keep the + * locations in separate registers */ + uint32_t const * output = (uint32_t*)input; + + /* deref *transform now to avoid it in loop */ + const float *igtbl_r = transform->input_gamma_table_r; + const float *igtbl_g = transform->input_gamma_table_g; + const float *igtbl_b = transform->input_gamma_table_b; + + /* deref *transform now to avoid it in loop */ + const uint8_t *otdata_r = &transform->output_table_r->data[0]; + const uint8_t *otdata_g = &transform->output_table_g->data[0]; + const uint8_t *otdata_b = &transform->output_table_b->data[0]; + + /* input matrix values never change */ + const __m128 mat0 = _mm_load_ps(mat[0]); + const __m128 mat1 = _mm_load_ps(mat[1]); + const __m128 mat2 = _mm_load_ps(mat[2]); + + /* these values don't change, either */ + const __m128 max = _mm_load_ps(clampMaxValueX4); + const __m128 min = _mm_setzero_ps(); + const __m128 scale = _mm_load_ps(floatScaleX4); + + /* working variables */ + __m128 vec_r, vec_g, vec_b, result; + + /* CYA */ + if (!length) + return; + + /* one pixel is handled outside of the loop */ + length--; + + /* setup for transforming 1st pixel */ + vec_r = _mm_load_ss(&igtbl_r[src[0]]); + vec_g = _mm_load_ss(&igtbl_g[src[1]]); + vec_b = _mm_load_ss(&igtbl_b[src[2]]); + src += 3; + + /* transform all but final pixel */ + + for (i=0; i<length; i++) + { + /* position values from gamma tables */ + vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); + vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); + vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); + + /* gamma * matrix */ + vec_r = _mm_mul_ps(vec_r, mat0); + vec_g = _mm_mul_ps(vec_g, mat1); + vec_b = _mm_mul_ps(vec_b, mat2); + + /* crunch, crunch, crunch */ + vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); + vec_r = _mm_max_ps(min, vec_r); + vec_r = _mm_min_ps(max, vec_r); + result = _mm_mul_ps(vec_r, scale); + + /* store calc'd output tables indices */ + *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); + result = _mm_movehl_ps(result, result); + *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ; + + /* load for next loop while store completes */ + vec_r = _mm_load_ss(&igtbl_r[src[0]]); + vec_g = _mm_load_ss(&igtbl_g[src[1]]); + vec_b = _mm_load_ss(&igtbl_b[src[2]]); + src += 3; + + /* use calc'd indices to output RGB values */ + dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; + dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; + dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; + dest += RGB_OUTPUT_COMPONENTS; + } + + /* handle final (maybe only) pixel */ + + vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); + vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); + vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); + + vec_r = _mm_mul_ps(vec_r, mat0); + vec_g = _mm_mul_ps(vec_g, mat1); + vec_b = _mm_mul_ps(vec_b, mat2); + + vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); + vec_r = _mm_max_ps(min, vec_r); + vec_r = _mm_min_ps(max, vec_r); + result = _mm_mul_ps(vec_r, scale); + + *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); + result = _mm_movehl_ps(result, result); + *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); + + dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; + dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; + dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; + + _mm_empty(); +} + +void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform, + unsigned char *src, + unsigned char *dest, + size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + char input_back[32]; + /* Ensure we have a buffer that's 16 byte aligned regardless of the original + * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) + * because they don't work on stack variables. gcc 4.4 does do the right thing + * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ + float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); + /* share input and output locations to save having to keep the + * locations in separate registers */ + uint32_t const * output = (uint32_t*)input; + + /* deref *transform now to avoid it in loop */ + const float *igtbl_r = transform->input_gamma_table_r; + const float *igtbl_g = transform->input_gamma_table_g; + const float *igtbl_b = transform->input_gamma_table_b; + + /* deref *transform now to avoid it in loop */ + const uint8_t *otdata_r = &transform->output_table_r->data[0]; + const uint8_t *otdata_g = &transform->output_table_g->data[0]; + const uint8_t *otdata_b = &transform->output_table_b->data[0]; + + /* input matrix values never change */ + const __m128 mat0 = _mm_load_ps(mat[0]); + const __m128 mat1 = _mm_load_ps(mat[1]); + const __m128 mat2 = _mm_load_ps(mat[2]); + + /* these values don't change, either */ + const __m128 max = _mm_load_ps(clampMaxValueX4); + const __m128 min = _mm_setzero_ps(); + const __m128 scale = _mm_load_ps(floatScaleX4); + + /* working variables */ + __m128 vec_r, vec_g, vec_b, result; + unsigned char alpha; + + /* CYA */ + if (!length) + return; + + /* one pixel is handled outside of the loop */ + length--; + + /* setup for transforming 1st pixel */ + vec_r = _mm_load_ss(&igtbl_r[src[0]]); + vec_g = _mm_load_ss(&igtbl_g[src[1]]); + vec_b = _mm_load_ss(&igtbl_b[src[2]]); + alpha = src[3]; + src += 4; + + /* transform all but final pixel */ + + for (i=0; i<length; i++) + { + /* position values from gamma tables */ + vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); + vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); + vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); + + /* gamma * matrix */ + vec_r = _mm_mul_ps(vec_r, mat0); + vec_g = _mm_mul_ps(vec_g, mat1); + vec_b = _mm_mul_ps(vec_b, mat2); + + /* store alpha for this pixel; load alpha for next */ + dest[OUTPUT_A_INDEX] = alpha; + alpha = src[3]; + + /* crunch, crunch, crunch */ + vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); + vec_r = _mm_max_ps(min, vec_r); + vec_r = _mm_min_ps(max, vec_r); + result = _mm_mul_ps(vec_r, scale); + + /* store calc'd output tables indices */ + *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); + result = _mm_movehl_ps(result, result); + *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); + + /* load gamma values for next loop while store completes */ + vec_r = _mm_load_ss(&igtbl_r[src[0]]); + vec_g = _mm_load_ss(&igtbl_g[src[1]]); + vec_b = _mm_load_ss(&igtbl_b[src[2]]); + src += 4; + + /* use calc'd indices to output RGB values */ + dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; + dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; + dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; + dest += 4; + } + + /* handle final (maybe only) pixel */ + + vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); + vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); + vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); + + vec_r = _mm_mul_ps(vec_r, mat0); + vec_g = _mm_mul_ps(vec_g, mat1); + vec_b = _mm_mul_ps(vec_b, mat2); + + dest[OUTPUT_A_INDEX] = alpha; + + vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); + vec_r = _mm_max_ps(min, vec_r); + vec_r = _mm_min_ps(max, vec_r); + result = _mm_mul_ps(vec_r, scale); + + *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); + result = _mm_movehl_ps(result, result); + *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); + + dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; + dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; + dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; + + _mm_empty(); +} |