diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /security/sandbox/chromium/base/synchronization/waitable_event.h | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'security/sandbox/chromium/base/synchronization/waitable_event.h')
-rw-r--r-- | security/sandbox/chromium/base/synchronization/waitable_event.h | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/synchronization/waitable_event.h b/security/sandbox/chromium/base/synchronization/waitable_event.h new file mode 100644 index 000000000..b5d91d00b --- /dev/null +++ b/security/sandbox/chromium/base/synchronization/waitable_event.h @@ -0,0 +1,189 @@ +// Copyright (c) 2012 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_ +#define BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_ + +#include <stddef.h> + +#include "base/base_export.h" +#include "base/macros.h" +#include "build/build_config.h" + +#if defined(OS_WIN) +#include "base/win/scoped_handle.h" +#endif + +#if defined(OS_POSIX) +#include <list> +#include <utility> +#include "base/memory/ref_counted.h" +#include "base/synchronization/lock.h" +#endif + +namespace base { + +class TimeDelta; + +// A WaitableEvent can be a useful thread synchronization tool when you want to +// allow one thread to wait for another thread to finish some work. For +// non-Windows systems, this can only be used from within a single address +// space. +// +// Use a WaitableEvent when you would otherwise use a Lock+ConditionVariable to +// protect a simple boolean value. However, if you find yourself using a +// WaitableEvent in conjunction with a Lock to wait for a more complex state +// change (e.g., for an item to be added to a queue), then you should probably +// be using a ConditionVariable instead of a WaitableEvent. +// +// NOTE: On Windows, this class provides a subset of the functionality afforded +// by a Windows event object. This is intentional. If you are writing Windows +// specific code and you need other features of a Windows event, then you might +// be better off just using an Windows event directly. +class BASE_EXPORT WaitableEvent { + public: + // If manual_reset is true, then to set the event state to non-signaled, a + // consumer must call the Reset method. If this parameter is false, then the + // system automatically resets the event state to non-signaled after a single + // waiting thread has been released. + WaitableEvent(bool manual_reset, bool initially_signaled); + +#if defined(OS_WIN) + // Create a WaitableEvent from an Event HANDLE which has already been + // created. This objects takes ownership of the HANDLE and will close it when + // deleted. + explicit WaitableEvent(win::ScopedHandle event_handle); +#endif + + ~WaitableEvent(); + + // Put the event in the un-signaled state. + void Reset(); + + // Put the event in the signaled state. Causing any thread blocked on Wait + // to be woken up. + void Signal(); + + // Returns true if the event is in the signaled state, else false. If this + // is not a manual reset event, then this test will cause a reset. + bool IsSignaled(); + + // Wait indefinitely for the event to be signaled. Wait's return "happens + // after" |Signal| has completed. This means that it's safe for a + // WaitableEvent to synchronise its own destruction, like this: + // + // WaitableEvent *e = new WaitableEvent; + // SendToOtherThread(e); + // e->Wait(); + // delete e; + void Wait(); + + // Wait up until max_time has passed for the event to be signaled. Returns + // true if the event was signaled. If this method returns false, then it + // does not necessarily mean that max_time was exceeded. + // + // TimedWait can synchronise its own destruction like |Wait|. + bool TimedWait(const TimeDelta& max_time); + +#if defined(OS_WIN) + HANDLE handle() const { return handle_.Get(); } +#endif + + // Wait, synchronously, on multiple events. + // waitables: an array of WaitableEvent pointers + // count: the number of elements in @waitables + // + // returns: the index of a WaitableEvent which has been signaled. + // + // You MUST NOT delete any of the WaitableEvent objects while this wait is + // happening, however WaitMany's return "happens after" the |Signal| call + // that caused it has completed, like |Wait|. + static size_t WaitMany(WaitableEvent** waitables, size_t count); + + // For asynchronous waiting, see WaitableEventWatcher + + // This is a private helper class. It's here because it's used by friends of + // this class (such as WaitableEventWatcher) to be able to enqueue elements + // of the wait-list + class Waiter { + public: + // Signal the waiter to wake up. + // + // Consider the case of a Waiter which is in multiple WaitableEvent's + // wait-lists. Each WaitableEvent is automatic-reset and two of them are + // signaled at the same time. Now, each will wake only the first waiter in + // the wake-list before resetting. However, if those two waiters happen to + // be the same object (as can happen if another thread didn't have a chance + // to dequeue the waiter from the other wait-list in time), two auto-resets + // will have happened, but only one waiter has been signaled! + // + // Because of this, a Waiter may "reject" a wake by returning false. In + // this case, the auto-reset WaitableEvent shouldn't act as if anything has + // been notified. + virtual bool Fire(WaitableEvent* signaling_event) = 0; + + // Waiters may implement this in order to provide an extra condition for + // two Waiters to be considered equal. In WaitableEvent::Dequeue, if the + // pointers match then this function is called as a final check. See the + // comments in ~Handle for why. + virtual bool Compare(void* tag) = 0; + + protected: + virtual ~Waiter() {} + }; + + private: + friend class WaitableEventWatcher; + +#if defined(OS_WIN) + win::ScopedHandle handle_; +#else + // On Windows, one can close a HANDLE which is currently being waited on. The + // MSDN documentation says that the resulting behaviour is 'undefined', but + // it doesn't crash. However, if we were to include the following members + // directly then, on POSIX, one couldn't use WaitableEventWatcher to watch an + // event which gets deleted. This mismatch has bitten us several times now, + // so we have a kernel of the WaitableEvent, which is reference counted. + // WaitableEventWatchers may then take a reference and thus match the Windows + // behaviour. + struct WaitableEventKernel : + public RefCountedThreadSafe<WaitableEventKernel> { + public: + WaitableEventKernel(bool manual_reset, bool initially_signaled); + + bool Dequeue(Waiter* waiter, void* tag); + + base::Lock lock_; + const bool manual_reset_; + bool signaled_; + std::list<Waiter*> waiters_; + + private: + friend class RefCountedThreadSafe<WaitableEventKernel>; + ~WaitableEventKernel(); + }; + + typedef std::pair<WaitableEvent*, size_t> WaiterAndIndex; + + // When dealing with arrays of WaitableEvent*, we want to sort by the address + // of the WaitableEvent in order to have a globally consistent locking order. + // In that case we keep them, in sorted order, in an array of pairs where the + // second element is the index of the WaitableEvent in the original, + // unsorted, array. + static size_t EnqueueMany(WaiterAndIndex* waitables, + size_t count, Waiter* waiter); + + bool SignalAll(); + bool SignalOne(); + void Enqueue(Waiter* waiter); + + scoped_refptr<WaitableEventKernel> kernel_; +#endif + + DISALLOW_COPY_AND_ASSIGN(WaitableEvent); +}; + +} // namespace base + +#endif // BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_ |