summaryrefslogtreecommitdiffstats
path: root/gfx/angle/src/compiler/translator/ParseContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/angle/src/compiler/translator/ParseContext.cpp')
-rwxr-xr-xgfx/angle/src/compiler/translator/ParseContext.cpp4492
1 files changed, 4492 insertions, 0 deletions
diff --git a/gfx/angle/src/compiler/translator/ParseContext.cpp b/gfx/angle/src/compiler/translator/ParseContext.cpp
new file mode 100755
index 000000000..4ad597c4f
--- /dev/null
+++ b/gfx/angle/src/compiler/translator/ParseContext.cpp
@@ -0,0 +1,4492 @@
+//
+// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/ParseContext.h"
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "compiler/preprocessor/SourceLocation.h"
+#include "compiler/translator/Cache.h"
+#include "compiler/translator/glslang.h"
+#include "compiler/translator/ValidateSwitch.h"
+#include "compiler/translator/ValidateGlobalInitializer.h"
+#include "compiler/translator/util.h"
+
+namespace sh
+{
+
+///////////////////////////////////////////////////////////////////////
+//
+// Sub- vector and matrix fields
+//
+////////////////////////////////////////////////////////////////////////
+
+namespace
+{
+
+const int kWebGLMaxStructNesting = 4;
+
+bool ContainsSampler(const TType &type)
+{
+ if (IsSampler(type.getBasicType()))
+ return true;
+
+ if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
+ {
+ const TFieldList &fields = type.getStruct()->fields();
+ for (unsigned int i = 0; i < fields.size(); ++i)
+ {
+ if (ContainsSampler(*fields[i]->type()))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ContainsImage(const TType &type)
+{
+ if (IsImage(type.getBasicType()))
+ return true;
+
+ if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
+ {
+ const TFieldList &fields = type.getStruct()->fields();
+ for (unsigned int i = 0; i < fields.size(); ++i)
+ {
+ if (ContainsImage(*fields[i]->type()))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+} // namespace
+
+TParseContext::TParseContext(TSymbolTable &symt,
+ TExtensionBehavior &ext,
+ sh::GLenum type,
+ ShShaderSpec spec,
+ ShCompileOptions options,
+ bool checksPrecErrors,
+ TInfoSink &is,
+ const ShBuiltInResources &resources)
+ : intermediate(),
+ symbolTable(symt),
+ mDeferredSingleDeclarationErrorCheck(false),
+ mShaderType(type),
+ mShaderSpec(spec),
+ mCompileOptions(options),
+ mShaderVersion(100),
+ mTreeRoot(nullptr),
+ mLoopNestingLevel(0),
+ mStructNestingLevel(0),
+ mSwitchNestingLevel(0),
+ mCurrentFunctionType(nullptr),
+ mFunctionReturnsValue(false),
+ mChecksPrecisionErrors(checksPrecErrors),
+ mFragmentPrecisionHighOnESSL1(false),
+ mDefaultMatrixPacking(EmpColumnMajor),
+ mDefaultBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
+ mDiagnostics(is),
+ mDirectiveHandler(ext,
+ mDiagnostics,
+ mShaderVersion,
+ mShaderType,
+ resources.WEBGL_debug_shader_precision == 1),
+ mPreprocessor(&mDiagnostics, &mDirectiveHandler),
+ mScanner(nullptr),
+ mUsesFragData(false),
+ mUsesFragColor(false),
+ mUsesSecondaryOutputs(false),
+ mMinProgramTexelOffset(resources.MinProgramTexelOffset),
+ mMaxProgramTexelOffset(resources.MaxProgramTexelOffset),
+ mComputeShaderLocalSizeDeclared(false),
+ mDeclaringFunction(false)
+{
+ mComputeShaderLocalSize.fill(-1);
+}
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a vector.
+//
+bool TParseContext::parseVectorFields(const TString &compString,
+ int vecSize,
+ TVectorFields &fields,
+ const TSourceLoc &line)
+{
+ fields.num = (int)compString.size();
+ if (fields.num > 4)
+ {
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+
+ enum
+ {
+ exyzw,
+ ergba,
+ estpq
+ } fieldSet[4];
+
+ for (int i = 0; i < fields.num; ++i)
+ {
+ switch (compString[i])
+ {
+ case 'x':
+ fields.offsets[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ fields.offsets[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ fields.offsets[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ fields.offsets[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ fields.offsets[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ fields.offsets[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ fields.offsets[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ fields.offsets[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ fields.offsets[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ fields.offsets[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ fields.offsets[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ fields.offsets[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+ }
+
+ for (int i = 0; i < fields.num; ++i)
+ {
+ if (fields.offsets[i] >= vecSize)
+ {
+ error(line, "vector field selection out of range", compString.c_str());
+ return false;
+ }
+
+ if (i > 0)
+ {
+ if (fieldSet[i] != fieldSet[i - 1])
+ {
+ error(line, "illegal - vector component fields not from the same set",
+ compString.c_str());
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////
+//
+// Errors
+//
+////////////////////////////////////////////////////////////////////////
+
+
+//
+// Used by flex/bison to output all syntax and parsing errors.
+//
+void TParseContext::error(const TSourceLoc &loc,
+ const char *reason,
+ const char *token,
+ const char *extraInfo)
+{
+ mDiagnostics.error(loc, reason, token, extraInfo);
+}
+
+void TParseContext::warning(const TSourceLoc &loc,
+ const char *reason,
+ const char *token,
+ const char *extraInfo)
+{
+ mDiagnostics.warning(loc, reason, token, extraInfo);
+}
+
+void TParseContext::outOfRangeError(bool isError,
+ const TSourceLoc &loc,
+ const char *reason,
+ const char *token,
+ const char *extraInfo)
+{
+ if (isError)
+ {
+ error(loc, reason, token, extraInfo);
+ }
+ else
+ {
+ warning(loc, reason, token, extraInfo);
+ }
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes an operand of type "
+ << operand << " (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand type", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void TParseContext::binaryOpError(const TSourceLoc &line,
+ const char *op,
+ TString left,
+ TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '"
+ << left << "' and a right operand of type '" << right
+ << "' (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand types ", op, extraInfo.c_str());
+}
+
+void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
+ TPrecision precision,
+ TBasicType type)
+{
+ if (!mChecksPrecisionErrors)
+ return;
+
+ if (precision != EbpUndefined && !SupportsPrecision(type))
+ {
+ error(line, "illegal type for precision qualifier", getBasicString(type));
+ }
+
+ if (precision == EbpUndefined)
+ {
+ switch (type)
+ {
+ case EbtFloat:
+ error(line, "No precision specified for (float)", "");
+ return;
+ case EbtInt:
+ case EbtUInt:
+ UNREACHABLE(); // there's always a predeclared qualifier
+ error(line, "No precision specified (int)", "");
+ return;
+ default:
+ if (IsSampler(type))
+ {
+ error(line, "No precision specified (sampler)", "");
+ return;
+ }
+ if (IsImage(type))
+ {
+ error(line, "No precision specified (image)", "");
+ return;
+ }
+ }
+ }
+}
+
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
+{
+ TIntermSymbol *symNode = node->getAsSymbolNode();
+ TIntermBinary *binaryNode = node->getAsBinaryNode();
+ TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
+
+ if (swizzleNode)
+ {
+ bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
+ if (ok && swizzleNode->hasDuplicateOffsets())
+ {
+ error(line, " l-value of swizzle cannot have duplicate components", op);
+ return false;
+ }
+ return ok;
+ }
+
+ if (binaryNode)
+ {
+ switch (binaryNode->getOp())
+ {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpIndexDirectInterfaceBlock:
+ return checkCanBeLValue(line, op, binaryNode->getLeft());
+ default:
+ break;
+ }
+ error(line, " l-value required", op);
+ return false;
+ }
+
+ const char *symbol = 0;
+ if (symNode != 0)
+ symbol = symNode->getSymbol().c_str();
+
+ const char *message = 0;
+ switch (node->getQualifier())
+ {
+ case EvqConst:
+ message = "can't modify a const";
+ break;
+ case EvqConstReadOnly:
+ message = "can't modify a const";
+ break;
+ case EvqAttribute:
+ message = "can't modify an attribute";
+ break;
+ case EvqFragmentIn:
+ message = "can't modify an input";
+ break;
+ case EvqVertexIn:
+ message = "can't modify an input";
+ break;
+ case EvqUniform:
+ message = "can't modify a uniform";
+ break;
+ case EvqVaryingIn:
+ message = "can't modify a varying";
+ break;
+ case EvqFragCoord:
+ message = "can't modify gl_FragCoord";
+ break;
+ case EvqFrontFacing:
+ message = "can't modify gl_FrontFacing";
+ break;
+ case EvqPointCoord:
+ message = "can't modify gl_PointCoord";
+ break;
+ case EvqNumWorkGroups:
+ message = "can't modify gl_NumWorkGroups";
+ break;
+ case EvqWorkGroupSize:
+ message = "can't modify gl_WorkGroupSize";
+ break;
+ case EvqWorkGroupID:
+ message = "can't modify gl_WorkGroupID";
+ break;
+ case EvqLocalInvocationID:
+ message = "can't modify gl_LocalInvocationID";
+ break;
+ case EvqGlobalInvocationID:
+ message = "can't modify gl_GlobalInvocationID";
+ break;
+ case EvqLocalInvocationIndex:
+ message = "can't modify gl_LocalInvocationIndex";
+ break;
+ case EvqComputeIn:
+ message = "can't modify work group size variable";
+ break;
+ default:
+ //
+ // Type that can't be written to?
+ //
+ if (node->getBasicType() == EbtVoid)
+ {
+ message = "can't modify void";
+ }
+ if (IsSampler(node->getBasicType()))
+ {
+ message = "can't modify a sampler";
+ }
+ if (IsImage(node->getBasicType()))
+ {
+ message = "can't modify an image";
+ }
+ }
+
+ if (message == 0 && binaryNode == 0 && symNode == 0)
+ {
+ error(line, " l-value required", op);
+
+ return false;
+ }
+
+ //
+ // Everything else is okay, no error.
+ //
+ if (message == 0)
+ return true;
+
+ //
+ // If we get here, we have an error and a message.
+ //
+ if (symNode)
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "\"" << symbol << "\" (" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+ else
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "(" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+
+ return false;
+}
+
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+void TParseContext::checkIsConst(TIntermTyped *node)
+{
+ if (node->getQualifier() != EvqConst)
+ {
+ error(node->getLine(), "constant expression required", "");
+ }
+}
+
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
+{
+ if (!node->isScalarInt())
+ {
+ error(node->getLine(), "integer expression required", token);
+ }
+}
+
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
+{
+ if (!symbolTable.atGlobalLevel())
+ {
+ error(line, "only allowed at global scope", token);
+ return false;
+ }
+ return true;
+}
+
+// For now, keep it simple: if it starts "gl_", it's reserved, independent
+// of scope. Except, if the symbol table is at the built-in push-level,
+// which is when we are parsing built-ins.
+// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
+// webgl shader.
+bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier)
+{
+ static const char *reservedErrMsg = "reserved built-in name";
+ if (!symbolTable.atBuiltInLevel())
+ {
+ if (identifier.compare(0, 3, "gl_") == 0)
+ {
+ error(line, reservedErrMsg, "gl_");
+ return false;
+ }
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ if (identifier.compare(0, 6, "webgl_") == 0)
+ {
+ error(line, reservedErrMsg, "webgl_");
+ return false;
+ }
+ if (identifier.compare(0, 7, "_webgl_") == 0)
+ {
+ error(line, reservedErrMsg, "_webgl_");
+ return false;
+ }
+ }
+ if (identifier.find("__") != TString::npos)
+ {
+ error(line,
+ "identifiers containing two consecutive underscores (__) are reserved as "
+ "possible future keywords",
+ identifier.c_str());
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Make sure there is enough data provided to the constructor to build
+// something of the type of the constructor. Also returns the type of
+// the constructor.
+bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
+ TIntermNode *argumentsNode,
+ const TFunction &function,
+ TOperator op,
+ const TType &type)
+{
+ bool constructingMatrix = false;
+ switch (op)
+ {
+ case EOpConstructMat2:
+ case EOpConstructMat2x3:
+ case EOpConstructMat2x4:
+ case EOpConstructMat3x2:
+ case EOpConstructMat3:
+ case EOpConstructMat3x4:
+ case EOpConstructMat4x2:
+ case EOpConstructMat4x3:
+ case EOpConstructMat4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Note: It's okay to have too many components available, but not okay to have unused
+ // arguments. 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument, so 'overfull' will become true.
+ //
+
+ size_t size = 0;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (size_t i = 0; i < function.getParamCount(); ++i)
+ {
+ const TConstParameter &param = function.getParam(i);
+ size += param.type->getObjectSize();
+
+ if (constructingMatrix && param.type->isMatrix())
+ matrixInMatrix = true;
+ if (full)
+ overFull = true;
+ if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize())
+ full = true;
+ if (param.type->isArray())
+ arrayArg = true;
+ }
+
+ if (type.isArray())
+ {
+ // The size of an unsized constructor should already have been determined.
+ ASSERT(!type.isUnsizedArray());
+ if (static_cast<size_t>(type.getArraySize()) != function.getParamCount())
+ {
+ error(line, "array constructor needs one argument per array element", "constructor");
+ return false;
+ }
+ }
+
+ if (arrayArg && op != EOpConstructStruct)
+ {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return false;
+ }
+
+ if (matrixInMatrix && !type.isArray())
+ {
+ if (function.getParamCount() != 1)
+ {
+ error(line, "constructing matrix from matrix can only take one argument",
+ "constructor");
+ return false;
+ }
+ }
+
+ if (overFull)
+ {
+ error(line, "too many arguments", "constructor");
+ return false;
+ }
+
+ if (op == EOpConstructStruct && !type.isArray() &&
+ type.getStruct()->fields().size() != function.getParamCount())
+ {
+ error(line,
+ "Number of constructor parameters does not match the number of structure fields",
+ "constructor");
+ return false;
+ }
+
+ if (!type.isMatrix() || !matrixInMatrix)
+ {
+ if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) ||
+ (op == EOpConstructStruct && size < type.getObjectSize()))
+ {
+ error(line, "not enough data provided for construction", "constructor");
+ return false;
+ }
+ }
+
+ if (argumentsNode == nullptr)
+ {
+ error(line, "constructor does not have any arguments", "constructor");
+ return false;
+ }
+
+ TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate();
+ for (TIntermNode *&argNode : *argumentsAgg->getSequence())
+ {
+ TIntermTyped *argTyped = argNode->getAsTyped();
+ ASSERT(argTyped != nullptr);
+ if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType()))
+ {
+ error(line, "cannot convert a sampler", "constructor");
+ return false;
+ }
+ if (op != EOpConstructStruct && IsImage(argTyped->getBasicType()))
+ {
+ error(line, "cannot convert an image", "constructor");
+ return false;
+ }
+ if (argTyped->getBasicType() == EbtVoid)
+ {
+ error(line, "cannot convert a void", "constructor");
+ return false;
+ }
+ }
+
+ if (type.isArray())
+ {
+ // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
+ // the array.
+ for (TIntermNode *&argNode : *argumentsAgg->getSequence())
+ {
+ const TType &argType = argNode->getAsTyped()->getType();
+ // It has already been checked that the argument is not an array.
+ ASSERT(!argType.isArray());
+ if (!argType.sameElementType(type))
+ {
+ error(line, "Array constructor argument has an incorrect type", "Error");
+ return false;
+ }
+ }
+ }
+ else if (op == EOpConstructStruct)
+ {
+ const TFieldList &fields = type.getStruct()->fields();
+ TIntermSequence *args = argumentsAgg->getSequence();
+
+ for (size_t i = 0; i < fields.size(); i++)
+ {
+ if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type())
+ {
+ error(line, "Structure constructor arguments do not match structure fields",
+ "Error");
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+// This function checks to see if a void variable has been declared and raise an error message for
+// such a case
+//
+// returns true in case of an error
+//
+bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
+ const TString &identifier,
+ const TBasicType &type)
+{
+ if (type == EbtVoid)
+ {
+ error(line, "illegal use of type 'void'", identifier.c_str());
+ return false;
+ }
+
+ return true;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression
+// or not.
+void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
+{
+ if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
+ {
+ error(line, "boolean expression expected", "");
+ }
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression
+// or not.
+void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
+{
+ if (pType.getBasicType() != EbtBool || pType.isAggregate())
+ {
+ error(line, "boolean expression expected", "");
+ }
+}
+
+bool TParseContext::checkIsNotSampler(const TSourceLoc &line,
+ const TTypeSpecifierNonArray &pType,
+ const char *reason)
+{
+ if (pType.type == EbtStruct)
+ {
+ if (ContainsSampler(*pType.userDef))
+ {
+ error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
+ return false;
+ }
+
+ return true;
+ }
+ else if (IsSampler(pType.type))
+ {
+ error(line, reason, getBasicString(pType.type));
+ return false;
+ }
+
+ return true;
+}
+
+bool TParseContext::checkIsNotImage(const TSourceLoc &line,
+ const TTypeSpecifierNonArray &pType,
+ const char *reason)
+{
+ if (pType.type == EbtStruct)
+ {
+ if (ContainsImage(*pType.userDef))
+ {
+ error(line, reason, getBasicString(pType.type), "(structure contains an image)");
+
+ return false;
+ }
+
+ return true;
+ }
+ else if (IsImage(pType.type))
+ {
+ error(line, reason, getBasicString(pType.type));
+
+ return false;
+ }
+
+ return true;
+}
+
+void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
+ const TPublicType &pType)
+{
+ if (pType.layoutQualifier.location != -1)
+ {
+ error(line, "location must only be specified for a single input or output variable",
+ "location");
+ }
+}
+
+void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
+ const TLayoutQualifier &layoutQualifier)
+{
+ if (layoutQualifier.location != -1)
+ {
+ error(location, "invalid layout qualifier:", "location",
+ "only valid on program inputs and outputs");
+ }
+}
+
+void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line,
+ TQualifier qualifier,
+ const TType &type)
+{
+ checkOutParameterIsNotSampler(line, qualifier, type);
+ checkOutParameterIsNotImage(line, qualifier, type);
+}
+
+void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line,
+ TQualifier qualifier,
+ const TType &type)
+{
+ ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
+ if (IsSampler(type.getBasicType()))
+ {
+ error(line, "samplers cannot be output parameters", type.getBasicString());
+ }
+}
+
+void TParseContext::checkOutParameterIsNotImage(const TSourceLoc &line,
+ TQualifier qualifier,
+ const TType &type)
+{
+ ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
+ if (IsImage(type.getBasicType()))
+ {
+ error(line, "images cannot be output parameters", type.getBasicString());
+ }
+}
+
+// Do size checking for an array type's size.
+unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
+{
+ TIntermConstantUnion *constant = expr->getAsConstantUnion();
+
+ // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant
+ // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
+ // fold as array size.
+ if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
+ {
+ error(line, "array size must be a constant integer expression", "");
+ return 1u;
+ }
+
+ unsigned int size = 0u;
+
+ if (constant->getBasicType() == EbtUInt)
+ {
+ size = constant->getUConst(0);
+ }
+ else
+ {
+ int signedSize = constant->getIConst(0);
+
+ if (signedSize < 0)
+ {
+ error(line, "array size must be non-negative", "");
+ return 1u;
+ }
+
+ size = static_cast<unsigned int>(signedSize);
+ }
+
+ if (size == 0u)
+ {
+ error(line, "array size must be greater than zero", "");
+ return 1u;
+ }
+
+ // The size of arrays is restricted here to prevent issues further down the
+ // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
+ // 4096 registers so this should be reasonable even for aggressively optimizable code.
+ const unsigned int sizeLimit = 65536;
+
+ if (size > sizeLimit)
+ {
+ error(line, "array size too large", "");
+ return 1u;
+ }
+
+ return size;
+}
+
+// See if this qualifier can be an array.
+bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
+ const TPublicType &elementQualifier)
+{
+ if ((elementQualifier.qualifier == EvqAttribute) ||
+ (elementQualifier.qualifier == EvqVertexIn) ||
+ (elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
+ {
+ error(line, "cannot declare arrays of this qualifier",
+ TType(elementQualifier).getQualifierString());
+ return false;
+ }
+
+ return true;
+}
+
+// See if this element type can be formed into an array.
+bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType)
+{
+ //
+ // Can the type be an array?
+ //
+ if (elementType.array)
+ {
+ error(line, "cannot declare arrays of arrays",
+ TType(elementType).getCompleteString().c_str());
+ return false;
+ }
+ // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
+ // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
+ // 4.3.4).
+ if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
+ sh::IsVarying(elementType.qualifier))
+ {
+ error(line, "cannot declare arrays of structs of this qualifier",
+ TType(elementType).getCompleteString().c_str());
+ return false;
+ }
+
+ return true;
+}
+
+// Check if this qualified element type can be formed into an array.
+bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
+ const TPublicType &elementType)
+{
+ if (checkIsValidTypeForArray(indexLocation, elementType))
+ {
+ return checkIsValidQualifierForArray(indexLocation, elementType);
+ }
+ return false;
+}
+
+// Enforce non-initializer type/qualifier rules.
+void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
+ const TString &identifier,
+ TPublicType *type)
+{
+ ASSERT(type != nullptr);
+ if (type->qualifier == EvqConst)
+ {
+ // Make the qualifier make sense.
+ type->qualifier = EvqTemporary;
+
+ // Generate informative error messages for ESSL1.
+ // In ESSL3 arrays and structures containing arrays can be constant.
+ if (mShaderVersion < 300 && type->isStructureContainingArrays())
+ {
+ error(line,
+ "structures containing arrays may not be declared constant since they cannot be "
+ "initialized",
+ identifier.c_str());
+ }
+ else
+ {
+ error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+ }
+ return;
+ }
+ if (type->isUnsizedArray())
+ {
+ error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
+ }
+}
+
+// Do some simple checks that are shared between all variable declarations,
+// and update the symbol table.
+//
+// Returns true if declaring the variable succeeded.
+//
+bool TParseContext::declareVariable(const TSourceLoc &line,
+ const TString &identifier,
+ const TType &type,
+ TVariable **variable)
+{
+ ASSERT((*variable) == nullptr);
+
+ bool needsReservedCheck = true;
+
+ // gl_LastFragData may be redeclared with a new precision qualifier
+ if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
+ {
+ const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
+ if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst())
+ {
+ if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
+ {
+ needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension());
+ }
+ }
+ else
+ {
+ error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
+ identifier.c_str());
+ return false;
+ }
+ }
+
+ if (needsReservedCheck && !checkIsNotReserved(line, identifier))
+ return false;
+
+ (*variable) = new TVariable(&identifier, type);
+ if (!symbolTable.declare(*variable))
+ {
+ error(line, "redefinition", identifier.c_str());
+ *variable = nullptr;
+ return false;
+ }
+
+ if (!checkIsNonVoid(line, identifier, type.getBasicType()))
+ return false;
+
+ return true;
+}
+
+void TParseContext::checkIsParameterQualifierValid(
+ const TSourceLoc &line,
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ TType *type)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(&mDiagnostics);
+
+ if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut)
+ {
+ checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type);
+ }
+
+ if (!IsImage(type->getBasicType()))
+ {
+ checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, line);
+ }
+ else
+ {
+ type->setMemoryQualifier(typeQualifier.memoryQualifier);
+ }
+
+ type->setQualifier(typeQualifier.qualifier);
+
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ type->setPrecision(typeQualifier.precision);
+ }
+}
+
+bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension)
+{
+ const TExtensionBehavior &extBehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
+ if (iter == extBehavior.end())
+ {
+ error(line, "extension", extension.c_str(), "is not supported");
+ return false;
+ }
+ // In GLSL ES, an extension's default behavior is "disable".
+ if (iter->second == EBhDisable || iter->second == EBhUndefined)
+ {
+ error(line, "extension", extension.c_str(), "is disabled");
+ return false;
+ }
+ if (iter->second == EBhWarn)
+ {
+ warning(line, "extension", extension.c_str(), "is being used");
+ return true;
+ }
+
+ return true;
+}
+
+// These checks are common for all declarations starting a declarator list, and declarators that
+// follow an empty declaration.
+void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation)
+{
+ switch (publicType.qualifier)
+ {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ case EvqAttribute:
+ case EvqVertexIn:
+ case EvqFragmentOut:
+ case EvqComputeIn:
+ if (publicType.getBasicType() == EbtStruct)
+ {
+ error(identifierLocation, "cannot be used with a structure",
+ getQualifierString(publicType.qualifier));
+ return;
+ }
+
+ default:
+ break;
+ }
+
+ if (publicType.qualifier != EvqUniform &&
+ !checkIsNotSampler(identifierLocation, publicType.typeSpecifierNonArray,
+ "samplers must be uniform"))
+ {
+ return;
+ }
+ if (publicType.qualifier != EvqUniform &&
+ !checkIsNotImage(identifierLocation, publicType.typeSpecifierNonArray,
+ "images must be uniform"))
+ {
+ return;
+ }
+
+ // check for layout qualifier issues
+ const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ error(identifierLocation, "layout qualifier",
+ getMatrixPackingString(layoutQualifier.matrixPacking),
+ "only valid for interface blocks");
+ return;
+ }
+
+ if (layoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(identifierLocation, "layout qualifier",
+ getBlockStorageString(layoutQualifier.blockStorage),
+ "only valid for interface blocks");
+ return;
+ }
+
+ if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut)
+ {
+ checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier);
+ }
+
+ if (IsImage(publicType.getBasicType()))
+ {
+
+ switch (layoutQualifier.imageInternalFormat)
+ {
+ case EiifRGBA32F:
+ case EiifRGBA16F:
+ case EiifR32F:
+ case EiifRGBA8:
+ case EiifRGBA8_SNORM:
+ if (!IsFloatImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires a floating image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifRGBA32I:
+ case EiifRGBA16I:
+ case EiifRGBA8I:
+ case EiifR32I:
+ if (!IsIntegerImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires an integer image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifRGBA32UI:
+ case EiifRGBA16UI:
+ case EiifRGBA8UI:
+ case EiifR32UI:
+ if (!IsUnsignedImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires an unsigned image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifUnspecified:
+ error(identifierLocation, "layout qualifier", "No image internal format specified");
+ return;
+ default:
+ error(identifierLocation, "layout qualifier", "unrecognized token");
+ return;
+ }
+
+ // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
+ switch (layoutQualifier.imageInternalFormat)
+ {
+ case EiifR32F:
+ case EiifR32I:
+ case EiifR32UI:
+ break;
+ default:
+ if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
+ {
+ error(identifierLocation, "layout qualifier",
+ "Except for images with the r32f, r32i and r32ui format qualifiers, "
+ "image variables must be qualified readonly and/or writeonly");
+ return;
+ }
+ break;
+ }
+ }
+ else
+ {
+
+ if (!checkInternalFormatIsNotSpecified(identifierLocation,
+ layoutQualifier.imageInternalFormat))
+ {
+ return;
+ }
+
+ if (!checkIsMemoryQualifierNotSpecified(publicType.memoryQualifier, identifierLocation))
+ {
+ return;
+ }
+ }
+}
+
+void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
+ const TString &layoutQualifierName,
+ int versionRequired)
+{
+
+ if (mShaderVersion < versionRequired)
+ {
+ error(location, "invalid layout qualifier:", layoutQualifierName.c_str(), "not supported");
+ }
+}
+
+bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
+ const TLayoutQualifier &layoutQualifier)
+{
+ const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
+ for (size_t i = 0u; i < localSize.size(); ++i)
+ {
+ if (localSize[i] != -1)
+ {
+ error(location, "invalid layout qualifier:", getWorkGroupSizeString(i),
+ "only valid when used with 'in' in a compute shader global layout declaration");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
+ TLayoutImageInternalFormat internalFormat)
+{
+ if (internalFormat != EiifUnspecified)
+ {
+ error(location, "invalid layout qualifier:", getImageInternalFormatString(internalFormat),
+ "only valid when used with images");
+ return false;
+ }
+ return true;
+}
+
+void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate,
+ TIntermAggregate *fnCall)
+{
+ for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
+ {
+ TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
+ if (qual == EvqOut || qual == EvqInOut)
+ {
+ TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
+ if (!checkCanBeLValue(argument->getLine(), "assign", argument))
+ {
+ error(argument->getLine(),
+ "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
+ return;
+ }
+ }
+ }
+}
+
+void TParseContext::checkInvariantVariableQualifier(bool invariant,
+ const TQualifier qualifier,
+ const TSourceLoc &invariantLocation)
+{
+ if (!invariant)
+ return;
+
+ if (mShaderVersion < 300)
+ {
+ // input variables in the fragment shader can be also qualified as invariant
+ if (!sh::CanBeInvariantESSL1(qualifier))
+ {
+ error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
+ }
+ }
+ else
+ {
+ if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
+ {
+ error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
+ }
+ }
+}
+
+bool TParseContext::supportsExtension(const char *extension)
+{
+ const TExtensionBehavior &extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+ return (iter != extbehavior.end());
+}
+
+bool TParseContext::isExtensionEnabled(const char *extension) const
+{
+ return ::IsExtensionEnabled(extensionBehavior(), extension);
+}
+
+void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
+ const char *extName,
+ const char *behavior)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
+}
+
+void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
+ const char *name,
+ const char *value,
+ bool stdgl)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
+}
+
+sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
+{
+ sh::WorkGroupSize result;
+ for (size_t i = 0u; i < result.size(); ++i)
+ {
+ if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
+ {
+ result[i] = 1;
+ }
+ else
+ {
+ result[i] = mComputeShaderLocalSize[i];
+ }
+ }
+ return result;
+}
+
+/////////////////////////////////////////////////////////////////////////////////
+//
+// Non-Errors.
+//
+/////////////////////////////////////////////////////////////////////////////////
+
+const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
+ const TString *name,
+ const TSymbol *symbol)
+{
+ const TVariable *variable = NULL;
+
+ if (!symbol)
+ {
+ error(location, "undeclared identifier", name->c_str());
+ }
+ else if (!symbol->isVariable())
+ {
+ error(location, "variable expected", name->c_str());
+ }
+ else
+ {
+ variable = static_cast<const TVariable *>(symbol);
+
+ if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) &&
+ !variable->getExtension().empty())
+ {
+ checkCanUseExtension(location, variable->getExtension());
+ }
+
+ // Reject shaders using both gl_FragData and gl_FragColor
+ TQualifier qualifier = variable->getType().getQualifier();
+ if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT)
+ {
+ mUsesFragData = true;
+ }
+ else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT)
+ {
+ mUsesFragColor = true;
+ }
+ if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT)
+ {
+ mUsesSecondaryOutputs = true;
+ }
+
+ // This validation is not quite correct - it's only an error to write to
+ // both FragData and FragColor. For simplicity, and because users shouldn't
+ // be rewarded for reading from undefined varaibles, return an error
+ // if they are both referenced, rather than assigned.
+ if (mUsesFragData && mUsesFragColor)
+ {
+ const char *errorMessage = "cannot use both gl_FragData and gl_FragColor";
+ if (mUsesSecondaryOutputs)
+ {
+ errorMessage =
+ "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)"
+ " and (gl_FragColor, gl_SecondaryFragColorEXT)";
+ }
+ error(location, errorMessage, name->c_str());
+ }
+
+ // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
+ if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
+ qualifier == EvqWorkGroupSize)
+ {
+ error(location,
+ "It is an error to use gl_WorkGroupSize before declaring the local group size",
+ "gl_WorkGroupSize");
+ }
+ }
+
+ if (!variable)
+ {
+ TType type(EbtFloat, EbpUndefined);
+ TVariable *fakeVariable = new TVariable(name, type);
+ symbolTable.declare(fakeVariable);
+ variable = fakeVariable;
+ }
+
+ return variable;
+}
+
+TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
+ const TString *name,
+ const TSymbol *symbol)
+{
+ const TVariable *variable = getNamedVariable(location, name, symbol);
+
+ if (variable->getConstPointer())
+ {
+ const TConstantUnion *constArray = variable->getConstPointer();
+ return intermediate.addConstantUnion(constArray, variable->getType(), location);
+ }
+ else
+ {
+ return intermediate.addSymbol(variable->getUniqueId(), variable->getName(),
+ variable->getType(), location);
+ }
+}
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// Return the function symbol if found, otherwise 0.
+//
+const TFunction *TParseContext::findFunction(const TSourceLoc &line,
+ TFunction *call,
+ int inputShaderVersion,
+ bool *builtIn)
+{
+ // First find by unmangled name to check whether the function name has been
+ // hidden by a variable name or struct typename.
+ // If a function is found, check for one with a matching argument list.
+ const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn);
+ if (symbol == 0 || symbol->isFunction())
+ {
+ symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn);
+ }
+
+ if (symbol == 0)
+ {
+ error(line, "no matching overloaded function found", call->getName().c_str());
+ return 0;
+ }
+
+ if (!symbol->isFunction())
+ {
+ error(line, "function name expected", call->getName().c_str());
+ return 0;
+ }
+
+ return static_cast<const TFunction *>(symbol);
+}
+
+//
+// Initializers show up in several places in the grammar. Have one set of
+// code to handle them here.
+//
+// Returns true on error, false if no error
+//
+bool TParseContext::executeInitializer(const TSourceLoc &line,
+ const TString &identifier,
+ const TPublicType &pType,
+ TIntermTyped *initializer,
+ TIntermBinary **initNode)
+{
+ ASSERT(initNode != nullptr);
+ ASSERT(*initNode == nullptr);
+ TType type = TType(pType);
+
+ TVariable *variable = nullptr;
+ if (type.isUnsizedArray())
+ {
+ // We have not checked yet whether the initializer actually is an array or not.
+ if (initializer->isArray())
+ {
+ type.setArraySize(initializer->getArraySize());
+ }
+ else
+ {
+ // Having a non-array initializer for an unsized array will result in an error later,
+ // so we don't generate an error message here.
+ type.setArraySize(1u);
+ }
+ }
+ if (!declareVariable(line, identifier, type, &variable))
+ {
+ return true;
+ }
+
+ bool globalInitWarning = false;
+ if (symbolTable.atGlobalLevel() &&
+ !ValidateGlobalInitializer(initializer, this, &globalInitWarning))
+ {
+ // Error message does not completely match behavior with ESSL 1.00, but
+ // we want to steer developers towards only using constant expressions.
+ error(line, "global variable initializers must be constant expressions", "=");
+ return true;
+ }
+ if (globalInitWarning)
+ {
+ warning(
+ line,
+ "global variable initializers should be constant expressions "
+ "(uniforms and globals are allowed in global initializers for legacy compatibility)",
+ "=");
+ }
+
+ //
+ // identifier must be of type constant, a global, or a temporary
+ //
+ TQualifier qualifier = variable->getType().getQualifier();
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
+ {
+ error(line, " cannot initialize this type of qualifier ",
+ variable->getType().getQualifierString());
+ return true;
+ }
+ //
+ // test for and propagate constant
+ //
+
+ if (qualifier == EvqConst)
+ {
+ if (qualifier != initializer->getType().getQualifier())
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " assigning non-constant to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (type != initializer->getType())
+ {
+ error(line, " non-matching types for const initializer ",
+ variable->getType().getQualifierString());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+
+ // Save the constant folded value to the variable if possible. For example array
+ // initializers are not folded, since that way copying the array literal to multiple places
+ // in the shader is avoided.
+ // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where
+ // it would be beneficial.
+ if (initializer->getAsConstantUnion())
+ {
+ variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
+ *initNode = nullptr;
+ return false;
+ }
+ else if (initializer->getAsSymbolNode())
+ {
+ const TSymbol *symbol =
+ symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
+ const TVariable *tVar = static_cast<const TVariable *>(symbol);
+
+ const TConstantUnion *constArray = tVar->getConstPointer();
+ if (constArray)
+ {
+ variable->shareConstPointer(constArray);
+ *initNode = nullptr;
+ return false;
+ }
+ }
+ }
+
+ TIntermSymbol *intermSymbol = intermediate.addSymbol(
+ variable->getUniqueId(), variable->getName(), variable->getType(), line);
+ *initNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
+ if (*initNode == nullptr)
+ {
+ assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+ return true;
+ }
+
+ return false;
+}
+
+void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
+{
+ checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
+ typeSpecifier->getBasicType());
+
+ if (mShaderVersion < 300 && typeSpecifier->array)
+ {
+ error(typeSpecifier->getLine(), "not supported", "first-class array");
+ typeSpecifier->clearArrayness();
+ }
+}
+
+TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TPublicType &typeSpecifier)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
+
+ TPublicType returnType = typeSpecifier;
+ returnType.qualifier = typeQualifier.qualifier;
+ returnType.invariant = typeQualifier.invariant;
+ returnType.layoutQualifier = typeQualifier.layoutQualifier;
+ returnType.memoryQualifier = typeQualifier.memoryQualifier;
+ returnType.precision = typeSpecifier.precision;
+
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ returnType.precision = typeQualifier.precision;
+ }
+
+ checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
+ typeSpecifier.getBasicType());
+
+ checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
+ typeSpecifier.getLine());
+
+ checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
+
+ if (mShaderVersion < 300)
+ {
+ if (typeSpecifier.array)
+ {
+ error(typeSpecifier.getLine(), "not supported", "first-class array");
+ returnType.clearArrayness();
+ }
+
+ if (returnType.qualifier == EvqAttribute &&
+ (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
+ {
+ error(typeSpecifier.getLine(), "cannot be bool or int",
+ getQualifierString(returnType.qualifier));
+ }
+
+ if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
+ (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
+ {
+ error(typeSpecifier.getLine(), "cannot be bool or int",
+ getQualifierString(returnType.qualifier));
+ }
+ }
+ else
+ {
+ if (!returnType.layoutQualifier.isEmpty())
+ {
+ checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
+ }
+ if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
+ returnType.qualifier == EvqFragmentOut)
+ {
+ checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
+ typeSpecifier.getLine());
+ }
+ if (returnType.qualifier == EvqComputeIn)
+ {
+ error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
+ "in");
+ }
+ }
+
+ return returnType;
+}
+
+void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
+ const TPublicType &type,
+ const TSourceLoc &qualifierLocation)
+{
+ // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
+ if (type.getBasicType() == EbtBool)
+ {
+ error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
+ }
+
+ // Specific restrictions apply for vertex shader inputs and fragment shader outputs.
+ switch (qualifier)
+ {
+ case EvqVertexIn:
+ // ESSL 3.00 section 4.3.4
+ if (type.array)
+ {
+ error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
+ }
+ // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
+ return;
+ case EvqFragmentOut:
+ // ESSL 3.00 section 4.3.6
+ if (type.typeSpecifierNonArray.isMatrix())
+ {
+ error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
+ }
+ // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
+ return;
+ default:
+ break;
+ }
+
+ // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
+ // restrictions.
+ bool typeContainsIntegers =
+ (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
+ type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
+ if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
+ {
+ error(qualifierLocation, "must use 'flat' interpolation here",
+ getQualifierString(qualifier));
+ }
+
+ if (type.getBasicType() == EbtStruct)
+ {
+ // ESSL 3.00 sections 4.3.4 and 4.3.6.
+ // These restrictions are only implied by the ESSL 3.00 spec, but
+ // the ESSL 3.10 spec lists these restrictions explicitly.
+ if (type.array)
+ {
+ error(qualifierLocation, "cannot be an array of structures",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingArrays())
+ {
+ error(qualifierLocation, "cannot be a structure containing an array",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingType(EbtStruct))
+ {
+ error(qualifierLocation, "cannot be a structure containing a structure",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingType(EbtBool))
+ {
+ error(qualifierLocation, "cannot be a structure containing a bool",
+ getQualifierString(qualifier));
+ }
+ }
+}
+
+void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
+{
+ if (qualifier.getType() == QtStorage)
+ {
+ const TStorageQualifierWrapper &storageQualifier =
+ static_cast<const TStorageQualifierWrapper &>(qualifier);
+ if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
+ !symbolTable.atGlobalLevel())
+ {
+ error(storageQualifier.getLine(),
+ "Local variables can only use the const storage qualifier.",
+ storageQualifier.getQualifierString().c_str());
+ }
+ }
+}
+
+bool TParseContext::checkIsMemoryQualifierNotSpecified(const TMemoryQualifier &memoryQualifier,
+ const TSourceLoc &location)
+{
+ if (memoryQualifier.readonly)
+ {
+ error(location, "Only allowed with images.", "readonly");
+ return false;
+ }
+ if (memoryQualifier.writeonly)
+ {
+ error(location, "Only allowed with images.", "writeonly");
+ return false;
+ }
+ if (memoryQualifier.coherent)
+ {
+ error(location, "Only allowed with images.", "coherent");
+ return false;
+ }
+ if (memoryQualifier.restrictQualifier)
+ {
+ error(location, "Only allowed with images.", "restrict");
+ return false;
+ }
+ if (memoryQualifier.volatileQualifier)
+ {
+ error(location, "Only allowed with images.", "volatile");
+ return false;
+ }
+ return true;
+}
+
+TIntermDeclaration *TParseContext::parseSingleDeclaration(
+ TPublicType &publicType,
+ const TSourceLoc &identifierOrTypeLocation,
+ const TString &identifier)
+{
+ TType type(publicType);
+ if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) &&
+ mDirectiveHandler.pragma().stdgl.invariantAll)
+ {
+ TQualifier qualifier = type.getQualifier();
+
+ // The directive handler has already taken care of rejecting invalid uses of this pragma
+ // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
+ // affected variable declarations:
+ //
+ // 1. Built-in special variables which are inputs to the fragment shader. (These are handled
+ // elsewhere, in TranslatorGLSL.)
+ //
+ // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
+ // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
+ // the way this is currently implemented we have to enable this compiler option before
+ // parsing the shader and determining the shading language version it uses. If this were
+ // implemented as a post-pass, the workaround could be more targeted.
+ //
+ // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of
+ // the specification, but there are desktop OpenGL drivers that expect that this is the
+ // behavior of the #pragma when specified in ESSL 1.00 fragment shaders.
+ if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn)
+ {
+ type.setInvariant(true);
+ }
+ }
+
+ TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation);
+
+ bool emptyDeclaration = (identifier == "");
+
+ mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierOrTypeLocation);
+
+ if (emptyDeclaration)
+ {
+ if (publicType.isUnsizedArray())
+ {
+ // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
+ // error. It is assumed that this applies to empty declarations as well.
+ error(identifierOrTypeLocation, "empty array declaration needs to specify a size",
+ identifier.c_str());
+ }
+ }
+ else
+ {
+ singleDeclarationErrorCheck(publicType, identifierOrTypeLocation);
+
+ checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType);
+
+ TVariable *variable = nullptr;
+ declareVariable(identifierOrTypeLocation, identifier, type, &variable);
+
+ if (variable && symbol)
+ {
+ symbol->setId(variable->getUniqueId());
+ }
+ }
+
+ // We append the symbol even if the declaration is empty, mainly because of struct declarations
+ // that may just declare a type.
+ declaration->appendDeclarator(symbol);
+
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &indexLocation,
+ TIntermTyped *indexExpression)
+{
+ mDeferredSingleDeclarationErrorCheck = false;
+
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
+
+ TType arrayType(publicType);
+
+ unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression);
+ // Make the type an array even if size check failed.
+ // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+ arrayType.setArraySize(size);
+
+ TVariable *variable = nullptr;
+ declareVariable(identifierLocation, identifier, arrayType, &variable);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
+ if (variable && symbol)
+ {
+ symbol->setId(variable->getUniqueId());
+ declaration->appendDeclarator(symbol);
+ }
+
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer)
+{
+ mDeferredSingleDeclarationErrorCheck = false;
+
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ TIntermBinary *initNode = nullptr;
+ if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declaration->appendDeclarator(initNode);
+ }
+ }
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
+ TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &indexLocation,
+ TIntermTyped *indexExpression,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer)
+{
+ mDeferredSingleDeclarationErrorCheck = false;
+
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
+
+ TPublicType arrayType(publicType);
+
+ unsigned int size = 0u;
+ // If indexExpression is nullptr, then the array will eventually get its size implicitly from
+ // the initializer.
+ if (indexExpression != nullptr)
+ {
+ size = checkIsValidArraySize(identifierLocation, indexExpression);
+ }
+ // Make the type an array even if size check failed.
+ // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+ arrayType.setArraySize(size);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ // initNode will correspond to the whole of "type b[n] = initializer".
+ TIntermBinary *initNode = nullptr;
+ if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declaration->appendDeclarator(initNode);
+ }
+ }
+
+ return declaration;
+}
+
+TIntermAggregate *TParseContext::parseInvariantDeclaration(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TSourceLoc &identifierLoc,
+ const TString *identifier,
+ const TSymbol *symbol)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
+
+ if (!typeQualifier.invariant)
+ {
+ error(identifierLoc, "Expected invariant", identifier->c_str());
+ return nullptr;
+ }
+ if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
+ {
+ return nullptr;
+ }
+ if (!symbol)
+ {
+ error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
+ return nullptr;
+ }
+ if (!IsQualifierUnspecified(typeQualifier.qualifier))
+ {
+ error(identifierLoc, "invariant declaration specifies qualifier",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ error(identifierLoc, "invariant declaration specifies precision",
+ getPrecisionString(typeQualifier.precision));
+ }
+ if (!typeQualifier.layoutQualifier.isEmpty())
+ {
+ error(identifierLoc, "invariant declaration specifies layout", "'layout'");
+ }
+
+ const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
+ ASSERT(variable);
+ const TType &type = variable->getType();
+
+ checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
+ typeQualifier.line);
+ checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+
+ symbolTable.addInvariantVarying(std::string(identifier->c_str()));
+
+ TIntermSymbol *intermSymbol =
+ intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc);
+
+ TIntermAggregate *aggregate = TIntermediate::MakeAggregate(intermSymbol, identifierLoc);
+ aggregate->setOp(EOpInvariantDeclaration);
+ return aggregate;
+}
+
+void TParseContext::parseDeclarator(TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredSingleDeclarationErrorCheck)
+ {
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredSingleDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
+
+ TVariable *variable = nullptr;
+ declareVariable(identifierLocation, identifier, TType(publicType), &variable);
+
+ TIntermSymbol *symbol =
+ intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
+ if (variable && symbol)
+ {
+ symbol->setId(variable->getUniqueId());
+ declarationOut->appendDeclarator(symbol);
+ }
+}
+
+void TParseContext::parseArrayDeclarator(TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &arrayLocation,
+ TIntermTyped *indexExpression,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredSingleDeclarationErrorCheck)
+ {
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredSingleDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
+
+ if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType))
+ {
+ TType arrayType = TType(publicType);
+ unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression);
+ arrayType.setArraySize(size);
+
+ TVariable *variable = nullptr;
+ declareVariable(identifierLocation, identifier, arrayType, &variable);
+
+ TIntermSymbol *symbol =
+ intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
+ if (variable && symbol)
+ symbol->setId(variable->getUniqueId());
+
+ declarationOut->appendDeclarator(symbol);
+ }
+}
+
+void TParseContext::parseInitDeclarator(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredSingleDeclarationErrorCheck)
+ {
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredSingleDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ TIntermBinary *initNode = nullptr;
+ if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
+ {
+ //
+ // build the intermediate representation
+ //
+ if (initNode)
+ {
+ declarationOut->appendDeclarator(initNode);
+ }
+ }
+}
+
+void TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const TString &identifier,
+ const TSourceLoc &indexLocation,
+ TIntermTyped *indexExpression,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredSingleDeclarationErrorCheck)
+ {
+ singleDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredSingleDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
+
+ TPublicType arrayType(publicType);
+
+ unsigned int size = 0u;
+ // If indexExpression is nullptr, then the array will eventually get its size implicitly from
+ // the initializer.
+ if (indexExpression != nullptr)
+ {
+ size = checkIsValidArraySize(identifierLocation, indexExpression);
+ }
+ // Make the type an array even if size check failed.
+ // This ensures useless error messages regarding the variable's non-arrayness won't follow.
+ arrayType.setArraySize(size);
+
+ // initNode will correspond to the whole of "b[n] = initializer".
+ TIntermBinary *initNode = nullptr;
+ if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declarationOut->appendDeclarator(initNode);
+ }
+ }
+}
+
+void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
+ const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
+
+ checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
+ typeQualifier.line);
+
+ // It should never be the case, but some strange parser errors can send us here.
+ if (layoutQualifier.isEmpty())
+ {
+ error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
+ return;
+ }
+
+ if (!layoutQualifier.isCombinationValid())
+ {
+ error(typeQualifier.line, "invalid combination:", "layout");
+ return;
+ }
+
+ checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+
+ checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
+
+ if (typeQualifier.qualifier == EvqComputeIn)
+ {
+ if (mComputeShaderLocalSizeDeclared &&
+ !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
+ {
+ error(typeQualifier.line, "Work group size does not match the previous declaration",
+ "layout");
+ return;
+ }
+
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
+ return;
+ }
+
+ if (!layoutQualifier.localSize.isAnyValueSet())
+ {
+ error(typeQualifier.line, "No local work group size specified", "layout");
+ return;
+ }
+
+ const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion));
+
+ const TConstantUnion *maxComputeWorkGroupSizeData =
+ maxComputeWorkGroupSize->getConstPointer();
+
+ for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
+ {
+ if (layoutQualifier.localSize[i] != -1)
+ {
+ mComputeShaderLocalSize[i] = layoutQualifier.localSize[i];
+ const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
+ if (mComputeShaderLocalSize[i] < 1 ||
+ mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
+ {
+ std::stringstream errorMessageStream;
+ errorMessageStream << "Value must be at least 1 and no greater than "
+ << maxComputeWorkGroupSizeValue;
+ const std::string &errorMessage = errorMessageStream.str();
+
+ error(typeQualifier.line, "invalid value:", getWorkGroupSizeString(i),
+ errorMessage.c_str());
+ return;
+ }
+ }
+ }
+
+ mComputeShaderLocalSizeDeclared = true;
+ }
+ else
+ {
+
+ if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier))
+ {
+ return;
+ }
+
+ if (typeQualifier.qualifier != EvqUniform)
+ {
+ error(typeQualifier.line, "invalid qualifier:",
+ getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
+ return;
+ }
+
+ if (mShaderVersion < 300)
+ {
+ error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above",
+ "layout");
+ return;
+ }
+
+ checkLocationIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier);
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ mDefaultMatrixPacking = layoutQualifier.matrixPacking;
+ }
+
+ if (layoutQualifier.blockStorage != EbsUnspecified)
+ {
+ mDefaultBlockStorage = layoutQualifier.blockStorage;
+ }
+ }
+}
+
+TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &parsedFunction,
+ const TSourceLoc &location)
+{
+ // Note: function found from the symbol table could be the same as parsedFunction if this is the
+ // first declaration. Either way the instance in the symbol table is used to track whether the
+ // function is declared multiple times.
+ TFunction *function = static_cast<TFunction *>(
+ symbolTable.find(parsedFunction.getMangledName(), getShaderVersion()));
+ if (function->hasPrototypeDeclaration() && mShaderVersion == 100)
+ {
+ // ESSL 1.00.17 section 4.2.7.
+ // Doesn't apply to ESSL 3.00.4: see section 4.2.3.
+ error(location, "duplicate function prototype declarations are not allowed", "function");
+ }
+ function->setHasPrototypeDeclaration();
+
+ TIntermAggregate *prototype = new TIntermAggregate;
+ // TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could
+ // point to the data that already exists in the symbol table.
+ prototype->setType(function->getReturnType());
+ prototype->getFunctionSymbolInfo()->setFromFunction(*function);
+
+ for (size_t i = 0; i < function->getParamCount(); i++)
+ {
+ const TConstParameter &param = function->getParam(i);
+ if (param.name != 0)
+ {
+ TVariable variable(param.name, *param.type);
+
+ TIntermSymbol *paramSymbol = intermediate.addSymbol(
+ variable.getUniqueId(), variable.getName(), variable.getType(), location);
+ prototype = intermediate.growAggregate(prototype, paramSymbol, location);
+ }
+ else
+ {
+ TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
+ prototype = intermediate.growAggregate(prototype, paramSymbol, location);
+ }
+ }
+
+ prototype->setOp(EOpPrototype);
+
+ symbolTable.pop();
+
+ if (!symbolTable.atGlobalLevel())
+ {
+ // ESSL 3.00.4 section 4.2.4.
+ error(location, "local function prototype declarations are not allowed", "function");
+ }
+
+ return prototype;
+}
+
+TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
+ const TFunction &function,
+ TIntermAggregate *functionParameters,
+ TIntermBlock *functionBody,
+ const TSourceLoc &location)
+{
+ // Check that non-void functions have at least one return statement.
+ if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
+ {
+ error(location, "function does not return a value:", "", function.getName().c_str());
+ }
+
+ if (functionBody == nullptr)
+ {
+ functionBody = new TIntermBlock();
+ functionBody->setLine(location);
+ }
+ TIntermFunctionDefinition *functionNode =
+ new TIntermFunctionDefinition(function.getReturnType(), functionParameters, functionBody);
+ functionNode->setLine(location);
+
+ functionNode->getFunctionSymbolInfo()->setFromFunction(function);
+
+ symbolTable.pop();
+ return functionNode;
+}
+
+void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
+ TFunction **function,
+ TIntermAggregate **aggregateOut)
+{
+ ASSERT(function);
+ ASSERT(*function);
+ const TSymbol *builtIn =
+ symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion());
+
+ if (builtIn)
+ {
+ error(location, "built-in functions cannot be redefined", (*function)->getName().c_str());
+ }
+ else
+ {
+ TFunction *prevDec = static_cast<TFunction *>(
+ symbolTable.find((*function)->getMangledName(), getShaderVersion()));
+
+ // Note: 'prevDec' could be 'function' if this is the first time we've seen function as it
+ // would have just been put in the symbol table. Otherwise, we're looking up an earlier
+ // occurance.
+ if (*function != prevDec)
+ {
+ // Swap the parameters of the previous declaration to the parameters of the function
+ // definition (parameter names may differ).
+ prevDec->swapParameters(**function);
+
+ // The function definition will share the same symbol as any previous declaration.
+ *function = prevDec;
+ }
+
+ if ((*function)->isDefined())
+ {
+ error(location, "function already has a body", (*function)->getName().c_str());
+ }
+
+ (*function)->setDefined();
+ }
+
+ // Raise error message if main function takes any parameters or return anything other than void
+ if ((*function)->getName() == "main")
+ {
+ if ((*function)->getParamCount() > 0)
+ {
+ error(location, "function cannot take any parameter(s)",
+ (*function)->getName().c_str());
+ }
+ if ((*function)->getReturnType().getBasicType() != EbtVoid)
+ {
+ error(location, "", (*function)->getReturnType().getBasicString(),
+ "main function cannot return a value");
+ }
+ }
+
+ //
+ // Remember the return type for later checking for RETURN statements.
+ //
+ mCurrentFunctionType = &((*function)->getReturnType());
+ mFunctionReturnsValue = false;
+
+ //
+ // Insert parameters into the symbol table.
+ // If the parameter has no name, it's not an error, just don't insert it
+ // (could be used for unused args).
+ //
+ // Also, accumulate the list of parameters into the HIL, so lower level code
+ // knows where to find parameters.
+ //
+ TIntermAggregate *paramNodes = new TIntermAggregate;
+ for (size_t i = 0; i < (*function)->getParamCount(); i++)
+ {
+ const TConstParameter &param = (*function)->getParam(i);
+ if (param.name != 0)
+ {
+ TVariable *variable = new TVariable(param.name, *param.type);
+ //
+ // Insert the parameters with name in the symbol table.
+ //
+ if (!symbolTable.declare(variable))
+ {
+ error(location, "redefinition", variable->getName().c_str());
+ paramNodes = intermediate.growAggregate(
+ paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
+ continue;
+ }
+
+ //
+ // Add the parameter to the HIL
+ //
+ TIntermSymbol *symbol = intermediate.addSymbol(
+ variable->getUniqueId(), variable->getName(), variable->getType(), location);
+
+ paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
+ }
+ else
+ {
+ paramNodes = intermediate.growAggregate(
+ paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
+ }
+ }
+ intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
+ *aggregateOut = paramNodes;
+ setLoopNestingLevel(0);
+}
+
+TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
+{
+ //
+ // We don't know at this point whether this is a function definition or a prototype.
+ // The definition production code will check for redefinitions.
+ // In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
+ //
+ // Return types and parameter qualifiers must match in all redeclarations, so those are checked
+ // here.
+ //
+ TFunction *prevDec =
+ static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
+
+ if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
+ {
+ // With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
+ // Therefore overloading or redefining builtin functions is an error.
+ error(location, "Name of a built-in function cannot be redeclared as function",
+ function->getName().c_str());
+ }
+ else if (prevDec)
+ {
+ if (prevDec->getReturnType() != function->getReturnType())
+ {
+ error(location, "function must have the same return type in all of its declarations",
+ function->getReturnType().getBasicString());
+ }
+ for (size_t i = 0; i < prevDec->getParamCount(); ++i)
+ {
+ if (prevDec->getParam(i).type->getQualifier() !=
+ function->getParam(i).type->getQualifier())
+ {
+ error(location,
+ "function must have the same parameter qualifiers in all of its declarations",
+ function->getParam(i).type->getQualifierString());
+ }
+ }
+ }
+
+ //
+ // Check for previously declared variables using the same name.
+ //
+ TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
+ if (prevSym)
+ {
+ if (!prevSym->isFunction())
+ {
+ error(location, "redefinition", function->getName().c_str(), "function");
+ }
+ }
+ else
+ {
+ // Insert the unmangled name to detect potential future redefinition as a variable.
+ symbolTable.getOuterLevel()->insertUnmangled(function);
+ }
+
+ // We're at the inner scope level of the function's arguments and body statement.
+ // Add the function prototype to the surrounding scope instead.
+ symbolTable.getOuterLevel()->insert(function);
+
+ //
+ // If this is a redeclaration, it could also be a definition, in which case, we want to use the
+ // variable names from this one, and not the one that's
+ // being redeclared. So, pass back up this declaration, not the one in the symbol table.
+ //
+ return function;
+}
+
+TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
+ const TString *name,
+ const TSourceLoc &location)
+{
+ if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
+ {
+ error(location, "no qualifiers allowed for function return",
+ getQualifierString(type.qualifier));
+ }
+ if (!type.layoutQualifier.isEmpty())
+ {
+ error(location, "no qualifiers allowed for function return", "layout");
+ }
+ // make sure a sampler or an image is not involved as well...
+ checkIsNotSampler(location, type.typeSpecifierNonArray,
+ "samplers can't be function return values");
+ checkIsNotImage(location, type.typeSpecifierNonArray, "images can't be function return values");
+ if (mShaderVersion < 300)
+ {
+ // Array return values are forbidden, but there's also no valid syntax for declaring array
+ // return values in ESSL 1.00.
+ ASSERT(type.arraySize == 0 || mDiagnostics.numErrors() > 0);
+
+ if (type.isStructureContainingArrays())
+ {
+ // ESSL 1.00.17 section 6.1 Function Definitions
+ error(location, "structures containing arrays can't be function return values",
+ TType(type).getCompleteString().c_str());
+ }
+ }
+
+ // Add the function as a prototype after parsing it (we do not support recursion)
+ return new TFunction(name, new TType(type));
+}
+
+TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
+{
+ TPublicType publicType = publicTypeIn;
+ if (publicType.isStructSpecifier())
+ {
+ error(publicType.getLine(), "constructor can't be a structure definition",
+ getBasicString(publicType.getBasicType()));
+ }
+
+ TOperator op = EOpNull;
+ if (publicType.getUserDef())
+ {
+ op = EOpConstructStruct;
+ }
+ else
+ {
+ op = sh::TypeToConstructorOperator(TType(publicType));
+ if (op == EOpNull)
+ {
+ error(publicType.getLine(), "cannot construct this type",
+ getBasicString(publicType.getBasicType()));
+ publicType.setBasicType(EbtFloat);
+ op = EOpConstructFloat;
+ }
+ }
+
+ TString tempString;
+ const TType *type = new TType(publicType);
+ return new TFunction(&tempString, type, op);
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor
+// functions and also convert them to the right datatype if it is allowed and required.
+//
+// Returns a node to add to the tree regardless of if an error was generated or not.
+//
+TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments,
+ TOperator op,
+ TFunction *fnCall,
+ const TSourceLoc &line)
+{
+ TType type = fnCall->getReturnType();
+ if (type.isUnsizedArray())
+ {
+ if (fnCall->getParamCount() == 0)
+ {
+ error(line, "implicitly sized array constructor must have at least one argument", "[]");
+ type.setArraySize(1u);
+ return TIntermTyped::CreateZero(type);
+ }
+ type.setArraySize(static_cast<unsigned int>(fnCall->getParamCount()));
+ }
+ bool constType = true;
+ for (size_t i = 0; i < fnCall->getParamCount(); ++i)
+ {
+ const TConstParameter &param = fnCall->getParam(i);
+ if (param.type->getQualifier() != EvqConst)
+ constType = false;
+ }
+ if (constType)
+ type.setQualifier(EvqConst);
+
+ if (!checkConstructorArguments(line, arguments, *fnCall, op, type))
+ {
+ TIntermTyped *dummyNode = intermediate.setAggregateOperator(nullptr, op, line);
+ dummyNode->setType(type);
+ return dummyNode;
+ }
+ TIntermAggregate *constructor = arguments->getAsAggregate();
+ ASSERT(constructor != nullptr);
+
+ // Turn the argument list itself into a constructor
+ constructor->setOp(op);
+ constructor->setLine(line);
+ ASSERT(constructor->isConstructor());
+
+ // Need to set type before setPrecisionFromChildren() because bool doesn't have precision.
+ constructor->setType(type);
+
+ // Structs should not be precision qualified, the individual members may be.
+ // Built-in types on the other hand should be precision qualified.
+ if (op != EOpConstructStruct)
+ {
+ constructor->setPrecisionFromChildren();
+ type.setPrecision(constructor->getPrecision());
+ }
+
+ constructor->setType(type);
+
+ TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor, &mDiagnostics);
+ if (constConstructor)
+ {
+ return constConstructor;
+ }
+
+ return constructor;
+}
+
+//
+// Interface/uniform blocks
+//
+TIntermDeclaration *TParseContext::addInterfaceBlock(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TSourceLoc &nameLine,
+ const TString &blockName,
+ TFieldList *fieldList,
+ const TString *instanceName,
+ const TSourceLoc &instanceLine,
+ TIntermTyped *arrayIndex,
+ const TSourceLoc &arrayIndexLine)
+{
+ checkIsNotReserved(nameLine, blockName);
+
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
+
+ if (typeQualifier.qualifier != EvqUniform)
+ {
+ error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier),
+ "interface blocks must be uniform");
+ }
+
+ if (typeQualifier.invariant)
+ {
+ error(typeQualifier.line, "invalid qualifier on interface block member", "invariant");
+ }
+
+ checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+
+ TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
+ checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
+
+ if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
+ }
+
+ if (blockLayoutQualifier.blockStorage == EbsUnspecified)
+ {
+ blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
+ }
+
+ checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
+
+ checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
+
+ TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName);
+ if (!symbolTable.declare(blockNameSymbol))
+ {
+ error(nameLine, "redefinition", blockName.c_str(), "interface block name");
+ }
+
+ // check for sampler types and apply layout qualifiers
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+ {
+ TField *field = (*fieldList)[memberIndex];
+ TType *fieldType = field->type();
+ if (IsSampler(fieldType->getBasicType()))
+ {
+ error(field->line(), "unsupported type", fieldType->getBasicString(),
+ "sampler types are not allowed in interface blocks");
+ }
+
+ if (IsImage(fieldType->getBasicType()))
+ {
+ error(field->line(), "unsupported type", fieldType->getBasicString(),
+ "image types are not allowed in interface blocks");
+ }
+
+ const TQualifier qualifier = fieldType->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ case EvqUniform:
+ break;
+ default:
+ error(field->line(), "invalid qualifier on interface block member",
+ getQualifierString(qualifier));
+ break;
+ }
+
+ if (fieldType->isInvariant())
+ {
+ error(field->line(), "invalid qualifier on interface block member", "invariant");
+ }
+
+ // check layout qualifiers
+ TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
+ checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier);
+
+ if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(field->line(), "invalid layout qualifier:",
+ getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
+ }
+
+ if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
+ }
+ else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
+ {
+ warning(field->line(), "extraneous layout qualifier:",
+ getMatrixPackingString(fieldLayoutQualifier.matrixPacking),
+ "only has an effect on matrix types");
+ }
+
+ fieldType->setLayoutQualifier(fieldLayoutQualifier);
+ }
+
+ // add array index
+ unsigned int arraySize = 0;
+ if (arrayIndex != nullptr)
+ {
+ arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex);
+ }
+
+ TInterfaceBlock *interfaceBlock =
+ new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
+ TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier,
+ arraySize);
+
+ TString symbolName = "";
+ int symbolId = 0;
+
+ if (!instanceName)
+ {
+ // define symbols for the members of the interface block
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+ {
+ TField *field = (*fieldList)[memberIndex];
+ TType *fieldType = field->type();
+
+ // set parent pointer of the field variable
+ fieldType->setInterfaceBlock(interfaceBlock);
+
+ TVariable *fieldVariable = new TVariable(&field->name(), *fieldType);
+ fieldVariable->setQualifier(typeQualifier.qualifier);
+
+ if (!symbolTable.declare(fieldVariable))
+ {
+ error(field->line(), "redefinition", field->name().c_str(),
+ "interface block member name");
+ }
+ }
+ }
+ else
+ {
+ checkIsNotReserved(instanceLine, *instanceName);
+
+ // add a symbol for this interface block
+ TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
+ instanceTypeDef->setQualifier(typeQualifier.qualifier);
+
+ if (!symbolTable.declare(instanceTypeDef))
+ {
+ error(instanceLine, "redefinition", instanceName->c_str(),
+ "interface block instance name");
+ }
+
+ symbolId = instanceTypeDef->getUniqueId();
+ symbolName = instanceTypeDef->getName();
+ }
+
+ TIntermSymbol *blockSymbol =
+ intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line);
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->appendDeclarator(blockSymbol);
+ declaration->setLine(nameLine);
+
+ exitStructDeclaration();
+ return declaration;
+}
+
+void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier)
+{
+ ++mStructNestingLevel;
+
+ // Embedded structure definitions are not supported per GLSL ES spec.
+ // They aren't allowed in GLSL either, but we need to detect this here
+ // so we don't rely on the GLSL compiler to catch it.
+ if (mStructNestingLevel > 1)
+ {
+ error(line, "", "Embedded struct definitions are not allowed");
+ }
+}
+
+void TParseContext::exitStructDeclaration()
+{
+ --mStructNestingLevel;
+}
+
+void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
+{
+ if (!sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ return;
+ }
+
+ if (field.type()->getBasicType() != EbtStruct)
+ {
+ return;
+ }
+
+ // We're already inside a structure definition at this point, so add
+ // one to the field's struct nesting.
+ if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
+ {
+ std::stringstream reasonStream;
+ reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str()
+ << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
+ std::string reason = reasonStream.str();
+ error(line, reason.c_str(), field.name().c_str(), "");
+ return;
+ }
+}
+
+//
+// Parse an array index expression
+//
+TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
+ const TSourceLoc &location,
+ TIntermTyped *indexExpression)
+{
+ if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
+ {
+ if (baseExpression->getAsSymbolNode())
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ",
+ baseExpression->getAsSymbolNode()->getSymbol().c_str());
+ }
+ else
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
+ }
+
+ TConstantUnion *unionArray = new TConstantUnion[1];
+ unionArray->setFConst(0.0f);
+ return intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst),
+ location);
+ }
+
+ TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
+
+ // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able
+ // to constant fold all constant expressions. Right now we don't allow indexing interface blocks
+ // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the
+ // index is a constant expression.
+ if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
+ {
+ if (baseExpression->isInterfaceBlock())
+ {
+ error(
+ location, "", "[",
+ "array indexes for interface blocks arrays must be constant integral expressions");
+ }
+ else if (baseExpression->getQualifier() == EvqFragmentOut)
+ {
+ error(location, "", "[",
+ "array indexes for fragment outputs must be constant integral expressions");
+ }
+ else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
+ {
+ error(location, "", "[", "array index for gl_FragData must be constant zero");
+ }
+ }
+
+ if (indexConstantUnion)
+ {
+ // If an out-of-range index is not qualified as constant, the behavior in the spec is
+ // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
+ // constant fold expressions that are not constant expressions). The most compatible way to
+ // handle this case is to report a warning instead of an error and force the index to be in
+ // the correct range.
+ bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
+ int index = indexConstantUnion->getIConst(0);
+
+ int safeIndex = -1;
+
+ if (baseExpression->isArray())
+ {
+ if (baseExpression->getQualifier() == EvqFragData && index > 0)
+ {
+ if (mShaderSpec == SH_WEBGL2_SPEC)
+ {
+ // Error has been already generated if index is not const.
+ if (indexExpression->getQualifier() == EvqConst)
+ {
+ error(location, "", "[",
+ "array index for gl_FragData must be constant zero");
+ }
+ safeIndex = 0;
+ }
+ else if (!isExtensionEnabled("GL_EXT_draw_buffers"))
+ {
+ outOfRangeError(outOfRangeIndexIsError, location, "", "[",
+ "array index for gl_FragData must be zero when "
+ "GL_EXT_draw_buffers is disabled");
+ safeIndex = 0;
+ }
+ }
+ // Only do generic out-of-range check if similar error hasn't already been reported.
+ if (safeIndex < 0)
+ {
+ safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
+ baseExpression->getArraySize(),
+ "array index out of range", "[]");
+ }
+ }
+ else if (baseExpression->isMatrix())
+ {
+ safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
+ baseExpression->getType().getCols(),
+ "matrix field selection out of range", "[]");
+ }
+ else if (baseExpression->isVector())
+ {
+ safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
+ baseExpression->getType().getNominalSize(),
+ "vector field selection out of range", "[]");
+ }
+
+ ASSERT(safeIndex >= 0);
+ // Data of constant unions can't be changed, because it may be shared with other
+ // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
+ // sanitized object.
+ if (safeIndex != index)
+ {
+ TConstantUnion *safeConstantUnion = new TConstantUnion();
+ safeConstantUnion->setIConst(safeIndex);
+ indexConstantUnion->replaceConstantUnion(safeConstantUnion);
+ }
+
+ return intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location,
+ &mDiagnostics);
+ }
+ else
+ {
+ return intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location,
+ &mDiagnostics);
+ }
+}
+
+int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError,
+ const TSourceLoc &location,
+ int index,
+ int arraySize,
+ const char *reason,
+ const char *token)
+{
+ if (index >= arraySize || index < 0)
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ outOfRangeError(outOfRangeIndexIsError, location, reason, token, extraInfo.c_str());
+ if (index < 0)
+ {
+ return 0;
+ }
+ else
+ {
+ return arraySize - 1;
+ }
+ }
+ return index;
+}
+
+TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
+ const TSourceLoc &dotLocation,
+ const TString &fieldString,
+ const TSourceLoc &fieldLocation)
+{
+ if (baseExpression->isArray())
+ {
+ error(fieldLocation, "cannot apply dot operator to an array", ".");
+ return baseExpression;
+ }
+
+ if (baseExpression->isVector())
+ {
+ TVectorFields fields;
+ if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields,
+ fieldLocation))
+ {
+ fields.num = 1;
+ fields.offsets[0] = 0;
+ }
+
+ return TIntermediate::AddSwizzle(baseExpression, fields, dotLocation);
+ }
+ else if (baseExpression->getBasicType() == EbtStruct)
+ {
+ const TFieldList &fields = baseExpression->getType().getStruct()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "structure has no fields", "Internal Error");
+ return baseExpression;
+ }
+ else
+ {
+ bool fieldFound = false;
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
+ index->setLine(fieldLocation);
+ return intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index,
+ dotLocation, &mDiagnostics);
+ }
+ else
+ {
+ error(dotLocation, " no such field in structure", fieldString.c_str());
+ return baseExpression;
+ }
+ }
+ }
+ else if (baseExpression->isInterfaceBlock())
+ {
+ const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "interface block has no fields", "Internal Error");
+ return baseExpression;
+ }
+ else
+ {
+ bool fieldFound = false;
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
+ index->setLine(fieldLocation);
+ return intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
+ dotLocation, &mDiagnostics);
+ }
+ else
+ {
+ error(dotLocation, " no such field in interface block", fieldString.c_str());
+ return baseExpression;
+ }
+ }
+ }
+ else
+ {
+ if (mShaderVersion < 300)
+ {
+ error(dotLocation, " field selection requires structure or vector on left hand side",
+ fieldString.c_str());
+ }
+ else
+ {
+ error(dotLocation,
+ " field selection requires structure, vector, or interface block on left hand "
+ "side",
+ fieldString.c_str());
+ }
+ return baseExpression;
+ }
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
+ const TSourceLoc &qualifierTypeLine)
+{
+ TLayoutQualifier qualifier = TLayoutQualifier::create();
+
+ if (qualifierType == "shared")
+ {
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
+ }
+ qualifier.blockStorage = EbsShared;
+ }
+ else if (qualifierType == "packed")
+ {
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
+ }
+ qualifier.blockStorage = EbsPacked;
+ }
+ else if (qualifierType == "std140")
+ {
+ qualifier.blockStorage = EbsStd140;
+ }
+ else if (qualifierType == "row_major")
+ {
+ qualifier.matrixPacking = EmpRowMajor;
+ }
+ else if (qualifierType == "column_major")
+ {
+ qualifier.matrixPacking = EmpColumnMajor;
+ }
+ else if (qualifierType == "location")
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(),
+ "location requires an argument");
+ }
+ else if (qualifierType == "rgba32f")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32F;
+ }
+ else if (qualifierType == "rgba16f")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16F;
+ }
+ else if (qualifierType == "r32f")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifR32F;
+ }
+ else if (qualifierType == "rgba8")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA8;
+ }
+ else if (qualifierType == "rgba8_snorm")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA8_SNORM;
+ }
+ else if (qualifierType == "rgba32i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32I;
+ }
+ else if (qualifierType == "rgba16i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16I;
+ }
+ else if (qualifierType == "rgba8i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA8I;
+ }
+ else if (qualifierType == "r32i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifR32I;
+ }
+ else if (qualifierType == "rgba32ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32UI;
+ }
+ else if (qualifierType == "rgba16ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16UI;
+ }
+ else if (qualifierType == "rgba8ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA8UI;
+ }
+ else if (qualifierType == "r32ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifR32UI;
+ }
+
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
+ }
+
+ return qualifier;
+}
+
+void TParseContext::parseLocalSize(const TString &qualifierType,
+ const TSourceLoc &qualifierTypeLine,
+ int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ size_t index,
+ sh::WorkGroupSize *localSize)
+{
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ if (intValue < 1)
+ {
+ std::string errorMessage = std::string(getWorkGroupSizeString(index)) + " must be positive";
+ error(intValueLine, "out of range:", intValueString.c_str(), errorMessage.c_str());
+ }
+ (*localSize)[index] = intValue;
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
+ const TSourceLoc &qualifierTypeLine,
+ int intValue,
+ const TSourceLoc &intValueLine)
+{
+ TLayoutQualifier qualifier = TLayoutQualifier::create();
+
+ std::string intValueString = Str(intValue);
+
+ if (qualifierType == "location")
+ {
+ // must check that location is non-negative
+ if (intValue < 0)
+ {
+ error(intValueLine, "out of range:", intValueString.c_str(),
+ "location must be non-negative");
+ }
+ else
+ {
+ qualifier.location = intValue;
+ qualifier.locationsSpecified = 1;
+ }
+ }
+ else if (qualifierType == "local_size_x")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
+ &qualifier.localSize);
+ }
+ else if (qualifierType == "local_size_y")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
+ &qualifier.localSize);
+ }
+ else if (qualifierType == "local_size_z")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
+ &qualifier.localSize);
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
+ }
+
+ return qualifier;
+}
+
+TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
+{
+ return new TTypeQualifierBuilder(
+ new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
+ mShaderVersion);
+}
+
+TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
+ TLayoutQualifier rightQualifier,
+ const TSourceLoc &rightQualifierLocation)
+{
+ return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
+ &mDiagnostics);
+}
+
+TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ TPublicType *typeSpecifier,
+ TFieldList *fieldList)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
+
+ typeSpecifier->qualifier = typeQualifier.qualifier;
+ typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
+ typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
+ typeSpecifier->invariant = typeQualifier.invariant;
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ typeSpecifier->precision = typeQualifier.precision;
+ }
+ return addStructDeclaratorList(*typeSpecifier, fieldList);
+}
+
+TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
+ TFieldList *fieldList)
+{
+ checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
+ typeSpecifier.getBasicType());
+
+ checkIsNonVoid(typeSpecifier.getLine(), (*fieldList)[0]->name(), typeSpecifier.getBasicType());
+
+ checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
+
+ for (unsigned int i = 0; i < fieldList->size(); ++i)
+ {
+ //
+ // Careful not to replace already known aspects of type, like array-ness
+ //
+ TType *type = (*fieldList)[i]->type();
+ type->setBasicType(typeSpecifier.getBasicType());
+ type->setPrimarySize(typeSpecifier.getPrimarySize());
+ type->setSecondarySize(typeSpecifier.getSecondarySize());
+ type->setPrecision(typeSpecifier.precision);
+ type->setQualifier(typeSpecifier.qualifier);
+ type->setLayoutQualifier(typeSpecifier.layoutQualifier);
+ type->setMemoryQualifier(typeSpecifier.memoryQualifier);
+ type->setInvariant(typeSpecifier.invariant);
+
+ // don't allow arrays of arrays
+ if (type->isArray())
+ {
+ checkIsValidTypeForArray(typeSpecifier.getLine(), typeSpecifier);
+ }
+ if (typeSpecifier.array)
+ type->setArraySize(static_cast<unsigned int>(typeSpecifier.arraySize));
+ if (typeSpecifier.getUserDef())
+ {
+ type->setStruct(typeSpecifier.getUserDef()->getStruct());
+ }
+
+ checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *(*fieldList)[i]);
+ }
+
+ return fieldList;
+}
+
+TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
+ const TSourceLoc &nameLine,
+ const TString *structName,
+ TFieldList *fieldList)
+{
+ TStructure *structure = new TStructure(structName, fieldList);
+ TType *structureType = new TType(structure);
+
+ // Store a bool in the struct if we're at global scope, to allow us to
+ // skip the local struct scoping workaround in HLSL.
+ structure->setAtGlobalScope(symbolTable.atGlobalLevel());
+
+ if (!structName->empty())
+ {
+ checkIsNotReserved(nameLine, *structName);
+ TVariable *userTypeDef = new TVariable(structName, *structureType, true);
+ if (!symbolTable.declare(userTypeDef))
+ {
+ error(nameLine, "redefinition", structName->c_str(), "struct");
+ }
+ }
+
+ // ensure we do not specify any storage qualifiers on the struct members
+ for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
+ {
+ const TField &field = *(*fieldList)[typeListIndex];
+ const TQualifier qualifier = field.type()->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ case EvqTemporary:
+ break;
+ default:
+ error(field.line(), "invalid qualifier on struct member",
+ getQualifierString(qualifier));
+ break;
+ }
+ if (field.type()->isInvariant())
+ {
+ error(field.line(), "invalid qualifier on struct member", "invariant");
+ }
+ if (IsImage(field.type()->getBasicType()))
+ {
+ error(field.line(), "disallowed type in struct", field.type()->getBasicString());
+ }
+
+ checkIsMemoryQualifierNotSpecified(field.type()->getMemoryQualifier(), field.line());
+
+ checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
+ }
+
+ TTypeSpecifierNonArray typeSpecifierNonArray;
+ typeSpecifierNonArray.initialize(EbtStruct, structLine);
+ typeSpecifierNonArray.userDef = structureType;
+ typeSpecifierNonArray.isStructSpecifier = true;
+ exitStructDeclaration();
+
+ return typeSpecifierNonArray;
+}
+
+TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
+ TIntermBlock *statementList,
+ const TSourceLoc &loc)
+{
+ TBasicType switchType = init->getBasicType();
+ if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
+ init->isVector())
+ {
+ error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
+ "switch");
+ return nullptr;
+ }
+
+ if (statementList)
+ {
+ if (!ValidateSwitch::validate(switchType, this, statementList, loc))
+ {
+ return nullptr;
+ }
+ }
+
+ TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
+ if (node == nullptr)
+ {
+ error(loc, "erroneous switch statement", "switch");
+ return nullptr;
+ }
+ return node;
+}
+
+TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
+{
+ if (mSwitchNestingLevel == 0)
+ {
+ error(loc, "case labels need to be inside switch statements", "case");
+ return nullptr;
+ }
+ if (condition == nullptr)
+ {
+ error(loc, "case label must have a condition", "case");
+ return nullptr;
+ }
+ if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
+ condition->isMatrix() || condition->isArray() || condition->isVector())
+ {
+ error(condition->getLine(), "case label must be a scalar integer", "case");
+ }
+ TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
+ // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant
+ // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
+ // fold in case labels.
+ if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
+ {
+ error(condition->getLine(), "case label must be constant", "case");
+ }
+ TIntermCase *node = intermediate.addCase(condition, loc);
+ if (node == nullptr)
+ {
+ error(loc, "erroneous case statement", "case");
+ return nullptr;
+ }
+ return node;
+}
+
+TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
+{
+ if (mSwitchNestingLevel == 0)
+ {
+ error(loc, "default labels need to be inside switch statements", "default");
+ return nullptr;
+ }
+ TIntermCase *node = intermediate.addCase(nullptr, loc);
+ if (node == nullptr)
+ {
+ error(loc, "erroneous default statement", "default");
+ return nullptr;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::createUnaryMath(TOperator op,
+ TIntermTyped *child,
+ const TSourceLoc &loc,
+ const TType *funcReturnType)
+{
+ if (child == nullptr)
+ {
+ return nullptr;
+ }
+
+ switch (op)
+ {
+ case EOpLogicalNot:
+ if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
+ child->isVector())
+ {
+ return nullptr;
+ }
+ break;
+ case EOpBitwiseNot:
+ if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
+ child->isMatrix() || child->isArray())
+ {
+ return nullptr;
+ }
+ break;
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ case EOpNegative:
+ case EOpPositive:
+ if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool ||
+ child->isArray() || IsOpaqueType(child->getBasicType()))
+ {
+ return nullptr;
+ }
+ // Operators for built-ins are already type checked against their prototype.
+ default:
+ break;
+ }
+
+ TIntermUnary *node = new TIntermUnary(op, child);
+ node->setLine(loc);
+
+ TIntermTyped *foldedNode = node->fold(&mDiagnostics);
+ if (foldedNode)
+ return foldedNode;
+
+ return node;
+}
+
+TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
+{
+ TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
+ if (node == nullptr)
+ {
+ unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
+ return child;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
+ TIntermTyped *child,
+ const TSourceLoc &loc)
+{
+ checkCanBeLValue(loc, GetOperatorString(op), child);
+ return addUnaryMath(op, child, loc);
+}
+
+bool TParseContext::binaryOpCommonCheck(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ if (left->getType().getStruct() || right->getType().getStruct())
+ {
+ switch (op)
+ {
+ case EOpIndexDirectStruct:
+ ASSERT(left->getType().getStruct());
+ break;
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpAssign:
+ case EOpInitialize:
+ if (left->getType() != right->getType())
+ {
+ return false;
+ }
+ break;
+ default:
+ error(loc, "Invalid operation for structs", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ if (left->isArray() || right->isArray())
+ {
+ if (mShaderVersion < 300)
+ {
+ error(loc, "Invalid operation for arrays", GetOperatorString(op));
+ return false;
+ }
+
+ if (left->isArray() != right->isArray())
+ {
+ error(loc, "array / non-array mismatch", GetOperatorString(op));
+ return false;
+ }
+
+ switch (op)
+ {
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpAssign:
+ case EOpInitialize:
+ break;
+ default:
+ error(loc, "Invalid operation for arrays", GetOperatorString(op));
+ return false;
+ }
+ // At this point, size of implicitly sized arrays should be resolved.
+ if (left->getArraySize() != right->getArraySize())
+ {
+ error(loc, "array size mismatch", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ // Check ops which require integer / ivec parameters
+ bool isBitShift = false;
+ switch (op)
+ {
+ case EOpBitShiftLeft:
+ case EOpBitShiftRight:
+ case EOpBitShiftLeftAssign:
+ case EOpBitShiftRightAssign:
+ // Unsigned can be bit-shifted by signed and vice versa, but we need to
+ // check that the basic type is an integer type.
+ isBitShift = true;
+ if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
+ {
+ return false;
+ }
+ break;
+ case EOpBitwiseAnd:
+ case EOpBitwiseXor:
+ case EOpBitwiseOr:
+ case EOpBitwiseAndAssign:
+ case EOpBitwiseXorAssign:
+ case EOpBitwiseOrAssign:
+ // It is enough to check the type of only one operand, since later it
+ // is checked that the operand types match.
+ if (!IsInteger(left->getBasicType()))
+ {
+ return false;
+ }
+ break;
+ default:
+ break;
+ }
+
+ // GLSL ES 1.00 and 3.00 do not support implicit type casting.
+ // So the basic type should usually match.
+ if (!isBitShift && left->getBasicType() != right->getBasicType())
+ {
+ return false;
+ }
+
+ // Check that:
+ // 1. Type sizes match exactly on ops that require that.
+ // 2. Restrictions for structs that contain arrays or samplers are respected.
+ // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
+ switch (op)
+ {
+ case EOpAssign:
+ case EOpInitialize:
+ case EOpEqual:
+ case EOpNotEqual:
+ // ESSL 1.00 sections 5.7, 5.8, 5.9
+ if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
+ {
+ error(loc, "undefined operation for structs containing arrays",
+ GetOperatorString(op));
+ return false;
+ }
+ // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
+ // we interpret the spec so that this extends to structs containing samplers,
+ // similarly to ESSL 1.00 spec.
+ if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
+ left->getType().isStructureContainingSamplers())
+ {
+ error(loc, "undefined operation for structs containing samplers",
+ GetOperatorString(op));
+ return false;
+ }
+
+ if ((op == EOpAssign || op == EOpInitialize) &&
+ left->getType().isStructureContainingImages())
+ {
+ error(loc, "undefined operation for structs containing images",
+ GetOperatorString(op));
+ return false;
+ }
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if ((left->getNominalSize() != right->getNominalSize()) ||
+ (left->getSecondarySize() != right->getSecondarySize()))
+ {
+ return false;
+ }
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpIMod:
+ case EOpBitShiftLeft:
+ case EOpBitShiftRight:
+ case EOpBitwiseAnd:
+ case EOpBitwiseXor:
+ case EOpBitwiseOr:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ case EOpIModAssign:
+ case EOpBitShiftLeftAssign:
+ case EOpBitShiftRightAssign:
+ case EOpBitwiseAndAssign:
+ case EOpBitwiseXorAssign:
+ case EOpBitwiseOrAssign:
+ if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
+ {
+ return false;
+ }
+
+ // Are the sizes compatible?
+ if (left->getNominalSize() != right->getNominalSize() ||
+ left->getSecondarySize() != right->getSecondarySize())
+ {
+ // If the nominal sizes of operands do not match:
+ // One of them must be a scalar.
+ if (!left->isScalar() && !right->isScalar())
+ return false;
+
+ // In the case of compound assignment other than multiply-assign,
+ // the right side needs to be a scalar. Otherwise a vector/matrix
+ // would be assigned to a scalar. A scalar can't be shifted by a
+ // vector either.
+ if (!right->isScalar() &&
+ (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
+ return false;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
+ const TType &left,
+ const TType &right)
+{
+ switch (op)
+ {
+ case EOpMul:
+ case EOpMulAssign:
+ return left.getNominalSize() == right.getNominalSize() &&
+ left.getSecondarySize() == right.getSecondarySize();
+ case EOpVectorTimesScalar:
+ return true;
+ case EOpVectorTimesScalarAssign:
+ ASSERT(!left.isMatrix() && !right.isMatrix());
+ return left.isVector() && !right.isVector();
+ case EOpVectorTimesMatrix:
+ return left.getNominalSize() == right.getRows();
+ case EOpVectorTimesMatrixAssign:
+ ASSERT(!left.isMatrix() && right.isMatrix());
+ return left.isVector() && left.getNominalSize() == right.getRows() &&
+ left.getNominalSize() == right.getCols();
+ case EOpMatrixTimesVector:
+ return left.getCols() == right.getNominalSize();
+ case EOpMatrixTimesScalar:
+ return true;
+ case EOpMatrixTimesScalarAssign:
+ ASSERT(left.isMatrix() && !right.isMatrix());
+ return !right.isVector();
+ case EOpMatrixTimesMatrix:
+ return left.getCols() == right.getRows();
+ case EOpMatrixTimesMatrixAssign:
+ ASSERT(left.isMatrix() && right.isMatrix());
+ // We need to check two things:
+ // 1. The matrix multiplication step is valid.
+ // 2. The result will have the same number of columns as the lvalue.
+ return left.getCols() == right.getRows() && left.getCols() == right.getCols();
+
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ if (!binaryOpCommonCheck(op, left, right, loc))
+ return nullptr;
+
+ switch (op)
+ {
+ case EOpEqual:
+ case EOpNotEqual:
+ break;
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ if (left->isMatrix() || left->isVector())
+ {
+ return nullptr;
+ }
+ break;
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ case EOpLogicalAnd:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
+ {
+ return nullptr;
+ }
+ // Basic types matching should have been already checked.
+ ASSERT(right->getBasicType() == EbtBool);
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMul:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ if (left->getBasicType() == EbtBool)
+ {
+ return nullptr;
+ }
+ break;
+ case EOpIMod:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ // Note that this is only for the % operator, not for mod()
+ if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
+ {
+ return nullptr;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (op == EOpMul)
+ {
+ op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
+ if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
+ {
+ return nullptr;
+ }
+ }
+
+ TIntermBinary *node = new TIntermBinary(op, left, right);
+ node->setLine(loc);
+
+ // See if we can fold constants.
+ TIntermTyped *foldedNode = node->fold(&mDiagnostics);
+ if (foldedNode)
+ return foldedNode;
+
+ return node;
+}
+
+TIntermTyped *TParseContext::addBinaryMath(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+ if (node == 0)
+ {
+ binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
+ right->getCompleteString());
+ return left;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+ if (node == 0)
+ {
+ binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
+ right->getCompleteString());
+ TConstantUnion *unionArray = new TConstantUnion[1];
+ unionArray->setBConst(false);
+ return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst),
+ loc);
+ }
+ return node;
+}
+
+TIntermBinary *TParseContext::createAssign(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ if (binaryOpCommonCheck(op, left, right, loc))
+ {
+ if (op == EOpMulAssign)
+ {
+ op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
+ if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
+ {
+ return nullptr;
+ }
+ }
+ TIntermBinary *node = new TIntermBinary(op, left, right);
+ node->setLine(loc);
+
+ return node;
+ }
+ return nullptr;
+}
+
+TIntermTyped *TParseContext::addAssign(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ TIntermTyped *node = createAssign(op, left, right, loc);
+ if (node == nullptr)
+ {
+ assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
+ return left;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addComma(TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ // WebGL2 section 5.26, the following results in an error:
+ // "Sequence operator applied to void, arrays, or structs containing arrays"
+ if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid ||
+ left->getType().isStructureContainingArrays() ||
+ right->isArray() || right->getBasicType() == EbtVoid ||
+ right->getType().isStructureContainingArrays()))
+ {
+ error(loc,
+ "sequence operator is not allowed for void, arrays, or structs containing arrays",
+ ",");
+ }
+
+ return TIntermediate::AddComma(left, right, loc, mShaderVersion);
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
+{
+ switch (op)
+ {
+ case EOpContinue:
+ if (mLoopNestingLevel <= 0)
+ {
+ error(loc, "continue statement only allowed in loops", "");
+ }
+ break;
+ case EOpBreak:
+ if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
+ {
+ error(loc, "break statement only allowed in loops and switch statements", "");
+ }
+ break;
+ case EOpReturn:
+ if (mCurrentFunctionType->getBasicType() != EbtVoid)
+ {
+ error(loc, "non-void function must return a value", "return");
+ }
+ break;
+ default:
+ // No checks for discard
+ break;
+ }
+ return intermediate.addBranch(op, loc);
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op,
+ TIntermTyped *returnValue,
+ const TSourceLoc &loc)
+{
+ ASSERT(op == EOpReturn);
+ mFunctionReturnsValue = true;
+ if (mCurrentFunctionType->getBasicType() == EbtVoid)
+ {
+ error(loc, "void function cannot return a value", "return");
+ }
+ else if (*mCurrentFunctionType != returnValue->getType())
+ {
+ error(loc, "function return is not matching type:", "return");
+ }
+ return intermediate.addBranch(op, returnValue, loc);
+}
+
+void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall)
+{
+ ASSERT(!functionCall->isUserDefined());
+ const TString &name = functionCall->getFunctionSymbolInfo()->getName();
+ TIntermNode *offset = nullptr;
+ TIntermSequence *arguments = functionCall->getSequence();
+ if (name.compare(0, 16, "texelFetchOffset") == 0 ||
+ name.compare(0, 16, "textureLodOffset") == 0 ||
+ name.compare(0, 20, "textureProjLodOffset") == 0 ||
+ name.compare(0, 17, "textureGradOffset") == 0 ||
+ name.compare(0, 21, "textureProjGradOffset") == 0)
+ {
+ offset = arguments->back();
+ }
+ else if (name.compare(0, 13, "textureOffset") == 0 ||
+ name.compare(0, 17, "textureProjOffset") == 0)
+ {
+ // A bias parameter might follow the offset parameter.
+ ASSERT(arguments->size() >= 3);
+ offset = (*arguments)[2];
+ }
+ if (offset != nullptr)
+ {
+ TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
+ if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion)
+ {
+ TString unmangledName = TFunction::unmangleName(name);
+ error(functionCall->getLine(), "Texture offset must be a constant expression",
+ unmangledName.c_str());
+ }
+ else
+ {
+ ASSERT(offsetConstantUnion->getBasicType() == EbtInt);
+ size_t size = offsetConstantUnion->getType().getObjectSize();
+ const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer();
+ for (size_t i = 0u; i < size; ++i)
+ {
+ int offsetValue = values[i].getIConst();
+ if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset)
+ {
+ std::stringstream tokenStream;
+ tokenStream << offsetValue;
+ std::string token = tokenStream.str();
+ error(offset->getLine(), "Texture offset value out of valid range",
+ token.c_str());
+ }
+ }
+ }
+ }
+}
+
+// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
+void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
+{
+ ASSERT(!functionCall->isUserDefined());
+ const TString &name = functionCall->getFunctionSymbolInfo()->getName();
+
+ if (name.compare(0, 5, "image") == 0)
+ {
+ TIntermSequence *arguments = functionCall->getSequence();
+ TIntermNode *imageNode = (*arguments)[0];
+ TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
+
+ const TMemoryQualifier &memoryQualifier = imageSymbol->getMemoryQualifier();
+
+ if (name.compare(5, 5, "Store") == 0)
+ {
+ if (memoryQualifier.readonly)
+ {
+ error(imageNode->getLine(),
+ "'imageStore' cannot be used with images qualified as 'readonly'",
+ imageSymbol->getSymbol().c_str());
+ }
+ }
+ else if (name.compare(5, 4, "Load") == 0)
+ {
+ if (memoryQualifier.writeonly)
+ {
+ error(imageNode->getLine(),
+ "'imageLoad' cannot be used with images qualified as 'writeonly'",
+ imageSymbol->getSymbol().c_str());
+ }
+ }
+ }
+}
+
+// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
+void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
+ const TFunction *functionDefinition,
+ const TIntermAggregate *functionCall)
+{
+ ASSERT(functionCall->isUserDefined());
+
+ const TIntermSequence &arguments = *functionCall->getSequence();
+
+ ASSERT(functionDefinition->getParamCount() == arguments.size());
+
+ for (size_t i = 0; i < arguments.size(); ++i)
+ {
+ const TType &functionArgumentType = arguments[i]->getAsTyped()->getType();
+ const TType &functionParameterType = *functionDefinition->getParam(i).type;
+ ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
+
+ if (IsImage(functionArgumentType.getBasicType()))
+ {
+ const TMemoryQualifier &functionArgumentMemoryQualifier =
+ functionArgumentType.getMemoryQualifier();
+ const TMemoryQualifier &functionParameterMemoryQualifier =
+ functionParameterType.getMemoryQualifier();
+ if (functionArgumentMemoryQualifier.readonly &&
+ !functionParameterMemoryQualifier.readonly)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'readonly' qualifier from image",
+ arguments[i]->getAsSymbolNode()->getSymbol().c_str());
+ }
+
+ if (functionArgumentMemoryQualifier.writeonly &&
+ !functionParameterMemoryQualifier.writeonly)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'writeonly' qualifier from image",
+ arguments[i]->getAsSymbolNode()->getSymbol().c_str());
+ }
+
+ if (functionArgumentMemoryQualifier.coherent &&
+ !functionParameterMemoryQualifier.coherent)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'coherent' qualifier from image",
+ arguments[i]->getAsSymbolNode()->getSymbol().c_str());
+ }
+
+ if (functionArgumentMemoryQualifier.volatileQualifier &&
+ !functionParameterMemoryQualifier.volatileQualifier)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'volatile' qualifier from image",
+ arguments[i]->getAsSymbolNode()->getSymbol().c_str());
+ }
+ }
+ }
+}
+
+TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall,
+ TIntermNode *paramNode,
+ TIntermNode *thisNode,
+ const TSourceLoc &loc,
+ bool *fatalError)
+{
+ *fatalError = false;
+ TOperator op = fnCall->getBuiltInOp();
+ TIntermTyped *callNode = nullptr;
+
+ if (thisNode != nullptr)
+ {
+ TConstantUnion *unionArray = new TConstantUnion[1];
+ int arraySize = 0;
+ TIntermTyped *typedThis = thisNode->getAsTyped();
+ if (fnCall->getName() != "length")
+ {
+ error(loc, "invalid method", fnCall->getName().c_str());
+ }
+ else if (paramNode != nullptr)
+ {
+ error(loc, "method takes no parameters", "length");
+ }
+ else if (typedThis == nullptr || !typedThis->isArray())
+ {
+ error(loc, "length can only be called on arrays", "length");
+ }
+ else
+ {
+ arraySize = typedThis->getArraySize();
+ if (typedThis->getAsSymbolNode() == nullptr)
+ {
+ // This code path can be hit with expressions like these:
+ // (a = b).length()
+ // (func()).length()
+ // (int[3](0, 1, 2)).length()
+ // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid
+ // expression.
+ // It allows "An array name with the length method applied" in contrast to GLSL 4.4
+ // spec section 5.9 which allows "An array, vector or matrix expression with the
+ // length method applied".
+ error(loc, "length can only be called on array names, not on array expressions",
+ "length");
+ }
+ }
+ unionArray->setIConst(arraySize);
+ callNode =
+ intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc);
+ }
+ else if (op != EOpNull)
+ {
+ // Then this should be a constructor.
+ callNode = addConstructor(paramNode, op, fnCall, loc);
+ }
+ else
+ {
+ //
+ // Not a constructor. Find it in the symbol table.
+ //
+ const TFunction *fnCandidate;
+ bool builtIn;
+ fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn);
+ if (fnCandidate)
+ {
+ //
+ // A declared function.
+ //
+ if (builtIn && !fnCandidate->getExtension().empty())
+ {
+ checkCanUseExtension(loc, fnCandidate->getExtension());
+ }
+ op = fnCandidate->getBuiltInOp();
+ if (builtIn && op != EOpNull)
+ {
+ //
+ // A function call mapped to a built-in operation.
+ //
+ if (fnCandidate->getParamCount() == 1)
+ {
+ //
+ // Treat it like a built-in unary operator.
+ //
+ TIntermAggregate *paramAgg = paramNode->getAsAggregate();
+ paramNode = paramAgg->getSequence()->front();
+ callNode = createUnaryMath(op, paramNode->getAsTyped(), loc,
+ &fnCandidate->getReturnType());
+ if (callNode == nullptr)
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream
+ << "built in unary operator function. Type: "
+ << static_cast<TIntermTyped *>(paramNode)->getCompleteString();
+ std::string extraInfo = extraInfoStream.str();
+ error(paramNode->getLine(), " wrong operand type", "Internal Error",
+ extraInfo.c_str());
+ *fatalError = true;
+ return nullptr;
+ }
+ }
+ else
+ {
+ TIntermAggregate *aggregate =
+ intermediate.setAggregateOperator(paramNode, op, loc);
+ aggregate->setType(fnCandidate->getReturnType());
+ aggregate->setPrecisionFromChildren();
+ if (aggregate->areChildrenConstQualified())
+ {
+ aggregate->getTypePointer()->setQualifier(EvqConst);
+ }
+
+ // Some built-in functions have out parameters too.
+ functionCallLValueErrorCheck(fnCandidate, aggregate);
+
+ // See if we can constant fold a built-in. Note that this may be possible even
+ // if it is not const-qualified.
+ TIntermTyped *foldedNode =
+ intermediate.foldAggregateBuiltIn(aggregate, &mDiagnostics);
+ if (foldedNode)
+ {
+ callNode = foldedNode;
+ }
+ else
+ {
+ callNode = aggregate;
+ }
+ }
+ }
+ else
+ {
+ // This is a real function call
+ TIntermAggregate *aggregate =
+ intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
+ aggregate->setType(fnCandidate->getReturnType());
+
+ // this is how we know whether the given function is a builtIn function or a user
+ // defined function
+ // if builtIn == false, it's a userDefined -> could be an overloaded
+ // builtIn function also
+ // if builtIn == true, it's definitely a builtIn function with EOpNull
+ if (!builtIn)
+ aggregate->setUserDefined();
+ aggregate->getFunctionSymbolInfo()->setFromFunction(*fnCandidate);
+
+ // This needs to happen after the function info including name is set
+ if (builtIn)
+ {
+ aggregate->setBuiltInFunctionPrecision();
+
+ checkTextureOffsetConst(aggregate);
+
+ checkImageMemoryAccessForBuiltinFunctions(aggregate);
+ }
+ else
+ {
+ checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, aggregate);
+ }
+
+ callNode = aggregate;
+
+ functionCallLValueErrorCheck(fnCandidate, aggregate);
+ }
+ }
+ else
+ {
+ // error message was put out by findFunction()
+ // Put on a dummy node for error recovery
+ TConstantUnion *unionArray = new TConstantUnion[1];
+ unionArray->setFConst(0.0f);
+ callNode = intermediate.addConstantUnion(unionArray,
+ TType(EbtFloat, EbpUndefined, EvqConst), loc);
+ }
+ }
+ return callNode;
+}
+
+TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
+ TIntermTyped *trueExpression,
+ TIntermTyped *falseExpression,
+ const TSourceLoc &loc)
+{
+ checkIsScalarBool(loc, cond);
+
+ if (trueExpression->getType() != falseExpression->getType())
+ {
+ binaryOpError(loc, ":", trueExpression->getCompleteString(),
+ falseExpression->getCompleteString());
+ return falseExpression;
+ }
+ if (IsOpaqueType(trueExpression->getBasicType()))
+ {
+ // ESSL 1.00 section 4.1.7
+ // ESSL 3.00 section 4.1.7
+ // Opaque/sampler types are not allowed in most types of expressions, including ternary.
+ // Note that structs containing opaque types don't need to be checked as structs are
+ // forbidden below.
+ error(loc, "ternary operator is not allowed for opaque types", ":");
+ return falseExpression;
+ }
+
+ // ESSL1 sections 5.2 and 5.7:
+ // ESSL3 section 5.7:
+ // Ternary operator is not among the operators allowed for structures/arrays.
+ if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct)
+ {
+ error(loc, "ternary operator is not allowed for structures or arrays", ":");
+ return falseExpression;
+ }
+ // WebGL2 section 5.26, the following results in an error:
+ // "Ternary operator applied to void, arrays, or structs containing arrays"
+ if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
+ {
+ error(loc, "ternary operator is not allowed for void", ":");
+ return falseExpression;
+ }
+
+ return TIntermediate::AddTernarySelection(cond, trueExpression, falseExpression, loc);
+}
+
+//
+// Parse an array of strings using yyparse.
+//
+// Returns 0 for success.
+//
+int PaParseStrings(size_t count,
+ const char *const string[],
+ const int length[],
+ TParseContext *context)
+{
+ if ((count == 0) || (string == NULL))
+ return 1;
+
+ if (glslang_initialize(context))
+ return 1;
+
+ int error = glslang_scan(count, string, length, context);
+ if (!error)
+ error = glslang_parse(context);
+
+ glslang_finalize(context);
+
+ return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+}
+
+} // namespace sh