diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /security/nss/lib/freebl/ecl/curve25519_32.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'security/nss/lib/freebl/ecl/curve25519_32.c')
-rw-r--r-- | security/nss/lib/freebl/ecl/curve25519_32.c | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/curve25519_32.c b/security/nss/lib/freebl/ecl/curve25519_32.c new file mode 100644 index 000000000..0122961e6 --- /dev/null +++ b/security/nss/lib/freebl/ecl/curve25519_32.c @@ -0,0 +1,390 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* + * Derived from public domain code by Matthew Dempsky and D. J. Bernstein. + */ + +#include "ecl-priv.h" +#include "mpi.h" + +#include <stdint.h> +#include <stdio.h> + +typedef uint32_t elem[32]; + +/* + * Add two field elements. + * out = a + b + */ +static void +add(elem out, const elem a, const elem b) +{ + uint32_t j; + uint32_t u = 0; + for (j = 0; j < 31; ++j) { + u += a[j] + b[j]; + out[j] = u & 0xFF; + u >>= 8; + } + u += a[31] + b[31]; + out[31] = u; +} + +/* + * Subtract two field elements. + * out = a - b + */ +static void +sub(elem out, const elem a, const elem b) +{ + uint32_t j; + uint32_t u; + u = 218; + for (j = 0; j < 31; ++j) { + u += a[j] + 0xFF00 - b[j]; + out[j] = u & 0xFF; + u >>= 8; + } + u += a[31] - b[31]; + out[31] = u; +} + +/* + * "Squeeze" an element after multiplication (and square). + */ +static void +squeeze(elem a) +{ + uint32_t j; + uint32_t u; + u = 0; + for (j = 0; j < 31; ++j) { + u += a[j]; + a[j] = u & 0xFF; + u >>= 8; + } + u += a[31]; + a[31] = u & 0x7F; + u = 19 * (u >> 7); + for (j = 0; j < 31; ++j) { + u += a[j]; + a[j] = u & 0xFF; + u >>= 8; + } + a[31] += u; +} + +static const elem minusp = { 19, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 128 }; + +/* + * Reduce point a by 2^255-19 + */ +static void +reduce(elem a) +{ + elem aorig; + uint32_t j; + uint32_t negative; + + for (j = 0; j < 32; ++j) { + aorig[j] = a[j]; + } + add(a, a, minusp); + negative = 1 + ~((a[31] >> 7) & 1); + for (j = 0; j < 32; ++j) { + a[j] ^= negative & (aorig[j] ^ a[j]); + } +} + +/* + * Multiplication and squeeze + * out = a * b + */ +static void +mult(elem out, const elem a, const elem b) +{ + uint32_t i; + uint32_t j; + uint32_t u; + + for (i = 0; i < 32; ++i) { + u = 0; + for (j = 0; j <= i; ++j) { + u += a[j] * b[i - j]; + } + for (j = i + 1; j < 32; ++j) { + u += 38 * a[j] * b[i + 32 - j]; + } + out[i] = u; + } + squeeze(out); +} + +/* + * Multiplication + * out = 121665 * a + */ +static void +mult121665(elem out, const elem a) +{ + uint32_t j; + uint32_t u; + + u = 0; + for (j = 0; j < 31; ++j) { + u += 121665 * a[j]; + out[j] = u & 0xFF; + u >>= 8; + } + u += 121665 * a[31]; + out[31] = u & 0x7F; + u = 19 * (u >> 7); + for (j = 0; j < 31; ++j) { + u += out[j]; + out[j] = u & 0xFF; + u >>= 8; + } + u += out[j]; + out[j] = u; +} + +/* + * Square a and squeeze the result. + * out = a * a + */ +static void +square(elem out, const elem a) +{ + uint32_t i; + uint32_t j; + uint32_t u; + + for (i = 0; i < 32; ++i) { + u = 0; + for (j = 0; j < i - j; ++j) { + u += a[j] * a[i - j]; + } + for (j = i + 1; j < i + 32 - j; ++j) { + u += 38 * a[j] * a[i + 32 - j]; + } + u *= 2; + if ((i & 1) == 0) { + u += a[i / 2] * a[i / 2]; + u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; + } + out[i] = u; + } + squeeze(out); +} + +/* + * Constant time swap between r and s depending on b + */ +static void +cswap(uint32_t p[64], uint32_t q[64], uint32_t b) +{ + uint32_t j; + uint32_t swap = 1 + ~b; + + for (j = 0; j < 64; ++j) { + const uint32_t t = swap & (p[j] ^ q[j]); + p[j] ^= t; + q[j] ^= t; + } +} + +/* + * Montgomery ladder + */ +static void +monty(elem x_2_out, elem z_2_out, + const elem point, const elem scalar) +{ + uint32_t x_3[64] = { 0 }; + uint32_t x_2[64] = { 0 }; + uint32_t a0[64]; + uint32_t a1[64]; + uint32_t b0[64]; + uint32_t b1[64]; + uint32_t c1[64]; + uint32_t r[32]; + uint32_t s[32]; + uint32_t t[32]; + uint32_t u[32]; + uint32_t swap = 0; + uint32_t k_t = 0; + int j; + + for (j = 0; j < 32; ++j) { + x_3[j] = point[j]; + } + x_3[32] = 1; + x_2[0] = 1; + + for (j = 254; j >= 0; --j) { + k_t = (scalar[j >> 3] >> (j & 7)) & 1; + swap ^= k_t; + cswap(x_2, x_3, swap); + swap = k_t; + add(a0, x_2, x_2 + 32); + sub(a0 + 32, x_2, x_2 + 32); + add(a1, x_3, x_3 + 32); + sub(a1 + 32, x_3, x_3 + 32); + square(b0, a0); + square(b0 + 32, a0 + 32); + mult(b1, a1, a0 + 32); + mult(b1 + 32, a1 + 32, a0); + add(c1, b1, b1 + 32); + sub(c1 + 32, b1, b1 + 32); + square(r, c1 + 32); + sub(s, b0, b0 + 32); + mult121665(t, s); + add(u, t, b0); + mult(x_2, b0, b0 + 32); + mult(x_2 + 32, s, u); + square(x_3, c1); + mult(x_3 + 32, r, point); + } + + cswap(x_2, x_3, swap); + for (j = 0; j < 32; ++j) { + x_2_out[j] = x_2[j]; + } + for (j = 0; j < 32; ++j) { + z_2_out[j] = x_2[j + 32]; + } +} + +static void +recip(elem out, const elem z) +{ + elem z2; + elem z9; + elem z11; + elem z2_5_0; + elem z2_10_0; + elem z2_20_0; + elem z2_50_0; + elem z2_100_0; + elem t0; + elem t1; + int i; + + /* 2 */ square(z2, z); + /* 4 */ square(t1, z2); + /* 8 */ square(t0, t1); + /* 9 */ mult(z9, t0, z); + /* 11 */ mult(z11, z9, z2); + /* 22 */ square(t0, z11); + /* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9); + + /* 2^6 - 2^1 */ square(t0, z2_5_0); + /* 2^7 - 2^2 */ square(t1, t0); + /* 2^8 - 2^3 */ square(t0, t1); + /* 2^9 - 2^4 */ square(t1, t0); + /* 2^10 - 2^5 */ square(t0, t1); + /* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0); + + /* 2^11 - 2^1 */ square(t0, z2_10_0); + /* 2^12 - 2^2 */ square(t1, t0); + /* 2^20 - 2^10 */ + for (i = 2; i < 10; i += 2) { + square(t0, t1); + square(t1, t0); + } + /* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0); + + /* 2^21 - 2^1 */ square(t0, z2_20_0); + /* 2^22 - 2^2 */ square(t1, t0); + /* 2^40 - 2^20 */ + for (i = 2; i < 20; i += 2) { + square(t0, t1); + square(t1, t0); + } + /* 2^40 - 2^0 */ mult(t0, t1, z2_20_0); + + /* 2^41 - 2^1 */ square(t1, t0); + /* 2^42 - 2^2 */ square(t0, t1); + /* 2^50 - 2^10 */ + for (i = 2; i < 10; i += 2) { + square(t1, t0); + square(t0, t1); + } + /* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0); + + /* 2^51 - 2^1 */ square(t0, z2_50_0); + /* 2^52 - 2^2 */ square(t1, t0); + /* 2^100 - 2^50 */ + for (i = 2; i < 50; i += 2) { + square(t0, t1); + square(t1, t0); + } + /* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0); + + /* 2^101 - 2^1 */ square(t1, z2_100_0); + /* 2^102 - 2^2 */ square(t0, t1); + /* 2^200 - 2^100 */ + for (i = 2; i < 100; i += 2) { + square(t1, t0); + square(t0, t1); + } + /* 2^200 - 2^0 */ mult(t1, t0, z2_100_0); + + /* 2^201 - 2^1 */ square(t0, t1); + /* 2^202 - 2^2 */ square(t1, t0); + /* 2^250 - 2^50 */ + for (i = 2; i < 50; i += 2) { + square(t0, t1); + square(t1, t0); + } + /* 2^250 - 2^0 */ mult(t0, t1, z2_50_0); + + /* 2^251 - 2^1 */ square(t1, t0); + /* 2^252 - 2^2 */ square(t0, t1); + /* 2^253 - 2^3 */ square(t1, t0); + /* 2^254 - 2^4 */ square(t0, t1); + /* 2^255 - 2^5 */ square(t1, t0); + /* 2^255 - 21 */ mult(out, t1, z11); +} + +/* + * Computes q = Curve25519(p, s) + */ +SECStatus +ec_Curve25519_mul(PRUint8 *q, const PRUint8 *s, const PRUint8 *p) +{ + elem point = { 0 }; + elem x_2 = { 0 }; + elem z_2 = { 0 }; + elem X = { 0 }; + elem scalar = { 0 }; + uint32_t i; + + /* read and mask scalar */ + for (i = 0; i < 32; ++i) { + scalar[i] = s[i]; + } + scalar[0] &= 0xF8; + scalar[31] &= 0x7F; + scalar[31] |= 64; + + /* read and mask point */ + for (i = 0; i < 32; ++i) { + point[i] = p[i]; + } + point[31] &= 0x7F; + + monty(x_2, z_2, point, scalar); + recip(z_2, z_2); + mult(X, x_2, z_2); + reduce(X); + for (i = 0; i < 32; ++i) { + q[i] = X[i]; + } + return 0; +} |