summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/od_dering.c
diff options
context:
space:
mode:
authortrav90 <travawine@palemoon.org>2018-10-15 21:45:30 -0500
committertrav90 <travawine@palemoon.org>2018-10-15 21:45:30 -0500
commit68569dee1416593955c1570d638b3d9250b33012 (patch)
treed960f017cd7eba3f125b7e8a813789ee2e076310 /third_party/aom/av1/common/od_dering.c
parent07c17b6b98ed32fcecff15c083ab0fd878de3cf0 (diff)
downloadUXP-68569dee1416593955c1570d638b3d9250b33012.tar
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.gz
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.lz
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.xz
UXP-68569dee1416593955c1570d638b3d9250b33012.zip
Import aom library
This is the reference implementation for the Alliance for Open Media's av1 video code. The commit used was 4d668d7feb1f8abd809d1bca0418570a7f142a36.
Diffstat (limited to 'third_party/aom/av1/common/od_dering.c')
-rw-r--r--third_party/aom/av1/common/od_dering.c416
1 files changed, 416 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/od_dering.c b/third_party/aom/av1/common/od_dering.c
new file mode 100644
index 000000000..f54f337ef
--- /dev/null
+++ b/third_party/aom/av1/common/od_dering.c
@@ -0,0 +1,416 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <math.h>
+#include <stdlib.h>
+
+#ifdef HAVE_CONFIG_H
+#include "./config.h"
+#endif
+
+#include "./aom_dsp_rtcd.h"
+#include "./av1_rtcd.h"
+#include "./cdef.h"
+
+/* Generated from gen_filter_tables.c. */
+const int OD_DIRECTION_OFFSETS_TABLE[8][3] = {
+ { -1 * OD_FILT_BSTRIDE + 1, -2 * OD_FILT_BSTRIDE + 2,
+ -3 * OD_FILT_BSTRIDE + 3 },
+ { 0 * OD_FILT_BSTRIDE + 1, -1 * OD_FILT_BSTRIDE + 2,
+ -1 * OD_FILT_BSTRIDE + 3 },
+ { 0 * OD_FILT_BSTRIDE + 1, 0 * OD_FILT_BSTRIDE + 2, 0 * OD_FILT_BSTRIDE + 3 },
+ { 0 * OD_FILT_BSTRIDE + 1, 1 * OD_FILT_BSTRIDE + 2, 1 * OD_FILT_BSTRIDE + 3 },
+ { 1 * OD_FILT_BSTRIDE + 1, 2 * OD_FILT_BSTRIDE + 2, 3 * OD_FILT_BSTRIDE + 3 },
+ { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE + 1, 3 * OD_FILT_BSTRIDE + 1 },
+ { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE + 0, 3 * OD_FILT_BSTRIDE + 0 },
+ { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE - 1, 3 * OD_FILT_BSTRIDE - 1 },
+};
+
+/* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
+ The search minimizes the weighted variance along all the lines in a
+ particular direction, i.e. the squared error between the input and a
+ "predicted" block where each pixel is replaced by the average along a line
+ in a particular direction. Since each direction have the same sum(x^2) term,
+ that term is never computed. See Section 2, step 2, of:
+ http://jmvalin.ca/notes/intra_paint.pdf */
+int od_dir_find8_c(const uint16_t *img, int stride, int32_t *var,
+ int coeff_shift) {
+ int i;
+ int32_t cost[8] = { 0 };
+ int partial[8][15] = { { 0 } };
+ int32_t best_cost = 0;
+ int best_dir = 0;
+ /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
+ The output is then 840 times larger, but we don't care for finding
+ the max. */
+ static const int div_table[] = { 0, 840, 420, 280, 210, 168, 140, 120, 105 };
+ for (i = 0; i < 8; i++) {
+ int j;
+ for (j = 0; j < 8; j++) {
+ int x;
+ /* We subtract 128 here to reduce the maximum range of the squared
+ partial sums. */
+ x = (img[i * stride + j] >> coeff_shift) - 128;
+ partial[0][i + j] += x;
+ partial[1][i + j / 2] += x;
+ partial[2][i] += x;
+ partial[3][3 + i - j / 2] += x;
+ partial[4][7 + i - j] += x;
+ partial[5][3 - i / 2 + j] += x;
+ partial[6][j] += x;
+ partial[7][i / 2 + j] += x;
+ }
+ }
+ for (i = 0; i < 8; i++) {
+ cost[2] += partial[2][i] * partial[2][i];
+ cost[6] += partial[6][i] * partial[6][i];
+ }
+ cost[2] *= div_table[8];
+ cost[6] *= div_table[8];
+ for (i = 0; i < 7; i++) {
+ cost[0] += (partial[0][i] * partial[0][i] +
+ partial[0][14 - i] * partial[0][14 - i]) *
+ div_table[i + 1];
+ cost[4] += (partial[4][i] * partial[4][i] +
+ partial[4][14 - i] * partial[4][14 - i]) *
+ div_table[i + 1];
+ }
+ cost[0] += partial[0][7] * partial[0][7] * div_table[8];
+ cost[4] += partial[4][7] * partial[4][7] * div_table[8];
+ for (i = 1; i < 8; i += 2) {
+ int j;
+ for (j = 0; j < 4 + 1; j++) {
+ cost[i] += partial[i][3 + j] * partial[i][3 + j];
+ }
+ cost[i] *= div_table[8];
+ for (j = 0; j < 4 - 1; j++) {
+ cost[i] += (partial[i][j] * partial[i][j] +
+ partial[i][10 - j] * partial[i][10 - j]) *
+ div_table[2 * j + 2];
+ }
+ }
+ for (i = 0; i < 8; i++) {
+ if (cost[i] > best_cost) {
+ best_cost = cost[i];
+ best_dir = i;
+ }
+ }
+ /* Difference between the optimal variance and the variance along the
+ orthogonal direction. Again, the sum(x^2) terms cancel out. */
+ *var = best_cost - cost[(best_dir + 4) & 7];
+ /* We'd normally divide by 840, but dividing by 1024 is close enough
+ for what we're going to do with this. */
+ *var >>= 10;
+ return best_dir;
+}
+
+/* Smooth in the direction detected. */
+void od_filter_dering_direction_8x8_c(uint16_t *y, int ystride,
+ const uint16_t *in, int threshold,
+ int dir, int damping) {
+ int i;
+ int j;
+ int k;
+ static const int taps[3] = { 3, 2, 1 };
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ int16_t sum;
+ int16_t xx;
+ int16_t yy;
+ xx = in[i * OD_FILT_BSTRIDE + j];
+ sum = 0;
+ for (k = 0; k < 3; k++) {
+ int16_t p0;
+ int16_t p1;
+ p0 = in[i * OD_FILT_BSTRIDE + j + OD_DIRECTION_OFFSETS_TABLE[dir][k]] -
+ xx;
+ p1 = in[i * OD_FILT_BSTRIDE + j - OD_DIRECTION_OFFSETS_TABLE[dir][k]] -
+ xx;
+ sum += taps[k] * constrain(p0, threshold, damping);
+ sum += taps[k] * constrain(p1, threshold, damping);
+ }
+ sum = (sum + 8) >> 4;
+ yy = xx + sum;
+ y[i * ystride + j] = yy;
+ }
+ }
+}
+
+/* Smooth in the direction detected. */
+void od_filter_dering_direction_4x4_c(uint16_t *y, int ystride,
+ const uint16_t *in, int threshold,
+ int dir, int damping) {
+ int i;
+ int j;
+ int k;
+ static const int taps[2] = { 4, 1 };
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ int16_t sum;
+ int16_t xx;
+ int16_t yy;
+ xx = in[i * OD_FILT_BSTRIDE + j];
+ sum = 0;
+ for (k = 0; k < 2; k++) {
+ int16_t p0;
+ int16_t p1;
+ p0 = in[i * OD_FILT_BSTRIDE + j + OD_DIRECTION_OFFSETS_TABLE[dir][k]] -
+ xx;
+ p1 = in[i * OD_FILT_BSTRIDE + j - OD_DIRECTION_OFFSETS_TABLE[dir][k]] -
+ xx;
+ sum += taps[k] * constrain(p0, threshold, damping);
+ sum += taps[k] * constrain(p1, threshold, damping);
+ }
+ sum = (sum + 8) >> 4;
+ yy = xx + sum;
+ y[i * ystride + j] = yy;
+ }
+ }
+}
+
+/* Compute deringing filter threshold for an 8x8 block based on the
+ directional variance difference. A high variance difference means that we
+ have a highly directional pattern (e.g. a high contrast edge), so we can
+ apply more deringing. A low variance means that we either have a low
+ contrast edge, or a non-directional texture, so we want to be careful not
+ to blur. */
+static INLINE int od_adjust_thresh(int threshold, int32_t var) {
+ const int i = var >> 6 ? AOMMIN(get_msb(var >> 6), 12) : 0;
+ /* We use the variance of 8x8 blocks to adjust the threshold. */
+ return var ? (threshold * (4 + i) + 8) >> 4 : 0;
+}
+
+void copy_8x8_16bit_to_16bit_c(uint16_t *dst, int dstride, const uint16_t *src,
+ int sstride) {
+ int i, j;
+ for (i = 0; i < 8; i++)
+ for (j = 0; j < 8; j++) dst[i * dstride + j] = src[i * sstride + j];
+}
+
+void copy_4x4_16bit_to_16bit_c(uint16_t *dst, int dstride, const uint16_t *src,
+ int sstride) {
+ int i, j;
+ for (i = 0; i < 4; i++)
+ for (j = 0; j < 4; j++) dst[i * dstride + j] = src[i * sstride + j];
+}
+
+void copy_dering_16bit_to_16bit(uint16_t *dst, int dstride, uint16_t *src,
+ dering_list *dlist, int dering_count,
+ int bsize) {
+ int bi, bx, by;
+
+ if (bsize == BLOCK_8X8) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_8x8_16bit_to_16bit(&dst[(by << 3) * dstride + (bx << 3)], dstride,
+ &src[bi << (3 + 3)], 8);
+ }
+ } else if (bsize == BLOCK_4X8) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_16bit(&dst[(by << 3) * dstride + (bx << 2)], dstride,
+ &src[bi << (3 + 2)], 4);
+ copy_4x4_16bit_to_16bit(&dst[((by << 3) + 4) * dstride + (bx << 2)],
+ dstride, &src[(bi << (3 + 2)) + 4 * 4], 4);
+ }
+ } else if (bsize == BLOCK_8X4) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 3)], dstride,
+ &src[bi << (2 + 3)], 8);
+ copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 3) + 4],
+ dstride, &src[(bi << (2 + 3)) + 4], 8);
+ }
+ } else {
+ assert(bsize == BLOCK_4X4);
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 2)], dstride,
+ &src[bi << (2 + 2)], 4);
+ }
+ }
+}
+
+void copy_8x8_16bit_to_8bit_c(uint8_t *dst, int dstride, const uint16_t *src,
+ int sstride) {
+ int i, j;
+ for (i = 0; i < 8; i++)
+ for (j = 0; j < 8; j++)
+ dst[i * dstride + j] = (uint8_t)src[i * sstride + j];
+}
+
+void copy_4x4_16bit_to_8bit_c(uint8_t *dst, int dstride, const uint16_t *src,
+ int sstride) {
+ int i, j;
+ for (i = 0; i < 4; i++)
+ for (j = 0; j < 4; j++)
+ dst[i * dstride + j] = (uint8_t)src[i * sstride + j];
+}
+
+static void copy_dering_16bit_to_8bit(uint8_t *dst, int dstride,
+ const uint16_t *src, dering_list *dlist,
+ int dering_count, int bsize) {
+ int bi, bx, by;
+ if (bsize == BLOCK_8X8) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_8x8_16bit_to_8bit(&dst[(by << 3) * dstride + (bx << 3)], dstride,
+ &src[bi << (3 + 3)], 8);
+ }
+ } else if (bsize == BLOCK_4X8) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_8bit(&dst[(by << 3) * dstride + (bx << 2)], dstride,
+ &src[bi << (3 + 2)], 4);
+ copy_4x4_16bit_to_8bit(&dst[((by << 3) + 4) * dstride + (bx << 2)],
+ dstride, &src[(bi << (3 + 2)) + 4 * 4], 4);
+ }
+ } else if (bsize == BLOCK_8X4) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 3)], dstride,
+ &src[bi << (2 + 3)], 8);
+ copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 3) + 4], dstride,
+ &src[(bi << (2 + 3)) + 4], 8);
+ }
+ } else {
+ assert(bsize == BLOCK_4X4);
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 2)], dstride,
+ &src[bi << (2 * 2)], 4);
+ }
+ }
+}
+
+int get_filter_skip(int level) {
+ int filter_skip = level & 1;
+ if (level == 1) filter_skip = 0;
+ return filter_skip;
+}
+
+void od_dering(uint8_t *dst, int dstride, uint16_t *y, uint16_t *in, int xdec,
+ int ydec, int dir[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS],
+ int *dirinit, int var[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS],
+ int pli, dering_list *dlist, int dering_count, int level,
+ int clpf_strength, int clpf_damping, int dering_damping,
+ int coeff_shift, int skip_dering, int hbd) {
+ int bi;
+ int bx;
+ int by;
+ int bsize, bsizex, bsizey;
+
+ int threshold = (level >> 1) << coeff_shift;
+ int filter_skip = get_filter_skip(level);
+ if (level == 1) threshold = 31 << coeff_shift;
+
+ od_filter_dering_direction_func filter_dering_direction[] = {
+ od_filter_dering_direction_4x4, od_filter_dering_direction_8x8
+ };
+ clpf_damping += coeff_shift - (pli != AOM_PLANE_Y);
+ dering_damping += coeff_shift - (pli != AOM_PLANE_Y);
+ bsize =
+ ydec ? (xdec ? BLOCK_4X4 : BLOCK_8X4) : (xdec ? BLOCK_4X8 : BLOCK_8X8);
+ bsizex = 3 - xdec;
+ bsizey = 3 - ydec;
+
+ if (!skip_dering) {
+ if (pli == 0) {
+ if (!dirinit || !*dirinit) {
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ dir[by][bx] =
+ od_dir_find8(&in[8 * by * OD_FILT_BSTRIDE + 8 * bx],
+ OD_FILT_BSTRIDE, &var[by][bx], coeff_shift);
+ }
+ if (dirinit) *dirinit = 1;
+ }
+ }
+ // Only run dering for non-zero threshold (which is always the case for
+ // 4:2:2 or 4:4:0). If we don't dering, we still need to eventually write
+ // something out in y[] later.
+ if (threshold != 0) {
+ assert(bsize == BLOCK_8X8 || bsize == BLOCK_4X4);
+ for (bi = 0; bi < dering_count; bi++) {
+ int t = !filter_skip && dlist[bi].skip ? 0 : threshold;
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ (filter_dering_direction[bsize == BLOCK_8X8])(
+ &y[bi << (bsizex + bsizey)], 1 << bsizex,
+ &in[(by * OD_FILT_BSTRIDE << bsizey) + (bx << bsizex)],
+ pli ? t : od_adjust_thresh(t, var[by][bx]), dir[by][bx],
+ dering_damping);
+ }
+ }
+ }
+
+ if (clpf_strength) {
+ if (threshold && !skip_dering)
+ copy_dering_16bit_to_16bit(in, OD_FILT_BSTRIDE, y, dlist, dering_count,
+ bsize);
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ int py = by << bsizey;
+ int px = bx << bsizex;
+
+ if (!filter_skip && dlist[bi].skip) continue;
+ if (!dst || hbd) {
+ // 16 bit destination if high bitdepth or 8 bit destination not given
+ (!threshold || (dir[by][bx] < 4 && dir[by][bx]) ? aom_clpf_block_hbd
+ : aom_clpf_hblock_hbd)(
+ dst ? (uint16_t *)dst + py * dstride + px
+ : &y[bi << (bsizex + bsizey)],
+ in + py * OD_FILT_BSTRIDE + px, dst && hbd ? dstride : 1 << bsizex,
+ OD_FILT_BSTRIDE, 1 << bsizex, 1 << bsizey,
+ clpf_strength << coeff_shift, clpf_damping);
+ } else {
+ // Do clpf and write the result to an 8 bit destination
+ (!threshold || (dir[by][bx] < 4 && dir[by][bx]) ? aom_clpf_block
+ : aom_clpf_hblock)(
+ dst + py * dstride + px, in + py * OD_FILT_BSTRIDE + px, dstride,
+ OD_FILT_BSTRIDE, 1 << bsizex, 1 << bsizey,
+ clpf_strength << coeff_shift, clpf_damping);
+ }
+ }
+ } else if (threshold != 0) {
+ // No clpf, so copy instead
+ if (hbd) {
+ copy_dering_16bit_to_16bit((uint16_t *)dst, dstride, y, dlist,
+ dering_count, bsize);
+ } else {
+ copy_dering_16bit_to_8bit(dst, dstride, y, dlist, dering_count, bsize);
+ }
+ } else if (dirinit) {
+ // If we're here, both dering and clpf are off, and we still haven't written
+ // anything to y[] yet, so we just copy the input to y[]. This is necessary
+ // only for av1_cdef_search() and only av1_cdef_search() sets dirinit.
+ for (bi = 0; bi < dering_count; bi++) {
+ by = dlist[bi].by;
+ bx = dlist[bi].bx;
+ int iy, ix;
+ // TODO(stemidts/jmvalin): SIMD optimisations
+ for (iy = 0; iy < 1 << bsizey; iy++)
+ for (ix = 0; ix < 1 << bsizex; ix++)
+ y[(bi << (bsizex + bsizey)) + (iy << bsizex) + ix] =
+ in[((by << bsizey) + iy) * OD_FILT_BSTRIDE + (bx << bsizex) + ix];
+ }
+ }
+}