diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /toolkit/components/places/ClusterLib.js | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'toolkit/components/places/ClusterLib.js')
-rw-r--r-- | toolkit/components/places/ClusterLib.js | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/toolkit/components/places/ClusterLib.js b/toolkit/components/places/ClusterLib.js new file mode 100644 index 000000000..ae5debff9 --- /dev/null +++ b/toolkit/components/places/ClusterLib.js @@ -0,0 +1,248 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/** + * Class that can run the hierarchical clustering algorithm with the given + * parameters. + * + * @param distance + * Function that should return the distance between two items. + * Defaults to clusterlib.euclidean_distance. + * @param merge + * Function that should take in two items and return a merged one. + * Defaults to clusterlib.average_linkage. + * @param threshold + * The maximum distance between two items for which their clusters + * can be merged. + */ +function HierarchicalClustering(distance, merge, threshold) { + this.distance = distance || clusterlib.euclidean_distance; + this.merge = merge || clusterlib.average_linkage; + this.threshold = threshold == undefined ? Infinity : threshold; +} + +HierarchicalClustering.prototype = { + /** + * Run the hierarchical clustering algorithm on the given items to produce + * a final set of clusters. Uses the parameters set in the constructor. + * + * @param items + * An array of "things" to cluster - this is the domain-specific + * collection you're trying to cluster (colors, points, etc.) + * @param snapshotGap + * How many iterations of the clustering algorithm to wait between + * calling the snapshotCallback + * @param snapshotCallback + * If provided, will be called as clusters are merged to let you view + * the progress of the algorithm. Passed the current array of + * clusters, cached distances, and cached closest clusters. + * + * @return An array of merged clusters. The represented item can be + * found in the "item" property of the cluster. + */ + cluster: function HC_cluster(items, snapshotGap, snapshotCallback) { + // array of all remaining clusters + let clusters = []; + // 2D matrix of distances between each pair of clusters, indexed by key + let distances = []; + // closest cluster key for each cluster, indexed by key + let neighbors = []; + // an array of all clusters, but indexed by key + let clustersByKey = []; + + // set up clusters from the initial items array + for (let index = 0; index < items.length; index++) { + let cluster = { + // the item this cluster represents + item: items[index], + // a unique key for this cluster, stays constant unless merged itself + key: index, + // index of cluster in clusters array, can change during any merge + index: index, + // how many clusters have been merged into this one + size: 1 + }; + clusters[index] = cluster; + clustersByKey[index] = cluster; + distances[index] = []; + neighbors[index] = 0; + } + + // initialize distance matrix and cached neighbors + for (let i = 0; i < clusters.length; i++) { + for (let j = 0; j <= i; j++) { + var dist = (i == j) ? Infinity : + this.distance(clusters[i].item, clusters[j].item); + distances[i][j] = dist; + distances[j][i] = dist; + + if (dist < distances[i][neighbors[i]]) { + neighbors[i] = j; + } + } + } + + // merge the next two closest clusters until none of them are close enough + let next = null, i = 0; + for (; next = this.closestClusters(clusters, distances, neighbors); i++) { + if (snapshotCallback && (i % snapshotGap) == 0) { + snapshotCallback(clusters); + } + this.mergeClusters(clusters, distances, neighbors, clustersByKey, + clustersByKey[next[0]], clustersByKey[next[1]]); + } + return clusters; + }, + + /** + * Once we decide to merge two clusters in the cluster method, actually + * merge them. Alters the given state of the algorithm. + * + * @param clusters + * The array of all remaining clusters + * @param distances + * Cached distances between pairs of clusters + * @param neighbors + * Cached closest clusters + * @param clustersByKey + * Array of all clusters, indexed by key + * @param cluster1 + * First cluster to merge + * @param cluster2 + * Second cluster to merge + */ + mergeClusters: function HC_mergeClus(clusters, distances, neighbors, + clustersByKey, cluster1, cluster2) { + let merged = { item: this.merge(cluster1.item, cluster2.item), + left: cluster1, + right: cluster2, + key: cluster1.key, + size: cluster1.size + cluster2.size }; + + clusters[cluster1.index] = merged; + clusters.splice(cluster2.index, 1); + clustersByKey[cluster1.key] = merged; + + // update distances with new merged cluster + for (let i = 0; i < clusters.length; i++) { + var ci = clusters[i]; + var dist; + if (cluster1.key == ci.key) { + dist = Infinity; + } else if (this.merge == clusterlib.single_linkage) { + dist = distances[cluster1.key][ci.key]; + if (distances[cluster1.key][ci.key] > + distances[cluster2.key][ci.key]) { + dist = distances[cluster2.key][ci.key]; + } + } else if (this.merge == clusterlib.complete_linkage) { + dist = distances[cluster1.key][ci.key]; + if (distances[cluster1.key][ci.key] < + distances[cluster2.key][ci.key]) { + dist = distances[cluster2.key][ci.key]; + } + } else if (this.merge == clusterlib.average_linkage) { + dist = (distances[cluster1.key][ci.key] * cluster1.size + + distances[cluster2.key][ci.key] * cluster2.size) + / (cluster1.size + cluster2.size); + } else { + dist = this.distance(ci.item, cluster1.item); + } + + distances[cluster1.key][ci.key] = distances[ci.key][cluster1.key] + = dist; + } + + // update cached neighbors + for (let i = 0; i < clusters.length; i++) { + var key1 = clusters[i].key; + if (neighbors[key1] == cluster1.key || + neighbors[key1] == cluster2.key) { + let minKey = key1; + for (let j = 0; j < clusters.length; j++) { + var key2 = clusters[j].key; + if (distances[key1][key2] < distances[key1][minKey]) { + minKey = key2; + } + } + neighbors[key1] = minKey; + } + clusters[i].index = i; + } + }, + + /** + * Given the current state of the algorithm, return the keys of the two + * clusters that are closest to each other so we know which ones to merge + * next. + * + * @param clusters + * The array of all remaining clusters + * @param distances + * Cached distances between pairs of clusters + * @param neighbors + * Cached closest clusters + * + * @return An array of two keys of clusters to merge, or null if there are + * no more clusters close enough to merge + */ + closestClusters: function HC_closestClus(clusters, distances, neighbors) { + let minKey = 0, minDist = Infinity; + for (let i = 0; i < clusters.length; i++) { + var key = clusters[i].key; + if (distances[key][neighbors[key]] < minDist) { + minKey = key; + minDist = distances[key][neighbors[key]]; + } + } + if (minDist < this.threshold) { + return [minKey, neighbors[minKey]]; + } + return null; + } +}; + +var clusterlib = { + hcluster: function hcluster(items, distance, merge, threshold, snapshotGap, + snapshotCallback) { + return (new HierarchicalClustering(distance, merge, threshold)) + .cluster(items, snapshotGap, snapshotCallback); + }, + + single_linkage: function single_linkage(cluster1, cluster2) { + return cluster1; + }, + + complete_linkage: function complete_linkage(cluster1, cluster2) { + return cluster1; + }, + + average_linkage: function average_linkage(cluster1, cluster2) { + return cluster1; + }, + + euclidean_distance: function euclidean_distance(v1, v2) { + let total = 0; + for (let i = 0; i < v1.length; i++) { + total += Math.pow(v2[i] - v1[i], 2); + } + return Math.sqrt(total); + }, + + manhattan_distance: function manhattan_distance(v1, v2) { + let total = 0; + for (let i = 0; i < v1.length; i++) { + total += Math.abs(v2[i] - v1[i]); + } + return total; + }, + + max_distance: function max_distance(v1, v2) { + let max = 0; + for (let i = 0; i < v1.length; i++) { + max = Math.max(max, Math.abs(v2[i] - v1[i])); + } + return max; + } +}; |