summaryrefslogtreecommitdiffstats
path: root/gfx/2d/Blur.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/2d/Blur.cpp')
-rw-r--r--gfx/2d/Blur.cpp770
1 files changed, 770 insertions, 0 deletions
diff --git a/gfx/2d/Blur.cpp b/gfx/2d/Blur.cpp
new file mode 100644
index 000000000..f3f41c3af
--- /dev/null
+++ b/gfx/2d/Blur.cpp
@@ -0,0 +1,770 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "Blur.h"
+
+#include <algorithm>
+#include <math.h>
+#include <string.h>
+
+#include "mozilla/CheckedInt.h"
+
+#include "2D.h"
+#include "DataSurfaceHelpers.h"
+#include "Tools.h"
+
+#ifdef BUILD_ARM_NEON
+#include "mozilla/arm.h"
+#endif
+
+using namespace std;
+
+namespace mozilla {
+namespace gfx {
+
+/**
+ * Box blur involves looking at one pixel, and setting its value to the average
+ * of its neighbouring pixels.
+ * @param aInput The input buffer.
+ * @param aOutput The output buffer.
+ * @param aLeftLobe The number of pixels to blend on the left.
+ * @param aRightLobe The number of pixels to blend on the right.
+ * @param aWidth The number of columns in the buffers.
+ * @param aRows The number of rows in the buffers.
+ * @param aSkipRect An area to skip blurring in.
+ * XXX shouldn't we pass stride in separately here?
+ */
+static void
+BoxBlurHorizontal(unsigned char* aInput,
+ unsigned char* aOutput,
+ int32_t aLeftLobe,
+ int32_t aRightLobe,
+ int32_t aWidth,
+ int32_t aRows,
+ const IntRect& aSkipRect)
+{
+ MOZ_ASSERT(aWidth > 0);
+
+ int32_t boxSize = aLeftLobe + aRightLobe + 1;
+ bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
+ aWidth <= aSkipRect.XMost();
+ if (boxSize == 1) {
+ memcpy(aOutput, aInput, aWidth*aRows);
+ return;
+ }
+ uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
+
+ for (int32_t y = 0; y < aRows; y++) {
+ // Check whether the skip rect intersects this row. If the skip
+ // rect covers the whole surface in this row, we can avoid
+ // this row entirely (and any others along the skip rect).
+ bool inSkipRectY = y >= aSkipRect.y &&
+ y < aSkipRect.YMost();
+ if (inSkipRectY && skipRectCoversWholeRow) {
+ y = aSkipRect.YMost() - 1;
+ continue;
+ }
+
+ uint32_t alphaSum = 0;
+ for (int32_t i = 0; i < boxSize; i++) {
+ int32_t pos = i - aLeftLobe;
+ // See assertion above; if aWidth is zero, then we would have no
+ // valid position to clamp to.
+ pos = max(pos, 0);
+ pos = min(pos, aWidth - 1);
+ alphaSum += aInput[aWidth * y + pos];
+ }
+ for (int32_t x = 0; x < aWidth; x++) {
+ // Check whether we are within the skip rect. If so, go
+ // to the next point outside the skip rect.
+ if (inSkipRectY && x >= aSkipRect.x &&
+ x < aSkipRect.XMost()) {
+ x = aSkipRect.XMost();
+ if (x >= aWidth)
+ break;
+
+ // Recalculate the neighbouring alpha values for
+ // our new point on the surface.
+ alphaSum = 0;
+ for (int32_t i = 0; i < boxSize; i++) {
+ int32_t pos = x + i - aLeftLobe;
+ // See assertion above; if aWidth is zero, then we would have no
+ // valid position to clamp to.
+ pos = max(pos, 0);
+ pos = min(pos, aWidth - 1);
+ alphaSum += aInput[aWidth * y + pos];
+ }
+ }
+ int32_t tmp = x - aLeftLobe;
+ int32_t last = max(tmp, 0);
+ int32_t next = min(tmp + boxSize, aWidth - 1);
+
+ aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;
+
+ alphaSum += aInput[aWidth * y + next] -
+ aInput[aWidth * y + last];
+ }
+ }
+}
+
+/**
+ * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
+ * left and right.
+ * XXX shouldn't we pass stride in separately here?
+ */
+static void
+BoxBlurVertical(unsigned char* aInput,
+ unsigned char* aOutput,
+ int32_t aTopLobe,
+ int32_t aBottomLobe,
+ int32_t aWidth,
+ int32_t aRows,
+ const IntRect& aSkipRect)
+{
+ MOZ_ASSERT(aRows > 0);
+
+ int32_t boxSize = aTopLobe + aBottomLobe + 1;
+ bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
+ aRows <= aSkipRect.YMost();
+ if (boxSize == 1) {
+ memcpy(aOutput, aInput, aWidth*aRows);
+ return;
+ }
+ uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
+
+ for (int32_t x = 0; x < aWidth; x++) {
+ bool inSkipRectX = x >= aSkipRect.x &&
+ x < aSkipRect.XMost();
+ if (inSkipRectX && skipRectCoversWholeColumn) {
+ x = aSkipRect.XMost() - 1;
+ continue;
+ }
+
+ uint32_t alphaSum = 0;
+ for (int32_t i = 0; i < boxSize; i++) {
+ int32_t pos = i - aTopLobe;
+ // See assertion above; if aRows is zero, then we would have no
+ // valid position to clamp to.
+ pos = max(pos, 0);
+ pos = min(pos, aRows - 1);
+ alphaSum += aInput[aWidth * pos + x];
+ }
+ for (int32_t y = 0; y < aRows; y++) {
+ if (inSkipRectX && y >= aSkipRect.y &&
+ y < aSkipRect.YMost()) {
+ y = aSkipRect.YMost();
+ if (y >= aRows)
+ break;
+
+ alphaSum = 0;
+ for (int32_t i = 0; i < boxSize; i++) {
+ int32_t pos = y + i - aTopLobe;
+ // See assertion above; if aRows is zero, then we would have no
+ // valid position to clamp to.
+ pos = max(pos, 0);
+ pos = min(pos, aRows - 1);
+ alphaSum += aInput[aWidth * pos + x];
+ }
+ }
+ int32_t tmp = y - aTopLobe;
+ int32_t last = max(tmp, 0);
+ int32_t next = min(tmp + boxSize, aRows - 1);
+
+ aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;
+
+ alphaSum += aInput[aWidth * next + x] -
+ aInput[aWidth * last + x];
+ }
+ }
+}
+
+static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2])
+{
+ int32_t major, minor, final;
+
+ /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
+ * some notes about approximating the Gaussian blur with box-blurs.
+ * The comments below are in the terminology of that page.
+ */
+ int32_t z = aRadius / 3;
+ switch (aRadius % 3) {
+ case 0:
+ // aRadius = z*3; choose d = 2*z + 1
+ major = minor = final = z;
+ break;
+ case 1:
+ // aRadius = z*3 + 1
+ // This is a tricky case since there is no value of d which will
+ // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
+ // for some integer k, then the radius will be 3*k. If d is even,
+ // i.e. d=2*k, then the radius will be 3*k - 1.
+ // So we have to choose values that don't match the standard
+ // algorithm.
+ major = z + 1;
+ minor = final = z;
+ break;
+ case 2:
+ // aRadius = z*3 + 2; choose d = 2*z + 2
+ major = final = z + 1;
+ minor = z;
+ break;
+ default:
+ // Mathematical impossibility!
+ MOZ_ASSERT(false);
+ major = minor = final = 0;
+ }
+ MOZ_ASSERT(major + minor + final == aRadius);
+
+ aLobes[0][0] = major;
+ aLobes[0][1] = minor;
+ aLobes[1][0] = minor;
+ aLobes[1][1] = major;
+ aLobes[2][0] = final;
+ aLobes[2][1] = final;
+}
+
+static void
+SpreadHorizontal(unsigned char* aInput,
+ unsigned char* aOutput,
+ int32_t aRadius,
+ int32_t aWidth,
+ int32_t aRows,
+ int32_t aStride,
+ const IntRect& aSkipRect)
+{
+ if (aRadius == 0) {
+ memcpy(aOutput, aInput, aStride * aRows);
+ return;
+ }
+
+ bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
+ aWidth <= aSkipRect.XMost();
+ for (int32_t y = 0; y < aRows; y++) {
+ // Check whether the skip rect intersects this row. If the skip
+ // rect covers the whole surface in this row, we can avoid
+ // this row entirely (and any others along the skip rect).
+ bool inSkipRectY = y >= aSkipRect.y &&
+ y < aSkipRect.YMost();
+ if (inSkipRectY && skipRectCoversWholeRow) {
+ y = aSkipRect.YMost() - 1;
+ continue;
+ }
+
+ for (int32_t x = 0; x < aWidth; x++) {
+ // Check whether we are within the skip rect. If so, go
+ // to the next point outside the skip rect.
+ if (inSkipRectY && x >= aSkipRect.x &&
+ x < aSkipRect.XMost()) {
+ x = aSkipRect.XMost();
+ if (x >= aWidth)
+ break;
+ }
+
+ int32_t sMin = max(x - aRadius, 0);
+ int32_t sMax = min(x + aRadius, aWidth - 1);
+ int32_t v = 0;
+ for (int32_t s = sMin; s <= sMax; ++s) {
+ v = max<int32_t>(v, aInput[aStride * y + s]);
+ }
+ aOutput[aStride * y + x] = v;
+ }
+ }
+}
+
+static void
+SpreadVertical(unsigned char* aInput,
+ unsigned char* aOutput,
+ int32_t aRadius,
+ int32_t aWidth,
+ int32_t aRows,
+ int32_t aStride,
+ const IntRect& aSkipRect)
+{
+ if (aRadius == 0) {
+ memcpy(aOutput, aInput, aStride * aRows);
+ return;
+ }
+
+ bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
+ aRows <= aSkipRect.YMost();
+ for (int32_t x = 0; x < aWidth; x++) {
+ bool inSkipRectX = x >= aSkipRect.x &&
+ x < aSkipRect.XMost();
+ if (inSkipRectX && skipRectCoversWholeColumn) {
+ x = aSkipRect.XMost() - 1;
+ continue;
+ }
+
+ for (int32_t y = 0; y < aRows; y++) {
+ // Check whether we are within the skip rect. If so, go
+ // to the next point outside the skip rect.
+ if (inSkipRectX && y >= aSkipRect.y &&
+ y < aSkipRect.YMost()) {
+ y = aSkipRect.YMost();
+ if (y >= aRows)
+ break;
+ }
+
+ int32_t sMin = max(y - aRadius, 0);
+ int32_t sMax = min(y + aRadius, aRows - 1);
+ int32_t v = 0;
+ for (int32_t s = sMin; s <= sMax; ++s) {
+ v = max<int32_t>(v, aInput[aStride * s + x]);
+ }
+ aOutput[aStride * y + x] = v;
+ }
+ }
+}
+
+CheckedInt<int32_t>
+AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal)
+{
+ CheckedInt<int32_t> val(aVal);
+
+ val += 3;
+ val /= 4;
+ val *= 4;
+
+ return val;
+}
+
+AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
+ const IntSize& aSpreadRadius,
+ const IntSize& aBlurRadius,
+ const Rect* aDirtyRect,
+ const Rect* aSkipRect)
+ : mSpreadRadius(aSpreadRadius),
+ mBlurRadius(aBlurRadius),
+ mSurfaceAllocationSize(0)
+{
+ Rect rect(aRect);
+ rect.Inflate(Size(aBlurRadius + aSpreadRadius));
+ rect.RoundOut();
+
+ if (aDirtyRect) {
+ // If we get passed a dirty rect from layout, we can minimize the
+ // shadow size and make painting faster.
+ mHasDirtyRect = true;
+ mDirtyRect = *aDirtyRect;
+ Rect requiredBlurArea = mDirtyRect.Intersect(rect);
+ requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
+ rect = requiredBlurArea.Intersect(rect);
+ } else {
+ mHasDirtyRect = false;
+ }
+
+ mRect = IntRect(int32_t(rect.x), int32_t(rect.y),
+ int32_t(rect.width), int32_t(rect.height));
+ if (mRect.IsEmpty()) {
+ return;
+ }
+
+ if (aSkipRect) {
+ // If we get passed a skip rect, we can lower the amount of
+ // blurring/spreading we need to do. We convert it to IntRect to avoid
+ // expensive int<->float conversions if we were to use Rect instead.
+ Rect skipRect = *aSkipRect;
+ skipRect.RoundIn();
+ skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
+ mSkipRect = IntRect(int32_t(skipRect.x), int32_t(skipRect.y),
+ int32_t(skipRect.width), int32_t(skipRect.height));
+
+ mSkipRect = mSkipRect.Intersect(mRect);
+ if (mSkipRect.IsEqualInterior(mRect))
+ return;
+
+ mSkipRect -= mRect.TopLeft();
+ } else {
+ mSkipRect = IntRect(0, 0, 0, 0);
+ }
+
+ CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width);
+ if (stride.isValid()) {
+ mStride = stride.value();
+
+ // We need to leave room for an additional 3 bytes for a potential overrun
+ // in our blurring code.
+ size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.height, 3);
+ if (size != 0) {
+ mSurfaceAllocationSize = size;
+ }
+ }
+}
+
+AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
+ int32_t aStride,
+ float aSigmaX,
+ float aSigmaY)
+ : mRect(int32_t(aRect.x), int32_t(aRect.y),
+ int32_t(aRect.width), int32_t(aRect.height)),
+ mSpreadRadius(),
+ mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))),
+ mStride(aStride),
+ mSurfaceAllocationSize(0)
+{
+ IntRect intRect;
+ if (aRect.ToIntRect(&intRect)) {
+ size_t minDataSize = BufferSizeFromStrideAndHeight(intRect.width, intRect.height);
+ if (minDataSize != 0) {
+ mSurfaceAllocationSize = minDataSize;
+ }
+ }
+}
+
+
+AlphaBoxBlur::~AlphaBoxBlur()
+{
+}
+
+IntSize
+AlphaBoxBlur::GetSize()
+{
+ IntSize size(mRect.width, mRect.height);
+ return size;
+}
+
+int32_t
+AlphaBoxBlur::GetStride()
+{
+ return mStride;
+}
+
+IntRect
+AlphaBoxBlur::GetRect()
+{
+ return mRect;
+}
+
+Rect*
+AlphaBoxBlur::GetDirtyRect()
+{
+ if (mHasDirtyRect) {
+ return &mDirtyRect;
+ }
+
+ return nullptr;
+}
+
+size_t
+AlphaBoxBlur::GetSurfaceAllocationSize() const
+{
+ return mSurfaceAllocationSize;
+}
+
+void
+AlphaBoxBlur::Blur(uint8_t* aData)
+{
+ if (!aData) {
+ return;
+ }
+
+ // no need to do all this if not blurring or spreading
+ if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) {
+ int32_t stride = GetStride();
+
+ IntSize size = GetSize();
+
+ if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
+ // No need to use CheckedInt here - we have validated it in the constructor.
+ size_t szB = stride * size.height;
+ unsigned char* tmpData = new (std::nothrow) uint8_t[szB];
+
+ if (!tmpData) {
+ return;
+ }
+
+ memset(tmpData, 0, szB);
+
+ SpreadHorizontal(aData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect);
+ SpreadVertical(tmpData, aData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect);
+
+ delete [] tmpData;
+ }
+
+ int32_t horizontalLobes[3][2];
+ ComputeLobes(mBlurRadius.width, horizontalLobes);
+ int32_t verticalLobes[3][2];
+ ComputeLobes(mBlurRadius.height, verticalLobes);
+
+ // We want to allow for some extra space on the left for alignment reasons.
+ int32_t maxLeftLobe = RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value();
+
+ IntSize integralImageSize(size.width + maxLeftLobe + horizontalLobes[1][1],
+ size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1);
+
+ if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) {
+ // Fallback to old blurring code when the surface is so large it may
+ // overflow our integral image!
+
+ // No need to use CheckedInt here - we have validated it in the constructor.
+ size_t szB = stride * size.height;
+ uint8_t* tmpData = new (std::nothrow) uint8_t[szB];
+ if (!tmpData) {
+ return;
+ }
+
+ memset(tmpData, 0, szB);
+
+ uint8_t* a = aData;
+ uint8_t* b = tmpData;
+ if (mBlurRadius.width > 0) {
+ BoxBlurHorizontal(a, b, horizontalLobes[0][0], horizontalLobes[0][1], stride, GetSize().height, mSkipRect);
+ BoxBlurHorizontal(b, a, horizontalLobes[1][0], horizontalLobes[1][1], stride, GetSize().height, mSkipRect);
+ BoxBlurHorizontal(a, b, horizontalLobes[2][0], horizontalLobes[2][1], stride, GetSize().height, mSkipRect);
+ } else {
+ a = tmpData;
+ b = aData;
+ }
+ // The result is in 'b' here.
+ if (mBlurRadius.height > 0) {
+ BoxBlurVertical(b, a, verticalLobes[0][0], verticalLobes[0][1], stride, GetSize().height, mSkipRect);
+ BoxBlurVertical(a, b, verticalLobes[1][0], verticalLobes[1][1], stride, GetSize().height, mSkipRect);
+ BoxBlurVertical(b, a, verticalLobes[2][0], verticalLobes[2][1], stride, GetSize().height, mSkipRect);
+ } else {
+ a = b;
+ }
+ // The result is in 'a' here.
+ if (a == tmpData) {
+ memcpy(aData, tmpData, szB);
+ }
+ delete [] tmpData;
+ } else {
+ size_t integralImageStride = GetAlignedStride<16>(integralImageSize.width, 4);
+ if (integralImageStride == 0) {
+ return;
+ }
+
+ // We need to leave room for an additional 12 bytes for a maximum overrun
+ // of 3 pixels in the blurring code.
+ size_t bufLen = BufferSizeFromStrideAndHeight(integralImageStride, integralImageSize.height, 12);
+ if (bufLen == 0) {
+ return;
+ }
+ // bufLen is a byte count, but here we want a multiple of 32-bit ints, so
+ // we divide by 4.
+ AlignedArray<uint32_t> integralImage((bufLen / 4) + ((bufLen % 4) ? 1 : 0));
+
+ if (!integralImage) {
+ return;
+ }
+
+#ifdef USE_SSE2
+ if (Factory::HasSSE2()) {
+ BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
+ verticalLobes[0][1], integralImage, integralImageStride);
+ BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
+ verticalLobes[1][1], integralImage, integralImageStride);
+ BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
+ verticalLobes[2][1], integralImage, integralImageStride);
+ } else
+#endif
+#ifdef BUILD_ARM_NEON
+ if (mozilla::supports_neon()) {
+ BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
+ verticalLobes[0][1], integralImage, integralImageStride);
+ BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
+ verticalLobes[1][1], integralImage, integralImageStride);
+ BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
+ verticalLobes[2][1], integralImage, integralImageStride);
+ } else
+#endif
+ {
+#ifdef _MIPS_ARCH_LOONGSON3A
+ BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
+ verticalLobes[0][1], integralImage, integralImageStride);
+ BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
+ verticalLobes[1][1], integralImage, integralImageStride);
+ BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
+ verticalLobes[2][1], integralImage, integralImageStride);
+#else
+ BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0],
+ verticalLobes[0][1], integralImage, integralImageStride);
+ BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0],
+ verticalLobes[1][1], integralImage, integralImageStride);
+ BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0],
+ verticalLobes[2][1], integralImage, integralImageStride);
+#endif
+ }
+ }
+ }
+}
+
+MOZ_ALWAYS_INLINE void
+GenerateIntegralRow(uint32_t *aDest, const uint8_t *aSource, uint32_t *aPreviousRow,
+ const uint32_t &aSourceWidth, const uint32_t &aLeftInflation, const uint32_t &aRightInflation)
+{
+ uint32_t currentRowSum = 0;
+ uint32_t pixel = aSource[0];
+ for (uint32_t x = 0; x < aLeftInflation; x++) {
+ currentRowSum += pixel;
+ *aDest++ = currentRowSum + *aPreviousRow++;
+ }
+ for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x += 4) {
+ uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation));
+#if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__
+ currentRowSum += (alphaValues >> 24) & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ currentRowSum += (alphaValues >> 16) & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ currentRowSum += (alphaValues >> 8) & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ currentRowSum += alphaValues & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+#else
+ currentRowSum += alphaValues & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ alphaValues >>= 8;
+ currentRowSum += alphaValues & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ alphaValues >>= 8;
+ currentRowSum += alphaValues & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+ alphaValues >>= 8;
+ currentRowSum += alphaValues & 0xff;
+ *aDest++ = *aPreviousRow++ + currentRowSum;
+#endif
+ }
+ pixel = aSource[aSourceWidth - 1];
+ for (uint32_t x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
+ currentRowSum += pixel;
+ *aDest++ = currentRowSum + *aPreviousRow++;
+ }
+}
+
+MOZ_ALWAYS_INLINE void
+GenerateIntegralImage_C(int32_t aLeftInflation, int32_t aRightInflation,
+ int32_t aTopInflation, int32_t aBottomInflation,
+ uint32_t *aIntegralImage, size_t aIntegralImageStride,
+ uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize)
+{
+ uint32_t stride32bit = aIntegralImageStride / 4;
+
+ IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
+ aSize.height + aTopInflation + aBottomInflation);
+
+ memset(aIntegralImage, 0, aIntegralImageStride);
+
+ GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage,
+ aSize.width, aLeftInflation, aRightInflation);
+ for (int y = 1; y < aTopInflation + 1; y++) {
+ GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource, aIntegralImage + (y - 1) * stride32bit,
+ aSize.width, aLeftInflation, aRightInflation);
+ }
+
+ for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
+ GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + aSourceStride * (y - aTopInflation),
+ aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation);
+ }
+
+ if (aBottomInflation) {
+ for (int y = (aSize.height + aTopInflation); y < integralImageSize.height; y++) {
+ GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + ((aSize.height - 1) * aSourceStride),
+ aIntegralImage + (y - 1) * stride32bit,
+ aSize.width, aLeftInflation, aRightInflation);
+ }
+ }
+}
+
+/**
+ * Attempt to do an in-place box blur using an integral image.
+ */
+void
+AlphaBoxBlur::BoxBlur_C(uint8_t* aData,
+ int32_t aLeftLobe,
+ int32_t aRightLobe,
+ int32_t aTopLobe,
+ int32_t aBottomLobe,
+ uint32_t *aIntegralImage,
+ size_t aIntegralImageStride)
+{
+ IntSize size = GetSize();
+
+ MOZ_ASSERT(size.width > 0);
+
+ // Our 'left' or 'top' lobe will include the current pixel. i.e. when
+ // looking at an integral image the value of a pixel at 'x,y' is calculated
+ // using the value of the integral image values above/below that.
+ aLeftLobe++;
+ aTopLobe++;
+ int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
+
+ MOZ_ASSERT(boxSize > 0);
+
+ if (boxSize == 1) {
+ return;
+ }
+
+ int32_t stride32bit = aIntegralImageStride / 4;
+
+ int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
+
+ GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
+ aIntegralImage, aIntegralImageStride, aData,
+ mStride, size);
+
+ uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
+
+ uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
+
+ // Storing these locally makes this about 30% faster! Presumably the compiler
+ // can't be sure we're not altering the member variables in this loop.
+ IntRect skipRect = mSkipRect;
+ uint8_t *data = aData;
+ int32_t stride = mStride;
+ for (int32_t y = 0; y < size.height; y++) {
+ bool inSkipRectY = y > skipRect.y && y < skipRect.YMost();
+
+ uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe);
+ uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe);
+ uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe);
+ uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe);
+
+ for (int32_t x = 0; x < size.width; x++) {
+ if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
+ x = skipRect.XMost() - 1;
+ // Trigger early jump on coming loop iterations, this will be reset
+ // next line anyway.
+ inSkipRectY = false;
+ continue;
+ }
+ int32_t topLeft = topLeftBase[x];
+ int32_t topRight = topRightBase[x];
+ int32_t bottomRight = bottomRightBase[x];
+ int32_t bottomLeft = bottomLeftBase[x];
+
+ uint32_t value = bottomRight - topRight - bottomLeft;
+ value += topLeft;
+
+ data[stride * y + x] = (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32;
+ }
+ }
+}
+
+/**
+ * Compute the box blur size (which we're calling the blur radius) from
+ * the standard deviation.
+ *
+ * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
+ * approximating a Gaussian using box blurs. This yields quite a good
+ * approximation for a Gaussian. Then we multiply this by 1.5 since our
+ * code wants the radius of the entire triple-box-blur kernel instead of
+ * the diameter of an individual box blur. For more details, see:
+ * http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
+ * https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
+ */
+static const Float GAUSSIAN_SCALE_FACTOR = Float((3 * sqrt(2 * M_PI) / 4) * 1.5);
+
+IntSize
+AlphaBoxBlur::CalculateBlurRadius(const Point& aStd)
+{
+ IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)),
+ static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f)));
+
+ return size;
+}
+
+} // namespace gfx
+} // namespace mozilla