diff options
Diffstat (limited to 'gfx/2d/Blur.cpp')
-rw-r--r-- | gfx/2d/Blur.cpp | 770 |
1 files changed, 770 insertions, 0 deletions
diff --git a/gfx/2d/Blur.cpp b/gfx/2d/Blur.cpp new file mode 100644 index 000000000..f3f41c3af --- /dev/null +++ b/gfx/2d/Blur.cpp @@ -0,0 +1,770 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "Blur.h" + +#include <algorithm> +#include <math.h> +#include <string.h> + +#include "mozilla/CheckedInt.h" + +#include "2D.h" +#include "DataSurfaceHelpers.h" +#include "Tools.h" + +#ifdef BUILD_ARM_NEON +#include "mozilla/arm.h" +#endif + +using namespace std; + +namespace mozilla { +namespace gfx { + +/** + * Box blur involves looking at one pixel, and setting its value to the average + * of its neighbouring pixels. + * @param aInput The input buffer. + * @param aOutput The output buffer. + * @param aLeftLobe The number of pixels to blend on the left. + * @param aRightLobe The number of pixels to blend on the right. + * @param aWidth The number of columns in the buffers. + * @param aRows The number of rows in the buffers. + * @param aSkipRect An area to skip blurring in. + * XXX shouldn't we pass stride in separately here? + */ +static void +BoxBlurHorizontal(unsigned char* aInput, + unsigned char* aOutput, + int32_t aLeftLobe, + int32_t aRightLobe, + int32_t aWidth, + int32_t aRows, + const IntRect& aSkipRect) +{ + MOZ_ASSERT(aWidth > 0); + + int32_t boxSize = aLeftLobe + aRightLobe + 1; + bool skipRectCoversWholeRow = 0 >= aSkipRect.x && + aWidth <= aSkipRect.XMost(); + if (boxSize == 1) { + memcpy(aOutput, aInput, aWidth*aRows); + return; + } + uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); + + for (int32_t y = 0; y < aRows; y++) { + // Check whether the skip rect intersects this row. If the skip + // rect covers the whole surface in this row, we can avoid + // this row entirely (and any others along the skip rect). + bool inSkipRectY = y >= aSkipRect.y && + y < aSkipRect.YMost(); + if (inSkipRectY && skipRectCoversWholeRow) { + y = aSkipRect.YMost() - 1; + continue; + } + + uint32_t alphaSum = 0; + for (int32_t i = 0; i < boxSize; i++) { + int32_t pos = i - aLeftLobe; + // See assertion above; if aWidth is zero, then we would have no + // valid position to clamp to. + pos = max(pos, 0); + pos = min(pos, aWidth - 1); + alphaSum += aInput[aWidth * y + pos]; + } + for (int32_t x = 0; x < aWidth; x++) { + // Check whether we are within the skip rect. If so, go + // to the next point outside the skip rect. + if (inSkipRectY && x >= aSkipRect.x && + x < aSkipRect.XMost()) { + x = aSkipRect.XMost(); + if (x >= aWidth) + break; + + // Recalculate the neighbouring alpha values for + // our new point on the surface. + alphaSum = 0; + for (int32_t i = 0; i < boxSize; i++) { + int32_t pos = x + i - aLeftLobe; + // See assertion above; if aWidth is zero, then we would have no + // valid position to clamp to. + pos = max(pos, 0); + pos = min(pos, aWidth - 1); + alphaSum += aInput[aWidth * y + pos]; + } + } + int32_t tmp = x - aLeftLobe; + int32_t last = max(tmp, 0); + int32_t next = min(tmp + boxSize, aWidth - 1); + + aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32; + + alphaSum += aInput[aWidth * y + next] - + aInput[aWidth * y + last]; + } + } +} + +/** + * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of + * left and right. + * XXX shouldn't we pass stride in separately here? + */ +static void +BoxBlurVertical(unsigned char* aInput, + unsigned char* aOutput, + int32_t aTopLobe, + int32_t aBottomLobe, + int32_t aWidth, + int32_t aRows, + const IntRect& aSkipRect) +{ + MOZ_ASSERT(aRows > 0); + + int32_t boxSize = aTopLobe + aBottomLobe + 1; + bool skipRectCoversWholeColumn = 0 >= aSkipRect.y && + aRows <= aSkipRect.YMost(); + if (boxSize == 1) { + memcpy(aOutput, aInput, aWidth*aRows); + return; + } + uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); + + for (int32_t x = 0; x < aWidth; x++) { + bool inSkipRectX = x >= aSkipRect.x && + x < aSkipRect.XMost(); + if (inSkipRectX && skipRectCoversWholeColumn) { + x = aSkipRect.XMost() - 1; + continue; + } + + uint32_t alphaSum = 0; + for (int32_t i = 0; i < boxSize; i++) { + int32_t pos = i - aTopLobe; + // See assertion above; if aRows is zero, then we would have no + // valid position to clamp to. + pos = max(pos, 0); + pos = min(pos, aRows - 1); + alphaSum += aInput[aWidth * pos + x]; + } + for (int32_t y = 0; y < aRows; y++) { + if (inSkipRectX && y >= aSkipRect.y && + y < aSkipRect.YMost()) { + y = aSkipRect.YMost(); + if (y >= aRows) + break; + + alphaSum = 0; + for (int32_t i = 0; i < boxSize; i++) { + int32_t pos = y + i - aTopLobe; + // See assertion above; if aRows is zero, then we would have no + // valid position to clamp to. + pos = max(pos, 0); + pos = min(pos, aRows - 1); + alphaSum += aInput[aWidth * pos + x]; + } + } + int32_t tmp = y - aTopLobe; + int32_t last = max(tmp, 0); + int32_t next = min(tmp + boxSize, aRows - 1); + + aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32; + + alphaSum += aInput[aWidth * next + x] - + aInput[aWidth * last + x]; + } + } +} + +static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2]) +{ + int32_t major, minor, final; + + /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for + * some notes about approximating the Gaussian blur with box-blurs. + * The comments below are in the terminology of that page. + */ + int32_t z = aRadius / 3; + switch (aRadius % 3) { + case 0: + // aRadius = z*3; choose d = 2*z + 1 + major = minor = final = z; + break; + case 1: + // aRadius = z*3 + 1 + // This is a tricky case since there is no value of d which will + // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1 + // for some integer k, then the radius will be 3*k. If d is even, + // i.e. d=2*k, then the radius will be 3*k - 1. + // So we have to choose values that don't match the standard + // algorithm. + major = z + 1; + minor = final = z; + break; + case 2: + // aRadius = z*3 + 2; choose d = 2*z + 2 + major = final = z + 1; + minor = z; + break; + default: + // Mathematical impossibility! + MOZ_ASSERT(false); + major = minor = final = 0; + } + MOZ_ASSERT(major + minor + final == aRadius); + + aLobes[0][0] = major; + aLobes[0][1] = minor; + aLobes[1][0] = minor; + aLobes[1][1] = major; + aLobes[2][0] = final; + aLobes[2][1] = final; +} + +static void +SpreadHorizontal(unsigned char* aInput, + unsigned char* aOutput, + int32_t aRadius, + int32_t aWidth, + int32_t aRows, + int32_t aStride, + const IntRect& aSkipRect) +{ + if (aRadius == 0) { + memcpy(aOutput, aInput, aStride * aRows); + return; + } + + bool skipRectCoversWholeRow = 0 >= aSkipRect.x && + aWidth <= aSkipRect.XMost(); + for (int32_t y = 0; y < aRows; y++) { + // Check whether the skip rect intersects this row. If the skip + // rect covers the whole surface in this row, we can avoid + // this row entirely (and any others along the skip rect). + bool inSkipRectY = y >= aSkipRect.y && + y < aSkipRect.YMost(); + if (inSkipRectY && skipRectCoversWholeRow) { + y = aSkipRect.YMost() - 1; + continue; + } + + for (int32_t x = 0; x < aWidth; x++) { + // Check whether we are within the skip rect. If so, go + // to the next point outside the skip rect. + if (inSkipRectY && x >= aSkipRect.x && + x < aSkipRect.XMost()) { + x = aSkipRect.XMost(); + if (x >= aWidth) + break; + } + + int32_t sMin = max(x - aRadius, 0); + int32_t sMax = min(x + aRadius, aWidth - 1); + int32_t v = 0; + for (int32_t s = sMin; s <= sMax; ++s) { + v = max<int32_t>(v, aInput[aStride * y + s]); + } + aOutput[aStride * y + x] = v; + } + } +} + +static void +SpreadVertical(unsigned char* aInput, + unsigned char* aOutput, + int32_t aRadius, + int32_t aWidth, + int32_t aRows, + int32_t aStride, + const IntRect& aSkipRect) +{ + if (aRadius == 0) { + memcpy(aOutput, aInput, aStride * aRows); + return; + } + + bool skipRectCoversWholeColumn = 0 >= aSkipRect.y && + aRows <= aSkipRect.YMost(); + for (int32_t x = 0; x < aWidth; x++) { + bool inSkipRectX = x >= aSkipRect.x && + x < aSkipRect.XMost(); + if (inSkipRectX && skipRectCoversWholeColumn) { + x = aSkipRect.XMost() - 1; + continue; + } + + for (int32_t y = 0; y < aRows; y++) { + // Check whether we are within the skip rect. If so, go + // to the next point outside the skip rect. + if (inSkipRectX && y >= aSkipRect.y && + y < aSkipRect.YMost()) { + y = aSkipRect.YMost(); + if (y >= aRows) + break; + } + + int32_t sMin = max(y - aRadius, 0); + int32_t sMax = min(y + aRadius, aRows - 1); + int32_t v = 0; + for (int32_t s = sMin; s <= sMax; ++s) { + v = max<int32_t>(v, aInput[aStride * s + x]); + } + aOutput[aStride * y + x] = v; + } + } +} + +CheckedInt<int32_t> +AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal) +{ + CheckedInt<int32_t> val(aVal); + + val += 3; + val /= 4; + val *= 4; + + return val; +} + +AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, + const IntSize& aSpreadRadius, + const IntSize& aBlurRadius, + const Rect* aDirtyRect, + const Rect* aSkipRect) + : mSpreadRadius(aSpreadRadius), + mBlurRadius(aBlurRadius), + mSurfaceAllocationSize(0) +{ + Rect rect(aRect); + rect.Inflate(Size(aBlurRadius + aSpreadRadius)); + rect.RoundOut(); + + if (aDirtyRect) { + // If we get passed a dirty rect from layout, we can minimize the + // shadow size and make painting faster. + mHasDirtyRect = true; + mDirtyRect = *aDirtyRect; + Rect requiredBlurArea = mDirtyRect.Intersect(rect); + requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius)); + rect = requiredBlurArea.Intersect(rect); + } else { + mHasDirtyRect = false; + } + + mRect = IntRect(int32_t(rect.x), int32_t(rect.y), + int32_t(rect.width), int32_t(rect.height)); + if (mRect.IsEmpty()) { + return; + } + + if (aSkipRect) { + // If we get passed a skip rect, we can lower the amount of + // blurring/spreading we need to do. We convert it to IntRect to avoid + // expensive int<->float conversions if we were to use Rect instead. + Rect skipRect = *aSkipRect; + skipRect.RoundIn(); + skipRect.Deflate(Size(aBlurRadius + aSpreadRadius)); + mSkipRect = IntRect(int32_t(skipRect.x), int32_t(skipRect.y), + int32_t(skipRect.width), int32_t(skipRect.height)); + + mSkipRect = mSkipRect.Intersect(mRect); + if (mSkipRect.IsEqualInterior(mRect)) + return; + + mSkipRect -= mRect.TopLeft(); + } else { + mSkipRect = IntRect(0, 0, 0, 0); + } + + CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width); + if (stride.isValid()) { + mStride = stride.value(); + + // We need to leave room for an additional 3 bytes for a potential overrun + // in our blurring code. + size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.height, 3); + if (size != 0) { + mSurfaceAllocationSize = size; + } + } +} + +AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, + int32_t aStride, + float aSigmaX, + float aSigmaY) + : mRect(int32_t(aRect.x), int32_t(aRect.y), + int32_t(aRect.width), int32_t(aRect.height)), + mSpreadRadius(), + mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))), + mStride(aStride), + mSurfaceAllocationSize(0) +{ + IntRect intRect; + if (aRect.ToIntRect(&intRect)) { + size_t minDataSize = BufferSizeFromStrideAndHeight(intRect.width, intRect.height); + if (minDataSize != 0) { + mSurfaceAllocationSize = minDataSize; + } + } +} + + +AlphaBoxBlur::~AlphaBoxBlur() +{ +} + +IntSize +AlphaBoxBlur::GetSize() +{ + IntSize size(mRect.width, mRect.height); + return size; +} + +int32_t +AlphaBoxBlur::GetStride() +{ + return mStride; +} + +IntRect +AlphaBoxBlur::GetRect() +{ + return mRect; +} + +Rect* +AlphaBoxBlur::GetDirtyRect() +{ + if (mHasDirtyRect) { + return &mDirtyRect; + } + + return nullptr; +} + +size_t +AlphaBoxBlur::GetSurfaceAllocationSize() const +{ + return mSurfaceAllocationSize; +} + +void +AlphaBoxBlur::Blur(uint8_t* aData) +{ + if (!aData) { + return; + } + + // no need to do all this if not blurring or spreading + if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) { + int32_t stride = GetStride(); + + IntSize size = GetSize(); + + if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) { + // No need to use CheckedInt here - we have validated it in the constructor. + size_t szB = stride * size.height; + unsigned char* tmpData = new (std::nothrow) uint8_t[szB]; + + if (!tmpData) { + return; + } + + memset(tmpData, 0, szB); + + SpreadHorizontal(aData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect); + SpreadVertical(tmpData, aData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect); + + delete [] tmpData; + } + + int32_t horizontalLobes[3][2]; + ComputeLobes(mBlurRadius.width, horizontalLobes); + int32_t verticalLobes[3][2]; + ComputeLobes(mBlurRadius.height, verticalLobes); + + // We want to allow for some extra space on the left for alignment reasons. + int32_t maxLeftLobe = RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value(); + + IntSize integralImageSize(size.width + maxLeftLobe + horizontalLobes[1][1], + size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1); + + if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) { + // Fallback to old blurring code when the surface is so large it may + // overflow our integral image! + + // No need to use CheckedInt here - we have validated it in the constructor. + size_t szB = stride * size.height; + uint8_t* tmpData = new (std::nothrow) uint8_t[szB]; + if (!tmpData) { + return; + } + + memset(tmpData, 0, szB); + + uint8_t* a = aData; + uint8_t* b = tmpData; + if (mBlurRadius.width > 0) { + BoxBlurHorizontal(a, b, horizontalLobes[0][0], horizontalLobes[0][1], stride, GetSize().height, mSkipRect); + BoxBlurHorizontal(b, a, horizontalLobes[1][0], horizontalLobes[1][1], stride, GetSize().height, mSkipRect); + BoxBlurHorizontal(a, b, horizontalLobes[2][0], horizontalLobes[2][1], stride, GetSize().height, mSkipRect); + } else { + a = tmpData; + b = aData; + } + // The result is in 'b' here. + if (mBlurRadius.height > 0) { + BoxBlurVertical(b, a, verticalLobes[0][0], verticalLobes[0][1], stride, GetSize().height, mSkipRect); + BoxBlurVertical(a, b, verticalLobes[1][0], verticalLobes[1][1], stride, GetSize().height, mSkipRect); + BoxBlurVertical(b, a, verticalLobes[2][0], verticalLobes[2][1], stride, GetSize().height, mSkipRect); + } else { + a = b; + } + // The result is in 'a' here. + if (a == tmpData) { + memcpy(aData, tmpData, szB); + } + delete [] tmpData; + } else { + size_t integralImageStride = GetAlignedStride<16>(integralImageSize.width, 4); + if (integralImageStride == 0) { + return; + } + + // We need to leave room for an additional 12 bytes for a maximum overrun + // of 3 pixels in the blurring code. + size_t bufLen = BufferSizeFromStrideAndHeight(integralImageStride, integralImageSize.height, 12); + if (bufLen == 0) { + return; + } + // bufLen is a byte count, but here we want a multiple of 32-bit ints, so + // we divide by 4. + AlignedArray<uint32_t> integralImage((bufLen / 4) + ((bufLen % 4) ? 1 : 0)); + + if (!integralImage) { + return; + } + +#ifdef USE_SSE2 + if (Factory::HasSSE2()) { + BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], + verticalLobes[0][1], integralImage, integralImageStride); + BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], + verticalLobes[1][1], integralImage, integralImageStride); + BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], + verticalLobes[2][1], integralImage, integralImageStride); + } else +#endif +#ifdef BUILD_ARM_NEON + if (mozilla::supports_neon()) { + BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], + verticalLobes[0][1], integralImage, integralImageStride); + BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], + verticalLobes[1][1], integralImage, integralImageStride); + BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], + verticalLobes[2][1], integralImage, integralImageStride); + } else +#endif + { +#ifdef _MIPS_ARCH_LOONGSON3A + BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], + verticalLobes[0][1], integralImage, integralImageStride); + BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], + verticalLobes[1][1], integralImage, integralImageStride); + BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], + verticalLobes[2][1], integralImage, integralImageStride); +#else + BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1], verticalLobes[0][0], + verticalLobes[0][1], integralImage, integralImageStride); + BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1], verticalLobes[1][0], + verticalLobes[1][1], integralImage, integralImageStride); + BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1], verticalLobes[2][0], + verticalLobes[2][1], integralImage, integralImageStride); +#endif + } + } + } +} + +MOZ_ALWAYS_INLINE void +GenerateIntegralRow(uint32_t *aDest, const uint8_t *aSource, uint32_t *aPreviousRow, + const uint32_t &aSourceWidth, const uint32_t &aLeftInflation, const uint32_t &aRightInflation) +{ + uint32_t currentRowSum = 0; + uint32_t pixel = aSource[0]; + for (uint32_t x = 0; x < aLeftInflation; x++) { + currentRowSum += pixel; + *aDest++ = currentRowSum + *aPreviousRow++; + } + for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x += 4) { + uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation)); +#if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__ + currentRowSum += (alphaValues >> 24) & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + currentRowSum += (alphaValues >> 16) & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + currentRowSum += (alphaValues >> 8) & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + currentRowSum += alphaValues & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; +#else + currentRowSum += alphaValues & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + alphaValues >>= 8; + currentRowSum += alphaValues & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + alphaValues >>= 8; + currentRowSum += alphaValues & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; + alphaValues >>= 8; + currentRowSum += alphaValues & 0xff; + *aDest++ = *aPreviousRow++ + currentRowSum; +#endif + } + pixel = aSource[aSourceWidth - 1]; + for (uint32_t x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) { + currentRowSum += pixel; + *aDest++ = currentRowSum + *aPreviousRow++; + } +} + +MOZ_ALWAYS_INLINE void +GenerateIntegralImage_C(int32_t aLeftInflation, int32_t aRightInflation, + int32_t aTopInflation, int32_t aBottomInflation, + uint32_t *aIntegralImage, size_t aIntegralImageStride, + uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize) +{ + uint32_t stride32bit = aIntegralImageStride / 4; + + IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation, + aSize.height + aTopInflation + aBottomInflation); + + memset(aIntegralImage, 0, aIntegralImageStride); + + GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage, + aSize.width, aLeftInflation, aRightInflation); + for (int y = 1; y < aTopInflation + 1; y++) { + GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource, aIntegralImage + (y - 1) * stride32bit, + aSize.width, aLeftInflation, aRightInflation); + } + + for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) { + GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + aSourceStride * (y - aTopInflation), + aIntegralImage + (y - 1) * stride32bit, aSize.width, aLeftInflation, aRightInflation); + } + + if (aBottomInflation) { + for (int y = (aSize.height + aTopInflation); y < integralImageSize.height; y++) { + GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource + ((aSize.height - 1) * aSourceStride), + aIntegralImage + (y - 1) * stride32bit, + aSize.width, aLeftInflation, aRightInflation); + } + } +} + +/** + * Attempt to do an in-place box blur using an integral image. + */ +void +AlphaBoxBlur::BoxBlur_C(uint8_t* aData, + int32_t aLeftLobe, + int32_t aRightLobe, + int32_t aTopLobe, + int32_t aBottomLobe, + uint32_t *aIntegralImage, + size_t aIntegralImageStride) +{ + IntSize size = GetSize(); + + MOZ_ASSERT(size.width > 0); + + // Our 'left' or 'top' lobe will include the current pixel. i.e. when + // looking at an integral image the value of a pixel at 'x,y' is calculated + // using the value of the integral image values above/below that. + aLeftLobe++; + aTopLobe++; + int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe); + + MOZ_ASSERT(boxSize > 0); + + if (boxSize == 1) { + return; + } + + int32_t stride32bit = aIntegralImageStride / 4; + + int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value(); + + GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe, + aIntegralImage, aIntegralImageStride, aData, + mStride, size); + + uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); + + uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation; + + // Storing these locally makes this about 30% faster! Presumably the compiler + // can't be sure we're not altering the member variables in this loop. + IntRect skipRect = mSkipRect; + uint8_t *data = aData; + int32_t stride = mStride; + for (int32_t y = 0; y < size.height; y++) { + bool inSkipRectY = y > skipRect.y && y < skipRect.YMost(); + + uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe); + uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe); + uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe); + uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe); + + for (int32_t x = 0; x < size.width; x++) { + if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) { + x = skipRect.XMost() - 1; + // Trigger early jump on coming loop iterations, this will be reset + // next line anyway. + inSkipRectY = false; + continue; + } + int32_t topLeft = topLeftBase[x]; + int32_t topRight = topRightBase[x]; + int32_t bottomRight = bottomRightBase[x]; + int32_t bottomLeft = bottomLeftBase[x]; + + uint32_t value = bottomRight - topRight - bottomLeft; + value += topLeft; + + data[stride * y + x] = (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32; + } + } +} + +/** + * Compute the box blur size (which we're calling the blur radius) from + * the standard deviation. + * + * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for + * approximating a Gaussian using box blurs. This yields quite a good + * approximation for a Gaussian. Then we multiply this by 1.5 since our + * code wants the radius of the entire triple-box-blur kernel instead of + * the diameter of an individual box blur. For more details, see: + * http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement + * https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19 + */ +static const Float GAUSSIAN_SCALE_FACTOR = Float((3 * sqrt(2 * M_PI) / 4) * 1.5); + +IntSize +AlphaBoxBlur::CalculateBlurRadius(const Point& aStd) +{ + IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)), + static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f))); + + return size; +} + +} // namespace gfx +} // namespace mozilla |