diff options
Diffstat (limited to 'gfx/angle/src/common/mathutil.h')
-rwxr-xr-x | gfx/angle/src/common/mathutil.h | 852 |
1 files changed, 852 insertions, 0 deletions
diff --git a/gfx/angle/src/common/mathutil.h b/gfx/angle/src/common/mathutil.h new file mode 100755 index 000000000..630b6c088 --- /dev/null +++ b/gfx/angle/src/common/mathutil.h @@ -0,0 +1,852 @@ +// +// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +// mathutil.h: Math and bit manipulation functions. + +#ifndef COMMON_MATHUTIL_H_ +#define COMMON_MATHUTIL_H_ + +#include <limits> +#include <algorithm> +#include <math.h> +#include <string.h> +#include <stdint.h> +#include <stdlib.h> + +#include <base/numerics/safe_math.h> + +#include "common/debug.h" +#include "common/platform.h" + +namespace angle +{ +using base::CheckedNumeric; +using base::IsValueInRangeForNumericType; +} + +namespace gl +{ + +const unsigned int Float32One = 0x3F800000; +const unsigned short Float16One = 0x3C00; + +struct Vector4 +{ + Vector4() {} + Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} + + float x; + float y; + float z; + float w; +}; + +struct Vector2 +{ + Vector2() {} + Vector2(float x, float y) : x(x), y(y) {} + + float x; + float y; +}; + +inline bool isPow2(int x) +{ + return (x & (x - 1)) == 0 && (x != 0); +} + +inline int log2(int x) +{ + int r = 0; + while ((x >> r) > 1) r++; + return r; +} + +inline unsigned int ceilPow2(unsigned int x) +{ + if (x != 0) x--; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + x++; + + return x; +} + +inline int clampToInt(unsigned int x) +{ + return static_cast<int>(std::min(x, static_cast<unsigned int>(std::numeric_limits<int>::max()))); +} + +template <typename DestT, typename SrcT> +inline DestT clampCast(SrcT value) +{ + static const DestT destLo = std::numeric_limits<DestT>::min(); + static const DestT destHi = std::numeric_limits<DestT>::max(); + static const SrcT srcLo = static_cast<SrcT>(destLo); + static const SrcT srcHi = static_cast<SrcT>(destHi); + + // When value is outside of or equal to the limits for DestT we use the DestT limit directly. + // This avoids undefined behaviors due to loss of precision when converting from floats to + // integers: + // destHi for ints is 2147483647 but the closest float number is around 2147483648, so when + // doing a conversion from float to int we run into an UB because the float is outside of the + // range representable by the int. + if (value <= srcLo) + { + return destLo; + } + else if (value >= srcHi) + { + return destHi; + } + else + { + return static_cast<DestT>(value); + } +} + +template<typename T, typename MIN, typename MAX> +inline T clamp(T x, MIN min, MAX max) +{ + // Since NaNs fail all comparison tests, a NaN value will default to min + return x > min ? (x > max ? max : x) : min; +} + +inline float clamp01(float x) +{ + return clamp(x, 0.0f, 1.0f); +} + +template<const int n> +inline unsigned int unorm(float x) +{ + const unsigned int max = 0xFFFFFFFF >> (32 - n); + + if (x > 1) + { + return max; + } + else if (x < 0) + { + return 0; + } + else + { + return (unsigned int)(max * x + 0.5f); + } +} + +inline bool supportsSSE2() +{ +#if defined(ANGLE_USE_SSE) + static bool checked = false; + static bool supports = false; + + if (checked) + { + return supports; + } + +#if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) + { + int info[4]; + __cpuid(info, 0); + + if (info[0] >= 1) + { + __cpuid(info, 1); + + supports = (info[3] >> 26) & 1; + } + } +#endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) + checked = true; + return supports; +#else // defined(ANGLE_USE_SSE) + return false; +#endif +} + +template <typename destType, typename sourceType> +destType bitCast(const sourceType &source) +{ + size_t copySize = std::min(sizeof(destType), sizeof(sourceType)); + destType output; + memcpy(&output, &source, copySize); + return output; +} + +inline unsigned short float32ToFloat16(float fp32) +{ + unsigned int fp32i = bitCast<unsigned int>(fp32); + unsigned int sign = (fp32i & 0x80000000) >> 16; + unsigned int abs = fp32i & 0x7FFFFFFF; + + if(abs > 0x47FFEFFF) // Infinity + { + return static_cast<unsigned short>(sign | 0x7FFF); + } + else if(abs < 0x38800000) // Denormal + { + unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000; + int e = 113 - (abs >> 23); + + if(e < 24) + { + abs = mantissa >> e; + } + else + { + abs = 0; + } + + return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13); + } + else + { + return static_cast<unsigned short>(sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13); + } +} + +float float16ToFloat32(unsigned short h); + +unsigned int convertRGBFloatsTo999E5(float red, float green, float blue); +void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue); + +inline unsigned short float32ToFloat11(float fp32) +{ + const unsigned int float32MantissaMask = 0x7FFFFF; + const unsigned int float32ExponentMask = 0x7F800000; + const unsigned int float32SignMask = 0x80000000; + const unsigned int float32ValueMask = ~float32SignMask; + const unsigned int float32ExponentFirstBit = 23; + const unsigned int float32ExponentBias = 127; + + const unsigned short float11Max = 0x7BF; + const unsigned short float11MantissaMask = 0x3F; + const unsigned short float11ExponentMask = 0x7C0; + const unsigned short float11BitMask = 0x7FF; + const unsigned int float11ExponentBias = 14; + + const unsigned int float32Maxfloat11 = 0x477E0000; + const unsigned int float32Minfloat11 = 0x38800000; + + const unsigned int float32Bits = bitCast<unsigned int>(fp32); + const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; + + unsigned int float32Val = float32Bits & float32ValueMask; + + if ((float32Val & float32ExponentMask) == float32ExponentMask) + { + // INF or NAN + if ((float32Val & float32MantissaMask) != 0) + { + return float11ExponentMask | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & float11MantissaMask); + } + else if (float32Sign) + { + // -INF is clamped to 0 since float11 is positive only + return 0; + } + else + { + return float11ExponentMask; + } + } + else if (float32Sign) + { + // float11 is positive only, so clamp to zero + return 0; + } + else if (float32Val > float32Maxfloat11) + { + // The number is too large to be represented as a float11, set to max + return float11Max; + } + else + { + if (float32Val < float32Minfloat11) + { + // The number is too small to be represented as a normalized float11 + // Convert it to a denormalized value. + const unsigned int shift = (float32ExponentBias - float11ExponentBias) - (float32Val >> float32ExponentFirstBit); + float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; + } + else + { + // Rebias the exponent to represent the value as a normalized float11 + float32Val += 0xC8000000; + } + + return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; + } +} + +inline unsigned short float32ToFloat10(float fp32) +{ + const unsigned int float32MantissaMask = 0x7FFFFF; + const unsigned int float32ExponentMask = 0x7F800000; + const unsigned int float32SignMask = 0x80000000; + const unsigned int float32ValueMask = ~float32SignMask; + const unsigned int float32ExponentFirstBit = 23; + const unsigned int float32ExponentBias = 127; + + const unsigned short float10Max = 0x3DF; + const unsigned short float10MantissaMask = 0x1F; + const unsigned short float10ExponentMask = 0x3E0; + const unsigned short float10BitMask = 0x3FF; + const unsigned int float10ExponentBias = 14; + + const unsigned int float32Maxfloat10 = 0x477C0000; + const unsigned int float32Minfloat10 = 0x38800000; + + const unsigned int float32Bits = bitCast<unsigned int>(fp32); + const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; + + unsigned int float32Val = float32Bits & float32ValueMask; + + if ((float32Val & float32ExponentMask) == float32ExponentMask) + { + // INF or NAN + if ((float32Val & float32MantissaMask) != 0) + { + return float10ExponentMask | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & float10MantissaMask); + } + else if (float32Sign) + { + // -INF is clamped to 0 since float11 is positive only + return 0; + } + else + { + return float10ExponentMask; + } + } + else if (float32Sign) + { + // float10 is positive only, so clamp to zero + return 0; + } + else if (float32Val > float32Maxfloat10) + { + // The number is too large to be represented as a float11, set to max + return float10Max; + } + else + { + if (float32Val < float32Minfloat10) + { + // The number is too small to be represented as a normalized float11 + // Convert it to a denormalized value. + const unsigned int shift = (float32ExponentBias - float10ExponentBias) - (float32Val >> float32ExponentFirstBit); + float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; + } + else + { + // Rebias the exponent to represent the value as a normalized float11 + float32Val += 0xC8000000; + } + + return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; + } +} + +inline float float11ToFloat32(unsigned short fp11) +{ + unsigned short exponent = (fp11 >> 6) & 0x1F; + unsigned short mantissa = fp11 & 0x3F; + + if (exponent == 0x1F) + { + // INF or NAN + return bitCast<float>(0x7f800000 | (mantissa << 17)); + } + else + { + if (exponent != 0) + { + // normalized + } + else if (mantissa != 0) + { + // The value is denormalized + exponent = 1; + + do + { + exponent--; + mantissa <<= 1; + } + while ((mantissa & 0x40) == 0); + + mantissa = mantissa & 0x3F; + } + else // The value is zero + { + exponent = static_cast<unsigned short>(-112); + } + + return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17)); + } +} + +inline float float10ToFloat32(unsigned short fp11) +{ + unsigned short exponent = (fp11 >> 5) & 0x1F; + unsigned short mantissa = fp11 & 0x1F; + + if (exponent == 0x1F) + { + // INF or NAN + return bitCast<float>(0x7f800000 | (mantissa << 17)); + } + else + { + if (exponent != 0) + { + // normalized + } + else if (mantissa != 0) + { + // The value is denormalized + exponent = 1; + + do + { + exponent--; + mantissa <<= 1; + } + while ((mantissa & 0x20) == 0); + + mantissa = mantissa & 0x1F; + } + else // The value is zero + { + exponent = static_cast<unsigned short>(-112); + } + + return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18)); + } +} + +template <typename T> +inline float normalizedToFloat(T input) +{ + static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); + + const float inverseMax = 1.0f / std::numeric_limits<T>::max(); + return input * inverseMax; +} + +template <unsigned int inputBitCount, typename T> +inline float normalizedToFloat(T input) +{ + static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); + static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount."); + + const float inverseMax = 1.0f / ((1 << inputBitCount) - 1); + return input * inverseMax; +} + +template <typename T> +inline T floatToNormalized(float input) +{ + return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f); +} + +template <unsigned int outputBitCount, typename T> +inline T floatToNormalized(float input) +{ + static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount."); + return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f); +} + +template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> +inline T getShiftedData(T input) +{ + static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), + "T must have at least as many bits as inputBitCount + inputBitStart."); + const T mask = (1 << inputBitCount) - 1; + return (input >> inputBitStart) & mask; +} + +template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> +inline T shiftData(T input) +{ + static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), + "T must have at least as many bits as inputBitCount + inputBitStart."); + const T mask = (1 << inputBitCount) - 1; + return (input & mask) << inputBitStart; +} + +inline unsigned int CountLeadingZeros(uint32_t x) +{ + // Use binary search to find the amount of leading zeros. + unsigned int zeros = 32u; + uint32_t y; + + y = x >> 16u; + if (y != 0) + { + zeros = zeros - 16u; + x = y; + } + y = x >> 8u; + if (y != 0) + { + zeros = zeros - 8u; + x = y; + } + y = x >> 4u; + if (y != 0) + { + zeros = zeros - 4u; + x = y; + } + y = x >> 2u; + if (y != 0) + { + zeros = zeros - 2u; + x = y; + } + y = x >> 1u; + if (y != 0) + { + return zeros - 2u; + } + return zeros - x; +} + +inline unsigned char average(unsigned char a, unsigned char b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline signed char average(signed char a, signed char b) +{ + return ((short)a + (short)b) / 2; +} + +inline unsigned short average(unsigned short a, unsigned short b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline signed short average(signed short a, signed short b) +{ + return ((int)a + (int)b) / 2; +} + +inline unsigned int average(unsigned int a, unsigned int b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline int average(int a, int b) +{ + long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll; + return static_cast<int>(average); +} + +inline float average(float a, float b) +{ + return (a + b) * 0.5f; +} + +inline unsigned short averageHalfFloat(unsigned short a, unsigned short b) +{ + return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f); +} + +inline unsigned int averageFloat11(unsigned int a, unsigned int b) +{ + return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) + float11ToFloat32(static_cast<unsigned short>(b))) * 0.5f); +} + +inline unsigned int averageFloat10(unsigned int a, unsigned int b) +{ + return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) + float10ToFloat32(static_cast<unsigned short>(b))) * 0.5f); +} + +template <typename T> +struct Range +{ + Range() {} + Range(T lo, T hi) : start(lo), end(hi) { ASSERT(lo <= hi); } + + T start; + T end; + + T length() const { return end - start; } + + bool intersects(Range<T> other) + { + if (start <= other.start) + { + return other.start < end; + } + else + { + return start < other.end; + } + } + + void extend(T value) + { + start = value > start ? value : start; + end = value < end ? value : end; + } + + bool empty() const + { + return end <= start; + } +}; + +typedef Range<int> RangeI; +typedef Range<unsigned int> RangeUI; + +struct IndexRange +{ + IndexRange() : IndexRange(0, 0, 0) {} + IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_) + : start(start_), end(end_), vertexIndexCount(vertexIndexCount_) + { + ASSERT(start <= end); + } + + // Number of vertices in the range. + size_t vertexCount() const { return (end - start) + 1; } + + // Inclusive range of indices that are not primitive restart + size_t start; + size_t end; + + // Number of non-primitive restart indices + size_t vertexIndexCount; +}; + +// First, both normalized floating-point values are converted into 16-bit integer values. +// Then, the results are packed into the returned 32-bit unsigned integer. +// The first float value will be written to the least significant bits of the output; +// the last float value will be written to the most significant bits. +// The conversion of each value to fixed point is done as follows : +// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0) +inline uint32_t packSnorm2x16(float f1, float f2) +{ + int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f)); + int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | + (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF); +} + +// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each +// component is converted to a normalized floating-point value to generate the returned two float values. +// The first float value will be extracted from the least significant bits of the input; +// the last float value will be extracted from the most-significant bits. +// The conversion for unpacked fixed-point value to floating point is done as follows: +// unpackSnorm2x16 : clamp(f / 32767.0, -1, +1) +inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2) +{ + int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF); + int16_t mostSignificantBits = static_cast<int16_t>(u >> 16); + *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f); + *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f); +} + +// First, both normalized floating-point values are converted into 16-bit integer values. +// Then, the results are packed into the returned 32-bit unsigned integer. +// The first float value will be written to the least significant bits of the output; +// the last float value will be written to the most significant bits. +// The conversion of each value to fixed point is done as follows: +// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0) +inline uint32_t packUnorm2x16(float f1, float f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f)); + uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits); +} + +// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each +// component is converted to a normalized floating-point value to generate the returned two float values. +// The first float value will be extracted from the least significant bits of the input; +// the last float value will be extracted from the most-significant bits. +// The conversion for unpacked fixed-point value to floating point is done as follows: +// unpackUnorm2x16 : f / 65535.0 +inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); + uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); + *f1 = static_cast<float>(leastSignificantBits) / 65535.0f; + *f2 = static_cast<float>(mostSignificantBits) / 65535.0f; +} + +// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit +// floating-point representation found in the OpenGL ES Specification, and then packing these +// two 16-bit integers into a 32-bit unsigned integer. +// f1: The 16 least-significant bits of the result; +// f2: The 16 most-significant bits. +inline uint32_t packHalf2x16(float f1, float f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1)); + uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits); +} + +// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values, +// interpreting those values as 16-bit floating-point numbers according to the OpenGL ES Specification, +// and converting them to 32-bit floating-point values. +// The first float value is obtained from the 16 least-significant bits of u; +// the second component is obtained from the 16 most-significant bits of u. +inline void unpackHalf2x16(uint32_t u, float *f1, float *f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); + uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); + + *f1 = float16ToFloat32(leastSignificantBits); + *f2 = float16ToFloat32(mostSignificantBits); +} + +// Returns whether the argument is Not a Number. +// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - non-zero. +inline bool isNaN(float f) +{ + // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u + // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu + return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && (bitCast<uint32_t>(f) & 0x7fffffu); +} + +// Returns whether the argument is infinity. +// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - zero. +inline bool isInf(float f) +{ + // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u + // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu + return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && !(bitCast<uint32_t>(f) & 0x7fffffu); +} + +namespace priv +{ +template <unsigned int N, unsigned int R> +struct iSquareRoot +{ + static constexpr unsigned int solve() + { + return (R * R > N) + ? 0 + : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value)); + } + enum Result + { + value = iSquareRoot::solve() + }; +}; + +template <unsigned int N> +struct iSquareRoot<N, N> +{ + enum result + { + value = N + }; +}; + +} // namespace priv + +template <unsigned int N> +constexpr unsigned int iSquareRoot() +{ + return priv::iSquareRoot<N, 1>::value; +} + +// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow. +// +// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow +// behavior is undefined. + +template <typename T> +inline T WrappingSum(T lhs, T rhs) +{ + uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); + uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); + return static_cast<T>(lhsUnsigned + rhsUnsigned); +} + +template <typename T> +inline T WrappingDiff(T lhs, T rhs) +{ + uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); + uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); + return static_cast<T>(lhsUnsigned - rhsUnsigned); +} + +inline int32_t WrappingMul(int32_t lhs, int32_t rhs) +{ + int64_t lhsWide = static_cast<int64_t>(lhs); + int64_t rhsWide = static_cast<int64_t>(rhs); + // The multiplication is guaranteed not to overflow. + int64_t resultWide = lhsWide * rhsWide; + // Implement the desired wrapping behavior by masking out the high-order 32 bits. + resultWide = resultWide & 0xffffffffll; + // Casting to a narrower signed type is fine since the casted value is representable in the + // narrower type. + return static_cast<int32_t>(resultWide); +} + +} // namespace gl + +namespace rx +{ + +template <typename T> +T roundUp(const T value, const T alignment) +{ + auto temp = value + alignment - static_cast<T>(1); + return temp - temp % alignment; +} + +template <typename T> +angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment) +{ + angle::CheckedNumeric<T> checkedValue(value); + angle::CheckedNumeric<T> checkedAlignment(alignment); + return roundUp(checkedValue, checkedAlignment); +} + +inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor) +{ + unsigned int divided = value / divisor; + return (divided + ((value % divisor == 0) ? 0 : 1)); +} + +#if defined(_MSC_VER) + +#define ANGLE_ROTL(x,y) _rotl(x,y) +#define ANGLE_ROTR16(x,y) _rotr16(x,y) + +#else + +inline uint32_t RotL(uint32_t x, int8_t r) +{ + return (x << r) | (x >> (32 - r)); +} + +inline uint16_t RotR16(uint16_t x, int8_t r) +{ + return (x >> r) | (x << (16 - r)); +} + +#define ANGLE_ROTL(x, y) ::rx::RotL(x, y) +#define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y) + +#endif // namespace rx + +} + +#endif // COMMON_MATHUTIL_H_ |