summaryrefslogtreecommitdiffstats
path: root/gfx/layers/AxisPhysicsModel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/layers/AxisPhysicsModel.cpp')
-rw-r--r--gfx/layers/AxisPhysicsModel.cpp121
1 files changed, 121 insertions, 0 deletions
diff --git a/gfx/layers/AxisPhysicsModel.cpp b/gfx/layers/AxisPhysicsModel.cpp
new file mode 100644
index 000000000..3ae686d16
--- /dev/null
+++ b/gfx/layers/AxisPhysicsModel.cpp
@@ -0,0 +1,121 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set sw=2 ts=8 et tw=80 : */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "AxisPhysicsModel.h"
+
+namespace mozilla {
+namespace layers {
+
+/**
+ * The simulation is advanced forward in time with a fixed time step to ensure
+ * that it remains deterministic given variable framerates. To determine the
+ * position at any variable time, two samples are interpolated.
+ *
+ * kFixedtimestep is set to 120hz in order to ensure that every frame in a
+ * common 60hz refresh rate display will have at least one physics simulation
+ * sample. More accuracy can be obtained by reducing kFixedTimestep to smaller
+ * intervals, such as 240hz or 1000hz, at the cost of more CPU cycles. If
+ * kFixedTimestep is increased to much longer intervals, interpolation will
+ * become less effective at reducing temporal jitter and the simulation will
+ * lose accuracy.
+ */
+const double AxisPhysicsModel::kFixedTimestep = 1.0 / 120.0; // 120hz
+
+/**
+ * Constructs an AxisPhysicsModel with initial values for state.
+ *
+ * @param aInitialPosition sets the initial position of the simulation,
+ * in AppUnits.
+ * @param aInitialVelocity sets the initial velocity of the simulation,
+ * in AppUnits / second.
+ */
+AxisPhysicsModel::AxisPhysicsModel(double aInitialPosition,
+ double aInitialVelocity)
+ : mProgress(1.0)
+ , mPrevState(aInitialPosition, aInitialVelocity)
+ , mNextState(aInitialPosition, aInitialVelocity)
+{
+
+}
+
+AxisPhysicsModel::~AxisPhysicsModel()
+{
+
+}
+
+double
+AxisPhysicsModel::GetVelocity()
+{
+ return LinearInterpolate(mPrevState.v, mNextState.v, mProgress);
+}
+
+double
+AxisPhysicsModel::GetPosition()
+{
+ return LinearInterpolate(mPrevState.p, mNextState.p, mProgress);
+}
+
+void
+AxisPhysicsModel::SetVelocity(double aVelocity)
+{
+ mNextState.v = aVelocity;
+ mNextState.p = GetPosition();
+ mProgress = 1.0;
+}
+
+void
+AxisPhysicsModel::SetPosition(double aPosition)
+{
+ mNextState.v = GetVelocity();
+ mNextState.p = aPosition;
+ mProgress = 1.0;
+}
+
+void
+AxisPhysicsModel::Simulate(const TimeDuration& aDeltaTime)
+{
+ for(mProgress += aDeltaTime.ToSeconds() / kFixedTimestep;
+ mProgress > 1.0; mProgress -= 1.0) {
+ Integrate(kFixedTimestep);
+ }
+}
+
+void
+AxisPhysicsModel::Integrate(double aDeltaTime)
+{
+ mPrevState = mNextState;
+
+ // RK4 (Runge-Kutta method) Integration
+ // http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
+ Derivative a = Evaluate( mNextState, 0.0, Derivative() );
+ Derivative b = Evaluate( mNextState, aDeltaTime * 0.5, a );
+ Derivative c = Evaluate( mNextState, aDeltaTime * 0.5, b );
+ Derivative d = Evaluate( mNextState, aDeltaTime, c );
+
+ double dpdt = 1.0 / 6.0 * (a.dp + 2.0 * (b.dp + c.dp) + d.dp);
+ double dvdt = 1.0 / 6.0 * (a.dv + 2.0 * (b.dv + c.dv) + d.dv);
+
+ mNextState.p += dpdt * aDeltaTime;
+ mNextState.v += dvdt * aDeltaTime;
+}
+
+AxisPhysicsModel::Derivative
+AxisPhysicsModel::Evaluate(const State &aInitState, double aDeltaTime,
+ const Derivative &aDerivative)
+{
+ State state( aInitState.p + aDerivative.dp*aDeltaTime, aInitState.v + aDerivative.dv*aDeltaTime );
+
+ return Derivative( state.v, Acceleration(state) );
+}
+
+double
+AxisPhysicsModel::LinearInterpolate(double aV1, double aV2, double aBlend)
+{
+ return aV1 * (1.0 - aBlend) + aV2 * aBlend;
+}
+
+} // namespace layers
+} // namespace mozilla